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Abstract. The purpose of this paper is to study a class of semilinear
elliptic boundary value problems with degenerate boundary con-
ditions which include as particular cases the Dirichlet and Robin
problems. The approach here is distinguished by the extensive use
of the ideas and techniques characteristic of the recent developments
in the theory of partial differential equations. By making use of a
variant of the Ljusternik—Schnirelman theory of critical points, we
prove very exact results on the number of solutions of our problem.
The results here extend earlier theorems due to Castro—Lazer to the
degenerate case.

1. Statement of Main Results

Let Q be a bounded domain of Euclidean space RY, N > 2, with smooth
boundary 0Q; its closure Q =QUdQ is an N-dimensional, compact smooth
manifold with boundary. Let 4 be a second-order, elliptic differential operator
with real coefficients such that

AHZ£<ZQU(X)(§;>+C(X)M' (1.1)
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Here:

(1) a¥ e C*(Q) and a’(x) = a’(x) for all xe Q and 1 <i,j < N, and there
exists a constant ao > 0 such that

N
> adl(x)EE > alél? for all (x,&) e @ x RY.
i,j=1

(2) ce C*(Q) and ¢(x) =0 in Q.
Let B be a first-order, boundary condition with real coefficients such that

Bu = a(x") % + b(x"u. (1.2)

Here:

(3) ae C*(0Q) and a(x') >0 on 0Q.
(4) be C*(dQ) and b(x’) =0 on 0Q.
(5) 0/0v is the conormal derivative associated with the operator A:

J_ EN a"j(x’)nA—a
= e
ov Py 0x;
where n = (n1,ny,...,ny) is the unit exterior normal to the boundary 0Q.

Our fundamental hypotheses on the boundary condition B are the following:

(H.1) a(x") +b(x") >0 on 0Q.
(H.2) b(x") #0 on 0Q.

It should be noticed that if a(x’) =0 and b(x’) =1 on 0Q (resp. a(x’) =1 on
0Q), then the boundary condition B is the Dirichlet condition (resp. Robin
condition). Moreover, it is easy to see that the boundary condition B is non-
degenerate (or coercive) if and only if either a(x’) >0 on dQ or a(x') =0 and
b(x") > 0 on 9Q. Therefore, our boundary condition B is a degenerate boundary
value problem from an analytical point of view (cf. [17]). Amann [3] studied
the boundary condition B in the non-degenerate case where the boundary 0Q
is the disjoint union of the two closed subsets M = {x' € 0Q : a(x’) =0} and
OO\M = {x' € 0Q : a(x") > 0}, each of which is an (N — 1)-dimensional, compact
smooth manifold.

The intuitive meaning of condition (H.1) is that the absorption phenomenon
occurs at each point of the set M, while the reflection phenomenon occurs at each
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point of the set 0Q\M (see [24]). On the other hand, condition (H.2) implies that
the boundary condition B is not equal to the purely Neumann condition (see
Remark 1.1).

In this paper we study the following semilinear non-homogeneous elliptic
boundary value problem: Let ¢(¢) be a real-valued function defined on R. Given a
function i(x) in Q, find a function u(x) in ©Q such that

—Au+g(u)=h in Q,
(1.3)
Bu = a(x’)%—k b(x"\u=0 on 0Q.
In order to study problem (1.3), we consider the linear elliptic boundary
value problem
{Auf in Q, (14)
Bu=0 ondQ

in the framework of the Hilbert space L*(Q). We associate with problem (1.4) a
densely defined, closed linear operator

A: LHQ) — L*(Q)
as follows:

(1) 2(N) ={ue W*(Q) : Bu=0 on 0Q}.
(2) u = Au for every ue 2(U).

Here and in the following W*7?(Q) denotes the usual Sobolev space for k € N
and 1 < p < o0.

Then we have the following fundamental spectral results (i), (ii), (iii) and (iv)
of the operator A (see [25, Theorem 5.1]):

(i) The operator 2 is positive and selfadjoint in L?(Q).
(i) Let 4; be the eigenvalues of the operator 2 that are arranged in an
increasing sequence

A <12S"'Slj£lj+1...,

each eigenvalue being repeated according to its multiplicity. The first
eigenvalue Ay is positive and algebraically simple, and its corresponding

eigenfunction ¢, € C*(Q) may be chosen to be strictly positive in Q.
(iii) No other eigenvalues 4;, j > 2, have positive eigenfunctions.
(iv) The family {¢;};2, of eigenfunctions of 2 forms a complete orthonormal
system of L?(Q).
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ReEMARK 1.1. If the boundary condition B is equal to the purely Neumann
condition, then the first eigenvalue A; is equal to zero. This is the reason why we
study the semilinear elliptic boundary value problem (1.3) under condition (H.2).

In this paper we consider problem (1.3) under the assumption that the range
of ¢'(t) contains eigenvalues 4; of 2, and prove non-uniqueness results for
problem (1.3).

First, the next existence theorem is a generalization of Castro—Lazer [10,
Theorem A] to the degenerate case:

THEOREM 1.1.  Assume that g € C'(R) with g(0) = 0 and that g'(t) is bounded
on R. Then we have the following two assertions (1) and (II):
(I) If there exist an integer J € N and constants y >0, ' > 0 such that

Ay <y <y <y, (A)
g'(t) <y’ for all teR
and that
] t ytz
r1£1£ Uog(s) ds — 7] > —o0, (B)
and if the condition
g'(0) < 4y (©)
is satisfied, then the homogeneous problem
{—Au+g(u)=0 in Q, (1.5)
Bu=0 on 0Q)

has at least two solutions—one trivial solution and at least one non-trivial solution
ue C™*(Q) with exponent 0 < o < 1.

(I) Let he C*(Q) with exponent 0 < oo < 1. If, in addition to condition (C),
the function g(t) satisfies the condition

g'(0) #4 forall j=1,2,..., (D)
then the non-homogeneous problem (1.3)

{—Au—l—g(u) =h in Q,
Bu=0 on 0Q
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has at least three solutions uy,uy,u3 € C***(Q) provided that Al 2y is sufficiently
small. In particular, the homogeneous problem (1.5) has one trivial solution and at

least two non-trivial solutions.

ExampLE 1.1. A simple example of the nonlinear term ¢g(¢) is given by the

formula
/thriz(t_F%_%) for t > 1,
A2\ L2
o — 4 (5 ro=r=1.
(e fr-lsrs<o,
Atz

2 (14443 forr<—1.

It is easy to verify that this function g(¢) satisfies conditions (A), (B), (C) and (D)
for J=1:

, At 3+ A
y - 2 bl V* 4 9
A+ 2o
2

g (0)=0< 1 <g'(+mw) = < Ja.

The next corollary is a simplified version of Theorem 1.1 with J:=n+ k:

COROLLARY 1.2. Let he C*(Q) with exponent 0 < a < 1. Assume that g e
C!(R) with g(0) = 0 and that g'(t) is bounded on R. If the finite limits g'(+o0) =
lim, ., g'(¢) exist and if there exist two positive integers n and k such that

)Ln < gl(o) < A-n+l << }'n+k < g'(ioo) < )~n+k+17 (E)

then the non-homogeneous problem (1.3) has at least three solutions u,un,us €
C**(Q) provided that Al 2 is sufficiently small.

Rephrased, Corollary 1.2 asserts that the non-homogeneous problem (1.3) has
at least three solutions provided that g’(¢) crosses eigenvalues 4; of 2 if |#| goes
from 0 to oo.

REMARK 1.2. Ambrosetti-Prodi [6] considered the case where the range of
g’'(t) contains only the first eigenvalue y; of the Dirichlet problem, and studied
the non-homogeneous problem (1.3) in the framework of singularity theory in
Banach spaces ([22, Chapter 6]). They characterized completely the solution
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structure of the non-homogeneous problem (1.3) ([6, Theorem 3.1], [7, Chapter 4,
Theorem 2.4], [8, Theorem 3]). Their result is generalized to the degenerate case
by Taira ([26, Theorem 1.1]).

With stronger assumptions on g(¢), we can give the exact number of solu-
tions. In fact, the next existence theorem is a generalization of Castro—Lazer [10,
Theorem B] to the degenerate case (see also [5, Theorem 1.2]):

TueoreM 1.3. Let he C*(Q) with exponent 0 <o < 1. Assume that ge
C%(R) with g(0) =0 and that

tg"(t) >0 for all t+0. (1.6)

If the finite limits g'(+o0) = lim,_4o ¢'(2) = lim,1o, g(1)/t exist and if there
exists a positive integer J such that

A1 < g'(0) < Ay < g'(+00) < A1, (F)

then there exists a constant r > 0 such that the non-homogeneous problem (1.3) has
exactly three solutions uy,us,u3 € C***(Q) provided that Al 2y is smaller than r.
In particular, the homogeneous problem (1.5) has one trivial solution and exactly
two non-trivial solutions.

ExampLE 1.2. A simple example of the nonlinear term ¢g(¢) is given by the

formula
21-5/12 (l"‘%_%) fOI‘l>1;
g(t)= (A1]+2/12)Z3 for -1 <r<1,
Atz

(14149 forr< -1
It is easy to verify that this function ¢(¢) satisfies condition (F) for J = 1:

M+ A

g (0)=0< 1 <g'(+w0) = 3

< Aa.

If the nonlinear term ¢(¢) is an odd function of 7, then we can improve
assertion (I) of Theorem 1.1. The next existence theorem is a generalization of
Castro-Lazer [10, Theorem C] to the degenerate case (see also [16, Theorem 2];
[32, Theorem 1]):
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THEOREM 1.4. Let ¢(t) be a function as in assertion (1) of Theorem 1.1.
Moreover, if g(t) is an odd function of t and if K is a positive integer such that
K <J and

dk-1<¢g'(0) <Ak < 4y, (G)

then the homogeneous problem (1.5) has at least 2(J — K + 1) non-trivial solutions
in C**(Q) with exponent 0 < o < 1.

ExampLE 1.3. A simple example of the nonlinear term ¢g(¢) is given by the
formula

%(Z—F%—%) for 1> 1,
(%)12 for0<r<l,
(e fr-lsr<o,

%(H—%—i—%) for t < —1.

It is easy to verify that this function g(¢) satisfies conditions (A), (B), (C) and (G)
for K =1:

r_ At _ 3t
Y 2 y 7 4 ,

g/(()) =0< /11 < /1].

The next corollary is a simplified version of Theorem 1.4 with J :=n + k and
K:=n+1:

COROLLARY 1.5.  Assume that g € C'(R) is an odd function of t with g(0) = 0
and that g'(t) is bounded on R. If the finite limits g'(+o0) = lim, 1o g'(?) exist
and if condition (E) is satisfied, then the homogeneous problem (1.5) has at least 2k
non-trivial solutions in C***(Q).

Our method of proving Theorems 1.1, 1.3 and 1.4 consists of reducing a
certain infinite dimensional problem to a finite dimensional problem and then
applying finite dimensional critical point theory as in Castro—Lazer [10]. The
approach here is based on the extensive use of the ideas and techniques charac-
teristic of the recent developments in the theory of semilinear elliptic boundary
value problems with degenerate boundary conditions ([26]—[31]).
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The rest of this paper is organized as follows. In Section 2 we discuss some
preliminary material such as differential calculus in Banach spaces, Brouwer
degree, the index theorem (Theorem 2.4) and the three-solution theorem (The-
orem 2.5) in finite dimensional critical point theory which will be used throughout
the paper. In Section 3 we introduce the notion of weak solutions of problem
(1.3), and prove that any weak solutions of problem (1.3) is a classical solution
in the usual sense. This section is the heart of the subject. In Subsection 3.1
we introduce an underlying Hilbert space # for the study of problem (1.3)
(Theorems 3.1 and 3.2). The crucial point in our variational approach is how to
use the theory of fractional powers of analytic semigroups developed in [23]. In
Subsection 3.2 we prove that any weak solutions of problem (1.3) is a classical
solution (Theorem 3.3). The proof of Theorem 3.3 is essentially based on the
regularity, existence and uniqueness theorems for the linear elliptic boundary
value problem (1.4) ([24]). Section 4 is devoted to the proof of Theorem 1.1. By
virtue of Theorem 3.3, we have only to prove Theorem 1.1 for weak solutions.
Subsection 4.1 is devoted to an abstract theorem on Hilbert space functionals
(Theorem 4.1) essentially due to Castro—Lazer [10] which will play an important
role in the proof of Theorems 1.1, 1.3 and 1.4. In Subsection 4.2 we prove that
if conditions (A), (B) and (C) of Theorem 1.1 are satisfied, then the homogeneous
problem (1.5) has at least two weak solutions. If we introduce an energy
functional F on the Hilbert space #, then we find that the weak solutions of the
homogeneous problem (1.5) coincide with the critical points of F. We verify all
the conditions for assertion (I) of Theorem 4.1 (Proposition 4.2). In Subsection
4.3 we prove that if conditions (B), (C) and (D) of Theorem 1.1 are satisfied, then
the non-homogeneous problem (1.3) has at least three weak solutions provided
that || 4| 12(q 18 sufficiently small. First, by using the inverse mapping theorem we
construct a weak solution ¢ of problem (1.3). Moreover, if we introduce a new
energy functional F; on #, then we find that the weak solutions of the non-
homogeneous problem (1.3) coincide with the critical points of F;. We verify all
the conditions for assertion (II) of Theorem 4.1 (Proposition 4.4), and construct
two weak solutions ¢ + ug, ¢ + u of problem (1.3) different from ¢. Section 5 is
devoted to the proof of Theorem 1.3. The proof is carried out in a series of
several lemmas (Lemmas 5.1 through 5.6). In the proof of Theorem 1.3 we make
essential use of the comparison property of eigenvalues of degenerate elliptic
boundary value problems with indefinite weights (Lemma 5.3). The last Section 6
is devoted to the proof of Theorem 1.4. Our proof is based on a result of Clark
[12] concerning the Ljusternik—Schnirelman theory of critical points (Theorem
6.1). More precisely, we mention that the notion of category introduced by
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Ljusternik—Schnirelman [19] is a topological invariant for the estimate of the
lower bound of the number of critical points (see [11, Chapter 5, Section 5.2]).

2. Preliminaries

In this section we discuss some preliminary material such as differential
calculus in Banach spaces, Brouwer degree and finite dimensional critical point
theory. The results of this section will be used in the proof of assertion (II) of
Theorem 1.1 and in the proof of Theorem 1.3 (Theorems 2.4, 2.5 and 2.6).

2.1. Differentiability and the Inverse Mapping Theorem

In this subsection we give an outline of differential calculus in Banach spaces
(see [1], [13]; [21]). The next proposition generalizes the usual notion of symmetry
of the second partial derivatives of a function f:R" — R:

PROPOSITION 2.1. Let X and Y be Banach spaces. If f € C*(X,Y), then the
second derivative d*f(x) of f at x € X is symmetric, that is, we have the formula

d?f (x)(u,v) = d*f (x)(v,u) for all u,veX.

The inverse mapping theorem provides a criterion for a map to be a local
C’-diffeomorphism in terms of its derivative:

THEOREM 2.2 (the inverse mapping theorem). Let X and Y be Banach
spaces, and let f be a C"-map (r > 1) of an open subset U of X into Y. Assume
that the derivative df (xo): X — Y is an algebraic and topological isomorphism
at a point xo of U. Then the map f is a C"-diffeomorphism of some neighborhood
of xo onto some neighborhood of f(xy).

The next theorem is one of the most important applications of Theorem 2.2:

THEOREM 2.3 (the implicit function theorem). Let X, Y, Z be Banach spaces,
and let f be a C"-map (r = 1) of an open subset U X V of X X Y into Z. Assume
that the partial derivative d,f(xo,y0):Y — Z is an algebraic and topological
isomorphism at a point (xo, yo) of U x V. Then there exist neighborhoods Uy of
xo and Wy of f(xo,y0) and a unique C" map g: Uy x Wy — V such that

flx,g(x,w)) =w for all (x,w)e Uy x Wj.
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2.2. Functionals and Critical Points

Let X be a real Banach space. A functional on X is a continuous, real-valued
map F: X — R. A point ue X is called a critical point of F if F is Fréchet
differentiable at u and if dF(u) =0, that is, if we have, for all ve X,

dF (u)(v) = 0.

Let H be a real Hilbert space with inner product (-,-),. If F e C!(H,R) and
u € H, then it follows from an application of the Riesz representation theorem
([33, Chapter III, Section 6, Theorem]) that there exists a unique element VF(u)
of H such that

dF (u)(v) = (VF(u),v), for all ve H.

The element VF(u) of H is called the gradient of F at u. We can identify dF(u)
with VF(u). It should be noticed that a critical point u of F is a solution of the
equation VF(u) = 0.

Moreover, if F e C?>(H,R), we can define the derivative D*>F(u) of VF at u
by the formula

d*F(u)(v,w) = (D*F(u)v,w),, for all v,we H. (2.1

By virtue of Proposition 2.1, we find that the linear operator D>F (u) is selfadjoint
on H.

2.3. Brouwer Degree and the Index Theorem
In this subsection we consider the following (see [20]):

(a) Q is a bounded open set in R" with boundary 0Q.
®b) f=(fi,...,f):Q—R" is a continuous map.
(c) p is a point of R" such that f(x) # p for all x e 0Q.

For each triplet (f,Q, p), we can define an integer-valued function deg(f,Q, p).
The integer deg(f,Q, p) is called the Brouwer degree of the map f with respect to
the set Q and the point p.

Since the Brouwer degree deg(f,Q, p) enjoys the excision property, we can
define the index of an isolated solution of the equation f(x) = p as follows: Let
xo be a point of Q such that f(xo) = p. If there exists a constant > 0 such that

f(x)#p for all xe B.(xp)\{x0},

then it follows from an application of the excision property that

deg(f> B/,<)C0),p) - deg(fv B,(xo),p) for all pE (0,?’).
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Thus we can define an integer i(f,xp) by the formula
l(fa XO) = /l;lil(l) deg(f,B/,(xo),p), P = f(XO)'

The integer i(f, xo) is called the index of the map f with respect to the point xj.
The next theorem will play an important role in the proof of Theorem 1.3 in
Section 6 (see [21, Theorem 2.8.1]):

THEOREM 2.4 (the index theorem). Let f e C'(Q,R")NC(QR"). If xo is a
point of Q such that Jr(xo) # 0, then we have the formula

i(f,x0) = (1)’ (2.2)

where Jy(xo) is the Jacobian determinant of [ at xo and B is the sum of the
algebraic multiplicities of the negative eigenvalues of the derivative Df (xy).

2.4. Finite Dimensional Critical Point Theory

Let fe C'(R",R). If X is a point of R” such that Vf(X) = 0, then we say
that ¥ is a non-degenerate critical point of f if the Hessian matrix D*f (%) of f at
X is non-singular.

The next theorem will play an important role in the proof of Theorem 4.1
(see [10, Theorem 3]):

THEOREM 2.5 (the three-solution theorem). Let f e C*(R",R). Assume that
the following three conditions (i), (i) and (iii) are satisfied:

() f(x)— o0 as |x]| — oo
(i) There exists a point xo of R" such that f(x¢) = min,cg» f(x).
(i) There exists a non-degenerate critical point xy of f such that x; # xo.

Then the map f has at least three distinct critical points.

The next theorem will play an important role in the proof of Theorem 1.3 in
Section 6 (see [4, Corollary 1]):

THEOREM 2.6. Let f e C'(R",R). If f(x) — 40 as ||x|| — oo and if the set

of solutions of Vf(x) =0 is a finite set {xo,x1,X2,...,Xr}, then we have the
formula

k

> i(Vfx) =1.

Jj=0



322 Kazuaki TAIRA

3. Regularity of Weak Solutions

In this section we introduce the notion of weak solutions of problem (1.3),
and prove that any weak solutions of problem (1.3) is a classical solution in the
usual sense. This section is the heart of the subject. In Subsection 3.1 we in-
troduce an underlying Hilbert space # for the study of problem (1.3) (Theorems
3.1 and 3.2). The crucial point in our variational approach is how to use the
theory of fractional powers of analytic semigroups developed in [23]. In Sub-
section 3.2 we prove that any weak solutions of problem (1.3) is a classical
solution (Theorem 3.3). The proof of Theorem 3.3 is essentially based on the
regularity, existence and uniqueness theorems for the linear elliptic boundary
value problem (1.4) ([24]).

3.1. Hilbert Space #

In this subsection we introduce an underlying Hilbert space s for the study
of problem (1.3). Since the operator 2 is positive and selfadjoint in the Hilbert
space L2(Q), we can define its square root

% = A’
as follows ([23]):

Gu= Z \% )“’71(1"7 (pm)LZ(Q)(pm in L2(Q) (31)
m=1

Here we recall that the family {g,,},._, of eigenfunctions of A

A(pm = )“m¢m il’l Qa
By, =0 on 0Q

forms a complete orthonormal system of L?(Q).
Moreover, we can introduce an underlying Hilbert space # with inner
product (-,-), as follows:

A = the domain D(%) with the inner product

(u,v) p = (6u, €v)2q) for all u,ve D(%).

The next theorem gives a more concrete and useful characterization of the
Hilbert space # (see [26, Theorem 3.1]):
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THEOREM 3.1.

The Hilbert space # coincides with the completion of the
domain

D) ={ue W>*Q): Bu=0 on 0Q}

with respect to the inner product

(u,0) o = (Uu, U)LZ(Q)

= ijgag(x)ﬁﬁ dx+Lc(x)u~vdx

Py Ox; 0x;
!
+ J b(x/) u-vdo for all u,ve D(N). (3.2)
{a(x") #0} a(x’)

Here the last term on the right-hand side is an inner product of the Hilbert space
L?(0Q) with respect to the surface measure da of 0Q.

Our approach is based on the following imbedding result for the Hilbert
space # (see [26, Corollary 3.2]):

THEOREM 3.2. We have the inclusions

D) c # < Wh(Q) (3.3)

with continuous injections.

Remark 3.1. The following diagram gives a bird’s eye view of the right

Hilbert space # for the variational approach (see [15, Theorems 1 and 2]):

B H a(x") and b(x’
The Dirichlet case Wol'2 (Q)

The Robin case wi(Q)

The degenerate case | D(UA'?)

First, we have, by formula (3.1),

(W) =Y dom(tt, 0) 210 (34)
m=1
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Indeed, it suffices to note the following:

(u,u) p = (Cu, Cu) 2 q)

0
= ( V im(ua g”m)LZ(Q)(pmv \% )“f(ua ¢/)L2(Q)(p/>
m=1 =1

’ 12()

8

= Zin7(u,¢m)22<g)- (35)

m=1

Secondly, since we have the Fourier series expansion formula

i
NgE

(M, (pm)LZ(Q)(pm in LZ(Q)a

3
I
=

it follows that

0 0
(u, “)LZ(Q) = <Z(“a %1)L2(Q)%m Z(% W)Lz(Q)(P/)
L2(Q)

m=1 /=1

Il
NgE

(U, 0) L2 (3.6)
1

3
I

Thirdly, we have, by formulas (3.5) and (3.6),
1
(14:0)20) < 7 (110 (3.7)

If J is the positive integer as in Theorem 1.1, we let

X = Span{gol,(/)z, ey ¢J}7
and

Y=X'={ve#: (v,u), =0 for all ue X}.

In other words, X is the set of all those elements of # which are orthogonal to
every element of X.
From formulas (3.4) and (3.6), we obtain the inequality

(v,0) 0 = 2541(0,0) 2y for all ve Y. (3.8)

Indeed, it follows that
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0 0
Zlm v gpm Lz = Z }vm(v,(Pm)iZ<Q)
m=1 m=J+1

0
= j~J+l Z (U (0m) 2Q) — )"JJrl Z v (pm LZ( )
m=J+1 m=1

= As41(v,0)p2q) for all ve Y.
Similarly, we have the inequality
(u,u) 0 < 2g(u,u)p2q) for all ue X.

Indeed, it follows that

J
(H, u)/f = ;Lm (u7 qpm)iz(Q) = Z ;Lm (M, (pm)iz(Q)
m=1

J
< /l.l Z(ua §0m)[2‘2(g) = ;LJ (u7 (pm)iz(Q)

m=1 m=1

8

= )VJ(u,u)IZ‘z(Q) for all ue X.

3.2. Weak Solutions of Problem (1.3)

325

In this subsection we prove that any weak solutions of problem (1.3) is a

classical solution. The proof of Theorem 3.3 is essentially based on the regularity,

existence and uniqueness theorems for the linear elliptic boundary value problem

(1.4) ([24]).

A function u e # is called a weak solution of problem (1.3) if it satisfies

the condition

(u, w),, — J g(uw)w dx + J h-wdx
Q Q

J
ou Ow
ZJ Gix,&ix]d ch(x)wwdx

!/
+J b(x/)wwdaj g(u)wderJ h-wdx
{a(x’)#—O}a(x ) Q Q

=0 for all we 7.

(3.10)

The next theorem asserts that any weak solution u of problem (1.3) is a

classical solution:
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THeOREM 3.3.  Let ¢(t) be a function in C'(R) such that the derivative g'(t)

is bounded on R, and let h € C*(Q) with exponent 0 < a < 1. If ue # is a weak
solution of problem (1.3), then it follows that

ue C*(Q)
with exponent 0 < o < 1. In particular, u is a classical solution.

ProOOF. The proof of Theorem 3.3 is based on the regularity theorem and
the existence and uniqueness theorem for the linear elliptic boundary value
problem (1.4) ([24, Theorem 8.2 and Theorem 9.1]). We make use of a standard
“bootstrap argument’’.

Assume that a function u € # satisfies condition (3.10). Then we have, for all
we D) < DAV = 7,

(4, Ww) 12y = (W) = (g() = by W) 2
This proves that

{u e D(),
Wy = g(u) — h,

since the operator 2 is selfadjoint in L?(Q). In particular, it follows from as-
sertion (3.3) that

ue Wh(Q) c LY(Q).

Now we assume that u € L?(Q) for some g > 2. Since g’(¢) is bounded and
h(x) € C*(Q), we obtain that

J(x) = g(u(x)) — h(x) € L1(Q).
Therefore, since u is a weak solution of the linear boundary value problem

Au=f inQ,
Bu=0 on 0Q,

if follows from an application of the regularity theorem ([24, Theorem 8.2]) that
ue Wr1(Q).

(a) If 2¢ = N, then it follows from the Sobolev imbedding theorem (see
[2, Theorem 4.12, Part I]) that

uelL"(Q) for all r>1.
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(b) If 2¢ < N, then it follows that

Nq
N —2q

uel"(Q) for r= > q.

Repeating this procedure, we have, after a finite number of steps,
2,r N
ue W="(Q) for r so large that — < 1 — o,
r

so that
ue W>(Q) c C'H(Q)

with exponent
N
f=1——>u0.
r

Since ¢'(¢) is continuous and bounded on R, it follows that

f(x) = gu(x)) — h(x) € C*(Q).
Therefore, by applying the existence and uniqueness theorem ([24, Theorem 9.1])
we can find a unique classical solution ve C2**(Q) of the boundary value
problem

{Avf in Q, 3.11)
Bv=0 on 0Q.

Since u and v are both solutions of problem (3.11) in W?2"(Q), by applying the
uniqueness theorem ([24, Theorem 8.6]) we obtain that

u=ve C**Q).

Summing up, we have proved that any weak solution u of problem (1.3) is a
classical solution.
The proof of Theorem 3.3 is complete. O

4. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. By virtue of Theorem
3.3, we have only to prove Theorem 1.1 for weak solutions. Subsection 4.1 is
devoted to an abstract theorem on Hilbert space functionals (Theorem 4.1)
essentially due to Castro—Lazer [10] which will play an important role in the
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proof of Theorems 1.1, 1.3 and 1.4. In Subsection 4.2 we prove that if conditions
(A), (B) and (C) of Theorem 1.1 are satisfied, then the homogeneous problem
(1.5) has at least two weak solutions. If we introduce an energy functional F on
the Hilbert space #, then we find that the weak solutions of the homogeneous
problem (1.5) coincide with the critical points of F. We verify all the conditions
for assertion (I) of Theorem 4.1 (Proposition 4.2). In Subsection 4.3 we prove
that if conditions (B), (C) and (D) of Theorem 1.1 are satisfied, then the non-
homogeneous problem (1.3) has at least three weak solutions provided that
|4l 2(q) is sufficiently small. First, by using the inverse mapping theorem
(Theorem 2.2) we construct a weak solution ¢ of problem (1.3) (Lemma 4.3).
Moreover, if we introduce a new energy functional F; on the Hilbert space #,
then we find that the weak solutions of the non-homogeneous problem (1.3)
coincide with the critical points of Fy. We verify all the conditions for assertion
(IT) of Theorem 4.1 (Proposition 4.4), and construct two weak solutions ¢ + uy,
¢+ up of problem (1.3) different from ¢.

4.1. An Abstract Theorem on Hilbert Space Functionals

Let H be a real Hilbert space. If F e C>(H,R), then, by using the Riesz
representation theorem ([33, Chapter III, Section 6, Theorem]) we can define a C'!
map

VF:H—H
u— VF(u)

by the formula

dF (u)(w) = %F(u + tw)|,_o = (VF(u),w),, for all we H.

The element VF(u) of H is the gradient of F at ue H.
Moreover, the derivative D>F(u) of VF at ue H can be defined by the
formula

dF(@)(e,w) = G @F -+ )00y = 5 VGt ),y

= (D*F(u)v,w),, for all v,we H.

We recall that D>F(u) is a selfadjoint operator on H.
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The next theorem is adapted from Castro—Lazer [10, Theorem 4] (see also

[9]; [18]):

TueoREM 4.1 (Castro-Lazer). Let F e C?>(H,R). We assume that the fol-
lowing two conditions (a) and (b) are satisfied:

(a) VF(0) = 0 and there exist closed subspaces X1 and Y, of H and a constant
my > 0 such that

(1) H= Xl @ Y]

(i) dim X; < co.

(iii) (D*F(0)x,x)y <0 for all x e X.

(iv) (D2F(0)y, »)yy = ml|ylz; for all ye Yi.
(

b) There exist closed subspaces X and Y of H and a constant m > 0 such
that

V) H=X®Y.

vi) dim X} < dim X < co.

vil) (F|X)(x) = —o0 as ||x||; — oo, where F|X is the restriction of F to X.
viil) (D2F(u)y, y), = m|y|z for all yeY and all ue H.

Then we have the following two assertions (1) and (11):
(I) There exists a non-zero element uy of H such that VF(uy) = 0. Moreover,
we have the formula

F(up) = max min F(x+ y).
xeX yeY

(I) If condition (iii) is replaced by the condition

(iii*) (D*F(0)x,x),; <0 if x is a non-zero element of X,
then there exists a non-zero element uy with uy # uy such that VF(uy) = 0.

We remark that the proof of Theorem 4.1 is based on the three-solution
theorem (Theorem 2.5).

4.2. Proof of Theorem 1.1, Part I

In this subsection we prove that if conditions (A), (B) and (C) of Theorem
1.1 are satisfied, then the homogeneous problem (1.5) has at least fwo weak
solutions. We verify all the conditions of Theorem 4.1. The proof is divided into
two steps.
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Step 1: By condition (C), we can choose a positive integer K < J such that
k-1 <¢'(0) < g < Ay, 4.1
where /9o = —oc0. We let
X =span{p;, ¢, ...,0,}, Y =X",
X1 =span{py, 0, .., 051}, Y= X[
We remark that
dmX,=K-1<J-1<J=dimX. (4.2)
Now we define an energy functional
F:#—R

by the formula

+

, u(x)
o Mo | (| e ds)a forantwew, 43
2 {a(x")#0} a(x ) Q

where

The next claim asserts that u € # is a weak solution of the homogeneous

problem (1.5) if and only if it is a critical point of the energy functional F
(cf. [18]):

Cramm 4.1. If ge C'(R) and ¢'(t) is bounded on R, then we have the
following two assertions (i) and (ii):
(i) Fe C*#,R).
(i) The weak solutions of the homogeneous problem (1.5) coincide with the
critical points of F.
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Proor. (i) First, we recall (assertion (3.3)) that
AH = Wh(Q)

with continuous injection. Moreover, it follows from an application of the
Sobolev imbedding theorem (see [2, Theorem 4.12, Part I]) that

L¥(Q) for2* =2N/(N —2) if N >3,

wh2(Q) C{ ) .
L'(Q) forall r>1if N=2.

Therefore, we have the continuous injections

LY (Q) for2* =2N/(N—2) if N >3,

H < Wh(Q) c{ \
L"(Q) forall r>1if N=2.

(4.4)

By virtue of assertion (4.4), since g € C'(R) and ¢’(¢) is bounded on R we
can prove the following formulas (4.5) and (4.6) (see [7, Chapter 1, Theorem
2.9)):

(VFE(u),w), = —F(u+tw)|,_,

and

(D*F(u)v,w),, = d

ai (VE(u+ 1), w) 4|,

= (v,w), — J g (u(x))v-wdx for all v,we #. (4.6)
Q

Therefore, we obtain from formulas (4.5) and (4.6) that F e C*(#,R).

(i) By formula (4.5), we find from formula (3.10) with / := 0 that the weak
solutions u of the homogeneous problem (1.5) coincide with the critical points
of F. Indeed, it suffices to note that

(,w),, — J gu(x))wdx =0 for all we # < VF(u) =0.
Q

The proof of Claim 4.1 is complete. O
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The next proposition is an essential step in the proof of Theorem 1.1:

PROPOSITION 4.2.  Assume that conditions (A), (B) and (C) are satisfied. Then
the function F(u) satisfies all conditions (i) through (viii) of Theorem 4.1, where

X:Span{(pla(p27"'7(pj}7 Y:XLa

Xl :Span{¢15¢2v-"7¢l(—l}7 Yl :XIL'

Proor. (1) Conditions (i), (ii) and (v) are trivially satisfied.
(2) Condition (viii): We have, by formula (4.5),

(D>F(u)o,w),, = (v,w),, — J g (u(x))v-wdx for all v,we #.
Q

Thus we obtain from inequality (3.8) and condition (A) of Theorem 1.1 that we
have, for all ve Y,

(DZF(u)v, V) = (0,0),, —'(v, U)LZ(Q)

y/
> (1= ) ol = mlolE, @)
J+1
with
y/
m=1-— > 0.
Ay+1

Hence, condition (viii) of Theorem 4.1 is satisfied.
(3) Condition (vii): If u € X, it follows from condition (B) of Theorem 1.1
that there exists a constant ¢y such that

u(x)
J g(s) ds —%u(x)2 >¢o for all xeQ.
0

Hence we have the inequality
1 u(x) 1 y
Flu) =5 (u,u),, — g(s) ds | dx < 5 (u,u) 0 — 5 (u 1) 12(q) = €€,
2 o\l 2 2
where |Q| denotes the volume of Q. By using inequality (3.9) and condition (A)

of Theorem 1.1, we have, for some constant c,

1 Y 1 Y 2,
F(u)gE(u,u)%—i(u,u)m(g)—i—cg§<I—E>||u|]f+c for all ue X,
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1 y

Therefore, we obtain that the restriction F|X of F to X satisfies condition (vii)
of Theorem 4.1.

(4) Conditions (iii) and (iv): From the definitions of X; and Y, and formulas
(3.4) and (3.6), we have the inequalities

with

(r,r)y < Ak-1(r,1)2q) for all re X
and
(5,8) = Ak(5,8) 21 for all s ¥y = Xj'.
Hence, by using condition (4.1) and formula (4.6) we obtain that
(D*F(0)r, 1), = (1,1 — ¢"(0)(r, Mg < (10)y = 2k-1(r7) 12 )
<0 for all re X,

and that

(D*F(0)5,5) = (5,8), = 9'(0)(s,5) 120

!/
> <1 - gl(o))(s,s)%,/ = my|ls|> for all se ¥,
K

with

/
o =190

0.
Pk

Therefore, we find that conditions (iii) and (iv) of Theorem 4.1 are satisfied.
(5) Finally, we have only to note that

dmX;=K-1<J-1<J=dimX.

This verifies condition (vi).
The proof of Proposition 4.2 is complete. O

Step 2: By applying assertion (I) of Theorem 4.1, we obtain that conditions
(A), (B) and (C) of Theorem 1.1 imply the existence of at least two solutions of
the homogeneous problem (1.5).

The proof of Theorem 1.1, Part I is complete. O
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4.3. Proof of Theorem 1.1, Part II

In this subsection we prove that if conditions (B), (C) and (D) of Theorem
1.1 are satisfied, then the non-homogeneous problem (1.3) has at least three weak
solutions provided that ||A][;2q, is sufficiently small. We verify all the conditions
of Theorem 4.1 including condition (iii*). The proof is divided into three steps.

Step 1: Now we assume that condition (D) of Theorem 1.1 is satisfied. In this
case we obtain from condition (C) that

k-1 < g/(O) < Ag. (48)
First, we construct a weak solution ¢ of the non-homogeneous problem (1.3).

More precisely, we prove the following:

LemMmA 4.3, There exist constants r > 0 and &, > 0 such that if he L*(Q)
with bl 12q) < V1r, then the non-homogeneous problem (1.3)

{—Au +gu)=h in Q,
Bu=0 on 0Q

has a unique weak solution ¢ € D(N) such that ||¢||,, < J1.

Proor. (1) If we introduce a linear operator 7 : # — # by the formula

T=u", o — Q) > A, (4.9)

then we obtain that T is a compact operator. Indeed, it suffices to note the
following three assertions:

(a) The injection
H — WH(Q)

is continuous (see assertion (3.3)).
(b) The injection

w2(Q) — L*(Q)

is compact (the Rellich—Kondrachov theorem (see [2, Theorem 6.3])).
(c) The resolvent

A LHQ) -

1S continuous.
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Moreover, we have the formula
(To,w)y = (v, W)12q) for all we . (4.10)
Indeed, it follows from formula (4.9) that
(To,w),, = (A v, w),, = (WA v), W) paq) = (0,W)12q) for all we .

(2) Secondly, by combining formulas (4.5) and (4.10) we obtain that
(VE@u),w)yy = (u,w) = JQ g(u(x))w dx = (u,w),, = (9(), W) 2(q)

= (u,w)y — (T(g(w)), W)y = (u— T(g(w)),w),, for all we .
This proves that
VF(u) =u—T(g(u)) for all ue . (4.11)
Similarly, we have, by formulas (4.6) and (4.10),
D*F(u) =1—T(g'(u)) for all ue #. (4.12)
In particular, we have the formula
D*F(0)=1—-4'(0)T. (4.13)

(3) Thirdly, we show that if condition (4.8) is satisfied, then the continuous
operator

D*F(0)=1—g' (0T : H# — A

is bijective. To do this, we have only to show the injectivity of D>F(0), since
formula (4.9) implies that the Fredholm alternative holds true for the operator
D2F(0).

Assume that ve # and D?F(0)v = 0. Then it follows from formulas (4.9)
and (4.13) that

v=yg'(0)Tv = g'(0)A 'v.
This proves that

ve D(N),
{le =¢'(0)v.

However, we see from condition (4.8) that v = 0, since ¢'(0) is not an eigenvalue
of the operator 2I.



336 Kazuaki TAIRA

(4) Since the Fréchet derivative
D*F(0): # — H

of VF at 0 is bijective and since VF(0) = 0, it follows from an application of the
inverse mapping theorem (Theorem 2.2) that there exists an open neighborhood
U of the origin 0 in # such that:

(i) The restriction of VF to U is bijective.
(i) VF(U) is an open neighborhood of 0 in .
(iii) VF restricted to U has a C! inverse map.

Without loss of generality, we may assume that

UcB(0,01) ={ue s :|ul, <o} for some constant J; > 0,
and that

B(0,r)={ve A :|lv|, <r} =« VF(U) for some constant r > 0.

(5) We show that if he L*(Q) and 121l 120y < V/21r, then there exists a
unique weak solution ¢ of the non-homogeneous problem

{—Aqﬁ—i— g(@)=h inQ,
Byp=0 on 0Q

such that ||¢|,, <.
To see this, we note that the linear functional

% DWW —(h, W)LZ(Q)

represents a continuous linear functional on . Hence it follows from an
application of the Riesz representation theorem ([33, Chapter III, Section 6,
Theorem]) that there exists a unique function v e # such that

—(h,w)p2q) = (v,w),, for all we 7. (4.14)

By using the Schwarz inequality and inequality (3.7), we obtain that
o5 = (0,00 = [(1,0) 12| < Il 2y 10l 200

< [IAll 2 < rloll -

1
Q)T/Tl||“||.yf

This proves that

ve B(0,r) =« VF(U).
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Since we can find a unique function ¢ € U such that
VF($) = o,
we have, by formula (4.14),
(VE(@),w)yy = (v,w)p = —(h,W) 12y Tor all ue A
Therefore, we obtain from formula (4.5) that
(@ W)y = (9(8), W) 2 () = (VE(9), W)y = —(h, W) 2y for all we A

This proves that ¢ is a weak solution of the non-homogeneous problem (1.3).
Moreover, since we have, for all we D(U) = D(A'?) = #,

(¢, Q[W)Lz(g) = (¢7 W)_y/ = (g(¢) - h’ W)LZ(Q)

and since the operator U is selfadjoint in L2(Q), we obtain that

{¢ e D(),
AP = g(¢) — h.
The proof of Lemma 4.3 is now complete. O

Step 2: We find two weak solutions ¢ + uy, ¢ + u, of the non-homogeneous
problem (1.3) different from ¢ constructed in Step 1. To do this, we fix h e L*(Q)
and ¢ € #, and introduce a new energy functional

Fi: 4 —R
by the formula

Fi(u) =F(u+¢)+ (hu+¢)2q)

:l(u—l—(/ﬁ,u-i-(ﬁ)y/—J F(u—i—(/ﬁ)dx—&-[ h-(u+¢)dx for all ue .
2 Q Q

Then we obtain that u+ ¢ e # is a weak solution of the non-homogeneous
problem (1.3) if and only if u is a critical point of the energy functional Fj.
Indeed, since we have, for all we J#,

(VFi(u),w), = %Fl(u + )|,
=u+d¢,w), — J (glu+@w—h-w)dx
Q

=+, w)y — (glu+¢) = h,w)20), (4.15)
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it follows that
(u+¢,w), — JQ(g(u +¢)—hwdx=0 for all we #
& VF (1) = 0.

In this case, we have the assertions

{u—i—qﬁeD(QI),
W(u+¢)=gu+e¢)—h

Now we show that Fj(u) satisfies all the conditions of Theorem 4.1, with
condition (iii) replaced by condition (iii*). The next proposition is an essential
step in the proof of Theorem 1.1:

PROPOSITION 4.4.  Assume that conditions (B), (C) and (D) are satisfied. Then
the function Fy(u) satisfies all conditions (i) through (viii) and (iii*) of Theorem 4.1,
where

X:Span{(ol?(pb"w(p‘l}) Y:XLa

X1 =span{¢,,¢,,...,0x_1}, Yi= XIL.

Proor. (1) First, conditions (i), (ii) and (v) are trivially satisfied.
(2) Now we recall the following two inequalities

(DZF(())Sa S)%” = (s, S)%” - g’(O)(s, S)LZ(Q)

/
> (1 gl(o)>(s,s)(,f —m|s|% for all se ¥,  (4.16)
K

and

(D*F(0)r,r),, = (r,1),, — g’ (0)(r, ")

g'(0) 2
<|Il- 7 (r,r),, = —ma||r||y, for all reX;. (4.17)
K-1

Here it follows from condition (4.8) that

! !
gﬂ(o)>0, =20 o

mp; = 1 -
Ak Ak—1
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Since D?F is continuous, there exists a constant J; > 0 such that

|D2F(u) — D*F(0)]| < min{%,%} if |l <o1.

Hence, by inequalities (4.17) and (4.16) it follows that if ||u||,, < Ji, then we have
two inequalities
(D*F(u)r,r),, = (D*F(0)r,r) 4 + (D*F(u)r — D*F(0)r,r)

< (D*F(0)r,1) + | D*F(u) = D*F(0)|[(r,7)

< —molrly + 5 I = =Z2 el for all rexi,  (4.18)
and

(D*F(u)s,s),, = (D*F(0)s,s),, + (D*F(u)s — D’F(0)s,s),,
> (D*F(0)s,5),, — |D*F(u) — D*F(0)]|(s.5),

m m
> my ||s||% —7‘||s|\§f = 7‘\|s||jf for all se Y;. (4.19)
(3) Condition (viii): Since we have, by formula (4.15),

d
(D*Fi(u)o,w), =

a (VE1(u+ tv),w) ,|,—o

= (vo,w), — J g (u+@)v-wdx for all v,we A,
Q

it follows from formula (4.12) that
D*Fi(u) = D*F(u+¢) for all ue #.
Consequently, we obtain from inequality (4.7) with u :=u+ ¢ that
(D?*Fy(u)v,v),, > m||v||if for all ve Y and all ue #.

This verifies condition (viii).
(4) Conditions (iii") and (iv): Since ||4||, <Ji, we see from inequalities
(4.18) and (4.19) that

(D2Fi(0)r, 1), = (D2F(g)r,r) < = 2|l for all re xi,
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and that

(D?F(0)s,5),, = (D*F($)s,s),, > %Hs“j/ for all se Y.
Hence we find that conditions (iii*) and (iv) are satisfied.

(5) Condition (vii): Let u be an arbitrary element of X. By inequality (3.9)
and condition (B) of Theorem 1.1, we have, for some constants ¢ and ¢/,

1
Fifw) = 5t dut d)y — JQ T+ §) dx + (h i+ ) o
1 y
=3 e+ ¢lI3 — 5 | + ¢||i2(9) + e+ 1l 2o llull o) + 1Al 20y 191l 20
< S0l = sl 2] + 2 1912 = LIy + Pl 1]
=5 x — VU L2(q) 5 1Pllr =5 £2Q) T VUl 2o 1Pl L2 o)

+ 181l llull o + ¢ + 7]

vl + 11202019120

1 y
< (U= ully + 6l lull .
2 iy

1
+—= (||~ + ) ,+c forall uelX,
\/Z(” ||L2(Q) el (Q))H””/ ¢ u

1 y
—(1—-+ 0.
2( /IJ><

Hence we obtain that the restriction Fj|X of F; to X satisfies the condition

with

(Fi|X)(u) = —o0  as |jull, — oo

This verifies condition (vii).
(6) Finally, we have only to note that

dmX;=K-1<J-1<J=dimX.
This verifies condition (vi).
The proof of Proposition 4.4 is complete. O
Step 3: By Proposition 4.4, we can apply assertion (II) of Theorem 4.1 to

obtain two distinct non-trivial functions uy and u, such that

VFl(uk):VF(gb—i—uk):O, k=0,2.
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Summing up, we have proved that the non-homogeneous problem (1.3) has three
distinct weak solutions ¢, ¢+ up and ¢ + us.

Now the proof of Theorem 1.1, Part II, and hence that of Theorem 1.1, is
complete. |

5. Proof of Theorem 1.3

In this section we prove Theorem 1.3 in a series of several lemmas (Lemma
5.1 through Lemma 5.6). By virtue of Theorem 3.3, we have only to prove
Theorem 1.3 for weak solutions. In the proof of Theorem 1.3 we make use of
the comparison property of cigenvalues of degenerate elliptic boundary value
problems with indefinite weights ([24] and [25]). The proof is divided into seven
steps.

Step 1: Let H be a real Hilbert space and let F € C>(H,R). Assume that
F(u) satisfies conditions (v), (vii) and (viii) of Theorem 4.1 with dim X < oo.
Then we can define a map ¢ : X — Y as follows: For a given element x € X, ¢(x)
is the unique element of Y such that

(VF(x+¢(x)),k)y; =0 for all ke, (5.1
and that

F(x+¢(x)) = irél? F(x+ y). (5.2)

By using the implicit function theorem (Theorem 2.3), we obtain from condition
(viii) that the map ¢ is of class C! (see [18, pp. 597-598] for the details).
Moreover, we have the following:

CLamM 5.1. If we define a function

G:X—>R
by the formula
G(x) =F(x+¢(x)), xeX,

then it follows that G is of class C* on X.
The next lemma is essentially obtained in the proof of Theorem 4.1:
LemMA 5.1. Assume that F(u) satisfies conditions (v), (vii) and (viii) of

Theorem 4.1 with dim X < co. Then VF(u) =0 for ue H if and only if u=
X+ ¢(x) for some xe X and VG(x) = 0.
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Proor. (1) The “if”” part: Indeed, it follows from the formula
(VG(x), )y = (VF(x + 9(x)), h + ¢ (x)(h))
= (VF(x+¢(x)),h)y for all he X (5.3)
that
(VF(u),h)y = (VF(x + ¢(x)),h); = (VG(x),h); =0 for all heX.
On the other hand, we have, by formula (5.1),
(VF(u),k)y = (VF(x+o¢(x)),k); =0 for all keY.
Therefore, we obtain from condition (v) that

(VF(u),v); =0 forall ve H=X®Y,
so that

VF(u) =0, u=x+¢(x).
(2) The ““only if” part: Assume that

VF(u) =0,
u=x+yeH=X®Y.

Then we find from the proof of Theorem 4.1 that if we have, for all ke Y,
(VE(x+ ), k) = (VE(u), k) =0,
then it follows that y = ¢(x). Hence we have the formula
u=x+ g(x).
Therefore, we obtain from formula (5.3) that
(VG(x),h)y = (VF(x+ ¢(x)),h)y = (VF(u),h); =0 for all heX.

This proves that

VG(x) = 0.

The proof of Lemma 5.1 is complete. O
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Step 2: We prove the following:

LEMMA 5.2.  If the function ¢(t) satisfies the conditions of Theorem 1.3, then
the function F(u), defined by formula (4.3), satisfies all conditions (1), (ii), (iii*), (iv)
through (viii) of Theorem 4.1 where
X:span{¢17(p27"'7(pJ}a Y:XL

and
X, =span{o;,0,,...,0, 1}, Y= Xll-

PrOOF. Assume that the function g(7) satisfies the conditions of Theorem
1.3. Let y and 7’ be any numbers satisfying the condition

Ay <y <min{g'(—0),g'(0)} < max{g'(—0),g'(0)} <y < As41.
Then we can find a constant 7y > 0 such that

VS@SV’

; for all |¢] = to.

Hence we have the inequality
t e
J g(s) ds—T > ¢y for all 1eR,
0

where

t e
co = min{J g(s) ds——}.
1<t L Jo 2

This verifies condition (B) of Theorem 1.1.
Since we have, by condition (1.6),

tg"(t) >0 for all ¢+ 0,
it follows from condition (F) that
Jy-1 < g'(0) < g'(r) < max{g'(—0),g'(0)} <y < Ast1- (5.4)

This verifies conditions (C) and (D) of Theorem 1.1.

Therefore, we obtain from Proposition 4.2 and inequality (4.17) that the
function F satisfies all the conditions (i), (ii), (iii*), (iv) through (viii) of Theorem
4.1.

The proof of Lemma 5.2 is complete. O
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Step 3: The next lemma is an essential step in the proof of Theorem 1.3:

LeEmMA 5.3.  Assume that VF(uy) = 0 for uy € #, and further (by Lemma 5.1)
that uy = vy + @(vo) with vo € X and VG(vy) = 0. Then it follows that vy is a non-
degenerate critical point of G. More precisely, we have the formula

(_I)J lf U07507

(=177 if v =0. (5:3)

sgn det D*G(vy) = {
Here it should be noticed that uy = vy + ¢(vo) # 0 if and only if vy # 0.

Proor. The proof of formula (5.5) is based on the index theorem (Theorem
2.4), and is divided into two steps.

Step 3-1: We consider the case where VF (uy) = 0 for uy # 0. Then it follows
that u, is a weak solution of the homogeneous problem problem

{—Auo +9g(uy) =0 in Q, (5.6)

Buy =0 on 0Q),

as is shown in the proof of Theorem 1.1.
By Theorem 3.3, we remark that u is a classical solution of problem (5.6),
that is,

uy € C(Q).

We introduce a bounded, continuous function (¢) defined on R by the
formula

W)_{ﬁﬁ if £ 0,

g'(0) if r=0.

We consider the eigenvalue problem with the weight ¥ (uy(x))

Aw = o (up(x))w  in Q, (5.7)
Bw=0 on 0Q, ’
and the eigenvalue problem with the weight g'(uo(x))
{Aw = fg'(uo(x))w in Q, (5.8)
Bw=0 on 0Q. .

We let
o1 (Y (uo)) < oa(W(u)) < -+ < o(Y(uo)) < a1 (Y(uo)) < -+,
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and

Pi(g' (o)) < Ba(g' (o)) < -+ < Brlg'(u0)) < Bry1 (9 (o)) < -

denote the eigenvalues of problems (5.7) and (5.8), respectively, each eigenvalue
being repeated according to its multiplicity (see [25, Theorem 1.2]).

Then we have the following comparison property of eigenvalues f,(g’(uo))
and f;,,(g9'(up)) where J is the positive integer given in Theorem 1.3:

CLAmM 5.2. The eigenvalue problem (5.8) does not have 1 as eigenvalues.
More precisely, we have the inequality

Bi(g'(wo)) < 1< Bri1(g"(wo)) for ug #0. (5.9)

Proor. First, we have, by inequality (5.4),
2i-1<9g'(0) <g'(1) <y < Ayq1 for all reR.
This implies that
Jro1 < g (up(x)) < Ay for all xeQ.

Hence it follows from an application of the comparison property of eigenvalues
([25, Corollary 3.6]) that

1< Bri1(9' (o). (5.10)

On the other hand, we have, by problem (5.6),

Aug = g(uL;O) “up = Y(ug)up in Q,
Buy =0 on 0Q.
This proves that
or(Y(up)) =1 for some k > 1. (5.11)

However, since we have, by inequality (5.4),
Ayo1 < Ylup(x)) < Ay for all xeQ,

it follows from an application of the comparison property of eigenvalues
([25, Corollary 3.6]) that

o1 (Y (uo)) < 1 <oy (¥(uo)).
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Hence we obtain from assertion (5.11) that

oy (Y (uo)) = 1. (5.12)

Moreover, we have, by condition (1.6),

1
wW@»ngmmu»w<gmmm>fManer

it follows from assertion (5.12) that

B9 (uo)) < ay(h(uo)) = 1. (5.13)

Therefore, by combining assertions (5.10) and (5.13) we obtain the desired
assertion (5.9) for ug # 0.
The proof of Claim 5.2 is complete. O

Let {0k}, be a sequence of orthonormal eigenfunctions of problem (5.8).
Namely, we have the assertions

{Aﬁk = Bi(g'(u0))g' (uo(x)) 0k in £,
BO, =0 on 0Q,

and
memmmwmw:%

If we let
V =span{6,,6,,...,0,}, (5.14)
then it follows from a variational characterization formula of eigenvalues (see

[26, Proposition 3.4]) that

(v,0), < ﬁj(g'(uo))J g'(up(x))v* dx for all ve V.
Q

Therefore, we conclude from formula (4.12) that

(D*F (uo)v, v), = (v,0), — JQ g’ (uo(x))v* dx

< (1 — m> (v,0)

= _(M_ 1)||v||§,, for all ve V. (5.15)
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In order to apply formula (2.2) with f := —VG, we show that all of the
eigenvalues of the selfadjoint operator
D*G(ny): X — X

are negative.
Assume, to the contrary, that there exists /#; € X such that

(D*G(vo)hy, hy),, = 0.
If we let
m=hy +¢'(v0) (), (5.16)
then it follows from the formula (see formula (5.1))
(D*G(x)h, h),,
= (D*F(x+o(x))(h+¢'(x)(h)),h +¢'(x)(h)),, for all he X  (5.17)
that
(D*F(up)m,m),, = (D*G(vo)hy,hy),, > 0. (5.18)
Moreover, by using the formula

(D*F(x+9(x))(h+¢'(x)(h)), k)

— G VF G th plx + ). K)o =0 for all ke ¥, (5.19)

we obtain that
(D*F(up)im, k), =0 for all ke Y. (5.20)
We recall from Lemma 5.2 that there exists a constant m > 0 such that
(D*F(uo)k,k),, = m|k|5, for all ke Y. (5.21)

Since D?F(ug) is selfadjoint in #, we obtain from assertion (5.20) and
inequalities (5.18) and (5.21) that

(D?F (uo) (k + aim), k + aim),,
= (D*F(up)k,k),, + o*(D*F(ug)im,m),, >0 for all ke Y and xeR. (5.22)
Thus, if Z is a subspace of # defined by the formula

Z={z=k+oameH :keY aeR} (5.23)
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then we have, by inequality (5.22),
(D*F(uo)z,2),, =0 for all ze Z. (5.24)
Extend /; to a basis {hy,h,,...,h;} of X and let
X =span{hy, ..., h;}.
Since # =X @ Y, we obtain from formulas (5.16) and (5.23) that
H=XDZ.
Consequently, it follows that
O = 0 + zk, /ef(, e, 1<k <J.
Since dim X = J — 1, there exist constants ci,...,c; such that
ali+--+ceily =0, (c,...,c5) #(0,...,0).
Therefore, we obtain that
v=cbh+- - -+c0y=cizi+--+cjzyjeZ,
and from the independence of {6,...,6,} that
v=c0+---+cs05 #0.
By inequality (5.24), it follows that
(DF(u)v,v),, = 0.
However, we have, by inequalities (5.15) and (5.9),

Pty < - (s 1) lol <0,

This contradiction proves that all the eigenvalues of D>G(vy) should be negative.

The proof of the first case where VG(vy) =0 for vy # 0 is complete.

Step 3-2: We consider the case where VG(vy) =0 for vy = 0.

In order to apply formula (2.2) with f := —VG, we show that D>G(0) has
one positive eigenvalue and (J — 1) negative eigenvalues. To do this, it suffices to
prove the following three assertions:

(i) D2G(0) is non-singular.
(i) The quadratic form associated with D>G(0) cannot be negative definite
on all of X.
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(iii) The quadratic form associated with D?G(0) cannot be positive definite
on any two-dimensional subspace of X.

(a) Assertion (i) follows from Lemma 5.2, since condition (iii*) of Theorem
4.1 implies that 0 is a non-degenerate critical point of G. Indeed, we have the
following:

CLamM 5.3. If condition (iii*) is satisfied, then it follows that 0 is a non-
degenerate critical point of f(x) = —G(x).
Proor. First, we show that the kernel of D?F(0) is trivial. Assume that
D*F(0)u=0 for some u=r+s with re X; and se ;.
Then it follows from the selfadjointness of D*F(0) that
0= (r—s,D*F(0)(r+5)),
— (n D2F(0)1), + (1, D’F(0)s)., — (s, D*F(0)r),, — (s, D°F(0)s),,
= (r, DZF(O)”)yf — (s, DzF(O)S)ym
so that
(r, D*F(0)r),, = (s, D*F(0)s),,.
However, we have, by conditions (iii) and (iv),
0> (r,D*F(0)r),, = (5, D*F(0)s),, = my|ls||% >0 if s#0,
and, by conditions (iii*) and (iv),
0 < mlls|3, < (s, D*F(0)s),, = (r, D’F(0)r),, <0 if r#0.

These contradictions prove that u =r+s=0.
Now we assume that

D*f(0)hy = —D>G(0)h; =0 for some h € X.

Then it follows from formula (5.3) that we have, for all /; € X,

d
0 = (D2G(0)h1, k). =5 (VG(th) o) g

= %(VF (thy + p(th1)), h2) o |,— = (D*F(0) (b + ' (0)1), 12) - (5.25)
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On the other hand, it follows from formula (5.19) with x :=0 that
(D*F(0)(h1 + ¢'(0)n), k),
= (D*F(0+ ¢(0))(hy +¢'(0)h1), k), =0 for all ke Y.  (5.26)
Since # =X @ Y, we obtain from formulas (5.25) and (5.26) that
(D*F(0)(hy + ¢'(0)hy),u),, =0 for all u=hy+ke .
Hence we have the formula
D*F(0)(hi + ¢'(0)h) = 0.
However, since the kernel of D?F(0) is trivial, it follows that
hi +¢' (0 =0, heX, ¢0heVY,
so that
h; = 0.

This proves that the Hessian matrix D?f(0) of f at 0 is non-singular.
The proof of Claim 5.3 is complete. O

(b) To establish assertion (ii), we assume, to the contrary, that the quadratic
form associated with D?G(0) is negative definite on all of X. Namely, we have
the inequality

(D*G(0)h,h),, <0 for all non-zero elements i of X. (5.27)
If we let
W={Ww=h+¢0)(h):heX},

then it follows that dim W = dim X = J. Moreover, since ¢(0) =0, we obtain
from formula (5.17) and inequality (5.27) that

(D*F(0), ), = (D*F(0)(h+¢'(0)(h), h + ¢'(0)(h))

= (D*G(0)h,h),, < 0 for all non-zero elements W of w.

Since codim ¥; = J — 1, we can find a non-zero element w; of W N Y;. Hence we
have the inequality

(D*F(0)wy,w1),, <O.
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However, we obtain from Lemma 5.2 and condition (iv) of Theorem 4.1 that
(D*F(0)wy,w1),, = my|lwi||3 > 0.

This contradiction proves that D>G(0) cannot be negative definite on all of X.

(c) To prove assertion (iii), we assume, to the contrary, that there exists a
two-dimensional subspace Q of X such that the quadratic form associated with
D?G(0) is positive definite on Q. Namely, we have the inequality

(D*G(0)q,4),, >0 for all non-zero elements ¢ of Q. (5.28)
If O is a subspace of # defined by the formula
0={4=q+9¢'(0)(q):q¢ 0},
then we have, by formula (5.17) and inequality (5.28),
(D*F(0)4,4),, = (D*F(0)(g+ ¢'(0)(9)), 4 + ¢'(0)(9)).,
= (D*G(0)q,q),, >0 for all non-zero elements ¢ of 0. (529
On the other hand, we have, by formula (5.19),
(D*F(0)4,k),, = (D*F(0)(q + ¢'(0)(9)),k),, =0 for all ke Y.

Therefore, we obtain from inequality (5.29) and condition (viii) of Theorem 4.1
that

(D*F(0)(q + k), + k),
= (D*F(0)q,9)4 + (D*F(0)k, k),
>0 for all ge @ and ke Y with (g,k) # (0,0). (5.30)
This implies that
ony = {0}.
Moreover, since we have the formula
codim(Q @ Y) =codim ¥ —dim 0 =J —2

and dim X; =J — 1, we can find a non-zero element z; of X;N (Q@ Y).
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Therefore, we obtain from inequality (5.30) with ¢+ k :=z; and condition
(iii*) of Theorem 4.1 with x:=z; that

0 < (D*F(0)z1,21),, <O.

This contradiction proves that D?G(0) cannot have two positive eigenvalues.
Now the proof of Lemma 5.3 is complete. O

Step 4: By using the inverse mapping theorem (Theorem 2.2), we prove a
local existence and uniqueness theorem for the non-homogeneous problem (1.3):

LemmA 5.4. If uy is a weak solution of problem (1.5), then there exist
constants 6 >0 and 5" >0 such that if he L*(Q) and Ihll;2q) <O, then there
exists a unique weak solution u of problem (1.3) with ||u — wul|,, <J'.

PrOOF. As a by-product of the proof of Lemma 5.3, we find that if u is
any solution of problem (1.5), then it follows from formulas (4.9) and (4.12) that
the Fréchet derivative

D’F(up) =1 —T(g' (o)) : # — H

of VF at uy corresponds to the linear eigenvalue problem with the weight
g'(uo(x))

{Aw =¢g'(up(x))w in Q, (5.31)
Bw =0 on 0Q.

However, problem (5.31) has only the trivial solution. Indeed, it suffices to note
the following:

(@) If up is not identically equal to zero, then 1 is not an eigenvalue of
problem (5.31), since we have, by inequality (5.9),

Bi(9'(u0)) <1 < Bry1(g'(u0)).

(b) If up is the trivial solution, then g'(uo(x)) = ¢’(0) is not en eigenvalue
of the operator 2, since we have, by condition (F),

i1 <g'(0) < Ay.

Hence we obtain from the Fredholm alternative for D?F(ug) that D*F(up)
is bijective. Therefore, it follows from an application of the inverse mapping
theorem (Theorem 2.2) that there exists an open neighborhood U(uy) of uy such
that:
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(i) The restriction of VF to U(up) is bijective.
(i) VF(U(up)) is an open neighborhood of the origin 0.
(iii) VF restricted to U(up) has a C! inverse map.

Without loss of generality, we may assume that
U(up) = B(up,6") = {ue A# : |lu—uwul, <6’} for some constant &' > 0,

and that 6 > 0 is so small that [||,2q) <J for all he VF(U(u)).

Summing up, we have proved that if ||A|;2q) < J, then there exists a unique
weak solution u of problem (1.3) such that ||u — uol|, <’

The proof of Lemma 5.4 is complete. O

Step 5: The next lemma asserts that if 4 € L?>(Q) is bounded in L?(Q), then
any weak solution u of the non-homogeneous problem (1.3) is bounded in #:

LEMMA 5.5.  Given a number r > 0, there exists a constant R(r) > 0 such that
if he L*(Q) with 2l 2) <7, then any weak solution u of problem (1.3) satisfies
the condition

[ull o < R(r).
ProOF. Let 7 and ' be constants such that
Ay <y <max{g'(0),g' (-0)} <y < A1 (5.32)
Then there exists a constant #) > 0 such that

(1)

<«

/

7 < <y for all |f| = .

~ ‘

We extend the restriction of g(#)/t to (—oo, —#9] U [ty, c0) to a continuous function
y(t) on R = (—o0,0) (for example, linearly between —#, and fy) such that

Jy <y <y(t)<y<is for all teR. (5.33)

Since the function H(¢) = g(t) — y(¢)¢ is continuous and has compact support, it is
bounded on R. Hence we have the formula

g(t)y =y()t+ H(t), |H(t)| <L, (5.34)

with some constant L > 0.
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Assume that he L*(Q) with ||A]
of problem (1.3). Namely, we have, for all z e #,

2@ <. Let ue A be any weak solution

(u,2) 0 — (g(u) — haZ)LZ(Q) =0. (5.35)
If u=v+w with veX and we Y = X+, then we let
z=w—veA.
We remark that
1215 = lloll% + il = llull%-

Hence we obtain from formula (5.34) with #:=u and formula (5.35) that
(0= oo 0) = | )0 = 0%) dx = (2 = |yt d
— 02)y — | (000~ )z v
= JQ(H(u)z —h-z)dx.

By inequality (5.33), it follows from an application of the Schwarz inequality and
inequality (3.7) that

2 2 2 2
Wil = YWl z ) + 7 ol ) — ol
2 2 2 2
= Wil = llolly = 7lIwliz ) + 7' llvll g

<(w-v,w+v), — J y(u)(w? = v?) dx
Q

jﬂ(H(u(x))z(x) — h(x)z(x)) dx

1
—||Z||
\/ZH ||J/

el - (5.36)

12 12
< (LIQ" + [l 2@l 2 < (LRI +7)

1
Vi

Moreover, by using inequalities (3.8) and (3.9) we obtain from inequality
(5.36) that

= (LI +7)
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Y 2 Y’ 2
1—— wil,, + ——1 v ,
( iM)n I (A, )|||bf

2
< [wlls = 2lw

T 7 10l — vl
1
1/2
smm/wwﬁw%

Therefore, if we let

. y 7
b=ming 1 —— ——1;,
{ A1 Ag }

we have the inequality

1
bllull% = b(|lol% + Iwl%) < (LIQI"? + ) —=||ull,-
lull e = bI[vll% + lIwll) Q| i ¥
This proves that
[ull o < R(r),
where
R() = —— (L]0 + ).
Vb
The proof of Lemma 5.5 is complete. O

Step 6: The next lemma proves that the homogeneous problem (1.5) has
exactly three solutions:

LEMMA 5.6. Under the conditions of Theorem 1.3, there exist exactly three
solutions, one trivial solution 0 and two non-trivial solutions vy, vy of the ho-
mogeneous problem (1.5).

Proor. By Lemma 5.1, it suffices to show that there are exactly three
solutions of VG(v) =0. If VG(v) =0, then u=v+ ¢(v) is a solution of the
equation VF(u) = 0 or, equivalently, u is a weak solution of problem (1.5). Hence
we obtain from Lemma 5.5 with r:=0 that

1 12
., < R(0) =—(L|Q .
[[ull ,» < R(0) ’_ﬂylb( €2 77)
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However, since v and ¢(v) are orthogonal in ), it follows that
[ollr < llo+ 0(0)llr = llully < R(0).

Now, by virtue of Lemma 5.3 and the inverse mapping theorem (Theorem 2.2)
we find that the solutions of VG(v) =0 are isolated. Hence there exist only a
finite number of solutions of VG(v) =0. Let v, vs,...,v¢ denote the non-zero
solutions of VG(v) =0. By Theorem 1.1, it follows that

k>2.
Since the critical points of G and f = —G coincide, we have, by formula (5.5),
sgn det D*f(0) = (—1)” sgn det D>G(0) = (-1)*~' = -1 (5.37)

and
sgn det D*f(v;) = (—1)” sgn det D*G(v;) = (-1)*
=1 if l<i<k. (5.38)
We remark that
F(x+¢(x)) < F(x) for all xe X.
By condition (vii), it follows that
G(x) = F(x+¢(x)) = —o0 as |x[|y — o,

so that f(v) = —-G(v) — 40 as |jv||, — 0.
Therefore, we have proved that f satisfies all the conditions of Theorem 2.6.
Since we have the formulas

i(Vf,v;) = sgn det D*f(v;), j=0,1,... k,
it follows from an application of Theorem 2.6 and formulas (5.37) and (5.38) that
k
1= i(Vfiy)=—1+(kx1)=k-1.
=0
This proves that
k=2

The proof of Lemma 5.6 is complete. O
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Step 7: To complete the proof of Theorem 1.3, let uy, u; and u; be the three
solutions of problem (1.5). By Lemma 5.4, we can choose constants J > 0 and
6’ >0 such that if #e L*(Q) and Al ;2(q) <O, then there exist solutions u,
k=0,1,2 of problem (1.3) with

||i2k - “k”?f < 5,7 k= 0) 1a2

Since J and ¢’ may be chosen to be arbitrarily small, these solutions are distinct
provided that if |[A]|;2q) is sufficiently small.

(1) Assume, to the contrary, that Theorem 1.3 does not hold true. Then
there exists a sequence {/,},._, in L*(Q) such that

Hhm||L2(Q) —0 as m— o

and that there exist four distinct solutions uy,, ¢/ =0,1,2,3, of the non-
homogeneous problem (1.3) with % := h,,. Namely, we have, for all we #,

(thpm, W) o — J (g(ugm)w — hyy -w)dx =0, ¢=0,1,2,3. (5.39)
Q
If we introduce a map N : # — # by the formula

g() !
—

N=ug(): # — L}*Q) — L*(Q) — #, (5.40)

then it follows that the map N is compact. Indeed, it suffices to note the following
four assertions:

(a) The injection
H — Q)

is continuous (assertion (3.3)).
(b) The injection

whi(Q) — L}(Q)

is compact (the Rellich—Kondrachov theorem (see [2, Theorem 6.3])).
(c) The map

g() - L(Q) — L*(Q)

is continuous, since ¢g(7) is Lipschitz continuous on R.
(d) The resolvent

A LHQ) -

is continuous.



358 Kazuaki TAIRA

Moreover, we obtain from formula (5.40) that
(N(u),w)y = (9(u),w) 2 for all we #. (5.41)

Indeed, it suffices to note that

(N (), w), = (U (g(w), w),, = (AA" (g(u)), W) 12
= (g(u),W)LZ(Q) for all we .

(2) From the Riesz representation theorem ([33, Chapter III, Section 6,
Theorem]), there exists a unique function v, € # such that

(hny W) 12y = (Om, W), for all we A

Then we have the inequalities (see inequality (3.7))

1

2

Umllyy < |1m Um < ||hm —lvml| >
lomll% < |l ||L2(Q)H ||L2(Q) [ HLZ(Q) /—MH I~

so that

1
[vmll < \/—Z|\hm\|L2(g)-

This proves that
lomll,, — 0 as m — oo. (5.42)
(3) By using formula (5.41), we can rewrite formula (5.39) in the form
(trm, W) e = (N(urm), w) e = (O, W)
= (N(usm) — vm,w),, for all we A,
Hence we have the formula
Upm = N(upm) — vm, ¢=0,1,2,3. (5.43)

Since the sequence {/,,}_; is bounded in L?*(Q), it follows from Lemma 5.5 that
the sequences {usy},._, are bounded in #. Thus, by using the local sequential
weak compactness of Hilbert spaces (|33, Chapter V, Section 2, Theorem 1]) we
can choose a subsequence {u, };';1 which converges weakly to some function z,
in # for 0 </ <3

Uy — 20, £ =0,1,2,3. (5.44)
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However, we recall that the map
N =A"g(): A — A

is compact. This implies that the sequence N(u/y,) converges strongly to N(z/)
for 0 </ <3

N(Ll/mj)—>N(Z/), /20717273' (545)

By passing to the limit in formula (5.43), we obtain from assertions (5.42), (5.44)
and (5.45) that the sequence {us,,} converges strongly to z; and that

Z/:N(Z/), /2071,2,3.
Therefore, we have the formula
(ze,w)y = (N(z7),w), forall we#, ¢=0,1,23,

or equivalently,
(z7,W),p — J g(z/)wdx =0 for all we#, /=0,1,2,3.
Q

This proves that z, is a weak solution of the homogeneous problem (1.5).

Since each solution z,, / =0,1,2,3, is equal to some solution u, kK =0,1,2.
This implies that some two of the four sequences {uy}, /=0,1,2,3, should
converge to the same weak solution of the homogeneous problem (1.5). However,
we obtain that the four solutions wus,,, /=0,1,2,3, of the non-homogeneous
problem (1.3) are distinct for each j and ||y, 2q) — 0 as j — co. This con-
tradicts Lemma 5.4 for j sufficiently large.

Now the proof of Theorem 1.3 is complete. O

6. Proof of Theorem 1.4

This last section is devoted to the proof of Theorem 1.4. By virtue of
Theorem 3.3, we have only to prove Theorem 1.4 for weak solutions. The proof
of Theorem 1.4 is divided into three steps.

Step 1: To prove Theorem 1.4, we make use of the following variant of the
Ljusternik—Schnirelman theory due to Clark [12, Theorem 11]:

THEOREM 6.1 (Clark). Let H be a real Hilbert space and let f(x) be an
even, real-valued C? function defined on H. Assume that f(x) has the property that
whenever {x,} = H is a bounded sequence such that f(x,) <0, f(x,) is bounded
from below, and Vf(x,) — 0, then {x,} contains a convergent subsequence. More-
over, we assume that the following four conditions (a) through (d) are satisfied:
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(a) f(0)=0.
(b) f(x) is bounded from below.
(c) There exists a subspace M of H of dimension ¢ >0 such that

(D*f(0)x,x),; <O for all non-zero elements x of M.

(d) f(x) =0 for ||x||y sufficiently large.
Then there exist at last 2/ non-zero solutions of the equation Vf(x) = 0.
Step 2: If ¢y(7) is an odd function of 7, then it follows from formula (4.3) that
the energy function
1 1 u(x)
F(u) = 3 (u,u), — J I'(u(x)) dx = 3 (u,u),, — J J g(s) dsdx
Q e lJo
is an even function of u and from formula (4.11) that the gradient
VF(u) = u— T(g(w))

is an odd function of u.

We recall that the function F(u) satisfies all the hypotheses of Theorem 4.1,
as is shown in the proof of Theorem 1.1.

Step 3: Now we obtain from condition (G) that inequality (4.1) holds true

ko1 <g'(0) < Ag <Ay
and that
X =span{p,,0,,...,0,}, dimX =J,
Y =X,
Xi =span{g;,¢5,...,0x_1}, dmX;=K—-1<J-1<J=dimJX,
Y =X

Step 3-1: We have the following:

CramM 6.1. If g(¢) is an odd function of t, then the function ¢(v) is an odd
function of v and the function

Gv) =F(v+9¢), velX,

is an even function of v.
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Proor. First, we prove the oddness of ¢(v). By the oddness of VF(u), it
follows from formula (5.1) that

(VF(~0 = p(0)),k) = —(VE (v 4 p(t)),k),, =0 for all ke Y.
Since ¢(—v) is the unique element of Y such that
(VF(—v+¢(—v)),k), =0 for all keY,
we obtain that
p(—v) = —p(v) for all ve X.

This proves the oddness of ¢(v).
Secondly, since ¢(v) is odd and F(u) is even, it follows that

G(—v) = F(=v+¢(-v)) = F(=v = 9(v)) = F(v + ¢(v))
= G(v) for all ve X.

This proves the evenness of G(v).
The proof of Claim 6.1 is complete. O

Step 3-2: We have the following:

CLAM 6.2. If condition (G) is satisfied, then the quadratic form associated
with D>G(0) is positive definite on some subspace M of X of dimension J — K + 1.

PROOF. Assume, to the contrary, that D>G(0) has at least K non-positive
eigenvalues. Then there exists a subspace W of X with dim W > K such that

(D*G(0)w,w),, <0 for all we W. (6.1)
If W is a subspace of # defined by the formula
W={=w+e¢0)w:we W},
then, since ¢(0) =0, it follows from formula (5.17) and inequality (6.1) that
(DF(0)(w+ ¢/ (0)(w)), w + ¢'(0) ) -
= (D*F(0+9(0)(w + ¢'(0)(w)), w +¢'(0) (W),

= (D*G(0)w,w),, <0 for all we W,
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so that
(D2F(0)w,w),, <0 for all e W. (6.2)

However, we have, by inequality (4.16),

(D*F(0)s,s),, = m|s||3 for all se Yy, (6.3)
with
!/
m=1-90 .
K
and that

codim Y, =K —1.

Since dim W = dim W > K, we can find a non-zero element z of W N Y.
By using inequality (6.3) with s:=z and inequality (6.2) with w:=z, we
obtain that

0 < millz]3 < (D*F(0)z,2),, <0.

This contradiction proves the existence of an (J — K + 1)-dimensional subspace
M of X on which D>G(0) is positive definite.
The proof of Claim 6.2 is complete. O

If we let
() ==Gv) = -F(v+9(v), veX,
then it follows from Claim 6.2 that
(D?*f(0)v,v),, <0 for all non-zero elements v of M.

This verifies condition (c) of Theorem 6.1 with /:=J — K + 1.
Moreover, since we have, for all ve X,

Fo+9(v) < F(v),
we obtain from Proposition 4.2 (condition (vii) of Theorem 4.1) that
G(v) = Flo+¢(v)) — —co as ol ,, — o,
so that
f() ==G() = +eo as v, — oo

This verifies conditions (b) and (d) of Theorem 6.1.
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Condition (a) of Theorem 6.1 is trivially satisfied.

Step 3-3: Since X is finite-dimensional, it follows from an application of [14,
Theorem 4.3.3] that every bounded sequence has a convergent subsequence.

Summing up, we have proved that the function

JS(0) = =G(v) = —F(o+9(v), veX,

satisfies all the conditions of Theorem 6.1 with H:=X and /:=J — K + 1.
Hence there exist at least 2(J — K + 1) non-zero solutions vy, vz, ..., 0y—g+1) of
the equation

VG(v) = 0.
Therefore, by applying Lemma 5.1 to our situation we can find at least
2(J — K + 1) non-zero solutions uy,us, ..., usy;_g41) of the equation
VF(u)=0
with

u=vi+opv), 1<i<2(J-K+1).

This proves that there exist at least 2(J — K + 1) non-trivial solutions of problem
(1.5), since critical points of F are weak solutions of the homogeneous problem
(1.5).

The proof of Theorem 1.4 is complete. ]
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