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Abstract. In this work, robust Bayesian analysis of the Bayesian estimation of an au-
toregressive model with exponential innovations is performed. Using a Bayesian robustness
methodology, we show that, using a suitable generalized quadratic loss, we obtain opti-
mal Bayesian estimators of the parameters corresponding to the smallest oscillation of the
posterior risks.

Résumé. Dans ce travail, nous considérons l’estimation Bayésienne du paramètre d’un
processus auto-régressif d’ordre un avec erreurs exponentielles. En utilisant une méthodologie
de robustesse Bayésienne appropriée et une fonction perte quadratique généralisée adéquate,
nous montrons qu’on peut construire un estimateur Bayésien robuste correspondant à la plus
petite oscillation du risque a posteriori..
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1. Introduction

Autoregressive models with exponential innovations attract interest in various papers as,
Davis and McCormick (1989) and Nielsen and Shephard (2003). These models are useful
for modelling a wide range of phenomena which do not allow for negative values as in
water quality analysis and hydrology modelling (see, for example, Gaver and Lewis (1980)).
Cox (1981) provides a wide ranging discussion of many developments of these models. Bell
and Smith (1986) studied estimating and testing problems on the first-order autoregressive
processes.
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The robustness aspect of the estimators of the autoregressive parameter is studied by many
authors. See, e.g., Kale and Sinha (1969) or Fellag and Ibazizen (2001). In Bayesian context,
Turkman (1990) studied inference in AR(1) models with nonnegative innovations based on
noninformative prior, showing that, for large samples, the Bayesian estimator is equivalent to
some modified maximum likelihood estimator (MLE). Ibazizen and Fellag (2003) considered
the same model using a more general prior distribution.

Our aim here is to perform a robust analysis of the Bayesian estimator of the nonnegative
autoregressive parameter using the oscillation of the posterior risks (PR). Many works re-
fer to the various approaches of Bayesian robustness in statistics. For reviews, see Berger
(1990) and Rios Insua and Ruggeri (2000). We consider Bayesian estimation of the fist-
order autoregressive parameter with exponential innovations, under basic and generalized
quadratic loss functions. Since the autoregressive parameter is in (0, 1) and the innovation
parameter is positive, the natural priors used in Baseline model will be beta distribution for
the autoregressive parameter and gamma for the innovations’s parameter. Using an exhaus-
tive Monte carlo study and the methodology provided by Mȩczarski and Zieliński (1991),
we study stability of Bayesian estimation of the two parameters. The paper is outlined as
follows : in the section 2, we present the model and problematic. Robustness analysis of
the Bayesian estimators is derived in Section 3 using basic and generalized quadratic loss
function. Section 4 presents the results stability of the Bayesian estimation using exhaustive
Monte carlo experiments. We end up with some discussion.

2. The model

Consider the first-order autoregressive process of the form

Xt = ρXt−1 + εt, t = . . . ,−1, 0, 1, ... (1)

where the εt’s are the innovations independently distributed according to an exponential
distribution of parameter θ denoted Ex(θ), i.e. with density

f(y) = θe−θyI(0,∞)(y), θ > 0

As in Turkman (1990), assume that 0 < ρ < 1 and X1 is distributed according to Ex((1−ρ)θ)
such that the process is mean stationary. Suppose that all we observe is a segment of the
process

X1, X2, ..., Xn n fixed (2)

The likelihood function based on the observations x = {x1, x2, ..., xn} is

p(x|ρ, θ) = (1− ρ)θne−θ(nx−ρS)IA(x),

where
A = {x : x1 > 0, xt − ρxt−1 ≥ 0, t = 2, ..., n}

and nx =
∑n
t=1 xt, S = nx − (xn − x1). Let us define the modified maximum likelihood

estimator (MLE) of ρ introduced by Andẽl (1988, 1989) as follows

ρ0 = min

(
1,
x2

x1
, ...,

xn
xn−1

)
. (3)
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Since ρ ∈ (0, 1) and xt − ρxt−1 ≥ 0 for all t = 2, ..., n, the parameter ρ lies in the interval
(0, ρ0). Turkman (1990) considered the following priors for ρ and θ

π0(ρ) ∝ 1

1− ρ
I(0,1)(ρ) ; π1(θ) ∝ 1

θ
I(0,∞)(θ). (4)

The posterior distributions of ρ and θ are then (see Turkman (1990))

p0(ρ|x) = K0
1

(nx̄− ρS)n
I(0,ρ0)(ρ) and p1(θ|x) = K?

0 θ
n−2e−θnx̄(eθρ0S − 1) I(0,∞)(θ)

with

K0 =
(n− 1)S (nx̄)n−1rn−1

1− rn−1
and K?

0 =
(nx̄)n−1rn−1

Γ(n− 1)(1− rn−1)
. (5)

Under the quadratic loss function, he derived the following Bayesian estimators of ρ and θ

ρ̂Q,0 =
ρ0

n− 2

(
n− 1

1− rn−1
− 1

1− r

)
and θ̂Q,0 =

n− 1

nx̄r

(
1− rn

1− rn−1

)
, (6)

where r = 1− ρ0(S/nx̄). Ibazizen and Fellag (2003) generalized this prior and obtained the
estimator of ρ, under the quadratic loss function.

In the following, we propose to study the sensitivity of the Bayesian estimation of the
autoregressive parameter to prior.

3. Bayesian robustness

In this section, we propose to investigate the properties of the Bayesian estimators using dif-
ferent priors. First of all, assume that π0(ρ) is a general prior of ρ. Using the noninformative
prior of θ given above, we obtain the following joint posterior density of (ρ, θ)

p(ρ, θ) ∝ (1− ρ) θn e−θ(nx̄−ρS) π0(ρ) π1(θ) I(0,ρ0)(ρ) I(0,∞)(θ)

3.1. Basic quadratic loss function

3.1.1. Bayesian stability for ρ

Assume that the prior of θ is

π1(θ) ∝ 1

θ
I(0,∞)(θ)

The posterior density of ρ is then as follows

p(ρ|x) ∝ (1− ρ) (nx̄− ρS)−nπ0(ρ) I(0,ρ0)(ρ)

Under the quadratic loss function the Bayesian estimator ρ̂Q and the corresponding posterior
risk PRQ are given by the posterior mean and variance respectively.

Suppose that the prior π0(ρ) is a beta distribution Beta(a0, b0) where a0 and b0 are fixed.
Then, after easy computations, we obtain the following posterior density of ρ

p(ρ|x) = K(a0, b0) ρa0−1 (1− ρ)b0 (nx̄− ρS)−n I(0,ρ0)(ρ) (7)
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where

K(a0, b0) =
a0 ρ0 F1[a0 + 1, n,−b0, a0 + 2, 1− r, ρ0]

(a0 + 1) F1[a0, n,−b0, a0 + 1, 1− r, ρ0]
. (8)

Notice that the notation F1[α, β1, β2, γ, x, y] means AppellF1[α, β1, β2, γ, x, y], the well
known Appell hypergeometric function of two variables x and y defined by the following
infinite serie

AppellF1[α, β1, β2, γ, x, y] =

∞∑
m=0

∞∑
n=0

[α]m+n[β1]m[β2]n
m!n![γ]m+n

xmyn

where [a]0 = 0, [a]m = a(a+ 1) . . . (a+m− 1), m ∈ N?. The integral representation of this
function is

AppellF1[α, β1, β2, γ, x, y] =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

uα−1(1− u)γ−α−1(1− ux)−β1(1− uy)−β2du

In order to simplify the notations, in all the following, we decide to write F1 instead of
AppellF1. The Bayesian estimator of ρ is given by

ρ̂(a0, b0) =
a0 ρ0 F1[a0 + 1, n,−b0, a0 + 2, 1− r, ρ0]

(a0 + 1) F1[a0, n,−b0, a0 + 1, 1− r, ρ0]
. (9)

In order to perform the stability Bayesian analysis on ρ, suppose that the prior is not exactly
specified. So, following the methodology of Mȩczarski and Zieliński (1991), we keep the value
b0 fixed and consider the parameter a1 ≤ a ≤ a2 instead of a0 with a1 and a2 fixed. Then,
we obtain the oscillation of the posterior risk of the Bayesian estimator of ρ denoted PR1(a)
when a varies from a1 until a2. We have

PR1(a) = E(ρ2|x)− 2ρ̂(a0, b0)E(ρ|x) + ρ̂(a0, b0)2 (10)

where

E(ρ|x) =
a ρ0 F1[a+ 1, n,−b0, a+ 2, 1− r, ρ0]

(a+ 1) F1[a, n,−b0, a+ 1, 1− r, ρ0]

E(ρ2|x) =
a ρ2

0 F1[a+ 2, n,−b0, a+ 3, 1− r, ρ0]

(a+ 2) F1[a, n,−b0, a+ 1, 1− r, ρ0]

and ρ̂(a0, b0) is the Bayesian estimator of ρ given above. Naturally, analytical expressions
of these formulas are not available. However, Using R software, we will perform all the
computations using R packages for AppellF1 function. The oscillation of the posterior risk
of the Bayesian estimator of ρ is then,

R1(0) = | max
a1≤a≤a2

PR1(a)− min
a1≤a≤a2

PR1(a)|. (11)

3.1.2. Bayesian stability for θ

Now, the prior of ρ is

π0(ρ) ∝ 1

1− ρ
I(0,1)(ρ)

Journal home page: www.jafristat.net



L. Larbi and H. Fellag, Afrika Statistika, Vol. 11(1), 2016, pages 955–964. Robust bayesian
analysis of an autoregressive model with exponential innovations. 959

and we suppose that the prior π1(θ) is a gamma distribution G(α0, β0) where α0 and β0

fixed. Then, after easy computations, we obtain the following posterior density of θ

p(θ|x) = C(α0, β0)
{
θα0+n−2e−θ(nx̄r+β0) − θα0+n−2e−θ(nx̄+β0)

}
I(0,+∞)(θ) (12)

with
1

C(α0, β0)
= Γ(α0 + n− 1)

{
1

(nx̄r + β0)α0+n−1
− 1

(nx̄+ β0)α0+n−1

}
. (13)

The Bayesian estimator of θ is then

θ̂(α0, β0) = C(α0, β0)Γ(α0 + n)

{
1

(nx̄r + β0)α0+n
− 1

(nx̄+ β0)α0+n

}
. (14)

As for ρ, following the methodology of Mȩczarski and Zieliński (1991), we keep the value β0

fixed and consider the parameter α1 ≤ α ≤ α2 instead of α0 with α1 and α2 fixed. Then, we
compute the oscillation of the posterior risk of the Bayesian estimator of θ denoted PR2θ(α)
when α varies from α1 until α2. We have

PR2(α) = E(θ2|x) − 2 θ̂(α0, β0) E(θ|x) + θ̂(α0, β0)2 (15)

where

E(θ|x) = C(α, β0)Γ(α+ n)

{
1

(nx̄r + β0)α+n
− 1

(nx̄+ β0)α+n

}
E(θ2|x) = C(α, β0)Γ(α+ n+ 1)

{
1

(nx̄r + β0)α+n+1
− 1

(nx̄+ β0)α+n+1

}
and θ̂(α0, β0) is the Bayesian estimator of θ given above. The oscillation of the posterior risk
of the Bayesian estimator of θ is then,

R2(0) = | max
α1≤α≤α2

PR2(α)− min
α1≤α≤α2

PR2(α)|. (16)

3.2. Generalized quadratic loss function

Now, consider generalized quadratic loss function of the form L(d, t) = tk(d− t)2 where d is
the Bayesian estimator, t is to be estimated and k ∈ N is the parameter of the generalized
loss function. Notice that, when k = 0, we obtain the basic quadratic loss function. Now,
the oscillation of the PR’s depends on k for both ρ and θ. Our aim is to check if there exist
values of k 6= 0 such that the oscillation is smaller than using basic quadratic loss function
(k = 0). In other words, we check if there are values of k which improve robustness properties
of the Bayesian estimators of ρ and θ. In the following, we give the formulas of the Bayesian
estimators and the corresponding PR’s the Bayesian estimators of ρ and θ respectively.

3.2.1. Bayesian stability for ρ

Using the Beta prior Beta(a0, b0) under generalized quadratic loss function, the Bayesian
estimator of ρ is given by the formula

ρ̂(a0, b0, k) =
E(ρk+1)

E(ρk)
=

(a0 + k) ρ0 F1[a0 + k + 1, n,−b0, a0 + k + 2, 1− r, ρ0]

(a0 + k + 1) F1[a0 + k, n,−b0, a0 + k + 1, 1− r, ρ0]
. (17)
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Following the methodology given above (***see 3.1.1), the PR is as follows

PR1(a, k) = E(ρk+2|x) − 2 ρ̂(a0, b0, k) E(ρk+1|x) + E(ρk|x) ρ̂(a0, b0)2 (18)

with

E(ρj |x) =
a ρj0 F1[a+ j, n,−b0, a+ j + 1, 1− r, ρ0]

(a+ j) F1[a, n,−b0, a+ 1, 1− r, ρ0]
for j = k, k + 1, k + 2

The oscillation of the posterior risk of the Bayesian estimator of ρ can be written as follows,

R1(k) = | max
α1≤α≤α2

PR1(α, k)− min
α1≤α≤α2

PR1(α, k)| (19)

where R1(0) corresponds to the oscillation obtained using basic quadratic loss function.

3.2.2. Bayesian stability for θ

Using the gamma prior G(α0, β0) under generalized quadratic loss function, the Bayesian
estimator of θ is given by the formula

θ̂(α0, β0, k) =
α0 + n+ k − 1

(nx̄r + β0)(nx̄+ β0)

(nx̄+ β0)α0+n+k − (nx̄r + β0)α0+n+k

(nx̄+ β0)α0+n+k−1 − (nx̄r + β0)α0+n+k−1
. (20)

Following the methodology given above, the PR of the Bayesian estimator of θ is

PR2(α, k) = E(θk+2|x) − 2 θ̂(α0, β0, k) E(θk+1|x) + E(θk|x) θ̂(α0, β0)2 (21)

with

E(θj |x) = C(α0, β0) Γ(α+n+j−1)

{
(nx̄+ β0)α+n+j−1 − (nx̄r + β0)α+n+j−1

(nx̄+ β0)α+n+j−1(nx̄r + β0)α+n+j−1

}
j = k, k+1, k+2

and C(α0, β0) given by the formula (13). The oscillation of the posterior risk of the Bayesian
estimator of θ can be written as follows,

R2(k) = | max
α1≤α≤α2

PR2(α, k)− min
α1≤α≤α2

PR2(α, k)| (22)

where R2(0) corresponds to the oscillation obtained using basic quadratic loss function.

4. Monte Carlo experiments

In this section, we consider three samples for n = 10, 30 and 50 for ρ = 0.6 and θ = 1.0. We
obtain the following values of ρ0, S, nx̄ and r for the three situations.

Now, let us study the stability of the Bayesian estimators of ρ and θ under the generalized
quadratic loss given above, when k varies. Our aim is to check if the oscillation can be
smaller when the loss is not the basic one (k 6= 0).
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n ρ0 S nx̄ r

10 0.6450434 26.77185 24.22747 0.2872139
30 0.6414586 64.23298 65.65518 0.3724364
50 0.6206054 126.7354 127.9633 0.3853501

Table 1. Values of ρ0, S, nx̄ and r for n = 10, 0, 50

n
k 10 30 50

0 1.49578 1.49981 1.49994
1 1.49907 1.49988 1.49996
2 1.49976 1.49993 1.49998
3 1.49993 1.49996 1.49999
4 1.49998 1.49998 1.49999
5 1.49999 1.49999 1.50000
8 1.50000 1.50000 1.50000
10 1.50000 1.50000 1.50000

Table 2. Variation of the oscillation of the PR’s for ρ and n = 10, 30, 50 when k varies

4.1. Bayesian stability for ρ

Suppose that a0 = 1.0 and b0 = 1.0. Notice that this corresponds to uniform prior on (0, 1)
for ρ. The Bayesian estimates of ρ for n = 10, 30 and 50 are 0.64504, 0.6414 and 0.6206
respectively. The Table 2 presents the oscillation of the PR’s when 0.5 ≤ a ≤ 1.5 and b0 = 1.0
fixed, for different values of k.
Notice that the oscillation does not change significatively with k. then, one can say that
generalized quadratic don’t improve the stability of the Bayesian estimation of ρ. Now, let
us check if is the same for the parameter θ.

4.2. Bayesian stability for θ

In this case, assume that α0 = 1.0 and β0 = 1.0 corresponding to the standard prior for the
parameter θ. The Bayesian estimates of θ for n = 10, 30 and 50 are 0.87946, 1.17867 and
0.993825 respectively. The Table 3 presents the oscillation of the PR’s when 0.5 ≤ α ≤ 1.5
and β0 = 1.0 fixed, for different values of k.

Here, the situation is different since, the oscillation decreases until a value of k and then
grows (see Figure1). In our example, the value of k where the oscillation is minimal is equal
to 9, 10 for n = 10, 30 respectively. However, for n = 50, the value of the minimal oscillation
is achieved for k = 21 as showed in the following table.

Thus, one can say that, using generalized quadratic loss, we can improve the robustness of
the Bayesian estimators of ρ and θ. Also, using this methodology one can provides a suitable
value of k such that the stability of the Bayesian estimation becomes optimal.
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n
k 10 30 50

0 1.42653 1.45446 1.48044
1 1.43215 1.44543 1.48037
2 1.43138 1.43247 1.47991
3 1.42456 1.41377 1.47903
4 1.41043 1.3865 1.4777
5 1.38578 1.34616 1.47585
6 1.34430 1.28542 1.47335
7 1.27407 1.19229 1.47008
8 1.15228 1.04664 1.4658
9 1.00000 1.0000 1.46023
10 1.59357 1.0000 1.45297

Table 3. Variation of the oscillation of the PR’s for θ and n = 10, 30, 50 when k varies

k R2(k)

11 1.4434
12 1.4308
13 1.4141
14 1.391
15 1.3610
16 1.3190
17 1.2608
18 1.1791
19 1.0631
20 1.0
21 1.0
22 1.2602

Table 4. Variation of the oscillations of the PR’s when n = 50 and k = 11, 12, . . . , 22
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5. Conclusion

In this work, robustness of the Bayesian estimation of the autoregressive models with expo-
nential innovations is studied in terms of stability of the oscillation of the posterior risks.
Using the well known robustness methodology of Mȩczarski and Zieliński (1991), we proved
that, under generalized quadratic loss function, we can construct an optimal and robust
Bayesian estimator of the parameters corresponding to the smallest oscillation of the pos-
terior risks. This makes the derived Bayesian estimators robust in terms of sensitivity to
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Fig. 1. Variation of the oscillation of the PR’s with k for θ when n = 10, 30, 50

priors. To improve this work, one can study the performance of theses estimators under, for
example, mixture classes of priors.
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Andẽl, J., 1988. On AR(1) processes with exponential white noise, Comm.statist., A Theory
and methods, 17(5), 1481-1495.
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