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CIRCULAR BILLIARDS AND PARALLEL AXIOM
IN CONVEX BILLIARDS

By

Shinetsu TAMURA and Nobuhiro INNAMI

Abstract. Circles will be characterized by some properties of billiard
ball trajectories. The theory of parallels and the parallel axiom play
important roles in the geometry of the configuration space. Those
characterizations are concerned with Bialy’s theorem which is a
partial answer to Birkhoff’s conjecture.

1. Introduction

Let C be a smooth simple closed and strictly convex curve with length L in
the Euclidean plane E and let ¢: R — E be its representation by arclength,
namely |é(f)] =1 for any 7€ R where R is the set of all real numbers. The
orientation of C is assumed to be anti-clockwise. Let x = (x;);. 7
points in C where Z is the set of all integers. Let T(x) = | ).

be a sequence of
oo T (x;j, xj+1) where
T (x;, xj11) is the oriented segment from x; to x;;; for each je Z. We say that x
(and T'(x)) is a billiard ball trajectory if the angle between the tangent vector 4 to
C at x; and the oriented segment 7'(x;_1,x;) from x;_; to x; is equal to the one
between 4 and T(x;,x;;1) for any i € Z. The convex billiard has been investigated
in its phase space and its configuration space.

We call Q = C x (—1,1) the phase space which is the set of all pairs (x,u) for
xe C and ue (—1,1). Let xp,x; € C and (x¢,x1,x;) the billiard ball trajectory.
Let 6y (resp., 8) be the angle between the segment T'(xy, x1) from xo to x; (resp.,
T(x1,x)) and the tangent vector to C at xp (resp., xi). Set uy = cos 6y and
u; = cos 0. Define a billiard ball map ¢ :Q — Q as ¢(xo,up) = (x1,u1). The
billiard ball map is an example of a monotone twist map (see [10]). If x =
(x0,u0) € Q and (xj,u;) = ¢/ (X) for all jeZ, then the sequence x = (x;); 4 is a
billiard ball trajectory. Any billiard ball trajectory is given in this way.

The billiard is said to be integrable if a subset of full measure of the phase
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space Q is foliated by closed curves invariant under the billiard ball map ¢. The
billiards in circles and ellipses are integrable. Birkhoff’s conjecture is stated in [3]
as follows. The only examples of integrable billiards are circular and elliptic
billiards. Bialy ([3]) has given a partial answer to the conjecture, proving that C
is a circle if Q is foliated by g-invariant continuous closed curves not null-
homotopic in Q. Wojtkowski ([11]) proved that C is a circle if the domain
bounded by C is foliated by smooth caustics to which almost every billiard ball
trajectories are tangent. As was stated in [3] Bialy’s theorem corresponds to a
theorem of Hopf ([7]) concerning Riemannian metrics on tori without conjugate
points. Innami ([8]) extended Bialy’s theorem to the higher dimensional case and
the nonpositive curvature case as Green ([5]) did.

A sequence of points x = (x;) ez 0 C Is represented by a sequence
s = (87);c7 of real numbers such that x; = c(s;) and s; < 5541 <s;+ L forall jeZ
and the sequence s = (s;);., will be considered to be a configuration {(/,s)};cz
in the configuration space X = Z x R = R%. A configuration s = (8)jez for x is
uniquely determined up to the difference pL (p € Z). The theory of parallels for
billiard trajectories in the configuration space has been developed in [1], [2] and

[9]. We define the slope a(x) of x as

#(x) = lim inf %

where 5 = ()7 s a configuration for x. Let (X) denote the slope of the billiard
ball trajectory determined by X for X € Q. It is known that all points X which are
in a g-invariant closed curve f not null-homotopic in Q have the same slopes
([1], [9]). We define the slope a(f) of any g-invariant closed curve f not null-
homotopic in Q as af) = a(x) for any X.

In the present paper we prove the following theorem which improves Biary’s
theorem.

TueoreM 1.1.  Let C be a strictly convex closed curve of class C' with length
L and with constant width. Suppose there exists a sequence of g-invariant closed
curves f, not null-homotopic in Q whose slopes o, = a(f,) converge to L/2. Then,
C is a circle.

Let f be a g-invariant closed curve not null-homotopic in Q and f~ the
curve consisting of the points X~ which correspond to the reversed billiard ball
trajectories to Xe f. Then f~ is also a g-invariant closed curve not null-
homotopic in Q with slope a(f~) =L — a(f) (see Section 5).
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COROLLARY 1.2. Let C be a strictly convex closed curve of class C'. Suppose
there exists a sequence of g-invariant closed curves f, not null-homotopic in Q such
that lim,_... f, =lim,—, f,~ as n— oco. Then, C is a circle.

The corollary shows that our theorem betters Biary’s theorem.

COROLLARY 1.3. Let C be a strictly convex closed curve of class C' with
length L. Suppose the slope function o is continuous in Q and o~'(L/2) has no
interior points. Then C is a circle.

We define poles for convex billiards as follows. Let sp = fp and xp = ¢(sp).
Let s = (‘S/)jel and ¢ = ([j)jEZ
t1 > s1. We say that the point xy € C is a pole if t and s do not cross at any other
point than sp, namely, #; > s; for j > 0 and ¢; <s; for j < 0. All points in circles

are poles. The endpoints of long axis in an ellipse are poles and other points are

be configurations for billiard ball trajectories with

not poles.

COROLLARY 1.4. Let C be a strictly convex closed curve of class C' with
constant width. Suppose there exists a pole in C. Then C is a circle.

2. Preliminaries

Details of theorems introduced in this section can be seen in [9]. Let C be a
smooth strictly convex simple closed curve in the Euclidean plane E with length
L. Let X =7 x R c R? where Z is the set of all integers and R is the set of
all real numbers. We denote (i,s;) €e X by s; for simplicity. A configuration
s = (8j);<j<x makes a broken segment 7'(s)= U;:l.] T(s;,si+1) in R* where
T(s;,s;+1) is the segment from (j,s;) to (j+ 1,s5+1) in R%. For ¢, p € Z let U(q, p)

be the translation in X which is given by

Ulg, p)(si) = Ulq, p)(i,si;) = (i +q,si + pL)

for any (i,5;) € X. Let x = (x;),_;, be a sequence of points in C with x; # xj41

for any j. We define a configuration s= (s;),_;o, for x as x; =c(s;) and
5; < 8ip1 <8+ L for i < j<k—1. We call such a configuration s and a broken
segment 7 = T'(s) made of such a configuration s a C-curve. We define the

negative length of a C-curve T = T(s) as

k—1
H(S; ia k) = H(Si7si+la o 7Sk) = - Z |C(S/+1) - C(S/)‘
=i
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where | - | is the natural norm in E and ¢: R — E is the representation of C by
arclength. Let H (i k;u,v) denote the minimum of H(s;i,k) in the set of all
C-curves s = (s5); ;< from s; = (i,u) to s = (k,v).

A C-curve s = (5);. ;< (and T = T'(s)) is called a billiard curve or simply a
b-curve if x = (X;);.;<, given by x; =c(s;) for i < j <k is a billiard ball tra-
jectory. The b-curves are the critical points of the function H in the set of all
C-curves connecting given endpoints. A b-curve s = (5;),. ;4 (and T = T(s)) is
called a billiard geodesic or simply a b-geodesic if H(s; j, j+ 2) is the minimum in
the set of all C-curves from s; to s;» for i < j <k —2, namely H(s; j,j+2) =
H(j,j+255,8112). A C-curve s=(s5;);; (and T = T(s)) is called a billiard
segment or simply a b-segment if H(s;i, k) is the minimum in the set of all
C-curves from s; to s, namely H(s;i,k) = H(i,k;si,s¢). A b-geodesic s = (s);;
(resp., s = (s5);<;) (and T = T(s)) is called a billiard ray from s; or simply a b-ray
Sfrom s; if all sub-h-geodesics are b-segments, namely H (s; j,k) = H(j, k;s;,sx) for
any k > j > i (resp., j <k <i). A b-geodesic s = (s;);.z (and T = T(s)) is called
a billiard straight line or simply a b-straight line if all sub-b-geodesics are b-
segments, namely H(s; j, k) = H(j,k;s;,s;) for any k > j.

Let s = (s]),</<k and s’ = (s57), ;< be b-segments such that T'(s) N T(s") =
. Suppose 5; < s; for all j with i < j < k. Then, we have a strip [T(s), T(s")] in
R? whose lower boundary broken segment is 7(s) and upper one is 7T'(s’). We

also denote [T'(s), T(s")]NX as [T(s), T(s")].

ProposITION 2.1. If W is a foliation of the strip [T(s),T(s")] by b-curves,
then all b-curves t = (t;), <j<k in the foliation W are b-segments in the strip
[T(s), T(s")]. Moreover, if ty and ty are in a b-curve t = (1;);_ ;.. € W, then the
sub-b-curve t = (lj)hgjgm of t = (lj)igjsk is the unique b-curve connecting t, and t,,
in the strip [T(s), T(s")].

Let f be a p-invariant closed curve which is not null-homotopic in Q. Then,
the set of all configurations for all points X € f makes a foliation of X which is
invariant under all translations. Proposition 2.1 implies that those configurations
are b-straight lines in X.

PROPOSITION 2.2. Let t = (j),<jcp, and u= ;)< ., be b-segments with
t #u. Then, T(t)NT(u) contains at most two points. If T(t) N T(u) = {a,b}, then
a and b are common endpoints of t and u. Furthermore, there exists the unique
b-segment from t; to t; which is a sub-b-segment of t if at least one of t; and t; is
not an endpoint of the segment t.
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Let g, p € Z with 0 < |p/q| < 1. The displacement function D = D(q, p) : X —
R is given by

D(s;) = D(q, p)(s;) = H(i,i+ q;si,5 + pL)

for any s; = (i,s;) € X. This is equivalent to that D(s;) = H(i,i + g;s;, U(q, p)(si))
for any s; € X.

We say that a b-curve s = (s;);.z is with period (q,p) if sj+g =5;+ pL for
any je€Z. The periodic b-geodesic s = (s;);.5 is said to be minimal if D(s;) =
min{D(s) |s € {j} x R}.

PROPOSITION 2.3.  Suppose D(q,p) assumes its minimum at s, Then, there
exists a unique minimal periodic b-geodesic through s; with period (q,p). The
minimal periodic b-geodesic is a b-straight line whose slope is pL/q.

The diameter d of C is by definition d = max{|c(s) — ¢(¢)||s,t € R}. The
diameter is characterized by a billiard ball trajectory as follows.

LemMMA 2.4, A b-straight line s = (s;);.5 is with period (2,1) if and only if
lc(sj41) — c(sj)| is the diameter of C for all je L.

The following proposition helps us improve the assumption in Bialy’s the-
orem, combined with Theorem 4.1.

ProrosiTiON 2.5. C is with constant width if and only if X is foliated by
periodic b-straight lines with period (2,1).

Let s = (Sj)jzio
the configuration space as

be a b-ray. We define the Busemann function of a b-ray s in

B(i,t;) = By(t;) = Um {H(i,n; t;,s,) — H(s;ip,n)}

n—oo

for any (i,t;) € X (see [2], [4], [9]). In the same way we define the Busemann

function of a b-ray s = (S/)jSio by using n — —oo instead of “n — o0”. We states

the properties and proofs for only the case s = (s;)

;. However, the same
J=1o

properties are true under the suitable change of the expression unless otherwise
stated.
Let t = ()

i~ bea C-curve. We say that 7 is a co-b-ray to a b-ray s = (s;)

J =10

if
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Bs(iy li) = H(l, i+ m; i;, ti+m> + Bs(l +m, ti+m>

for any i > i; and m > 0. We say that a C-curve ¢ = (1), is a b-asymptote to a

b-ray s = (s;) of t is a co-b-ray to s. We say that

J=o
a C-curve ¢ = (1j);c7 is a b-parallel to a b-straight line s = (s;); ., if sub-b-curves

if any sub-b-curve 1 = (;);.;
(4);>; and (), are co-b-rays to b-rays (s;);., and (s;);, respectively for each
iel.

LeEmMA 2.6. Let s = (s;)

iz, and 1= (Zj)jzil be b-rays. If lim;_ . |s; — t;| =0,
then By(i,u) = B,(i,u) — B,(io, s;,) for any (i,u) € X and they are co-b-rays to each

other.

If " = (1}')
then there exists a subsequence ¢ which converges to a b-ray.

n n 3
i <j<n D€ @ b-segment from | to s, and a sequence #; is bounded,

LemMA 2.7. Let 1" = (¢}'), <j<n be a b-segment from t;} 10 s,. If a sequence t"
t,

J
converges to a b-ray t = (;);.,, then t is a co-b-ray 1o s.

The following shows that sub-b-rays of a co-b-ray ¢ are the unique co-b-rays
if the starting point is not the terminal point of ¢.

PROPOSITION 2.8. Let t= (1)) be a co-b-ray to s and let i, > 1. If

J=ii

u= (), is a co-b-ray to s with w;, = t;,, then u is a sub-b-ray of t, namely,

uj =t for j=i.

PROPOSITION 2.9.  Let 5= (5));c7 and s" = (5});c4

period (q,p). If s and s' are b-straight lines, then one is a b-parallel to the other.

be periodic b-curves with

ProrosiTION 2.10. Let s = (Sj)jeZ be a periodic b-straight line with period
(¢,p) and t = (1), a b-straight line with slope o(t) = pL/q and T (t) N T (s) # .

Then, t coincides with s.

LemMa 2.11. Suppose there exists a pole xe C. Then, for any (q,p),
g, peZ’, p/q<1, and any sy corresponding to a pole, there passes a minimal
periodic b-straight line s = (s;);.4 with period (q, p) such that the strip [T(s), T(3)]
is foliated by b-straight lines and the foliation W corresponds to a g-invariant
closed curve not null-homotopic in the phase space €, where $; =s;+ L for all
jeZ.
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3. Convex Parts of Caustics

Let x,ye C. The orientation of C is assumed to be anti-clockwise. Let
T(x, y) be the oriented segment from x to y and S(x, y) the oriented straight line
through x and y. Let H(x, y) be the closed half plane which is in the left side of
S(x,y) in Euclid plane. Let M, be the set of all b-straight lines with slope aL.
Suppose M, is a foliation of X in this section. Let (so); is a function defined on
[0, L] which is given by (s0); = s1 where s = (s;);.7 is the unique b-straight line in
M, through sp. Let

where 0 < r < L. Obviously C,(r) = C,(+") if 0 <+ <r < L. We call C, = C,(L)
the convex part of caustic with slope alL.

LEMMA 3.1. Assume that M, is a foliation of X. Then, C, is a nonempty
convex set and all billiard ball trajectories x intersecting C, are with slopes o(x)
greater than or equal to aL if o(x) < L/2.

In the following proof it is important that the tangent line of C at c¢(so)
intersect T'(¢(so), c((s0);)) with an angle less than #/2, and that (sp), is monotone
and continuous in sp € [0, L) ([9]).

Proor. We will prove that C,(L) is not empty. Let aype[0,L) be the
number such that (ap); < L. Then, ¢((ao),) € Ca(ao), since (so); is monotone
increasing in sy € [0, L). Let yo € T(c(0),¢(0;)) be the nearest point from 0 in the
set of all points T(c(0),c(01))NT(c(s0),c((s0);)) for 0<sp<0;. Let
by =0_; + L, namely, (by); = L. The boundary 0C,(by) of C,(by) is a convex
curve which consists of T'(¢(0), ), a convex curve K from yy to a point wy in
T(c(bo),c(L)) and T(wo,c(L)). Let ue C be the point at which the oriented
tangent line to K with right derivative at yo intersects C and let dy be the
parameter such that 0; < dy < L and u = ¢(dp).

We have two cases; dy < by and dy > by. If dy < by, then there exists the
smallest parameter b; > by such that T(c(b1),c((b1);)) passes through yj.
More precisely, c¢((so);) is between c¢(by) and ¢(0) = c¢(L) for sy € [do,bo] and
T(c(50),¢((s0),)) intersects T(c(0),c(0;)) at a point between c(0) and y, for
o € [bo, b1]. Hence, it follows that yg € C,(b1). If do > by, then L < (s0); < (db),
for so € [bo, do), and, hence, yo is in the left side of T(c(so),c((s0);)). Therefore,
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there exists a parameter b; with b; > dy > by such that T(c(by),c((b1),)) passes
through yy. It follows that yy e C,(b;). The convex curve dC,(b;) consists of
a convex curve from yo to a point w; in the segment T'(c(b1),c((b1),)) and
T(wi,y0). Let U(b;) be the supporting line to C,(b;) through ¢(b;) which is not
the segment T'(c(b1),c((b1),)) and let p; be a point U(b;) N C,(by). Then, p; is in
the left side of S(c(b1),c((b1),)). If the supporting line U(b;) does not intersect
the segment 7'(c(0),c(0;)), then p; is in the left side of S(c(so),c((s0),)) for
any o € (b1, L], and, hence, p; € C,(L). If the supporting line U(b;) intersect
T(c(0),¢(01)) at a point y;, then we can find b, with b} < b, < L such that
T(c(s0),c((s0),)) intersects T(c(0), y;) for any so € [b1, b2]. Thus, p; is in the left
side of S(c(s0),c((s0),)) for any sp € [b1,b2], and, hence, p; € C,(by). By using
¢(by) and the supporting line U(b,) to C,(b,) through c(b,) instead of ¢(b;) and
U(b;), we find a point p, € C,(h,) such that p, € C,(L) or there exist a pa-
rameter b3 with by < b3 < L and y; € T(c(0),c(0;)) such that p, is in the left
side of S(c(so),c(s0);)) for any so € [by,b3] and T(c(so),c((s0),)) Iintersect
T(c(0),¢(01)) at some point between ¢(0) and y, on T(c(0),c(01)), and, hence,
p2 € Cy(b3). This is a process of making b < by < --- < b, < L and a sequence
of points py, pa, ..., ps in Cu(b,). Since py, pa, ..., py are in this order on C,(b,),
the sequence b; is a finite sequence. Thus, we have C, = C,(L) which is not
empty.

By construction of C,, we easily see that all billiard ball trajectories x
intersecting C, have slopes o(x) greater than or equal to «L if a(x) < L/2. [

The following lemma is obvious from the proof of Lemma 3.1.

LemMaA 3.2.  Assume that M, and M, are foliations of X with a < a' < L/2.
Then, C, <= C,.

4. Parallel Axiom and Periodic Trajectory

Let M, be the set of all points X € Q whose configuration is a b-straight line
in X with slope a(¥) =aL where 0 < a < 1. We also denoted the set of those
b-straight lines in X as M, for convenience. We say that M, satisfies the parallel
axiom if given two b-straight lines in M, are b-parallel to each other.

THEOREM 4.1. Let a = p/q be a rational number with 0 < a < 1. Assume that
M, is a totally ordered set and satisfies the parallel axiom. Then, all b-straight lines
in M, are with period (q,p).
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We need two lemmas to prove the theorem. Let u = (u);., be a periodic

b-straight line with period (g, p) and let s = (s;) be a b-segment. Let

o <j<ip+mgq
Js(i) = Sigiq — Uip+ig for any i e I[0,m] where I[a,b] is the set {a,a+1,...,b} of
integers. We say that I[a,b] is a maximal monotone interval for f; in I[0,m] if
f:(i) is a monotone sequence in i € I[a,b] and is not a monotone sequence in any
interval of integers containing I[a,b] as a proper subset.

LemMa 4.2. Let Ifay,b| and I[ay,b;] be maximal monotone intervals. If
I[ay,bi)NI[ay, by] contains at least three numbers, then s is a sub-b-segment of a
periodic b-geodesic with period (q, p).

Proor. Let Ifa;,bi|NI[as,by] 30 — 1,01,i1 + 1. Then, f(ij —1) = f,(i1) =
fi(i1 + 1), namely,
Siog+(i—1)g — Wig+(ir—1)g = Sip+irg — Uip+irq
= Sig+(i+1)g — Uig+(i1+1)g-

Since

Uigt(i—1)g T PL = Uiyrig = Uj1(i+1)g — PL,
we have

Sig+(in—1)g T PL = Sijting = Sig+(i+1)g — PLs
Hence, U(q, p)(Siy+(—1)q) = Sig+irq> U(4s P)(Siy+irg) = Sig+(iy+1)¢- This implies that s

is a sub-b-segment of a periodic h-geodesic with period (g, p). O

LemMa 4.3. Let Ilay,bil,...,I[ay,b,) be maximal monotone intervals with
ay < --- < ay and Iag,bp) N agy1,bx1] # & for k=1,...,n— 1. Then, n is less
than or equal to 2.

Proor. Suppose without loss of generality that f(i/) is monotone non-
increasing in i€ I[a;,b;], monotone nondecreasing in i€ I[ay,bs], monotone
nonincreasing in i € I{as, b3], and so on. Suppose n > 3. It follows from Lemma
4.2 that we find a,b € I[l,n — 1] such that a < b and

fila=1) = fila),  fila) < fila+1)

and

Ss(b=1) < £i(b),  fs(b) > fs(b+1),
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namely,

Sig+(a—1)g = Sip+aq - pL, Sip+ag < Sig+(a+1)g —prL
and

Sigt-(b—1)g < Sig+bg —PL,  Siytbg > Sig+(b+1)g - pL.

Let §=U(q,p)(s), namely, § =s_,+ pL for all jelliy+q,io+ (m+ 1)l
Then, we have

jz},+aq = Sip+(a—1)q + pL = Sigt+aq
Sivt-(a+1)g = Sig+aqg + PL < Sigr(ar1)g>
and
Sig+bg = Sig+(b-1)g T PL < Sig1q
Sivt-(b+1)g = Sig+bg + DL > i (b+1)g-

This implies that 7(5) crosses 7'(s) at least two times and one of their intersection
is not any endpoint of 7(5) and T'(s). It contradicts to Proposition 2.2, so we
have n < 2. O

PrOOF OF THEOREM 4.1.  Suppose s = (s;);.z in M, is not with period (g, p).

Let u = (u/)jela

(¢,p) and any b-straight line v = (v/)jeZ in M, with uy < vy <ty is not with

t= (lj)jez in M, such that uy < sy < to, u and ¢ are with period

period (¢, p) (see Proposition 2.3). Then, it follows that either lim; . |s; — u;j| =0
and lim;_._,|s; — ;| =0 or lim;j_,|s; — ;{ =0 and lim;_,|s; — u;| = 0. In fact,
if limj_.o|s; —u;| #0, for example, then §=lim,._.,U(q, p)"(s) is a periodic
b-straight line with period (g, p) which is between u and ¢, contradicting to the
choice of u and ¢t. We assume without loss of generality that the former case
occurs. Let s, = 5o + npL for each n and let 5" = (s7')_ ;< g
sp =so and s, =so+npL. Then, there exists a subsequence s of s" which

be a b-segment with

converges to a b-ray w= (w;),.,; from wo = so. It follows from the property of
the strip [T'(u), T(¢)] that either lim; . |w; —u;| =0 or lim;j_,[t; —w;| = 0.

If lim;_..|t; — w;| = 0, then it follows from Lemma 2.6 that w is a co-b-ray
from sy to ¢. Since s is the asymptote through sy to ¢, this contradicts that the
unique co-b-ray from sy to ¢ is a sub-b-ray of s (see Proposition 2.8). So we

assume that lim; . |u; —w;| = 0. Let f(i) = s} —uy for ieI]0,n]. Let I[0,a,]

q
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and I[b,,n] be maximal monotone intervals in I[0,n] for fu. It follows from
Lemma 4.3 that fu (i) is monotone nonincreasing in i€ I[0,a,] and mono-
tone nondecreasing in iel[b,,n], and, fu(b,) =0 as n— oo. Set §"=
U(-nq,—np)(s"). Then, 5§ = so and §”,, = so —npL. Let w’ be a b-ray which is a

limit of converging subsequence of §”. Then, w'

is a co-b-ray to —u, since
fin(by —n) — 0 as n — oo. However, this is impossible, since —s is the unique
co-b-ray to —u through sy where —u = (1;);_,. This contradiction comes from the

original assumption in the way of our proof. OJ

5. Examples

In this section we show some examples of foliations of X by b-straight lines
which satisfy the parallel axiom.

ExaMpPLE 5.1. Let a be an arbitrary irrational number with 0 <a < 1.
Suppose there exists a p-invariant closed curve f not null-homotopic in Q such that
a(X) =aL for all x€ f. Then, M, = [ and it satisfies the parallel axiom.

This example was stated in [9], although the parallel axiom was not proved.
We give a proof here.

Proor. We have only to prove that any b-ray s = (s;
a(s) = aL is a sub-b-ray of the unique b-straight line s" = (s});., passing through
i, = Si, iIn M,. In order to prove this we assume without loss of generality that
0<s, <L and sj . <spy1. Let ¢, peZ” with p/q>a. Let D(q,p)(t;) =

min D(q, p) with 0 <, < L and 7= ({;);., the minimal periodic b-straight line

)j=i, from s;, with slope

N

with period (¢, p). Then, the set {c(¢;)|j€Z} consists of ¢ points. Let uy <
up < -+ <ug—1 with0 <wu; < Lforany i=0,...,q— 1 be the parameters of such
points with respect to the boundary curve c¢. Let a number k be such that
up <85, < gy and let v = (vj)j 2 and v’ = (u/’

lines with period (g, p) and with v;, = uk, vj = uxy1. Since p/q > a, the b-ray

T(s) is under T'(v') and intersects 7'(v) just once. There exists a subsequence

) ez be minimal periodic b-straight

of v (resp., v') such that it converges to a b-straight line w= (w;);, 5 (resp.,

w' = (w/);.z) with slope aL as p/q — a. From the construction of w and w’ it
follows that s and s are in the strip [7'(w), T(w')], and |w] —w;| — 0 as j — 0.
In particular, we see that 5; — s_; — 0. Lemma 2.6 shows that s is a co-b-ray to s’,
contradicting to Proposition 2.8. O
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EXAMPLE 5.2. Let f be a g-invariant closed curve not null-homotopic in Q
with slope aL (0 < a < 1). Let g, and h, be sequences of closed curves not null-
homotopic in Q with slope o(g,) < aL and a(h,) > aL. If they converges to the
closed curve f, then M, satisfies the parallel axiom.

Proor. We first prove that M, = f. Suppose for indirect proof that
M, # f, namely, there exists a point X = (c(so),uo) € M, with X ¢ f. Then, there
exist b-straight lines v = (v;);.z and w= (w;);., with vy =wy =139 and slope
al. Assume without loss of generality that v; < w;. Let v" = (vj”)jGZ (resp.,
w = (an)jeZ) be the b-straight line corresponding to the unique point in g,
(resp., hy) with vg = so (resp., wy = o). Then, v <v; and w; <w/ for all j > 0.
This means that lim,_,,, v" # lim,_,,, w", contradicting to g¢,,n, — f as n — oo.

We will prove that M, satisfies the parallel axiom. As was seen in the above
M, gives a foliation of X. Let s = (s5;);., and ¢ = (;);.z be in M, with 59 < fo.
Let s and ¢ correspond to points X and y in Q, respectively. Let X, € &, (resp.,
¥, € gn) be such that the first coordinates of X, (resp., y,) and X (resp., y) are
equal. Let s = (/') (resp., 1" = (1]');.,) be configurations of X, (resp., y,,) with
5§ = so (resp., t§ = to). Then, s and ¢ are b-straight lines in X. Since o(s") > aL
(resp., a(t") < aL), we see that s intersects ¢ (resp., ¢ intersects s), and s” — s
(resp., t" — ) as n— oo. It follows from Lemma 2.7 that s and ¢ are b-
asymptotes to each other. The same argument is valid for the reversed b-straight
lines —x and —y. This completes the proof. O

ExXAMPLE 5.3. Suppose the slope function o in Q is continuous. Let a be a
number with 0 < a < 1. If a~'(aL) has no interior points, then, M, satisfies the
parallel axiom. In particular, M, satisfies the parallel axiom if a is an irrational
number.

PrOOF. Since the set K" (resp., N”) of all points X in Q with a(X) < aL —
1/n (resp., a(X) >aL+ 1/n) is a ¢p-invariant open set in Q, it follows from
Birkhoff’s theorem (see [10]) that the boundary 0K” (resp., N") is a g-invariant
closed curve g, (resp., /,) not null-homotopic in Q with slope o(g,) =aL —1/n
(resp., a(h,) =aL+1/n). Since o !'(al) has no interior points, we have
lim, .o g, = lim,_, h, =: f. Example 5.2 shows that M, = f and it satisfies the
parallel axiom. O

ExXAMPLE 5.4. Suppose there exists a pole xe€ C. Then, M, satisfies the
parallel axiom for any irrational number a with 0 < a < 1.
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ProOF. Let ¢, p e Z" with p/q < 1. Then, it follows from Lemma 2.11 that
there exists a foliation W of X whose b-straight lines are with slope pL/q. For
any irrational number ¢ with 0 < a < 1 we have the foliation of X with slope aL
as the limit set of W as p/q — a. Example 5.1 shows that M, satisfies the parallel
axiom. |

6. Proofs

Proor oF THEOREM 1.1. Let C,, be the sequence of convex sets as in Lemma
3.1 and let Cp ), be its limit set. Since Cy, is contained in every diameter of C,
the set Cr/, consists of only one point O. Thus C is a circle with center O.

O

Let x = (x;) ;7 be a billiard ball trajectory whose configuration is a b-straight

line s=(5;);cz. Let x~ =(x7);cz be its reversed billiard trajectory whose

configuration is a b-straight line s~ = (577);.z with 55 = s0. Then, it follows that

s; = jL+s_; for all je€Z. Therefore, we have that o(x™) =L — o(x).

Proor oF CoROLLARY 1.2. Since lim,_.., f, =lim,_, f, =: f, it follows
from a(f~) = L — a(f) and Example 5.2 that «(f) = L/2 and M, satisfies the
parallel axiom. Theorem 4.1, Proposition 2.5 and Theorem 1.1 prove Corollary

1.2. O

ProoF oF COROLLARY 1.3. Since the slope function « is continuous in Q and
«~1(L/2) has no interior points, we can find a sequence of closed curves in Q as
in the assumption of Corollary 1.2. O

PrOOF OF CoOrROLLARY 1.4. It follows from Lemma 2.11 that there exists
a sequence of g-invariant closed curves not null-homotopic in Q with slope
(n—2)L/2n. Theorem 1.1 proves Corollary 1.4. O
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