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THE STRUCTURE JACOBI OPERATOR FOR REAL
HYPERSURFACES IN THE COMPLEX PROJECTIVE
PLANE AND THE COMPLEX HYPERBOLIC PLANE

By

Hiroyuki KURIHARA

Abstract. Recently, we investigated real hypersurfaces in a n-
dimentional complex projective space and complex hyperbolic space
with respect to various structure Jacobi operator conditions. How-
ever these results necessitates dimension assumption n > 3. The
purpose of this paper is to study such real hypersurfaces in the
complex projective plane and the complex hyperbolic plane.

1. Introduction

A complex n-dimensional Kéhler manifold with Kaéhler structure J of
constant holomorphic sectional curvature 4c¢ is called a complex space form,
which is denoted by M, (c). As is well-known, a connected complete and simply
connected complex space form is complex analytically isometric to a complex
projective space P,C, a complex Euclidean space C or a complex hyperbolic
space H,C according as ¢ >0, ¢c=0 or ¢ <O0.

The study of real hypersurfaces in complex projective space P,C was initiated
by Takagi [12], who proved that all homogeneous real hypersurfaces in P,C
could be devided into six types which are said to be of type A4i, 4>, B, C, D
and E.

In the case of complex hyperbolic space H,C, the classification of homo-
geneous real hypersurfaces in H,C is obtained by Berndt and Tamaru [2]. In
particular, real hypersurfaces in H,C, which are said to be of type 4y, A; and A,
were treated by Montiel and Romero [9]. Real hypersurfaces in P,C and H,C
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have been studied by several authors (cf. Cecil and Ryan [3], Okumura [§],
Montiel and Romero [7]).

Let M be a real hypersurface in M,(c), ¢ # 0 and v a unit normal vector field
on M. Then a tangent vector field ¢ := —Jv to M is called the structure vector
field on M. M has an almost contact metric structure (¢, ¢, 7,g) induced from J.
We denote V and S, the Levi-Civita connection and the Ricci tensor of M,
respectively. If the structure vector is a principal vector, then M is called a
Hopf hypersurface. It is known that the principal curvature o is locally constant
(Maeda, Y. [9], Ki and Suh [6]).

On the other hand, the Jacobi operator field with respect to X in a
Riemannian mannifold M is defined by Ry = R(-, X)X, where R denotes the
Riemannian curvature tensor of M. We will call the Jacobi operator on M with
respect to & the structure Jacobi operator on M. The structure Jacobi operator R
is said to be cyclic-parallel if it satisfies

SRUX,Y,Z) = Sg(VxRe(Y),Z) =0

for any vector fields X, Y and Z, where & denote the cyclic sum. The structure
Jacobi operator R; = R(-,&)¢ has a fundamental role in contact geometry.
Ortega, Pérez and Santos [10] have proved that there are no real hypersurfaces
in P,C, n >3 with parallel structure Jacobi operator VR: = 0. More generally,
such a result has been extended by [11] due to them. Recently, author et al. have
some classification results with respect to the structure Jacobi operator for real
hypersurfaces in M,(c), ¢ #0 [4, 5].

THeorem 1 (Ki and Kurihara (in preparation)). Let M be a real hyper-
surface in a complex space form M,(c), ¢ # 0, n >3 which satisfies V:R: = 0.
Then M holds R:¢S = R:S¢ if and only if « =0 or M is locally congruent to one
of real hypersurfaces of type Ay, Ay of P,C or of type Ay—A, of H,C.

THEOREM 2 ([5]). Let M be a real hypersurface in a complex space form
M,(c), ¢ #0, n > 3 which satisfies V:R: = 0. Then R:¢S = S¢R: if and only if M
is locally congruent to one of real hypersurfaces of type Ay, Az of P,C with o # 0
or of type Ay—A, of H,C.

THEOREM 3 ([4]). Let M be a real hypersurface in a complex space form
M,(c), ¢ #0, n>3. If the structure Jacobi operator is cyclic-parallel, then M is
locally congruent to one real hypersurfaces of type Ay, Ay and a tube of radius r
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over complex quadric Q,_1, where cotr = (v/2c+ 4+ \/2‘6)/2 of P,C or of type
A()—A2 Of HnC.

However these results are proved for n > 3 and the methods of proofs depend
on this. In this paper we invistigate corresponding results for n = 2 (Theorem 3-7
in Section 4-6).

All manifolds in this paper are assumed to be connected and of class C* and
the real hypersurfaces are supposed to be oriented.

2. Preliminaries

2.1. Real Hypersurfaces in M, (c), ¢ #0

We denote by M,(c), ¢#0 be a nonflat complex space form with the
Fubini-Study metric § of constant holomorphic sectional curvature 4c¢ and Levi-
Civita connection V. For an immersed (27 — 1)-dimensional Riemannian man-
ifold 7: M — M,(c), the Levi-Civita connection V of induced metric and the
shape operator H of the immersion are characterized

VyY =VyY +g(HX,Y)y, Vyv=—-HX

for any vector fields X and Y on M, where g denotes the Riemannian metric of
M induced from g and v a unit normal vector on M. In the sequel the indeces
i,j,k,l,... run over the range {1,2,...,2n— 1} unless otherwise stated. For a
local orthonormal frame field {e;} of M, we denote the dual 1-forms by {6;}.
Then the connection forms 0, are defined by

do;+Y 0570, =0, 05+ 6; =0,
J
Then we have
R SN S
k k

where we put 0; =3, T'u0;. The almost contact metric structure (¢ = (¢;),
&=>",¢e) is induced on M by following equation:

J(er) = Z Piej + &iv-
J

The structure tensor ¢ =), ¢;e; and the structure vector & =) . &e; satisfy
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;¢ik¢kj = ¢ — 0y, ij%’ =0, Zf,z =1, ¢;+¢;=0,
J i
(2.1) dg; = Z(¢ik9kj — ki — SOk + Ehi O ),

k
d; =" E0i = dihubr.
J Jrk

We denote the components of the shape operator or the second fundamental
tensor H of M by hj;. The components /., of the covariant derivative of H are
given by >, hjiOr = dhjj — 3 huOri — > hixOri. Then we have the equation of
Gauss and Codazzi

(22) Ry = cOwdji — 0udik + byt — budi + 203b11) + hichy — huhj,
(2.3) ik — higj = (S — b + 28idig).

respectively.
From (2.2) the structure Jacobi operator R: = (5;) is given by

(2.4) Bj = hahp&iér =Y hihu&l) + c&i; — cdy.
k1 k1
From (2.2) the Ricci tensor S = (Sj) is given by
(2.5) Sij = (2n+1)cdy — 3¢&;&; + hhyj — Zhikhkj7
k

where i =3, h;.
First we remark

LemMa 1 ([S]). Let U be an open set in M and F a smooth function on U.
We put dF =), F;,0;. Then we have

Fy—Fi = Flwy— Y Fly
k k

2.2. The Case Where n =2

In this section, we treat the case where n = 2.
Now we retake a local orthonormal frame field {e;,es,e3} in such a way
that
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s e =¢,
* ey is in the direction of hjyer + hizes,
* ez = ¢€2.
Then we have
(2.6) Gi=1, &=&G=0 and ¢; =1

We put o := hyy, f:= hip, y := hyp, € := hy3 and J := h33. Then the shape operator
H and the structure tensor ¢ are represented by matrices

o f O 0 0 O
(2.7) H=|p y ¢]|, ¢6=10 0 -1,
0 ¢ o 01 0

respectively.
Since d&; =0, we have

(2.8) 012 = &0 + 003,

(2.9) 013 = —p6, — y0, — ¢b5.
We put

(2.10) Ors = X160, + X120, + X305,

The equations (2.4) and (2.5) are rewritten as

(2.11) Eij = —och@, + h],‘h]/‘ + C(5j15j] — C(5{~,‘,
3
(2.12) S = (a+7p+ 5)/’1,‘] — Zh,‘khjk — 36‘5,‘15]1 + 5C5,:/,
k=1

respectively, where i€ {1,2,3}.
Now, a fundamental property are stated for later use.

THEOREM 4 (Okumura [8], Montiel and Romero [7]). Let M be a real
hypersurface in P,C or H,C. If the shape operator is commuts with the structure
tensor, then M is locally congruent to one of the following:

* in case that P,C,

(A1) a geodesic hypersphere of radius r, where 0 < r < m/\/4c,
 in case that H,C,
(Ao) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
H]C.
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3. Real Hypersurfaces with the Condition V:R: =0

Hereafter the indeces i, j, k, [ run over the range {1,2,3} unless otherwise
stated.

In this section we assume that V:R:=0. The components Z;, of the
covariant derivativation of R: = (Z;) is given by

E E,‘j;kgk:dE,—j— E EkJ-Hk,-— E Eikekj-
k

k k

Substituting (2.11) into the above equation, we have

(3.1) > Byl = —(deyhy — odhy + (dhyi)hyj + hyi(dhyy)
k
+a Z hyjOri — othy;01; — Bhij0x; — ¢d;101;
k

+o Zhikokj — ahy;01; — B0y — cdinby;.
3

In the following, we assume that f # 0.

Our assumption VR =0 is equivalent to Z;,; = 0, which can be stated as
follows:
(3.2) e=0, ad+c=0,
(3.3) (B —ay), =0,
(3.4) (B2 — oy —c)X; = 0.

In the following, using the notion of Lemma 1, we write as follows:
o =hi, Bi=hoi, 7= ho, i =hss (1< <3).

Now, we denote the equation (2.3) by (ijk) simply. Then from (2.3) we have
following equations (112)—(323):

(112) m— =0,

(212) B> =1 =0,

(312) (2 =0)y = f>+ (y =) X1 — pX2 = —c,
(113) o3 + 360 — af + pX; =0,

(213) By —ad+7y6 — B+ (y —6)X1 =,
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(313) o1+ pX; =0,
(223) 73— 2B0 =By +(y —9)X2 =0,
(323) 62+ (y—0)X; = 0.

ReMARK 1. Above equations (112)—(323) may not use equations (3.3) and
(3.4).

4. The Condition V:R: =0 and R:4S = R:S¢

Let M be a real hypersurface in P,C or H,C, which satisfies VeR: = 0 and
R:¢pS = R:S¢. Under the assumption Ve R: = 0, it follows from (2.7), (2.11) and
(2.12) that the condition R:$S = R:S¢ is equivalent to the following equation

(4.1) B —oay—c=0.

Then taking account of the coefficient of €5 in the exterior derivative of (4.1), we
have

(4.2) 2Py — yoz — ayy = 0.

From (312), (113), (213), (223) and (4.1) we have the following:

(4.3) oy—(y—90)X) + X, =0,

(4.4) o3+ 360 —aff + fX1 =0,

(4.5) B340 —ay—c+(y—0)X; =0,
(4.6) 73— 20— By + (y —0)X2 = 0.

Substituting of (4.4)—(4.6) into (4.2), we have
Bo(Xy — 4o) =0,
by virtue of (4.3). If 6 =0, then by (3.2) we have a contradiction and hence
4.7) X = 4o
Substituting of this equation into (4.3)-(4.5), we have
(4.8) BXy = 4a(y —9) — Iy,
(4.9) a3 + 360 + 30 =0,
(4.10) Py + 3oy — 30 + yo = 0.
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It follows from (223), (4.1) and (4.8) that
(4.11) oys + 30y — 600 — pd) = 0.
REMARK 2. we have already obtained above equations in [5], page 53.

We may put 1:=o;/a = p,/f. In fact, eliminating X3 from (313) and (323), we
have fd, + (6 — y)01 = 0 which, together with (3.2) and (112), implies o /o = S, /.
From (3.2) and (4.1) we have

(4.12) S=-=, y=

Using above two equations, we can express X, and X3 by three smooth functions
a, f and A. From (3.2), (212) and (4.1) two equations (4.8) and (323) are rewritten
as

1
(4.13) X = aTﬁ(%czﬁz + e —c?),
(4.14) Xs = Oy by —cwy  —cf _ ¢,

o—y cald—y) o2(y—0) alaytc) ap”

respectively.
On the other hand, taking account of the coefficient of 8) A 6, in the exterior
derivative of (2.10), we have

(4.15) X2+ X1 +9X + X1 X3 =0.

Again taking account of the coefficient of #; in the exterior derivative of (4.13),

we have
3¢ — p?
XZ‘I = 4ﬂ1 + C/‘Lw,
and therefore the equation (4.15) implies
(4.16) (202 4 B* —2¢) = 0.

THE cASE WHERE A = 0. Then we have o) = ff; = 0. Thus from (313) we have
X3 =0 and therefore oy = J, = 0 because of (112). Hence, taking account of the
coefficient of 6; in the exterior derivative of (4.1), we have y; =0, and so f, = 0.
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Now put F =« and f in Lemma 1. Then we have
wu(y+X1) =0, B(y+X1)=0.

If y+ X; # 0, then we have a3 = 3 = 0, which implies o, f and ¢ are constant.
Furthermore, by (4.1) we see that y is constant. Thus from (4.9)—(4.11) we have

(4.17) o+0=0,
(4.18) 3ay — 300 4 y0 =0,
(4.19) 3oy — 606 — yo = 0.

Hence, by (3.2) and (4.7) we have «?> — ¢ =0. Moreover eliminating yé from
(4.18) and (4.19), we have 25° + ¢ =0 because of (3.2) and (4.1), which is a
contradiction. Therefore X; = —p, which, together with (4.7), implies y = — X} =
—4o. Thus it follows from (4.9) that y; = —4a3 = 126(0 + «). Hence from (4.11)
this contradics «d = 0.

THE cASE WHERE A # 0. Then from (4.16) we have
(4.20) 20 + % = 2c.

Taking account of the coefficient of 8, in the exterior derivative of this equation,
we have A(2¢% + %) = 0 and so 202 + % = 0. It follows from (4.20) that ¢ =0,
which is a contradiction. Therefore we have f = 0.

Since (2.5) and f =0, we see that « is constant in M (see [6]). Thus from
(3.1) our assumption Z;.; = 0 is equivalent to ahy,; = 0. Put j =1 in (2.3). Then
by above equation we have ah;x = —cag,,. Therefore since (2.1) and d¢&; = 0, we
have

0> hihphig + 07 dhig = —ahi; = cody,

k.1 k

which implies that «?(¢H — H¢) = 0. Hence owing to Theorem 4, we complete
the proof of following Theorem 5.

THEOREM 5. Let M be a real hypersurface in P,C or H,C, which satisfies
VeR:e =0. Then M holds R:¢S = R:S¢ if and only if HE =0 or M is locally
congruent to one of the following:
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* in case that P,C,
(A1) a geodesic hypersphere of radius r, where 0 <r < m/2 and r # n/4,
* in case that H,C,
(Ao) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
H]C.
5. The Condition V:R: =0 and R:¢S = S¢R;

Let M be a real hypersurface in P,C or H,C, which satisfies VeR: = 0 and
R:¢pS = S¢R:. Under the assumption VR = 0, it follows from (2.7), (2.11) and
(2.12) that the condition R:¢S = S¢R; is equivalent to the following equation

(5.1) (y0 +4c)(f* — oy —¢) = 0.

If > — oy — ¢ = 0, then by the same argument as that in Section 4 we have f = 0,
which is a contradiction. Therefore i — ay — ¢ # 0. Then from (3.4) and (5.1) we
have

(52) X1 = 0, y(S = —4c.

Now, taking account of the coefficient of 8; A 6, in the exterior derivative of
03 = Xo0, + X303, we have

(5.3) X1 +9X3=0.
From (5.2) the equation (312) is rewritten as
BXy = —(B* — oy —¢) +4c.

Therefore from (3.3) we have (fX>), =0, which implies

Hence, by (5.3) we have
(5.5) BrXs = B Xo.

From (323), (5.5) and (112) it is easy to see that
w2 ((0 — ) X2 4 4p0) = 0.
This, together with (223), gives

(5.6) % (fy — 20 —73) = 0.
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If oy # 0, then we have

(5.7) 73 =By — 2.

By (5.2) we have (yd); =0, which implies that
oy — yoz = 0.

Since f§ # 0 substituting of (113) and (5.7) into above equation, it is easy to show
that ¢ =0, which is a contradiction. Hence we have o = 0. Then from (112),
(3.3), (5:4) and (5.3) we have

(58) ol :52 :ﬁl = (Oty)l = Xg‘l = X3 =0.

Taking account of the coefficient of 6 A 03 and 6, A 05 in the exterior derivative
of 053 = X105, we have X, = —2f and f; — 28> = yJ + 2¢, respectively. It follows
from (213) that

(5.9) B = 8¢,

which implies 3 = 0. Thus from (213) we have > = —6¢, which contradicts (5.9).
Therefore M is a Hopf hypersurface. Thus by the same argument as that in
Section 4 we complete proof of following Theorem 6.

THEOREM 6. Let M be a real hypersurface in P,C or H,C, which satisfies
VeRe =0. Then M holds R:¢pS = S¢R: if and only if HE =0 or M is locally
congruent to one of the following:

* in case that P,C,

(A1) a geodesic hypersphere of radius r, where 0 <r < /2 and r # n/4,

* in case that H,C,

(Ao) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
H]C.

6. Cyclic-Parallel Structure Jacobi Operator Condition

In this section we invistigate the condition “cyclic-parallel structure Jacobi
operator” (see [4]). First in [4] the proof of Main Thorem suggests following
proposition.

PropoOSITION 1. Let M be a Hopf real hypersurface in P,C or H,C. If the
structure Jacobi operator is cyclic-parallel, then M is locally congruent to one of
the following:
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* in case that P,C,

(A1) a geodesic hypersphere of radius r, where 0 < r < m//4c,
(B) a tube of radius r over complex quadric Q), where cotr=

(V2 +4++2¢)/2,

* in case that H,C,

(Ao) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
HC.

We suppose that M is a non-Hopf hypersurface in P,C or H,C satisfying
S9(VxR:(Y),Z) = 0 for any vector fields X, ¥ and Z, where & denote the cyclic
sum. Then we have f # 0. Our assumption Sg(VyR:(Y),Z) =0 for any vector
fields X, Y and Z is equivalent to Ejx + Ep,; + E;; = 0. This equation is
rewritten as

(6.1)

oehi + il + ol + o(hie + higi + D)
— hyjhie — hichii — b — hyphe — hichyy — hiibe
+ ahyj(Tiik + Cixi) 4+ oahir (T + Tiy) + oyi(Tigg + Tije)
+ Bhyj(Toi + Toki) + Phi(Toji + Tap) + phii(Torg + Tojic)

+ ¢01j(Tik + Tixi) + cou(Tyi + Tiyg) + ¢o1i(Tig + Tijix)

—o Zl: hyj(Tie + Tig) — o z]:hlk(rlji +TIy) —« z]: hi(Tig + Tje) = 0,

because of (3.1). Then the equation (6.1) can be stated as follows:

(6.2)
(6.3)
(6.4)
(6.5)
(6.6)

(6.7)

e=0,
ad+ ¢ =0,
(ﬂz_ay>1:()a

(a); +2(B> — oy — ©) Xo = 0,
(B> —ay —¢)(X1 =) =0,

(f? —ay—c)X3 =0.

Hereafter we shall use (6.2) without quoting. Then from Remark 1 we have
equations (112)—(323) in Section 3. If B> —oy—c¢=0, then by the same argu-
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ment as that in Section 4 we have f =0, which is a contradiction. Therefore
B> — oy — ¢ # 0. Then equations (6.6) and (6.7) imply
(6.8) X;=0, X;=0.

It follows from (112), (313), (323), (3.3) and (212) that
(6.9) wy=01=0m=0=pF=F=y=0.
From (312), (113) and (6.8) we have the following

(6.10) BXy+ (B2 —ay—c)+0° =0,

(6.11) o3 +4p0 —aff = 0.

Taking account of the coefficient of ) A ;3 in the exterior derivative of (6.10),
we have

(6.12) 03 = —f0 — 2X0,

which, together with (6.10) and (6.11), implies
—2p%0 4+ 00 + a(f* —ay —¢) = 0.

Taking account of the coefficient of #, in the exterior derivative of above
equation, we have y, = 0.
Now put F=oa,y and i=1, j=2 in Lemma 1. Then, we have

23(y +0) = p3(y +9) =0.

If 40 # 0, then from (6.5) and (6.12) we have a contradicton. Thus y +J =0,
which also contradicts (6.5) and (6.12). Hence M is a Hopf hypersurface.
Therefore from Proposition 1 we complete proof of following Theorem 7.

THEOREM 7. Let M be a real hypersurface in P,C or H,C. If the structure
Jacobi operator is cyclic-parallel, then M is locally congruent to one of the
following:

* in case that P,C,

(A1) a geodesic hypersphere of radius r, where 0 < r < m/\/4c,
(B) a tube of radius r over complex quadric Q), where cotr=
(V2c+4 +V2¢)/2,
 in case that H,C,
(Ao) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
H,C.
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