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ABSTRACT. To a generalized tight continuous frame in a Hilbert space H,
indexed by a locally compact space ¥ endowed with a Radon measure, one
associates a coorbit theory converting spaces of functions on ¥ in spaces of
vectors comparable with H . If the continuous frame is provided by the action
of a suitable family of bounded operators on a fixed window, a symbolic calculus
emerges, assigning operators in H to functions on . We give some criteria of
relative compactness for sets and for families of compact operators, involving
tightness properties in terms of objects canonically associated to the frame.
Particular attention is dedicated to a magnetic version of the pseudodifferential
calculus.

1. INTRODUCTION

The main goal of this article is to provide compactness criteria for bounded
subsets €2 of some Banach spaces ) in terms of generalized continuous frames [,
, 23, 18]. Tt will be convenient in this Introduction to refer to the framework of
[18], less general than that of [10, 23], but having a richer mathematical structure.
In [18] the framework is built on a family {7(s)|s € £} of bounded operators
acting in a Hilbert space ‘H indexed by the points of a locally compact space X
endowed with a Radon measure p. Under certain convenient axioms (the square
integrability condition (2.2) is basic), one introduces and studies a map ¢™ from
H x H into L*(X), and a symbolic calculus f +— II(f) sending functions on X
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into operators on H (in the spirit of a pseudodifferential theory). Formally the
definitions are

[0 (u,v)](s) := (m(s)u,v), wveEH, s€EX
and

(f) = / dp(s)f(s)n(s) . f e L3(D).

but with suitable interpretations (using Gelfand triples for instance) they can be
pushed to much more general situations.

If ¥ is a locally compact group and 7 : ¥ — B(H) is a (maybe projective)
unitary, strongly continuous (maybe irreducible) representation, the framework
is standard [3]. The function ¢” is called the representation coefficient map and
IT is the integrated form of this representation.

However, in many physically or/and mathematically motivated situations ¥ is
not a group. Even when it is, 7 is not a projective representation; the operators
m(s)7(t) might not be connected to 7(st) (when the later exists) in some simple
way. The need of a formalism covering non-group-like situations motivated the
approach in [18], to which we refer for more technical details, for constructions of
involutive algebras and of coorbit spaces of vectors and symbols and for relevant
examples. Actually coorbit spaces of vectors have been previously defined in
[10, 23] starting with a continuous frame W := {w(s)|s € ¥} C 'H, following the
fundamental approach of [3]. These references, besides a deep investigation, also
contain many examples and motivational issues to which we send the interested
reader. In such a generality, however, the symbolic calculus II and the connected
developments of [18] are not available.

To get the situation treated in [18] one sets essentially w(s) := m(s)*w for some
fixed nomalised vector (window) of H . It is fruitful to consider the partial coeffi-
cient map u +— @I (u) := ¢™(u, w) for fixed w and clearly this can be generalized
to an isometry

H D u— dw(u) = (u,w(-)) € L*(X)
for continuous frames which are not defined by families of operators. The neces-
sary notions from [10, 18, 23] are briefly reviewed in section 2.

Let us come back to compactness issues. Let us fix an infinite dimensional
Banach space ) and a bounded subset €2 of ). We assume that ) is somehow
defined in the setting (H, X, m, ¢™,11). Typically it will be one of the coorbit
spaces of vectors constructed in terms of the frame; the Hilbert space H itself
is a particular but important example. To be relatively compact ) needs extra
properties beyond boundedness, and it is natural to search for such properties in
terms of the maps 7, ¢™ or II. The following definition (inspired by [7]) will be
convenient.

Definition 1.1. Assume that the Banach space ) is endowed with a structure
of Banach left module over a normed algebra A, meaning that a left module
structure AxY 3 (a,y) — a-y € Y is given and the relation || a-y ||y <|la|la ]y |y
is satisfied for every a € Aand y € Y. Let A° C A; we say that the bounded set
I' C Vis A%tight if for every € > 0 there exists a € A° with sup,er lla-y—ylly < e.
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In various situations, depending on the meaning of - and |||y, tightness could
have a specific interpretation (equicontinuity, uniform concentration, etc). Note
that ) is naturally a Banach left module over B())), the Banach algebra of all
bounded lineal operators in ), so very often we choose A’ C B(Y).

Most of our results will involve characterization of relative compactness of
Q) in terms of its tightness with respect to a (finite) family of Banach module
structures {A; x ¥ +— V}jc; and corresponding subsets {A) C A;}jes. An
occuring generalization is to use for characterization the tightness of the image
Q' :=(Q) of Q into another Banach left module.

For illustration, let us reproduce here a slightly simplified version of Theorem
4.1. We ask the map 7*(-) := 7(-)* : ¥ — B(H) to be strongly continuous, to
satisfy 7%(s;) = 1 for some s; € ¥ and to verify condition (2.2). Note that
C.(X) is contained in the C*-algebra Cy(3) of complex continuous functions on
Y vanishing at infinity, which acts on L?*(3) by pointwise multiplication.

Theorem 1.2. A bounded subset Q2 of H is relatively compact if and only if any
one of the next equivalent conditions holds:
(1) For some (every) w € H the family ¢T () is C.(X)-tight in L*(3) .
(2) The set Q is I1[C.(X)]-tight ; we use the Banach module B(H) x H — H .
(3) One has lim sup || 7*(s)u — 7*(so)u|| =0 for every sop € .
§50 ueQ

Two possible generalizations can be taken into account: (a) replace W :=
{m(s)*w|s € X} by a general continuous frame and (b) replace H by a coorbit
space. Both these generalizations are considered in section 3, but only involving
the characterization 1 of relative compactness of €2 in terms of tightness of the
set ¢ (£2) . One obtains an extension of the main result of [5], which required %
to be a locally compact group and w(s) = m(s)*w for some irreducible integrable
unitary representation 7 : X — B(H). Although substantially more general, our
result allows almost the same proof as in [5]; we include this proof for convenience
and because some technical details are different.

In fact the characterizations 2 and 3, suitably modified, would also be avail-
able in coorbit spaces. However this would need many preparations from the
paper [18] (submitted for publication) and would involve some implicit assump-
tions requiring a lot of exemplifications. Therefore, at least for the moment, we
decided to include compactness characterization in terms of 7w and II only for the
important case of Hilbert spaces.

We are also interested in families of compact operators. Two Banach spaces X
and ) being given, the problem of deciding when a set £ of compact operators
: X — Y is relatively compact in the operator norm topology is already a classical
one; for more details and motivations cf. [I, 11, 20, 21, 21] and references therein.
Clearly, compactness results for subsets of ) (as those given in sections 3 and 4)
are crucial, but extra refinements are needed: For J# to be a relatively compact
set of compact operators, it is necessary but not sufficient that {Sz ||| z ||+ <
1,5 € '} be relatively compact in ); this even happens in Hilbert spaces. We
discuss this problem in section 5; of course, if £ := {S} is a singleton, one gets
easily criteria for the operator S to be compact.
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In a final Section we treat what we think to be an important example, the
magnetic Weyl calculus [18, 16], which describes the quantization of a particle
moving in R™ under the action of a variable magnetic field B (a closed 2-form
on R™). It is a physically motivated extension of the usual pseudodifferential
theory in Weyl form, which can be recovered for B = 0. One reason for in-
cluding this here is that it definitely stays outside the realm of projective group
representations and the results on compactness existing in the literature do not
apply. But it is a rather simple particular case of the formalism developed in [15]
and the compactness criteria of the present paper work very well. We decided to
present only the Hilbert space theory, having in view certain applications to the
spectral theory of magnetic quantum Hamiltonians that will hopefully addressed
in the future. A second reason to treat the magnetic Weyl calculus here is that
it presents extra mathematical structure which has important physical implica-
tions and which also enlarges the realm of compactness criteria. If the magnetic
field is zero, part of our Theorem 6.2 reproduces the classical Riesz—Kolmogorov
Theorem (cf. [5, 7, 12, 15] for useful discussions). Extensions of this classical
result can be found in [25, 12] and especially in [7]; since these references use
essentially the group-theoretic framework, they cannot be applied to our section
6. It would be interesting to generalize the double module formalism of [7] to
cover at least the magnetic Weyl calculus and its generalization to nilpotent Lie

groups [22, 2, 3.

2. COORBIT SPACES AND QUANTIZATION RULES
ASSOCIATED TO CONTINUOUS FRAMES

We start with some notations and conventions:

We denote by H the conjugate of the (complex separable) Hilbert space H ; it
coincides with H as an additive group but it is endowed with the scalar multipli-
cation « - u := @u and the scalar product (u,v)’ := (u,v). If u,v € H the rank
one operator A, , = (-, v){ul is given by A\, ,(w) := (w,v)u .

Let ¥ be a Hausdorff locally compact and o-compact space endowed with a
fixed Radon measure p. By C(X) one denotes the space of all continuous func-
tions on ¥, containing the C*-algebra BC(X) composed of bounded continuous
functions. The closure in BC(X) of the space C.(X) of continuous compactly sup-
ported complex functions on ¥ is the C*-algebra Cy(X) of continuous functions
vanishing at infinity. The Lebesgue space L*(X;u) = L?(3) will also be used,
with scalar product (u,v) 2y =: (u,v)(x) -

For Banach spaces X',) we set B(X,)) for the space of linear continuous op-
erators from X to ) and use the abbreviation B(&X') := B(X, X'). The particular
case X' := B(X,C) refers to the topological dual of X'. By K(X,)) we denote
the compact operators from X to ). If H is a Hilbert space, Bo(H) is the two-
sided *-ideal of all Hilbert-Schmidt operators in B(H) ; it is a Hilbert space with
the scalar product (S, T)p, (1) := Tr(ST*).

We recall now the concept of tight continuous frame and the construction of
coorbit spaces, slightly modifying the approach of [10, 23]. Let us fix a family
W = {w(s)|s € ¥} C H that is a tight continuous frame; the constant of the
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frame is assumed to be 1 by normalizing the measure ;. This means that the
map s — w(s) is assumed weakly continuous and for every u,v € H one has

(1.0) = | din(s) ) w(s).0).
Clearly W is total in ‘H and defines an isometric operator
dw H — LX), [ow(u)](s) = (u,w(s))
with adjoint ¢}, : L*(X) — H given (in weak sense) by

o (f) = / dyu(s) f(s)w(s)

The (Gramian) kernel associated to the frame is the function py : ¥ x ¥ — C
given by

pw(s,t) := (w(t), w(s)) = [¢w(w(t))] () = [pw (w(s))] (1), (2.1)

defining a self-adjoint integral operator Py = JInt(py) in L*(X). One checks
easily that Py = gbwgbLV is the final projection of the isometry ¢w, so Py [L?(2)]
is a closed subspace of L?(X). Since gﬂ,vcﬁw =1, one has the inversion formula

5= / dpu(t) [ ()] (8) w(2)

leading to the reproducing formula ¢y (u) = Pw [pw(u)], i.e.

o]} () = [ du) ), w(s) [ow (] (1)
Thus Py (X) := Py [L*(X)] is a reproducing space with reproducing kernel pyy;
it is composed of continuous functions on .

To extend the setting above beyond the L2-theory, one can supply an extra
space of “test vectors”, denoted by G, assumed to be a Fréchet space continuously
and densely embedded in H. Applying the Riesz isomorphism we are led to a
Gelfand triple (G, H,G.). The index o refers to the fact that on the topological
dual G’ we consider usually the weak-* topology. In certain circumstances one
takes G to be a Banach space and sometimes it can even be fabricated from the
frame W and from some extra ingredients, as in Remark 2.1 below. But very
often (think of the Schwartz space) the auxiliar space G is only Fréchet.

We shall suppose that the family W is contained and total in G and that ¥ >
s — w(s) € G is a weakly continuous function. Then we extend ¢y to G’ by
[ow ()] (s) := (u,w(s)), where the r.h.s. denotes now the number obtained by
applying u € G’ to w(s) € G and depends continuously on s. By the totality of
the family W in G, this extension is injective. In addition, &y : G' — C(X) is
continuous if one considers on G’ the weak-* topology and on C'(3) the topology
of pointwise convergence.

As in [8, 10, 23] and many other references treating coorbit spaces, one uses
ow (+) to pull back subspaces of functions on ¥. So let (M, ||-||s) be a normed
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space of functions on ¥ (more assumptions on M will be imposed when necessary)
and set

cow (M) = co(M) := {u € G’ gw (u) € M}, [t ]lcopr) = | dw () a1 -
Recalling the totality of the family W in G, one gets a normed space

(co(M), |- leotrn))

and ¢y : co(M) — M is an isometry. Without extra assumptions, even when M
is a Banach space, co(M) might not be complete, so we define co(M) to be the
completion. The canonical (isometric) extension of ¢y to a map : co(M) — M
will also be denoted by ¢ . If the norm topology of co(M) happens to be
stronger than the weak-* topology on G’ then canonically co(M) — G’ .

Remark 2.1. Following the approach of [3, 10, 23], we indicate now a possible
choice for G adapted to a given frame W in H. Let us consider a continuous
admissible weight « @ ¥ x ¥ — [1,00) which is bounded along the diagonal
(a(s,s) < C < oo for all s € X)), symmetric (as,t) = a(t,s) for all s;t € )
and satisfies a(s,t) < a(s,r)a(r,t) for all r;s,t € ¥. Tt is easy to see that

oy ={K : ¥ x ¥ — C measurable | || K|, < oo}

is a Banach *-algebra of kernels with the norm

K o= max{esssup/Edu(t)|(04K)(Sat)|7eSSSHp/Z du(8)|(04K)(8,t)|}-

SEX tex

Picking some (inessential) point r € ¥ one defines the weight a = a, : ¥ — [1, 00)
by a(s) := a(s,r). We require that the kernel py, given by (2.1) be an element of
4, ; Then it follows that Py defines a bounded operator in the weighted Lebesgue
space LL(X). Then set G = G,w = {v € H | ¢pw(v) € LL(X)} with the obvious
norm

10]Gaw:= [ ow (0) | i) Z/ZdM(S) a(s) [ [pw ()] (s)] -

The space G, w is a Banach space continuously and densely embedded in H .
In this framework, coorbit spaces were defined and thoroughly investigated in
[10, 23]; if M is a Banach space then co(M) is automatically complete. The
dependence of these coorbit spaces on the frame W is also studied in [10, 23]; we
are going to assume that the frame W is fixed.

Following [18], we reconsider a particular case of the formalism described above.
This particular case has extra structure allowing to develop a symbolic calculus
and to define and study corresponding coorbit spaces of functions or ”distribu-
tions” on X ; we shall only indicate the facts that are useful for the present paper.

Let 7 : ¥ — B(H) be a map such that for every u,v € H one has

/Edu(S) [ (s)u, o) =l * [[v]* - (2.2)

We set m(s)u =: m,(s) and 7(s)*u = 7*(s)u =: 7}(s) for every s € ¥ and u € H,
getting families of functions {m, : ¥ — H |u € H} and {7} : ¥ — H | u € H}.
One also requires 7 to be continuous for every u.
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The map ®™ : H®H — L*(X) uniquely defined by
[27(u @ v)](s) = [¢7(u, v)](s) == (7(s)u,v)

is isometric, by (2.2). Although this was not not needed in [18], we also require
™ to be surjective. For every normalized vector w € H the map ¢7 : H — L*(X)
given by o7 (u) := ¢™(u,w) is isometric. Fizing w, it is clear that we are in the
above framework with the tight continuous frame defined by

W =W(rw) ={w(s) :=mn(s)w|s € X}.

Using existing notations one can write ¢y = ¢I and w(-) = 7} (). After intro-
ducing a Fréchet space G continuously embedded in H , one can define coorbit
spaces col (M) = {u € G'| ¢ (u) € M} as it was done above. But we are not
going to need them.

To define the symbolic calculus IT, sending functions on ¥ into bounded linear
operators on H , we make use of the rank one operators A(u®@v) = A\, , = (-, v)u
indexed by w,v € H . This defines both a map A\ : H x H — F(H) with values
in the ideal of finite-rank operators and a unitary map A : H&H — By(H) from
the Hilbert tensor product to the Hilbert space of all Hilbert-Schmidt operators
on H . Consequently IT := Ao (®7) " : L%(X) — By(H) will also be unitary; its
action is uniquely defined by II[(¢(u, v)] = (-, v)u. Also recall [18, Prop. 2.3| the
formula valid in weak sense

() = / dyu(s) f ()7 (3).

3. COMPACTNESS IN COORBIT SPACES ASSOCIATED TO CONTINUOUS FRAMES

Let us fix a tight continuous frame W := {w(s) | s € X} contained and total
in a Fréchet space G that is continuously embedded in the Hilbert space H . It
is assumed that s +— (u,w(s)) is continuous for every u € G'. For any normed
space M of functions on ¥ we have defined the coorbit space coy (M) = co(M)
with completion co(M), which will be supposed continuously embedded in G’ .

One considers a bounded subset € of co(M) and investigate when this subset
is relatively compact in terms of the canonical mapping ¢y = ¢. We are guided
by [5, Th. 4], but some preparations are needed due to our general setting. The
next abstract Lemma will be applied to Y = co(M) — G/ .

Lemma 3.1. Let §(G) a family of seminorms defining the topology of G. Assume
that Y is a normed space continuously embedded in G and let Q@ C Y be bounded.

(1) For every p € &(G) there exists a positive constant D, such that
[(w, )] < Dpllully p(v), VYvegG ued.

(2) Seen as a subset of G', the set Q0 is equicontinuous and (consequently)
relatively compact in the weak-* topology.

Proof. (1) is standard; actually the condition is equivalent to Y — G/ .
(2) A base of neighborhoods of the origin in G is
{Up;0) == {veglpv) <d}|pe&(G).d>0}.
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Assume that [|u ||y <M for every u € Q. Let € > 0and p € &(G). Using 1, for

every v € U(p; M;D,,) and every u € () one gets

[{u, )| < Dy [lully p(v) < DpMp(v) < e

and this is equicontinuity. The statement concerning relative compactness follows
from the Bourbaki—-Alaoglu Theorem [17]. O

Let us denote by K(X) the family of characteristic functions of all compact
subsets in X . It can be seen as a subset of the normed algebra L°(X) formed of
L functions on ¥ which are essentially compactly supported.

An essential notion in the theory of coorbit spaces is the solidity of a function
space, a fact that has been first realized by Feichtinger in the. paper [6]. We
assume that M is a solid Banach space of functions with absolutely continuous
norm (cf. [1]; see also [5]). We recall that such a space contains all the charac-
teristic functions of sets M C ¥ with u(M) < oo and given f,g : ¥ — C two
p-measurable functions, if |f(s)| < |g(s)| almost everywhere and g € M then
feMand || fllm<|gllm. It follows that M is a Banach L°(¥)-module. In
addition, for all f,g € M the following dominated convergence theorem holds:
whenever f, : ¥ — C are measurable, |f,| < |g| and f, — f p-a.e. then
| fo = fllm— 0. Any such space is reflexive [/, Ch. 1, Prop. 3.6 & Th. 4.1].

Theorem 3.2. Let us assume that M is a solid Banach space of functions on
Y with absolutely continuous norm. Then the bounded subset Q0 of co(M) is
relatively compact if and only if ¢(Q) is K(X)-tight in M .

Proof. We start with the only if part. By relative compactness of 2, for any ¢ > 0
there is a finite subset F' such that

Vu €.

— )<
melg (| u UHco >

l\DIm

Recalling that ¥ has been assumed o-compact, there is an increasing family
{L,, | m € N} of compact subsets of ¥ with U,,L,, = ¥. Since pointwisely

Iz, #(v)] < |p(v)| and xi, d(v) 2" ¢(v), there is a compact set L C ¥ with
complement L¢ such that

€

2

Then, for every u € €1, using the information above and the fact that the map
¢ : co(M) — M is isometric,

max || xzed(v)[la <

Ixzeg(w) [l < min (|| xzedu (u =) [l + [ x2e@ () L)

€
< mi - -
< min || ¢(u =) || s +2

— mi <
{,%‘}1”“ v || co(m +2_e

We now prove the converse. Knowing that ¢(Q2) is K(3)-tight in M, one
needs to show that every sequence (u,)neny C €2 has a convergent subsequence.
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By Lemma 3.1 the bounded set Q@ C co(M) is relatively compact in G/, so
(un)nen has a *-weakly convergent subsequence u; — uy € G':

(uj,v) = (Uoo,v) forany veg. (3.1)
Putting v := w(s) in (3.1), we get for every s € ¥

(uj, w(s)) = [¢(u;)](s) = [P(uoo)](s) = (oo, w(s)) .

Therefore the sequence (¢(u;)),cy is pointwise Cauchy. We shall convert this in
the norm convergence

[ p(uj) — d(we) s — 0 when j, k — oo. (3.2)

Then the proof would be finished since ¢ : co(M) — M is isometric: (u;),en will
be Cauchy in co(M), thus convergent (to u., of course).

By tightness, pick a compact subset L C ¥ such that || xpeo(u) ||m < € for
every u € €); then we. get

HXchb(Uj—uk)HMS 267 Vj,/{? €N. (33)

Since co(M) is continuously embedded in G’ | for any seminorm p € &(G) there
exist positive constants D, D, such that for every s € X

Sup [(uj = ug, w(s))| < Dy Sup luj — k|l plw(s)] < Dy, plw(s)].
By our assumption on W and by the Uniform Boundedness Principle the family
{w(s)|s € L} is bounded in G, so we get
|[p(u; —ur)] (s)] < D,Cpr, VjkeN, scL.
Anyhow we obtain by the Dominated Convergence Theorem
I x2o(uj = ur)l|ae— 0 when j, k — oo. (3.4)
Putting (3.4) and (3.3) together one gets (3.2) and thus the result. O

Remark 3.3. Let S be an bounded operator from the Banach space X' to co(M).
Then S is a compact operator if and only if for every e >0 there exists a compact
set L C X such that

[ Xzeopw © Sl < €. (3.5)
This follows easily applying Theorem 3.2 to the set 2 := S (X[l]) and using the
explicit form of the operator norm. Here A};) denotes the closed unit ball in the
Banach space X .

4. COMPACTNESS IN HILBERT SPACES

To have an ampler setting, we turn now to the particular case described in the
last part of Section 2. Thus a family {7 (s)|s € X} of bounded operators in the
Hilbert space H is given. We recall that s — 7(s)* € B(H) is strongly continuous
and that (2.2) is verified for every u,v € H. Then ¢T : H — L?*(X) defined by
(07 (u)] (s) := (m(s)u,w) is well-defined and isometric for every normalized vector
w of the Hilbert space H.

Theorem 4.1. Let ) be a bounded subset of 'H . Consider the following asser-
tions:
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(1) Q is relatively compact.

(2) For every w € H the family ¢T(Q) is K(X)-tight in L*(X) .

(3) There exists wo € H such that the family ¢7, () is K(X)-tight in L*(X) .

(4) For each € > 0 there exists f € C.(X) with sup ||II(fl)u —u| < e (ie. Q
ue)

is I1[C.(X)]-tight) .
(5) One has lim sup ||7(s)*u — 7(so)*u||=0 for every sp € .

$780 ye

(6) For every e > 0 and so € X there exists g € Ce(X) such that

sup || II(g)u — m(so) ul| < €.
u€es)

Then (1), (2), (3) and (4) are equivalent, they imply (5), which in its turn implies
(6). Thus, if we assume that 7(s1)* = 1 for some s; € ¥, then all the siz
assertions are equivalent.

Proof. The equivalence of the points 1,2 and 3 follows from Theorem 3.2, since
in this case H = co[L*(X)] and M := L*(¥) is indeed a solid Banach space of
functions with absolutely continuous norm.

(1) = (4). Let Q C 'H be relatively compact and, for some € > 0, let F' be a finite
subset such that for each u € Q there exists v, € F' with ||u — v, || < €/4. The
subspace F generated by F' will be finite-dimensional and thus the corresponding
projection P will be a finite-rank operator satisfying Pv = v for every v € F'.
Then for every u € (2

[Pu—wull <|[[Pu—Po| + [ Poy = vull + ou = u][ <2 [Ju—vu ]| < /2.

(4.1)
Notice that {II(f)|f € C.(X) } is a dense set of compact operators. To see this,
use the fact that IT : L*(X) — By (H) is an isometric isomorphism and that C.(3)
is dense in L?(X); the topology of By(H) is stronger than that of B(H), while
K(X) is the closure of By(H) in the operator norm. Let now M := sup,.q || ©||;
by density there is some f € C.(X) with || P — II(f) ||g¢) < €/2M . From this
and from (4.1) the conclusion follows immediately.

(4) = (1). To prove the converse, for € > 0 choose f € C.(X) such that

sup | TI(f)u — | < ¢/2.
u€e

Since II(f) is a compact operator and €2 is bounded, the range II( f)S2 is relatively
compact, so there is a finite set G such that for each u € () there is an element
v € G with ||[TI(f)u — v*|| < €/2. Then for u € Q one has

lu—o*[| <[lw =TIl + [[TI(fHu—v"[| < €/2+€/2 =,

so the set (2 is totally bounded.
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(4) = (5). Setting S+ :=1— 5, we compute for sp € X, u € Q, f € C.(2)
and s belonging to a neighborhood V' of s :

Im(s) w = m(so) ull <|[r(s)" = m(s0) TS ull + [ [7(s)" = m(s0)" ] TI(f) ]
< sup Jfuf| [l (s)" = m(s0) TS 1w

+ 2sup || 7(t)* |z sup [[TI(F) ul -
teV u€eN

The first term is small for s belonging to a suitable neighborhood V', because {2
is bounded, 7* is strongly continuous and this is improved to norm continuity by
multiplication with the compact operator II(f). The second term is also small for
some suitable f, because of the assumption 4 and since || 7*(-) ||g() is bounded
on the compact set V (use the Uniform Boundedness Principle and the strong
continuity of 7*) .

(5) = (6). Compute for any positive g € Co(X) with [Lgdp =1
Mg = m(s0)*ul = | [ du)a(s)im(s)u = m(so) |
< [ au(s)g(e)fr(s)” = w(so)

and then use 5 and require g to have support inside the convenient neighborhood
of the point s . 0

Remark 4.2. Among the possible applications of Theorem 4.1, let us mention
one concerning the connection between spectral and dynamical properties of self-
adjoint operators. So let H be a (maybe unbounded) self-adjoint operator in the
Hilbert space H . We denote by {¢? |t € R} the evolution group generated by
H (a 1-parameter strongly continuous group of unitary operators) and for each
u € H we set [u] for the quasiorbit of u under this group, i.e. [u]? is the norm-
closure of the orbit {e"#u|t € R}. By H,(H) we denote the closed subspace of
H generated by the eigenvectors of H . It is known (see [12] for instance) that a
vector u belongs to H,(H) if and only if [u]” is a compact subset of H . Applying
Theorem 4.1 to the bounded set 2 := [u] one gets various characterizations for
the vector to belong to the spectral subspace H,,(H) in terms of one of the objects
7, IT or ¢ . This is valuable especially when H is the quantum Hamiltonian of
some physical system described in ‘H and the family 7(-) also has some physical
meaning.

For simplicity, we are always going to assume that w(s1)* =1 for some s; € X
Below H|;j denotes the closed unit ball of the Hilbert space H .

Corollary 4.3. Let X be a Banach space and S € B(X,H) . The next assertions
are equivalent:

(1) S is a compact operator.
(2) The set ¢ (SXy)) is K(X)-tight in L*(X) for some (every) w € H. Writ-
ng MXLL for the operator of multiplication by the function 1—xr in L*(2),



COMPACTNESS CRITERIA IN BANACH SPACES 41

this can be restated: for every e > 0 there is a compact subset L of ¥ such
that || My, o ¢ 0 S ||gx,r2) < €.
(3) For every € > 0 there exists f € Co(X) such that ||[II(f)—=1]S ||pr) < €.
(4) The map ¥ > s — 7(s)"S € B(X,H) is norm-continuous.

Proof. This is a simple consequence of Theorem 4.1, since .S is a compact operator
if and only if Q := Sy is relatively compact in H ; also use

IT llexs0= sup [Tz .

TE€X

O

Remark 4.4. Let us have a look at the implication (4) = (1). We could say
that a strongly continuous function p : I' — B(H) (I" is a topological space)
characterizes compactness if for any S € B(X,’H) (and for any Banach space X)
the fact that the function pg(-) := p(-)S is norm-continuous implies S € K(H).
In particular, our function 7* does this. Many other don’t; think for instance
that p is already norm-continuous or that all the ranges p(y)H are orthogonal on
some fixed proper infinitely dimensional subspace.

Remark 4.5. 1t is easy to interpret the point (3) as a tightness condition, since
B(X,H) is a left Banach module over B(H) under operator multiplication.

5. COMPACTNESS IN SPACES OF COMPACT OPERATORS

Our next problem is to describe relative compactness of subsets 2 of the
Banach space K(X,co(M)) of all compact operators from an arbitrary Banach
space X to (the completion of) a coorbit space. Even the case co(M) = H is
interesting. Of course, the key fact is that we have now convenient descriptions
of relative compactness in the final Banach space co(M). But this can be used
efficiently only taking into account some rather deep abstract facts.

One could hope that the good conditions would be uniform versions of (3.5)
(the same L for a given € and for all the elements S of ") or of the conditions 2,3
or 4 in Corollary 4.3 . Clearly such a guess is connected to the notion of collective
compactness. If X and ) are Banach spaces, a subset . of K(X,)) is called
collectively compact if £ X)) := Uge e SA) is relatively compact in V. It can
be shown that if .Z is relatively compact in K(X',)) then it is also collectively
compact. To see that the converse is false, take for simplicity X = ) = H a
Hilbert space. It is easy to check that .Z is relatively compact if and only if
ZL*:={5*|S € £} is relatively compact. But such a stability under taking the
family of adjoints fails dramatically in the case of collective compactness. Let
{e; | 7 € N} be an orthonormal base in ‘H and set .Z := {(-,¢;)e;|j € N}. Then
Z is collectively compact while .£* := {(-, e1)e;|j € N} is not!

Let us return to the Banach case and denote by X’ and ), respectively, the
topological duals of the spaces X and ). It has been considered a success proving
finally [21, 1] that £ C K(&X,Y) is relatively compact if and only if both £ and
L C K(Y',X") are collectively compact. By definition, £’ is composed of the
transposed operators S’ : ) — X’ with S € .Z.
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This result is not yet handy for our problem (in which ) = co(M)), because
in general we do not know anything about compactness of the subsets of X”.
On the other hand, much later [241] it has been shown that ¢’ C K()’, &”) is
collectively compact if and only if .Z is equicompact, in the sense that there is a
sequence X’ 3z, — 0 such that supgc || Sz ||y < sup,, [(x),, x)| for every x € X.

Remark 5.1. In [20] it is also shown that if X does not contain an isomorphic
copy of I! then .Z is relatively compact if and only if it is collectively compact and
uniformly weak-norm continuous (if x, — 0 weakly then supgc & || Sz, [|y— 0).
This also follows from [24], while [11] contains a related result.

Using all these, the notions introduces in section 2 and Theorem 3.2 one gets
easily

Corollary 5.2. Let us assume that M is a solid Banach space of functions on
> with absolutely continuous norm, let X be a Banach space and % a subset of
B[X,co(M)]. Then J is a compact family of compact operators if and only if

(1) For every e>0 there exist a compact set L C ¥ such that

sup || xzeodw o S ||prmy < €
Sex

and
(2) There is a sequence X' > xl, — 0 such that

sup || ow (Sz) | m < sup [(zy, )|
Ssex n

for every x € X.

If X does not contain an isomorphic copy of 1!, then 2 can be replaced by

2. If x,, — 0 weakly then sup || opw (Sxy)[|am— 0.
Sex’

We refer now to the situation explored in section 4, recalling the objects
(m,¢r, I1); for simplicity we only consider the case X = H. There are sev-
eral ways to characterize relative compactness of subsets of K(H), relying on
Theorem 4.1 and the discussion preceding Corollary 5.2. We present the one
involving collective compactness of the family and of the family of adjoints and
leave to the interested reader the easy task to state others, maybe also for the
case of a general Banach space X'. The setting is that of section 4; it is also
assumed that 7(s;)* = 1 for some s; € 3.

Corollary 5.3. Let £ be a family of bounded operators in H . The following
assertions are equivalent:

(1) £ is a relatively compact family of compact operators.

(2) For some (any) w € H the family {¢,(SHp))|S € H UKX™*} is uniformly
tight in L*(X) . This condition means that for every positive € there exists
a compact subset L of ¥ such that

sup || M;‘L 0¢y08 ||IB%(H,L2) <e.
Se X JKH *
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(3) For every € > 0 there exists f € C.(X2) such that
sup  [[[TI(f) = 115 o < €

Sex'y

(also a tightness statement).
4) {E¥3s—n(s)*Se€B(H) | S e UL} is an equicontinuous family.

6. COMPACTNESS IN THE MAGNETIC WEYL CALCULUS

The magnetic pseudodifferential calculus [19, 16] has as a background the prob-
lem of quantization of a physical system consisting in a spin-less particle mov-
ing in the Euclidean space X := R" under the influence of a magnetic field,
i.e. a closed 2-form B on X (dB = 0), given by matrix-component functions
Bj, = —By; : X = R, j,k=1,...,n. For convenience we are going to assume
that the components Bj; belong to C55(X), the class of smooth functions on X
with polynomial bounds on all the derivatives. The magnetic field can be written
in many ways as the differential B = dA of some 1-form A on X called vector
potential. One has B = dA = dA’ if and only if A’ = A + dy for some 0-form ¢
(then they are called equivalent). It is easy to see that the vector potential can
also be chosen of class Cp5)(X) ; this will be tacitly assumed.

One would like to develop a symbolic calculus a +— DpA(a) taking the magnetic
field into account. Basic requirements are: (i) it should reduce to the standard
Weyl calculus [0, 13] for A = 0 and (ii) the operators Op“(a) and Op?'(a) should
be unitarily equivalent (independently on the symbol a) if A and A" are equivalent;
this is called gauge covariance and has a fundamental physical meaning. There
are many ways to justify the formulae, including geometrical or classical mechan-
ics reasons or ideas coming from group cohomology and the theory of crossed
product C*-algebras. The one closest to our approach it to think of the emerging
symbolic calculus as a functional calculus for the family of non-commuting self-
adjoint operators (Qy, ..., Qn; P, ..., P2) in H := L*(X). Here Q; is one of the
components of the position operator, but the momentum P; := —id; is replaced
by the magnetic momentum PjA = P; — A;(Q)) where A;(Q) indicates the oper-
ator of multiplication with the function A; € C55(X). Notice the commutation
relations

Let us set ¥ := X x X* (called the phase space and isomorphic to R?") | on which
we consider the Lebesgue measure du(z,£) = dxd¢. One defines the magnetic
Weyl system

™8 S B(H), (x,€) :=exp [z (;E -PA Q- 5)}

and gets in terms of the circulation of the 1-form A through the segment [y, y +
x] :=={y +tx |t €]0,1]} the explicit formula

(74 (2, )u] (y) = e 75 exp | (—i) / Al uly +2).

[y,y+a]
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These operators depend strongly continuous of (z,£) and satisfy 74(0,0) = 1 and
A (z, &) = (2, &)t = 74 (—x, —£) (thus being unitary). However they do not
form a projective representation of X = X x X*. Actually they satisfy

72, &) 7 (y, n) = wP[(%,€), (y.n); QI 7 (x + y,§ + 1), (6.1)

where w?|(z, €), (y,n); Q] only depends on the 2-form B and denotes the operator
of multiplication in L*(X) by the function

X 3z = wP[(2,€), (y, 1) 2] = exp B (y-&—a- n)] exp |(—1) / B
<z,ztx,zt+x+y>
(6.2)
Here the distinguished factor is constructed with the flux (invariant integration)
of the magnetic field through the triangle defined by the corners z, z + = and
zZ+T+y.
A straightforward computation leads to the magnetic Fourier—Wigner function

[ (u®v)] (2,€) = [¢(w)] (2,€) = (7 (z,u, v)

:/ dye ¢ exp | (i) / Al u(y +x/2)v(y — x/2).
b's
ly—=/2,y+z/2]

It can be decomposed into the product of the multiplication by a function with
values in the unit circle, a change of variables with unit jacobian and a partial
Fourier transform. All these are isomorphisms, so ®* : L?(X)®L*(X) — L*(%)
defines a unitary transformation. Thus we get a formalism which is a particular
case of the one presented at the end of section 2. Therefore one can apply all the
prescriptions and get the correspondence

[ TA(f) = / F(,€) (i, —€) duvde

In fact people are interested in the (symplectic) Fourier transformed version
a(Q,P*) = Op?(a) := TT4[F(a)]. The resulting magnetic Weyl calculus is
given by

[Op?(a)u

(27) /dy/dg exp li(z —y) - €] exp {—z‘/[m’] A} <“y,§) u(y). (6.3)

An important property of (6.3) is gauge covariance, as hinted above: if A" =
A + dp defines the same magnetic field as A, then Op?(a) = e Op“(a) e~. By
killing the magnetic phase factors in all the formulae above one gets the defining
relations of the usual Weyl calculus.

Due to the particular structure, one can introduce {U4(x) := 74(z,0) |z € X}
(generalizing the group of translations for A # 0) and {V(¢) = 74(0,£) | € €
X*} (the group generated by the position operator ()). One can also introduce
0(Q) == Op?(p®1) and Y(PA) := Op?(1 @ 1) for p € L*(X) and ¢ € L2(X*).
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One checks easily that ¢(Q) is the operator of multiplication by ¢ while for zero
magnetic field ¢ (P4=%) = ¢(P) is the operator of convolution by the Fourier
transform of . Since ¢ ® 1 and 1®1) are not L2-functions in both variables, one
needs the results of [19, 10] for an easy justiﬁcation of these objects. Equivalently,
one can use formulas as ¢(P4) := [ dew UA(x).

The next result is inspired by [12, Prop. 2.2] and basically reduces to [12,
Prop. 2.2] for A = 0. By S(Y) we denote the Schwartz space on the real
finite-dimensional vector space Y .

Proposition 6.1. The C*-algebra K[L*(X)] of compact operators in L*(X) coin-
cides with the closed vector space € generated in B[L*(X)] by products o(Q )y (P4)
with p € S(X) and ¢ € S(X*).

Proof. Tt is easy to check that ¢(Q)y(P?) is an integral operator with kernel
given for x,y € X by

k() = e Hen® p(a)d(y — ). (6.4)
We assumed the components of A to be Cpg-functions and this immediately
implies that the magnetic phase factor in (6.4) belongs to Cpg) (X x X) . Therefore,
if ¢ € S(X) and ¢ € S(X), then £}, € S(X x X) C L*(X x X) and thus
©(Q)w(P4) is a Hilbert-Schmidt operator. From this follows K[L*(X)] D €.

Reciprocally, it is enough to show that € contains all the integral operators
with kernel & € L*(X x X) (they are the Hilbert-Schmidt operators and form
a dense set in K[L?(X)]). Pick inside the Schwartz space S(X) an orthonormal
base {e;|i € N} for L*(X). Setting

Fi(a,y) = Jenei(@)esly —2), Vaye X, ijeN,
we get an orthonormal base {F}} | i,j € N} of L*(X x X). So k = > i ey B

ij
where 37, - [cij|* < oo and the sum is convergent in L*(X x X). Then the mtegral
operator Wlth kernel k coincides with 37, . c;5e;(Q)e;(P*) . The sum converges in

By[L?(X)], thus in B[L?*(X)], therefore the operator belongs to €. O
We can also state:

Theorem 6.2. Let Q a bounded subset of H := L?(X) . The following statements
are equivalent:
(1) The set Q) is relatively compact.
(2) For some (any) window w € H , the family ¢2(Q) is K(X)-tight in L*(X) .
(3) For every e > 0 there exist f € Co(X) with sup || [DpA(f) — 1}u | <e.
ue)
(4)

4) One has

lim su z, &) —1|u||=0.
Jimsup | [5(2,€) ~ 1] u]

(5) One has
lim sup || [U*(z) = 1] u]|= 0 and lim sup [|[V/(§) — 1] u]|= 0.

z—0 ,c0 —Y ueQ
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(6) For every € > 0 there exist ¢ € S(X) and ¢ € S(X*) with
oup (16(Q) = 1l + [P = 1]l ) <

Proof. (1) & (2) < (3) follow from Theorem 4.1 by particularization, while
(4) & (5) is trivial,. taking into account the relationships between U4,V and
7. The implication (3) = (4) also holds, taking sy = 0 in Theorem. 4.1 (and
replacing s by —s). A careful examination of (6.1) and (6.2) would even lead to
(3) < (4)., restoring the relevant convergence for arbitrary sq := (¢, &) , but this
will not be needed. (1) = (5) follows trivially,. because € can be approximated
by finite sets and U4,V are strongly continuous at the origin.

(5) = (6) can be obtained along the same lines as the proof of the implica-
tion (4) = (5) in Theorem 4.1, taking also into account the relations ¢ (P4) =

Jxdz¥(@)UA(z) and 9(Q) = [1.dEBE)V(E).
We finally show (6) = (3). Let us set T+ := 1 — T and compute
lu = (Q)(PYull = [ o(@)w(P*) u+ ¢(Q) ul
<lleleollo (P ull + 1lo(@) ull -

By using the assumption 6, this can be made arbitrary small uniformly in v € §2
if ,1 are chosen suitably. As in the proof of Proposition 6.1 one sees that
0(Q)y(P4) is a Hilbert-Schmidt operator. It can be approximated arbitrarily
in norm by some operator DpA(]/‘\) with f € C.(X) and then (3) follows easily
because €2 is bounded. O

Remark 6.3. Many small variations are allowed in the results above. The Schwartz
spaces S(X) and S(X*) in Proposition 6.1 or at point (6) of Theorem 6.2 can be
replaced by other convenient ”small” spaces. In Theorem 6.2, at point (3) one
could use Op”(a) with a € S(X) or with a € C=(%).

Remark 6.4. Compact operators and relative compact families of compact oper-
ators can also be treated easily in the magnetic setting, essentially combining the
results of sections 5 and 6.

Remark 6.5. This is connected to Remark 4.2. In [12, Sect. 5] one can find
improvements of a classical result of Ruelle, characterizing the pure point space
H,(H) and the continuous space H.(H) := [H,(H)]" of a self-adjoint operator H
acting in L*(X). This involves operators ¢(Q) (multiplication by ¢) and ¥ (P)
(convolution by the Fourier transform of ) that are obtained by setting A =0.
The analogous magnetic results are also easily available, as corollaries of Theorem
6.2, and they seem to be new and physically significant. A detailed discussion
would need too many preparations, so we do not include it here; the interested
readers would easily find the statements and the proofs by themselves.
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