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GEOMETRIC PROPERTIES OF THE LUPAŞ q-TRANSFORM
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Abstract. The Lupaş q-transform emerges in the study of the limit q-Lupaş
operator. This transform is closely connected to the theory of positive linear
operators of approximation theory, the q-boson operator calculus, the methods
of summation of divergent series, and other areas.

Given q ∈ (0, 1), f ∈ C[0, 1], the Lupaş q-transform of f is defined by:

(Λqf)(z) :=
1

(−z; q)∞
·
∞∑

k=0

f(1− qk)qk(k−1)/2

(q; q)k
zk,

where

(a; q)k :=
k−1∏
j=0

(
1− aqj

)
, (a; q)∞ :=

∞∏
j=0

(
1− aqj

)
, k ∈ N0, a ∈ C.

The analytical and approximation properties of Λq have already been exam-
ined. In this paper, some properties of the Lupaş q-transform related to con-
tinuous linear operators in normed linear spaces are investigated.

1. Introduction

The Lupaş q-transform emerges in the study of the limit q-Lupaş operator. The
latter comes out naturally as a limit for a sequence of the Lupaş q-analogues of
the Bernstein operator (cf. [8] and [11]). The various properties of this operator
have been discussed in [1], [9], and [16].
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Definition 1.1. Given q ∈ (0, 1), f ∈ C[0, 1], the q-Lupaş transform of f is
defined by:

(Λqf)(z) :=
1

(−z; q)∞
·
∞∑

k=0

f(1− qk)qk(k−1)/2

(q; q)k

zk,

where

(a; q)k :=
k−1∏
j=0

(
1− aqj

)
, (a; q)∞ :=

∞∏
j=0

(
1− aqj

)
, k ∈ N0, a ∈ C.

As it turns out, the Lupaş q-transform is closely connected to various subjects,
including the theory of positive operators, q-deformed probability distributions,
the q-boson operator calculus, the methods of summation of divergent series, and
the theory of analytic functions. See [4], [5], [10], and [12].

In general, Λqf is a meromorphic function, whose simple poles are contained
in the set Jq := {−q−j}∞j=0. The function (−z; q)∞ is an entire function, Taylor’s
expansion of which is given by Euler’s identity (cf., e.g. [2], Ch.10, §10.2):

∀z ∈ C ∀|q| < 1 (−z; q)∞ =
∞∑

k=0

qk(k−1)/2

(q; q)k

zk. (1.1)

It implies immediately that Λq(1[0,1]) = 1[0,∞) for the indicator functions, and
that

|Λqf(x)| ≤ ‖f‖C[0,1] for all x ≥ 0.

Therefore, Λq can be viewed as a positive linear operator C[0, 1] → CB[0,∞),
where by CB[0,∞) we denote the space of bounded continuous functions on [0,∞)
equipped with the norm ||f || = supx∈[0,∞) |f(x)|. In this context, Λq is a positive
bounded linear operator with ‖Λq‖ = 1.

Some of the analytical and approximation properties of Λq have been examined
in [12] and [16]. In distinction, the present work is focused on the geometric
properties of the Lupaş q-transform.

The following terminology is adopted in the text. The word operator is used
for a continuous linear operator between normed linear spaces. An operator
T : X → Y is called an isomorphic embedding if there exists a constant m > 0
such that ||Tx|| ≥ m||x|| for each x ∈ X. The range of an operator T : X → Y
is the set {y ∈ Y : ∃x ∈ X Tx = y}. The space of all bounded sequences of real
numbers with the supremum modulus norm is denoted by `∞, while the subspace
of the convergent sequences is denoted by c and the subspace of those sequences
converging to 0 is denoted by c0. The other related terminology can be found in
[7] or [14].

2. The geometric properties of the Lupaş q-transform

Our first goal is to prove the following theorem showing that there is a subspace
L of C[0, 1] isomorphic to c, such that the restriction of Λq on L is an isomorphic
embedding.
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Theorem 2.1. Let L be the subspace of C[0, 1] consisting of functions, which are
linear on the intervals [1 − qk−1, 1 − qk] for k ∈ N. If q ∈ (0, 1) is sufficiently
close to 0, then the restriction of the Lupaş q-transform Λq : C[0, 1] → CB[0,∞)
to L is an isomorphic embedding.

Proof. It is easy to see that the map T : L → c given by Tf = {f(1− qk)}∞k=0 is
an isomorphism.

Since the functions in L satisfying the conditions f(1− qn) = 1 for some n ∈ N
and |f(1 − qk)| ≤ 1 for all k ∈ N are dense in the unit sphere of L, it suffices
to show that, for q sufficiently close to 0, there exists mq > 0 such that for each
sequence {f(1− qk)} satisfying f(1− qn) = 1 and |f(1− qk)| ≤ 1 for all k ∈ N,
there holds:

||Λq(f)||CB [0,∞) ≥ mq.

By virtue of Euler’s identity (1.1), to achieve this goal it suffices, for each
number n ∈ N to pick a real number xn ∈ [0,∞) in such a way that:

qn(n−1)/2

(q; q)n

xn
n −

∑
k 6=n

qk(k−1)/2

(q; q)k

xk
n ≥ mq

∞∑
k=0

qk(k−1)/2

(q; q)k

xk
n,

or, equivalently,

(1−mq)
qn(n−1)/2

(q; q)n

xn
n ≥ (1 + mq)

∑
k 6=n

qk(k−1)/2

(q; q)k

xk
n. (2.1)

Indeed, in this case, for any f satisfying f(1− qn) = 1 and |f(1− qk)| ≤ 1 for
all k ∈ N, one has:

||Λq(f)||CB [0,∞) ≥ |(Λd(f))(xn)|

=

∣∣∣∣∣ 1

(−xn; q)∞

∞∑
k=0

f(1− qk) qk(k−1)/2

(q; q)k

xk
n

∣∣∣∣∣
≥ 1

(−xn; q)∞

(
qn(n−1)/2

(q; q)n

xn
n −

∑
k 6=n

qk(k−1)/2

(q; q)k

xk
n

)
(2)

≥ 1

(−xn; q)∞

(
mq

∞∑
k=0

qk(k−1)/2

(q; q)k

xk
n

)
= mq.

To satisfy (2.1), xn has to be chosen in a suitable way. When xn = q−n+ 1
2 , the

left-hand side of (2.1) becomes:

(1−mq)
qn(n−1)/2

(q; q)n

qn(−n+ 1
2
) =

(1−mq)q
−n2

2

(q; q)n

.

Meanwhile, the right-hand side is:
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(1 + mq)
∑
k 6=n

qk(k−1)/2

(q; q)k

(q−n+ 1
2 )k = q−

n2

2 (1 + mq)
∑
k 6=n

1

(q; q)k

q
1
2
(k−n)2

≤ q−
n2

2 (1 + mq)
∑
k 6=n

1

(q; q)k

q
1
2
|k−n|

≤ q−
n2

2 (1 + mq)
2
√

q

(q; q)∞(1−√
q)

.

The desired inequality would follow from:

1−mq

(q; q)n

≥ (1 + mq)
2
√

q

(q; q)∞(1−√
q)

. (2.2)

It is clear that picking q > 0 small enough to yield (q; q)∞ >
2
√

q

(1−√q)
and, then,

taking mq sufficiently close to 0, it can be achieved that inequality (2.2) is satisfied
for all n ∈ N. �

Remark 2.2. The restriction of Λq to any subspace of C[0, 1] which does not
contain a subspace isomorphic to c0 is strictly singular, and as such, is not an
isomorphic embedding. To see this, observe that Λq factors through L, which
itself is isomorphic to c0. Applying the well-known results on the Banach space
geometry (see [7, Ch. 2] or [14]), we derive the statement as in the previous
sentence.

Combining Remark 2.2 with the classical Banach-Mazur theorem [3, Ch. XI,
§8] on the universality of C[0, 1], it is concluded that there are many different
subspaces of C[0, 1] on which the operator Λq is not an isomorphic embedding.

The following simple property of the Lupaş q-transform related to the regular
method of summation holds.

Lemma 2.3. The following equality is valid:

lim
x→+∞

Λqf(x) = f(1).

Proof. Let f(1− qk) = f(1) + ak, where {ak} → 0 and |ak| ≤ M, M > 0. Given
ε > 0, choose N = N(ε) ∈ N so that |ak| < ε for all k ≥ N. Further, select x0 > 0
in such a way that:

1

(−x; q)∞
·

N(ε)∑
k=0

qk(k−1)/2

(q; q)k

xk <
ε

M

for all x > x0. Then, for all x > x0, one has:

|Λqf(x)− f(1)| ≤ M

(−x; q)∞
·

N∑
k=0

qk(k−1)/2

(q; q)k

xk +
ε

(−x; q)∞
·

∞∑
k=N+1

qk(k−1)/2

(q; q)k

xk < 2ε.

�

Let us denote by CL[0,∞) the subspace of CB[0,∞) having a finite limit at
∞. By Lemma 2.3, the image Λq(C[0, 1]) is contained in CL[0,∞). It is easy to
observe that the space CL[0,∞) is separable.
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Corollary 2.4. If q is sufficiently close to 0, the range of Λq is a closed comple-
mented subspace of CL[0,∞). There exists an operator Θq : CL[0,∞) → C[0, 1],
such that the composition ΘqΛq is the identity operator on L.

Proof. The point that the range of Λq is closed follows from the general fact:
the image of a Banach space under an isomorphic embedding is closed. The
range of Λq is complemented because it is, in essence, the range of an isomorphic
embedding of c, which is isomorphic to c0 and, by the Sobczyk theorem [15] -
see also [7, p. 106] and [13] - the range of an isomorphic embedding of c0 in a
separable Banach space is always complemented. Let Pq be a continuous linear
projection of CL[0,∞) onto Λq(L). We define Θq as the composition Λ−1

q Pq, where

Λ−1
q : Λq(L) → L is the inverse defined in a natural way on the range of Λq. �

For the sequel, the following lemmas are needed.

Lemma 2.5. For each ε > 0 and M > 0, there exists n ∈ N, such that if
||f ||C[0,1] ≤ 1 and f(1 − qk) = 0 for k = 0, . . . , n, then |(Λqf)(x)| < ε for
x ∈ [0, M ].

Proof. Indeed, since 1
(−x;q)∞

≤ 1 on [0, +∞), it follows for all x ∈ [0, M ] that:

|Λqf(x)| ≤ 1

(q; q)∞

∞∑
k=n+1

qk(k−1)/2Mk < ε

for sufficiently large n’s as the series converges for all M . �

Lemma 2.6. Given n ∈ N, consider the set of functions An = {f ∈ C[0, 1] :
||f || = 1 and f(1 − qk) = 0 for k = 0, . . . , n}. Then, for any α > 0 and any

n ∈ N, there exists a function f̃ ∈ An such that ||Λqf̃ || ≥ α and f̃(1 − qk) = 0
also for sufficiently large k.

Proof. Opt for any α ∈ (0, 1). As it has already been mentioned, the transform
Λq maps 1[0,1] to 1[0,∞). Combining this fact with Lemma 2.5, one can conclude
that any function f satisfying

f(1− qk) =

{
0 if k = 0, . . . , n

1 if k > n

also fulfills (Λqf)(x) → 1 as x → +∞, whence there is x0 ∈ (0,∞) such that
(Λqf)(x0) > α. Now, note that there exists N ∈ N such that

1

(−x0, q)∞

N∑
k=m+1

qk(k−1)/2

(q; q)k

xk
0 > α.

The function f̃ ∈ C[0, 1] given by

f̃(1− qk) =

{
0 if k = 0, . . . ,m; N + 1, N + 2, . . .

1 if k = m + 1, . . . , N

has the desired properties. �
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Finally, the following assertion can be reached.

Theorem 2.7. If q is sufficiently close to 0, the range of Λq is a closed, uncom-
plemented subspace of CB[0,∞).

Proof. This proof is based on another theorem of Sobczyk [15]: c0 is uncomple-
mented in `∞. Here, we consider c0 as a subspace of `∞ which is embedded in a
natural way. It is worth mentioning that a much stronger result than this theo-
rem of Sobczyk is known: Lindenstrauss [6] (see also [7, Theorem 2.a.7]) proved
that each infinite-dimensional complemented subspace of `∞ is isomorphic to `∞;
hence it cannot be separable and, for this reason, cannot be isomorphic to c0

either.

In what proceeds, Sobczyk’s theorem is used as follows. Construct a sequence
of norm-one functions {fn}∞n=1 in L and a sequence {[an, bn]}∞n=1, an < bn, of
disjoint intervals in [0,∞) in a way that, for some α > 0, the conditions below
hold:

(1) ||Λq(fn)|| ≥ α.
(2) ||Λq(fn) − gn|| ≤ α

2n , where {gn} is a sequence of functions in CB[0,∞)
with supp(gn) ⊂ [an, bn].

(3) limn→∞ an = limn→∞ bn = ∞.

The well-known perturbation argument (see, for example, [7, p. 6]) implies
the existence of a continuous automorphism A : CB[0,∞) → CB[0,∞) satisfying
A(Λq(fn)) = gn.

Now, consider the subspace N ⊂ CB[0,∞) consisting of all the bounded func-
tions which on [an, bn] coincide with a multiple of gn, and are equal to 0 on the
complement of ∪∞n=1[an, bn]. Also, let D be the closed linear span of the func-
tions {gn}∞n=1. It is clear that N is isometric to `∞ while D is isometric to c0.
Furthermore, the diagram

D
ID−−−→ c0y y

N
IN−−−→ `∞

commutes, where ID and IN are the above-mentioned isometries, and vertical
arrows correspond to canonical embeddings. Therefore, D is uncomplemented in
N , and, consequently, D is uncomplemented in CB[0,∞). On the other hand,
D is complemented in Λq(L) by the first theorem of Sobczyk, which claims that
a subspace isomorphic to c0 is complemented in any separable Banach space.
Therefore Λq(L) is uncomplemented in CB[0,∞). �
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