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ABSTRACT. Let ¢ : R" x [0,00) — [0,00) be such that ¢(z,) is nondecreas-
ing, (z,0) = 0, ¢(x,t) > 0 when t > 0, limy_, ¢(x,t) = oo and ¢(-,t) is
a Muckenhoupt Ao (R™) weight uniformly in ¢. Let ¢ : [0,00) — [0,00) be
nondecreasing. In this article, the authors introduce the Musielak—Orlicz Mor-
rey space M¥¢(R™) and obtain the boundedness on M#¥*¢(R™) of the intrinsic
Lusin area function S,, the intrinsic g-function g, the intrinsic g3-function
g3 o and their commutators with BMO(R™) functions, where o € (0,1], A €
(min{max{3, p1},3 + 2a/n},c0) and p; denotes the uniformly upper type in-
dex of . Let @ : [0,00) — [0,00) be nondecreasing, ®(0) = 0, ®(t) > 0
when ¢ > 0, and lim;_,o, ®(t) = 00, w € Axx(R™) and ¢ : (0,00) — (0,00) be
nonincreasing. The authors also introduce the weighted Orlicz—Morrey space
M2:%(R") and obtain the boundedness on M2:¢(R") of the aforementioned
intrinsic Littlewood—Paley functions and their commutators with BMO(R™)
functions. Finally, for ¢ € [1,00), the boundedness of the aforementioned in-
trinsic Littlewood—Paley functions on the Musielak-Orlicz Campanato space
L#9(R™) is also established.

1. INTRODUCTION

It is well known that the intrinsic Littlewood—Paley g-function and the intrinsic
Lusin area function were first introduced by Wilson in [18] to answer a conjecture
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proposed by R. Fefferman and E. M. Stein on the boundedness of the Lusin area
function S from the weighted Lebesgue space L?\/[(v) (R™) to the weighted Lebesgue

space L2(R"), where 0 < v € L} (R") and M denotes the Hardy-Littlewood
maximal function. Observe that these intrinsic Littlewood-Paley functions can
be thought of as “grand maximal” Littlewood—Paley functions in the style of the
“grand maximal function” of C. Fefferman and Stein from [13]: they dominate all
the Littlewood—Paley functions of the form S(f) (and the classical ones as well),
but are not essentially bigger than any one of them. Like the Fefferman-Stein and
Hardy-Littlewood maximal functions, their generic natures make them pointwise
equivalent to each other and extremely easy to work with. Moreover, the intrinsic
Lusin area function has the distinct advantage of being pointwise comparable at

different cone openings, which is a property long known not to hold true for the

classical Lusin area function (see Wilson [18, 19]).
More applications of intrinsic Littlewood—Paley functions were given by Wilson
[50, 51] and Lerner [28, 29]. In particular, Wilson [19] proved that these intrinsic

Littlewood—Paley functions are bounded on the weighted Lebesgue space L? (R™)
when p € (1,00) and w € A,(R") (the class of Muckenhoupt weights). Re-
cently, Wang [17] and Justin [11] also obtained the boundedness of these intrinsic
Littlewood—Paley functions on weighted Morrey spaces.

Recall that the classical Morrey space MP*(IR™) was first introduced by Morrey
in [35] to investigate the local behavior of solutions to second order elliptic partial
differential equations. For p € [1,00) and x € [0,1), a function f € L}  (R") is
said to belong to the Morrey space MP*(R™), if

1/p
< 00,

1
[ £l mpr eny := sup { 5/ |f(y)[” dy
Bcre | |BlF Jg

where the supremum is taken over all balls B of R". The boundedness, on the
Morrey space, of classical operators, such as the Hardy-Littlewood maximal oper-
ator, the fractional integral operator and the Calderén-Zygmund singular integral
operator, was studied in [1, 10]. In particular, Komori and Shirai [24] first in-
troduced the weighted Morrey space and obtained the boundedness of the above
these classical operators on this space.

As a generalization of the space BMO(R"), the Campanato space LPP(R") for
B € R and p € [1,00), introduced by Campanato [9], was defined as the set of all
locally integrable functions f such that

B 1 1/p
£l Lo @n) == sup |B|™* {_/ |f(x) — fB!pd"E} < 00,
BCR™ |B‘ B

where the supremum is taken over all balls B in R™ and fp denotes the average
of f on B, namely,

1
[ = E/Bf(y) dy. (1.1)

It is well known that, when x € (0,1), p € [1,00) and 3 = (k — 1)/p, MP"(R")
and LP#(R") coincide with equivalent norms (see, for example, [2]). Assuming the
finiteness of the Littlewood—Paley functions on a positive measure set, Yabuta [52]
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first established the boundedness of the Littlewood-Paley functions on LP#(R™)
with p € (1,00) and § € [~1/p,1). Sun [15] further improved these results
by assuming the finiteness of the Littlewood—Paley functions only on one point.
Meng, Nakai and Yang [31] proved that some generalizations of the classical
Littlewood—Paley functions, without assuming the regularity of their kernels, are
bounded from LPP(R™) to LPP(R") with p € [2,00) and 8 € [—1/p,0], where
LPA(R™) is a proper subspace of L»#(R"). This result, which was proved in [34]
to be true even on spaces of homogeneous type in the sense of Coifman and Weiss
(see [11]), further improves the result of Yabuta [52] and Sun [15].

On the other hand, Birnbaum-Orlicz [1] and Orlicz [39] introduced the Orlicz
space, which is a natural generalization of LP(R™). Let ¢ be a growth function
(see Definition 2.1 below for its definition). Recently, Ky [20] introduced a new
Musielak-Orlicz Hardy space H?(R™), which generalizes both the Orlicz-Hardy
space (see, for example, [21, 16]) and the weighted Hardy space (see, for ex-
ample, [16, 17, 25, 33, 41]). Moreover, characterizations of H¥(R") in terms of
Littlewood—Paley functions (see [19, 30]) and the intrinsic ones (see [32]) were also
obtained. As the dual space of H?(R™), the Musielak—Orlicz Campanato space
L#9(R™) with ¢ € [1,00) was introduced in [31], in which some characterizations
of L#4(R™) were also established. Recall that Musielak—Orlicz functions are the
natural generalization of Orlicz functions that may vary in the spatial variables;
see, for example, [36]. The motivation to study function spaces of Musielak—
Orlicz type comes from their wide applications in physics and mathematics (see,
for example, [0, 7, 8, 38, 26]). In particular, some special Musielak—Orlicz Hardy
spaces appear naturally in the study of the products of functions in BMO(RR")
and H'(R™) (see [7, 8]), and the endpoint estimates for the div-curl lemma and
the commutators of singular integral operators (see [5, 7, 27, 40]).

In this article, we introduce the Musielak—Orlicz Morrey space M¥?¢(R™) and
the weighted Orhcz Morrey space M2?(R"), and obtain the boundedness, re-
spectively, on these spaces of intrinsic Littlewood—Paley functions and their com-
mutators with BMO(R") functions. Moreover, we also obtain the boundedness
of intrinsic Littlewood—Paley functions on the Musielak—Orlicz Campanato space
L#49(R™) which was introduced in [31].

To be precise, this article is organized as follows.

In Section 2, for a growth function ¢ and a nondecreasing function ¢, we intro-
duce the Musielak—Orlicz Morrey space M#¢(R™) and obtain the boundedness on
M®??(R") of the intrinsic Lusin area function S,, the intrinsic g-function g,, the
intrinsic g3-function g5 , with a € (0,1] and A € (min{max{3, p;},3+2a/n}, o)
and their commutators with BMO(R") functions. To this end, we first introduce
an assistant function w and establish some estimates, respect to ¢ and z/J, which
play key roles in the proofs (see Lemma 2.8 below). Another key tool needed is
a Musielak—Orlicz type interpolation theorem proved in [30]. We point out that,
in [17], Wang established the boundedness of g5 , and [b, g} ,] on the weighted
Morrey space MP"(R™) with A > max{3, p}. This corresponds to the case when

oz, t) ;= w(x)t? for all z € R" and ¢ € [0, o) (1.2)
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with w € A,(R™) and p € (1, 00) of Theorem 2.15 and Proposition 2.20 below, in
which, even for this special case, we also improve the range of A > p in [17] to a
wider range A > 3 4 2a/n when p > 3 + 2a/n.

In Section 3, let ® : [0,00) — [0,00) be nondecreasing, ®(0) = 0, &(t) > 0
when ¢ > 0, and limy o ®(t) = o0, w € Ax(R") and ¢ : (0,00) — (0,00)
be nonincreasing. In this section, motivated by Nakai [37], we first introduce
the weighted Orlicz—Morrey space M2?(R") and obtain the boundedness on
M2¢(R") of intrinsic Littlewood-Paley functions and their commutators with
BMO(R™) functions.

In Section 4, for ¢ € [1,00), the boundedness of the aforementioned intrinsic
Littlewood—Paley functions on the Musielak—Orlicz Campanato space L£#7(R™),
which was introduced in [31], is also established. To be precise, following the
ideas of [20] and [31], we first introduce a subspace L£(R™) of L£#9(R™) and
prove that the intrinsic Littlewood—Paley functions are bounded from L£#7(R")
to L££9(R™) which further implies that the intrinsic Littlewood—Paley functions
are bounded on £#9(R"). Even when

o(z,t):=t" forall z € R" and t € (0, 00), (1.3)

with ¢ € (1,00) and p € (n/(n+ 1),q/(¢ — 1)], these results are new.

Finally we make some conventions on notation. Throughout the whole paper,
we denote by C' a positive constant which is independent of the main parameters,
but it may vary from line to line. The symbol A < B means that A < CB. If
A < Band B < A, then we write A ~ B. For any measurable subset E of
R™, we denote by EC the set R™ \ E and by xg its characteristic function. For
p € [1,00], we denote by p' its conjugate number, namely, 1/p + 1/p’ = 1. Also,
let N:={1,2,...} and Z, := NU{0}.

2. BOUNDEDNESS OF INTRINSIC LITTLEWOOD—PALEY FUNCTIONS AND
THEIR, COMMUTATORS ON MUSIELAK—ORLICZ MORREY SPACES

In this section, we introduce the Musielak—Orlicz Morrey space M#?(R") and
establish the boundedness on M#¢(R") of intrinsic Littlewood—Paley functions
and their commutators with BMO(R") functions. We begin with recalling the
definition of growth functions which were first introduced by Ky [26].

Recall that a function ® : [0,00) — [0,00) is called an Orlicz function if it is
nondecreasing, ®(0) = 0, ®(¢) > 0 for all t € (0,00) and lim;_, o, P(t) = co. We
point out that, different from the classical Orlicz functions, the Orlicz functions
in this article may not be conver. The function ® is said to be of upper type p
(resp. lower type p) for some p € [0, 00), if there exists a positive constant C' such
that, for all ¢ € [1,00) (resp. t € [0,1]) and s € [0, 00),

O(st) < CtPD(s).

For a given function ¢ : R" x [0,00) — [0, 00) such that, for any x € R", ¢(x,-)

is an Orlicz function, ¢ is said to be of uniformly upper type p (resp. uniformly

lower type p) for some p € [0, 00), if there exists a positive constant C' such that,
for all z € R", ¢t € [0,00) and s € [1,00) (resp. s € [0,1]),

p(z,st) < CsPp(z,1).
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The function ¢(-,t) is said to satisfy the uniformly Muckenhoupt condition for
some q € [1,00), denoted by ¢ € A,(R™), if, when ¢ € (1, 00),

a/d
sup sup / z,t) dx{/[ (v, )]_q//qdy} < 00,
t€(0,00) BCR™ |BJa

where 1/¢+1/¢' =1, or, when ¢ = 1,

sup sup / x,t)dz <esssup[ (y,t)]_1> < 0.
te(0,00) BCR™ |B| yebB

Here the first supremums are taken over all ¢ € (0, 00) and the second ones over

all balls B C R™. In particular, when ¢(z,t) := w(z) for all x € R", where w is a

weight function, A, (R") is just the classical A,(R™) weight class of Muckenhoupt.

Let
(R") = U Ag(R™).
q€(1,00)

Now we recall the notion of growth functions.

Definition 2.1. A function ¢ : R™ X [0,00) — [0, 00) is called a growth function,
if the following conditions are satisfied:

(1) ¢ is a Musielak-Orlicz function, namely,
(i); the function p(z,-) : [0,00) — [0,00) is an Orlicz function for all
r eR™;
()2 the function ¢(-,t) is a measurable function for all ¢ € [0, c0).
(i) ¢ € Ax(R™).
(iii) ¢ is of uniformly lower type py and of uniformly upper type p;, where
0 <po<p1<oo.

Remark 2.2. (i) The notion of growth functions here is slightly different from [26].
We only need 0 < py < p; < oo here, however, in [20], po € (0,1] and p; = 1.

(ii) By ii) of [26, Lemma 4.1], without loss of generality, we may assume that,
for all x € R™, p(z,-) is continuous and strictly increasing. Otherwise, we may
replace ¢ by another equivalent growth function ¢ which is continuous and strictly
increasing.

Throughout the whole paper, we always assume that ¢ is a growth function
as in Definition 2.1 and, for any measurable subset E of R"™ and ¢ € [0, 00), we
denote [, o(x,t)dx by p(E,t).

The Musielak—Orlicz space L¥(R™) is defined to be the space of all measurable
functions f such that [, ¢(x,|f(2)]) dz < co with the Luzembourg norm (or
Luzembourg-Nakano norm)

1/ Il 2o ®n) := inf {M € (0,00) : /ngo (:c, @) dr < 1}.

If v is asin (1.2) with p € (0,00) and w € A,(R™), then L¥(R™) coincides with
the weighted Lebesgue space L2 (R™).
Now, we introduce the Musielak—Orlicz Morrey space M#¢(R™).
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Definition 2.3. Let ¢ be a growth function and ¢ : [0, 00) — [0, 00) be nonde-
creasing. A locally integrable function f on R” is said to belong to the Musielak—
Orlicz Morrey space M#?(R"), if

| fllmee@ny == sup ¢(o(B, )| fllos < o0,
BCRn

where the supremum is taken over all balls B of R” and

1flos = inf{u €000 —5 [ ¢ ( @) i < 1}.

Remark 2.4. (i) We first claim that ||-[| yie.0mn) is @ quasi-norm. Indeed, since ¢ is
of uniformly lower type py and of uniformly upper type p; with 0 < pg < p; < o0,
we see that, for any x € R™ and 0 < a < b,

—|—b Po
oot ) 5 (“50) ol 20) S 2 6lnd) S o) + plo.b)

which further implies that, for any ball B C R™ and f, g € L}, (R") with || f||, 5+
Igll¢.8 7 0,

1 . 1f(@) +g(2)] .
¢(B,1) /ng ( Nl + HgHso,B) !

1 £(2) > ( ()] )]
< - de <1
~¢<B,1>/B[” ( o+ lalos) " E\O s + gl /)] ™

and hence, by py € (0,00),
1f + 9glle.s S N flles + l9lle.5:

where the implicit positive constant is independent of B. This further implies
that || - || pe.s(ny is a quasi-norm, namely, for any f, g € M#?(R"), there exists
a constant k € [1,00) such that

1f + gl mee@ny < & [ fllmeo@ny + 19l pmeemn] -

Thus, the claim holds true.

Moreover, from the claim and the Aoki-Rolewicz theorem in [3, 12], it follows
that there exists a quasi-norm || - [| on M*?¢(R") and v € (0, 1] such that, for all
f e ME2R™), Il ~ I fllme@ny and, for any sequence {f;}jen C MP?(R™),

OB <o NsI,

jEN jEN

which is needed later.

(i) If ¢ is as in (1.3) with p € (1,00) and ¢(t) := t* for all ¢t € [0, 00) with s €
(0,1/p), then M¥®?(R") coincides with the classical Morrey space MP1=P(R™).

(iii) If p(z,t) := P(¢) for all x € R™ and t € (0,00) with ® being an Orlicz
function, then M®?¢(R"™) coincides with the Orlicz—Morrey space in [13].

(iv) If ¢ is as in (1.2) with p € (1,00),w € A,(R") and ¢(t) is as in (ii), then
M#?(R") coincides with the weighted Morrey space MP;1=*P(R") in [17] (Observe
that the weighted Morrey space ME;1=*P(R") was denoted by another notation in

[47])-
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Now we recall the notions of intrinsic Littlewood—Paley functions introduced
by Wilson [18].

For a € (0, 1], let C,(R™) be the family of functions 6, defined on R", such that
supp 0 C {x € R" : |z| < 1}, [p. 0(z) de = 0 and, for all 2y, z, € R,

|0(21) = 0(x2)] < |21 — 22|
For all f € L} (R") and (y,t) € R := R" x (0, 00), let

/n Oy — 2)f(2)dz| .

For all a € (0,1] and f € L} . (R"), the intrinsic Littlewood—Paley g-function
9a(f), the intrinsic Lusin area function S,(f) and the intrinsic Littlewood—Paley

gx-function g3 ,(f) of f are, respectively, defined by setting, for all z € R™,

gulf)(2) = { | et or @}/

t

Ao(f)(y,t) == sup [f*6i(y)|= sup
0E€Cq (R™) 0ECq (R™)

Sel D)= {/ooo /{R e W ff}m

Bal1)e) = { [ (i) i ‘ﬁfﬂt}m-

Let 5 € (0,00). We also introduce the varying-aperture version S, g(f) of S, (f)
by setting, for all f € L1 _(R") and z € R™,

loc

and

s ={ [T e}

To obtain the boundedness of all the intrinsic Littlewood—Paley functions on
M#?(R"), we need to introduce an auxiliary function 1; and establish some tech-
nical lemmas first.

Let ¢ be a growth function with 1 < py < p; < oco. For all z € R™ and
t €10,00), let

¢(I7 t) = QD(ZL‘, t)/90<x7 1)'
Obviously, for all x € R™, ¢(z,-) is an Orlicz function and, for all ¢t € [0, 00),

(-, t) is measurable. For all z € R™ and s € [0, 00), the complementary function
of ¥ is defined by

Y(x,s) :=sup{st — (x,t)} (2.1)
>0
(see [36, Definition 13.7]). On the complementary function v, we have the fol-

lowing properties.

Lemma 2.5. Let ¢ be as in Definition 2.1 with 1 < pg < p; < 0o and 1Z as in
(2.1).
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(i) If 1 < po < p1 < 00, then there exists a positive constant C' such that, for
all x € R™,

0<d(z,1)<C.
(i) If 1 < po < p1 < o0, then {/: 1s a growth function of uniformly lower type
Py and uniformly upper type py, where 1/py+ 1/pf=1=1/p1 + 1/p].
Proof. To show (i), for all x € R", since there exist positive constants Cy, C

such that, for any t € (0,1], p(z,1) < Cip(z,t)/t? and, for any t € (1, 00),
o(z,1) < Cop(x,t)/tP, it follows that

Te 1) = su bl . _gp(a:,t)
B 1) = sup {t— (a1} p){t }

te(0,00) te(0,00 @(xa 1)
< sup {t —t"/C1} + sup {t—t"/Cy} < 1.
te(0,1] te(1,00)

Thus, (i) holds true.
To show (ii), for any A € [1,00), Cy as in the proof of (i) and [ € (0, 00),

let m := (/\LCO)F and s 1= % Without loss of generality, we may assume

Co > 1. Then, we have m € (0,1], s € (0,00) and

b ) ¢<x,mt>}
Al =z, = t—=Y(x,t); < t—
P 0= = st o < p ot S
1 ~
= Comp stli%){composmt —(z,mt)} = Compow(x’ Com™s)
AP0~
ZW@D(@-,Z),

which implies that {/; is of uniformly upper type pj. By a similar argument, we
also see that 1 is of uniformly lower type p), which completes the proof of (ii)
and hence Lemma 2.5. 0

For any ball B C R and g € L} _(R"), let

loc

ol p =t {we Oo0): — [ (w2 g yar <1},

For ¢ and zZ, we also have the following properties.

Lemma 2.6. Let C be a positive constant. Then there exists a positive constant

C such that
(i) for any ball B C R™ and p € (0,00),

w(é,n/f(“””’@) 40

implies that || f|,5 < Cu;
(ii) for any ball B C R™ and p € (0, 00),

ﬁ/ﬁ(gj%—m) o(a,1)dr < C
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implies that || f||5 5 < Cp.

The proof of Lemma 2.6 is similar to that of [20, Lemma 4.3], the details being
omitted.

Lemma 2.7. Let ¢ be a growth function with 1 < py < p; < co. Then, for any
ball B C R™ and || f||,,8 # 0, it holds true that

1 / ( |/ ()] )
N dr =
v(B,1) Jp 1 flle.5
and, for all ||f||; 5 # 0, it holds true that

L= If@) _
¢@@y4¢<ﬁwmw)@@ﬂmx_L

The proof of Lemma 2.7 is similar to that of [20, Lemma 4.2], the details being
omitted.
The following lemma is a generalized Holder inequality with respect to .

Lemma 2.8. If ¢ is a growth function as in Definition 2.1, then, for any ball
BCR" and f, g € L},.(R"),
1
5T [ @ls@iete. ) dr < 20 slal o

Proof. By (2.1), we know that, for any « € R™ and ball B C R",

) o) umn>+gﬁrﬁﬁl>¢%m

g
1 flle, l9llz 5 N fllo.m "gllz.s

which, together with Lemma 2.7, implies that

L@l e@l g < L/¢(my@”)¢x

w(B.1) Jp I fllesll9ll g5 ~ w(B.1) [ fllo.5
1 / ~ [ lg(z)|
+ Y| x, o(x,1)dx
¢(B,1) /g ( HQHJ,B
< 2.
Thus,
1
s [ @@t ds £ 11 sllal
which completes the proof of Lemma 2.8. O
The following Lemmas 2.9 and 2.10 are, respectively, [30, Lemma 2.2] and [30,
Theorem 2.7].

Lemma 2.9. (i) A;(R") C A,(R™) C A,(R") for 1 <p < ¢ < oo.
(i) If ¢ € A,(R") with p € (1,00), then there exists ¢ € (1,p) such that
v e A,(R").
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Lemma 2.10. Let py, p1 € (0,00), po < p1 and ¢ be a growth function with
uniformly lower type py and uniformly upper type p1. If 0 < py < po < p1 < p1 <
oo and T is a sublinear operator defined on Lio(,’l)(R”) + Lil(,,l)(R") satisfying
that, for i € {1,2}, all a € (0,00) and t € (0,00),

p({z €R": |Tf(2)| > a},t) < Cia™ . |f ()P o(a, t) da,

where C; is a positive constant independent of f, t and a. Then T is bounded
on L?(R™) and, moreover, there exists a positive constant C' such that, for all

f e L?(R™),
/n p(z,|Tf(z)])dr < c/Rn o(z, |f(x)]) dz.

By applying Lemmas 2.9 and 2.10, we have the following boundedness of S,
and g3, on L?(R").

Proposition 2.11. Let ¢ be a growth function with 1 < py < p; < 00, ¢ €
A, (R"), o € (0,1] and A > min{max{2, p1},3 + 2a/n}. Then there exists a
positive constant C' such that, for all f € L¥(R"™),

[ elesapani<c [ wwliw)ds

n

and

| eeganendr<c [ o) dr

Rn

Proof. For a € (0,1], p € (1,00) and w € A,(R™), it was proved in [19, Theorem
7.2] that

1Sa (A et @ny S 112y

Since ¢ € A, (R™) and py € (1,00), by Lemma 2.9(ii), there exists some py €
(1,po) such that ¢ € Az (R") and hence, for all ¢ € (0, 00), it holds true that

[ @ Petatyde s [ 1@l de 22)

On the other hand, by the fact that, for any p; € (p1,00), p(z,t) € A; (R™) C
Ay (R") (see Lemma 2.9(i)), we have

[ @it s [ 1@ tds (2.3
From (2.2), (2.3) and Lemma 2.10, we deduce that
| etasap@)des [ s 2:4)

For g3 ,, by the definition, we know that, for all z € R",

008 = [ () e 2
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+z / /|
20— 1<|z— y|<2Jt

)]” + Z 278, 05 (f) ()],
j=1
Thus, for all x € R", it holds true that
GralN)(@) S Sal (@) + Y2728, 01 (f) (). (2.5)
j=1

In [19, Exericise 6.2], Wilson proved that, for all z € R",
Saa(f)(@) S P, (f) (@),

where the implicit positive constant depends only on n and a. Hence, for all
x € R" if A > 3+ 2a/n, we have

g)\a

1+ ZT*“ ) ] Sa()(@) < Sal(f)(@),

which, together with (2.4) and the nondecreasing property of ¢(z, -) for all z € R™,
implies that

| eagiaN@)is s [ ol lf@)) iz

On the other hand, by [17, Lemmas 4.1, 4.2 and 4.3], we know that, for all
p€ (1,00), we A(R") and j € N,

180,20 (Pl ey S (27" + 27| £l gy
which, together with (2.5), implies that, if A\ > max{2, p}, then

||9§,a(f) LY (R™) N ||f
By this and Lemma 2.10, we further see that, if A > max{2, p;}, then

/n @(Lgia(f)(x)) dr < /n oz, |f(2))) da

which completes the proof of Proposition 2.11. O

|L§L(R”)'

One of the main results of this section is as follows.

Theorem 2.12. Let a € (0,1], ¢ be a growth function with 1 < py < p; < 00,
v € Ay (R™) and ¢ : (0,00) — (0,00) be nondecreasing. If there exists a positive
constant C' such that, for all r € (0,00),

[ e

then there exists a positive constant C such that, for all f € M#?(R"),

[1Sa ()| pmee@ny < CNlLfllaes mny-
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Proof. Let B := B(xg,rg) be any ball of R" where o € R™ and rg € (0, 00).
Decompose

f=1Ixe+ [X@epe = f1+ fo
Since, for any « € (0, 1], S, is sublinear, we see that, for all x € B,

Sa(f)(2) < Sa(f1)(2) + Sa(f2)(2)-
Let p:=||f|ly,28 # 0. By Proposition 2.11 and Lemma 2.7, we conclude that

From this and Lemma 2.6(i), we deduce that | Sa (f1)||¥,3 | fllo,2. Therefore,

¢(o(B, D) 1Sa(fi)lle.p S (0 (B, 1)) fllo2m

B,1
ng%ﬁj%ﬂﬂMwmwsnﬂmmey (2.6)

Next, we turn to estimate S,(f2). For any 6 € C,(R"™) and
(5,1) € T(x) == {(5,8) € R" x (0,00) : |y — 2| < t},

we have

sup |fo*0,(y)|= sup
0€Cq (R™) 0€Ca (RM)

o0

RN
<) sup

/ 0y — 2)f(2) dz| .
7 0eCa(R?) | o1 B\ 2k B

For any k € N, x € B, (y,t) € I'(z) and z € (2811 B\28B) N B(y, ), it holds true
that

2t > |z —y|+ |y — 2| > |z — 2| > |z — 20| — |T — W0| > 2" 1. (2.7)

By this, the fact that 6 € C,(R") is uniformly bounded and the Minkowski
inequality, we know that, for all x € B,

Sa(f2)(x)

/ / sup
lz—y|<t | = IHECQ(R”)

/2k+1B\2kB O:(y — 2) f(2) dz

2 gyt
_ Y
< t ”/ f(z dz}
Z {/2k 2rp /|z—y<t { 2’“+1B\2’“B‘ )1 gt }

o0

00 dr \'?
< / z)| dz </ 5 1)
k+1B\2kB Qk_QT’B t n+

o0

< )| d 2.8
~ Zl |2k+1B| /2k+lB\2kB z)| dz. (2.8)

1/2

2
] dy dt

tn—l—l

2

2
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From this and Lemma 2.8, it follows that, for all € B,

1
90('7 1)

By ¢ € A, (R") C A, (R") and Lemma 2.5, we conclude that
| ~ ([ p(2"1B,1)
S 1)d
BT oy B ) P )

S TEET s { B 1>1>] * [|2fgg\1§;)1>]%} plod)dr

1 Pl -
~ 1)d - 1] g
{|2k+1B| oy P x} prE=y=T G

Z 90 2k+lB 1)

|2k+1B| Hf”&p,2k+1B (29)

.25+ B

1 netog ,
—_— 1)d —_ D' Prde < 1.
g [ eena] o [ et s

From this and Lemma 2.6(ii), we deduce that

2k+1B 1)
|26+1 B H Sabis S L (2.10)
which, together with (2.9), further implies that, for all x € B,
- B,1
B DS 5T 5o BT @ B s
—~ 0(p(B,1))
SZ ¢<g0(2k+1B 1))HfHM¢ ¢ (R")- (211)

b
Il

1

Recall that, for r € (1,00), a weight function w is said to satisfy the reverse
Hélder inequality, denoted by w € RH,.(R™), if there exists a positive constant C'
such that, for every ball B C R",

{é/}g[w@)r dx}m < CE w(z) dz.

Since ¢(-,1) € A, (R"), we know that there exists some r € (1,00) such that
¢(-,1) € RH,(R"), which, together with [15, p.109], further implies that there

exists a positive constant C' such that, for any ball B C R™ and k£ € N,

p(2B.1) _ & ( 12°B] "
90(2k+1B 1) — |2k+1B‘ ’

By choosing jo € (=~ log C, o0) NN, we see that, for all k € N,

n(r 1)

90(2(k+1)j0B’ 1)
p(2M0B, 1)

> 2njo('f—1)/r/6 > 1,
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which further implies that
(2D B 1)
1 . > 1. 2.12
" ( ECTV RV 212
By (2.12) and the assumptions of ¢, we know that

= o(pB1) = g(p(B,1)
2 e NB, D) S 2 2 Ge(@B,1)

k=1 1=0 i=ljo+1

Jo ¢(
S 2 B OZ

= olp(B, 1)) /<> dt
— $(p(25% B, 1))

QZJOB 1

59(2(1*1)1'03,1) t
> re(290B,1) dt
SEREERN S o
IZ:; 0(2-Djo B 1) o(t)t
* 1
<1+ ¢(p(B,1 / —at< 1. 2.13
Ry T (213)
From this and (2.11), we deduce that, for all x € B,

P(p(B,1))Sa(fo) (@) S I fll aes eny- (2.14)

1 P(p(B,1))Sa(fo)(x)
©(B,1) /BSO (% £ l| pes mm) ) st

which, together with Lemma 2.6(i), further implies that

¢(o(B, D)[Sa(f2)lle.8 S 1flpee@n)-

This, combined with (2.6) and Remark 2.4(i), finishes the proof of Theorem
2.12. 0

Therefore,

For a growth function ¢ and a function ¢ : R™ x (0,00) — (0,00), the space
Mw’d’(R”) is defined by the same way as Definition 2.3, via using ¢(cp, ¢(B, 1))
instead of ¢(p(B, 1)), where cp is the center of the ball B. Then, by an argu-
ment similar to that used in the proof of Theorem 2.12, we have the following
boundedness of S, on M #?(R"), the details being omitted.

Theorem 2.13. Let a € (0,1], ¢ be a growth function with 1 < py < p; < o0,
and ¢ € Ay (R™). If there exists a positive constant C such that, for all x € R™
and 0 <r < s < o0,

1
S SOy wd dle.r) < Od(w,s),

then there exists a positive constant C such that, for all f € ]\7“%]1%”),
HSa(f)H]T/[’so,ab(Rn) < C|’fHM¢,¢(Rn)-
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For example, let ¢(z,7) := r*® for all z € R" and r € (0, 00) and
inf \(x) > 0.

z€R™

Then ¢ satisfies the assumptions of Theorem 2.13.

Observe that, for all z € R, ¢g,(f)(x) and S,(f)(x) are pointwise comparable
(see [18, p.774]), which, together with Theorem 2.12, immediately implies the
following conclusion, the details being omitted.

Corollary 2.14. Let a € (0,1], ¢ be a growth function with 1 < py < p; < 00,
w € Ay (R") and ¢ : [0,00) — [0,00) be nondecreasing. If there ezists a positive
constant C such that, for all v € (0, oo)

/ < O

then there exists a positive constant C such that, for all f € M#?(R"™),

9o ()l res@ny < Clfll peo@ny)-

Similarly, there exists a corollary similar to Corollary 2.14 of Theorem 2.13,
the details being omitted.

Theorem 2.15. Let a € (0, 1], ¢ be a growth function with 1 < pg < p; < 00, ¢ €
A, (R™) and ¢ : [0,00) — [0,00) be nondecreasing. If A > min{max{3, p1},3 +

2a/n} and there exists a positive constant C' such that, for all r € (0, 00),

> 1 1
[ POy

then there exists a positive constant C such that, for all f € M#$?(R"),

1930 ()l mes@ny < Cll fllmeo @y

Proof. Fix any ball B := B(zg,75) C R", with y € R" and rg € (0,00), and
decompose

f=1Ixe+ [X@epe = 1+ fo
Then, for all x € B,

Irna(N)(@) < 930 (f1)(2) + g3.a(f2)(@).

Similar to the estimate for f; in the proof of Theorem 2.12, by Proposition 2.11
and Lemmas 2.6(i) and 2.7, if A > min{max{2,p; },3 + 2a//n}, we have

BN S S sy S sy (219

Next, replacing f in (2.5) by f2, we know that, for all z € B,

Irna(f2) (@) S Sa(f2)(@ +22 A28, i (fo) (). (2.16)

Let k, 5 € N. For any = € B,
(y,t) € Do) := {(y,t) € R" x [0,00) : |y — x| < 27t}



236 Y. LIANG, E. NAKAI D. YANG, J. ZHANG

and z € (21 B\2*B) N B(y,t), we have
t+ 2t > —yl+y— 2| > o — 2| 2 [z — ol — & — w0 > 2" g

From this, the Minkowski inequality and the fact that 0 € C,(R") is uniformly
bounded, it follows that, for all x € B,

Sa2i(f2) ()

9 1/2
dy dt
/ / sup ([ bl
lo—y|<2it | 42 leeca(w) 2k+1B\2F B t
0o 2 1/2
n dy dt
Z{ Lo L) / e 28}
1 2k—2—irp J|z—y|<2it 2k+1B\2kB
23in/2 )| dz, 2.17
Z ‘2k+1B| 2k+1B\2kB ’ ( )

which, together Wlth Lemma 2.8, further 1mplies that, for all x € B,
=

n p(2
S(X,Qj (fQ < 23] /2 Z 2k+1B| ||f||<p,2k+1B

J72k+13

By this, (2.10) and (2.13), we ﬁnd that, for all x € B,

(p(B,1))S0 20 (fo) ( 23]”/"’Z¢ (B, )| fllp 215

' B,1))
< 23]n/2 ¢(90( -
~ kzz; ¢(§0(2k+1B 1)) ||f||M #(R")
< D2 F| o

which further implies that

yy ( 6((B, 1>>8a,2f<f2><x>> <1

¢(B,1) 232|| fll paes (mmy ~
From this and Lemma 2.6(i), we deduce that

o(o(B, ) Sa (f)llgs S 2721 fll agoreeny.

Hence,
10,2 (o) lateemny S 22| £ ll pors (e
which, together with (2.16), Remark 2.4(i) and Theorem 2.12, further implies
that there exists some 7 € (0, 1] such that, when A > 3,
.

193 a(F2) ooy S

Sa(fQ) + Z 2_j>\n/28a,2j (f2>
=1

SNSal P+ 27722 | Sas ()]

J=1
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~ ”S (f2)||M¢> ®(R") + Z 2_j7>\n/2 HSa,Qj (f2)Hj\/[<p,¢(Rn)
j=1

1+22 Jy(A=3)n/2

S oo <1y

This, combined with (2.15) and Remark 2.4(1), finishes the proof of Theorem
2.15. -

The space BMO(R™), originally introduced by John and Nirenberg [22], is
defined as the space of all locally integrable functions f such that

1
| F v = sup — / (@) — ful de < oo,
S 18],

where the supremum is taken over all balls B C R™ and fg as in (1.1). Let
b € BMO(R™). The commutators generated by b and intrinsic Littlewood—Paley
functions are defined, respectively, by setting, for all x € R,

9 1/2
b, Sa)( [// ([ ) b - 2) ) d fiff] ,
00 2 1/2
[0, 9ol (f)(2) := [ /0 L /]R [b(x) = 0@y — 2)f (2) d %]
and
.93 )(1)(2) = [ . (ﬁ)
9 1/2
dy dt
< s [ e - oy - )| G

Now we establish the boundedness of these commutators on M#?(R"). To
this end, we first recall the following well-known property of BMO(R") functions
(see, for example, [12, Corollary 6.12]).

Proposition 2.16. Assume that b € BMO(R™). Then, for any p € [1,00), there
exists a positive constant C' such that

1 1/p
sup {_/ |b(x)—bB|pdx} < Cllbllsmon),
1Bl J

BCR"®

where the supremum is taken over all balls B of R™ and bg as in (1.1) with f
replaced by b.

If a € (0,1], A > max{2, p} and b € BMO(R"), it was proved in [17, Theorem
3.1] that the commutators [b,S,] and [b, g} ,] are bounded on L% (R") for all
p € (1,00) and w € A,(R"). By this and Lemma 2.10, we have the following
boundedness of [b, S,] and [b, g5 ,] on L?(R"), whose proof is similar to that of
Proposition 2.11, the details being omitted.
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Proposition 2.17. Let ¢ be a growth function with 1 < py < p; < 00, ¢ €
A, (R™), b € BMO(R") and A > min{max{2, p1},3 + 2a/n}. Then there erists
a positive constant C such that, for all f € L¥(R"),

[ s sinei<c [ sl
and

| elebgidOede < [ s do

n

Theorem 2.18. Let o € (0,1], b € BMO(R"), ¢ be a growth function with
1 <po<p1 <00, p€Ay(R") and ¢ : [0,00) — [0,00) be nondecreasing. If
there exists a positive constant C' such that, for all r € (0, 00),

>~ 1 1
——dt < C—,
/r o)t = o(r)
then there exists a positive constant C such that, for all f € M#?(R"),

116, Sal (Nl atero@ny < CIF | ages @n)-

Proof. Without loss of generality, we may assume that ||b||gymom®n) = 1; otherwise,
we replace b by b/||b||smony. Fix any ball B := B(zg,rp) C R" for some z, € R"
and rp € (0,00) and let

f=1Ix2B+ Xepr = i+ fo

Since, for all o € (0, 1], [b, S,] is sublinear, it follows that, for all x € B,

[6, Sal(f)() < [b, Sl (f1)(@) + [b, Sal(f2) (2).
Taking p := || f||x25 # 0, by Proposition 2.17 and Lemma 2.7, we obtain

o fye () s gy [ o (n ) e
1 T
- (s

From this and Lemma 2.6(i), we deduce that |[[b, So](f1)llp.8 S || f]lp25. There-
fore,
¢(o(B, Db, Sal(fi)llo.8 S 0(0(B, ) fll o2
¢(p(B,1))
S m”ﬂww(ﬂw
S 1 ates (gn)- (2.18)

Next, we turn to estimate [b, S,|(f2). Since, for any = € B and (y,t) € I'(z),

[ ) = vy = 1)

sup
0eCo(R™)

< \b(w)—bsle (Szu(%)
cCq (R™

[ =) a:
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+ sup (2.19)

z) — bgll:(y — 2) fo(2) dz
| 1) = balaty = 2)1e)

where bp is as in (1.1) with f replaced by b, it follows that, for all z € B,
[b, Sa](f2)(2) < |b(z) — bp|Sa(f2)(2)
) 1/2
dy dt
tn+1 }

{// 053% /Rn [0(2) = bglO(y — 2) fa(2) dz

=:Ti(z) + Ly(z).
For I, (z), by (2.14), we see that, for all z € B,
o(e(B, 1))hi(z) < [b(x) = bpl|[fl| smes@n)-
By this and the fact that ¢ is of uniformly lower type py and upper type p;, we

know that
1 B. 1)1
/gp(x, P(p(B, 1)) 1(96)) i
o(B,1) J | f || pt. ey
1
S oy [ Ibe) = bl o)~ bal] ol Do (220
SD(Ba]-) B
Since p(-,1) € A, (R") C A, (R"), there exists some r € (1,00) such that
o(+,1) € RH,(R™). From this, the Holder inequality and Proposition 2.16, we
deduce that

1 1/pi
b(x Pip(x,1 dm}
o ) et )
1 (r'pi) 1/(rpi)
g el ™ ]

, 1/(r'pi)

< {—/ b(z) — bs|"™ d:c} <1, (2.21)
1B| /5
where i € {0,1}. By this, (2.20) and Lemma 2.6(i), we have

¢(e(B, D)Ille. < [1f laeeo@n): (2.22)

On the other hand, from (2.7), the Minkowski inequality and the fact that
0 € Co(R™) is uniformly bounded, it follows that, for all x € B,

Iy()
<L,
J

dy dt ) *
- bBHf | dZ:| {/ / $3n+1 }
2k+1B\2kB 2k=2p J|z—y|<t

|b(2) = barsp|| f(2)] dz

1/2

tn-‘,—l

2
] dy dt

/—/h\

/WB\MV)(Z) — bplfily — ) fa(2) dz

A
Mg

k=1

A
NE

|2k+1B| 2k+1B

T

1
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=1
+Zm|b2k+13—b3| |f(Z>|dZ
k=1

2k+1R
= Jl(I) + Jg(x)
By Lemma 2.8, we know that, for all z € B,

90 2k+lB 1
Z ||f||¢,2k+13

2k+1B| |b() - b2k+1B| (223)

1
ol

,;Z;’QkJrlB

From Lemma 2.5, it follows that

| (2B DB(E) — by
S@ B /WB”’ ( 1Bl 1) pla 1) de

<1
~ (2B, 1)

LS LR [ e o

1=0

Since ¢(+,1) € A, (R") C A, (R"), we know that
wi-) = [p(, PP € Ay (R")

for i € {0,1} (see, for example, [12, p.136]). By this, the Holder inequality and
(2.21) with p; replaced by p;, we conclude that, for i € {0, 1},

1  Te@ B, D)1 1
_ b(x) —0b Pi 1)d
ST g1~ [ Bt | et

1 i1 1 /
~— 1)d L 1) P g
[|2k+1B| 2k+lB(p(x7 ) x} {|2k+1B| 2k+lB[SO(JC7 ) x}
1

_ b(z) —b
X wz(2k+1B) lk+1B | (SU) ok+1R

P (z) de < 1

where
w; (2" B) = / w;(z) dz.
2k+1R
From this and (2.24), it follows that
1 ~ 2B 1)|b(z) — b
—/ 'l/} .:C, (ID( ’ )l ('r> 2k+1B| SO(Q:, 1) dx SJ 1’
P(21 B, 1) Jorp 251 B (x, 1)
which, together with Lemma 2.6(ii), further implies that
o(2"1 B, 1) 1
|2+ B| (1)
By this, (2.23) and (2.13), we conclude that, for all z € B,

8(e(B. ) (a sz S AP B D)l

<1. (2.25)

~Y

12;721@-%13

Hrbm -
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00 ¢ B’ 1
S2 qb(go((g’EHB,))l)) [ laeo@ny S N latee@n- (2:26)

For Jo(x), since b € BMO(R"), we have

|b2k+1B - bB’ 5 (/{7 + 1)HbHBMO(R")
By this, Lemma 2.8 and (2.10), we know that, for all x € B,

o0

1
Jo(x) S (k+ 1)m in |f(2)] d=

k=1

p(2"'B,1)

1
(k + 1) ‘2k+1B| ||f||go,2k+1B

90('7 1)

Pﬂg

k=1 $,2k+1 B

kE+1
s(o@1B ) 1 ey

LA
[M]8

k=1
From (2.12), we deduce that there exists some jy, € N such that, for all £ € N, it

holds true that 1 <1 g(%), which further implies that

»(2%30 B1) 1
k< / —ds.
(B,1) s

By this, (2.12) and the assumptions of ¢, we have
< ¢(p(B,1))

k+1
2. >¢<so<2k+lB7 D)
2jo—1 oo (k+2)jo—1
S 2 s 27 i+ 1)0(e(B, 1))
- el 2k+1B 1 L e H(p(2B.))
2jo—1 00
P(p(B,1)) P(e(B, 1))
< k41 +92y 2(k+1 .
B e Ry RE DI )¢<so<2<k+1>ﬂoB, )
= kE+1
S1+6(e(B,1)) :
,; Sp(2FHN B, 1))
— P2k B, 1)) o(2%0 B,1) t
o(2(k+1io B 1)
<1+ / (k+1)——dt
¢ (2k30 B,1) )¢(t)
2(k+t)io B 1) (20 B,1) 1
S14+oé(e / dt/ —ds
©(2%i0 B.1) t)t ©(B,1) S
p(2(k+1io B 1) t 1
S1+o(p / / —dsdt
©(2ki0 B1) t)t o(B,1) S
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N1+¢<¢(3,1))/m L/; L dsar

o(B,1) ¢(t)t (B,1) S
1 [ 1
~1+¢(p(B,1 / —/ ——dtds
(¢(5.1) o8 SJs  O(t)

o 1
S1+o(e(B,1 / ——ds S1
(#(5,1)) o(B.1) P(5)s

Thus, for all z € B,

¢(o(B, 1))Ja(x) S 1f [l mee@n)- (2.27)
Combining (2.26) and (2.27), we see that, for all x € B,

¢(o(B, D))Ia(z) S [ fllmee ey,
which further implies that

¢(0(B, D) Malle.5 S [1flaeeon).
From this and (2.22), we deduce that

o(e(B, )b, Sal(f)lle.s S 1 f lmeeny,
which, combined with (2.18), completes the proof of Theorem 2.18. O

By using an argument similar to that used in the proof of Theorem 2.18, we can
prove that [b, g3 ,] and [b, ga] are, respectively, bounded on M#?(R") as following,
the details being omitted.

Proposition 2.19. Let a € (0,1], b € BMO(R"™), ¢ be a growth function with
1 <po<p1 <oo, p€Ay(R") and ¢ : [0,00) — [0,00) be nondecreasing. If
there exists a positive constant C' such that, for all r € (0,00),

> 1 1
[ G (5}

then there exists a positive constant C such that, for all f € M#?(R"),

||[b7 ga](f)HMw(Rn) < 5Hf”/wwv¢(u§n).

Proposition 2.20. Let a € (0,1], b € BMO(R™), ¢ be a growth function with
1 <po<p1 <00, p€Ay(R") and ¢ : [0,00) — [0,00) be nondecreasing. If
there exists a positive constant C' such that, for all r € (0, 00),

> 1 1
[ st =50

and A > min{max{3, p1}, 3+ 2a/n}, then there exists a positive constant C such
that, for all f € M#?(R"),

110, 93,0l ()l oo (mmy < C~'||f||Mw(Rn)-
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Remark 2.21. In [17], Wang established the boundedness of gy, and [b, g5 ]
on weighted Morrey space ME%(R"™) with A > max{3,p}. This corresponds
to Theorem 2.15 and Proposition 2.20 in the case when ¢ is as in (1.2) with
w e A,(R™), pe (1,00) and ¢ as in Remark 2.4(ii). We point out that Theorem
2.15 and Proposition 2.20, even for this special case, also improve the range of
A > pin [17] to a wider range A > 3 + 2a/n when p > 3 + 2a/n.

3. BOUNDEDNESS OF INTRINSIC LITTLEWOOD—PALEY FUNCTIONS ON
WEIGHTED ORLICZ-MORREY SPACES

In this section, motivated by Nakai [37], we introduce the weighted Orlicz—
Morrey space M2:?(R") and establish the boundedness on M*¢(R") of intrinsic
Littlewood—Paley functions and their commutators with BMO(R™) functions.

Recall that a function ® : [0,00) — [0,00) is called a Young function (or
N-function), if it is increasing and convex, and satisfies that

®(0) =0, 111% d(t)/t =0 and tlim O(t)/t = o0

(see, for example, [15, p.436]). Obviously, any Young function is continuous
and strictly increasing, and hence bijective. The complementary function of ® is
defined by, for all r € [0, 00),

O(r) ;== sup {rs—d(s)}.

s€[0,00)

It is well known that ® is also a Young function and, for all r € (0, 00),

r< &Y r)d ' (r) < 2r (3.1)
(see, for example, [11, pp. 13-14]), where ®~! denotes the inverse function of ®.
Moreover, by Lemma 2.5(ii) with ¢(x,t) := ®(t) for all z € R" and ¢ € [0, 00),
we know that, if ® is of lower type po and upper type p; with 1 < py < p; < 00,
then ® is of lower type p} and upper type pj. In this case, ® € Ay NV, (see [11]
for the definitions of the conditions Ay and Vy). Conversely, if & € Ay NV, then

® is of lower type pg and upper type p; for some pg and p; with 1 < pg < p; < 00
(see [23, Lemma 1.3.2]).

Definition 3.1. Let ® be a Young function, ¢ : (0,00) — (0, 00) be nonincreasing
and w € Ay (R™). The weighted Orlicz—Morrey space M2*(R™) is defined by

My P (R") o= {f € Lige(R") ¢ [|fll 200z = S [|£llag.5 < 00},

where the supremum is taken over all balls B of R" and
. 1 |/ ()|
flla, ,B:—mf{,ue 0,00) : —/CID(— w(z)dr <1,.
oo 0ot L Betw@n Ju )
Here and in what follows, for any ball B of R” and w € A, (R"),
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Remark 3.2. (i) Since ® is convex, we know that [| - || /2.6 g is @ norm.
(ii) If a function ® : [0,00) — [0,00) is quasi-convex, namely, there exist a
convex function ®y and a positive constant C' such that

Oo(C1r) < B(r) < ®o(Cr) for all r € [0, 00),

then the corresponding functionals || - [|,/e.0 . and || - ||, are equivalent.
Therefore, all the results in this section also hold true for any quasi-convex func-
tion which is of lower type py and upper type p; with 1 < pg < p; < o0.

(iii) If w = 1, then M®%(R") coincides with the Orlicz—Morrey space L(®%)(R"™)
in [37] with equivalent norms.

(iv) If ¢(r) := 1/r for all v € (0, 00), then M2?(R") coincides with the weighted
Orlicz space L®(R™). In this case, ¢ satisfies the assumptions for all the theorems
in this section. Therefore, all the results in this section hold true for any LE(R")
with Young function ® of lower type py and upper type p; and w € A, (R"),
where 1 < pg < p; < 00.

(v) Even if

o(x,t) = w(z)P(t) forall z € R" and t € [0, 00), (3.2)
with ® being a Young function and w € A, (R™), M#¢(R") as in Section 2 may
not coincide with M*¢(R").

Before proving the main results of this section, we first state the following
technical lemmas whose proofs are, respectively, similar to those of Lemmas 2.6,
2.7 and 2.8, the details being omitted.

Lemma 3.3. Let ® be a Young function which is of lower type po and upper type
p1 with 0 < pg < p1 < 00 and ¢, w be as in Definition 5.1. Let C be a positive

constant. Then there exists a positive constant C' such that
(i) for any ball B of R™ and p € (0, 00),

o) ,® (5 v <0

implies that || f|le.e5 < Cu;
(ii) for any ball B of R™ and p € (0,00),

e 1,7 (U wedr <@

implies that || f[|z , 5 < Cu.

Lemma 3.4. Let ® be as in Lemma 3.3 and ¢, w as in Definition 3.1. Then,
for any ball B of R™ and || f|le.s.5 # 0, it holds true that

1 V@N)
S S S (o ALY dr =
o)y ([ fleng) o821
and, for all ||f||g 4 # 0, it holds true that

[ ML w(z)dr =
w(B)gb(w(B))/Bq)(HfHMB) (z) da = 1.
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Lemma 3.5. Let ® be as in Lemma 5.5 and ¢, w as in Definition 3.1. Then,
for any ball B of R™ and f,g € L1 .(R"),

loc

oy . M@l = <2 e olsls o

w
One of the main results of this section is as follows.

Theorem 3.6. Let o € (0,1], ® be a Young function which is of upper type p

and lower type py with 1 < py < p; < 0o, w € A, (R") and ¢ be nonincreasing.

Assume that there exists a positive constant C' such that, for all 0 < r < s < 00,

/OO @ dt < Co(r) and ¢(r)r < Co(s)s.

Then there exists a positive constant C' such that, for all f € M2¢(R™),
H‘S’a(f)HMgW(Rn) < CHfHMg@(Rn)-

Proof. Fix any ball B := B(zg,rg), with g € R” and r5 € (0,00), and decom-
pose

f=1Ixe+ [X@epe = f1+ fo
Since, for any « € (0, 1], S, is sublinear, we see that, for all x € B,

Sa()(@) < Sa(f1)(@) + Salf2) ().

Let p := || f||,6.25- From Proposition 2.11 with ¢ being as in (3.2), it follows
that

/ (S () (@)wla) dr / &(|f(x)u(z) d,

which, together with Lemma 3.4 and the fact that ¢ is decreasing, further implies
that

sy J,t () vl e

sy () o

NN — @I 2y de < WCBIEWEBE))
w(B)é(w(B)) /‘b( " ) (@) dr S = Byowim) <"

By this and Lemma 3.3(i), we have ||So(fi)lle.s.8 S ||flle.s25. Therefore,
1Sa(flleg.s S NNl pe o @ny: (3.3)
From (2.8) and Lemma 3.5, it follows that, for all x € B,

sl § 32—

k=1

[ ll&,6.20+1 5 Jw™ ‘|<’f7¢72k+13- (3.4)

By the fact that d is of uniformly lower type p| and upper type pj and the fact
that w € A, (R") C A, (R™), we know that

1 / 5 (w<2'f+1B><I>—1<¢<w<2k+lB>>>) w(z) de

w(2M1 B)p(w (21 B)) 2441 Blw(z)
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! ] L ()] d
2B fynag ] 2FB] Jpng

1 nolog o
- d - “Hdr < 1.
+{|2k+1B| G x} D=y UGS

From this and Lemma 3.3(ii), it follows that

w(21B)d " (p(w(2*!B)))
|2k+1B| ||U} 1||&>,¢,2k+1B 5 L. (35)

By this, (3.4) and (3.1), we conclude that, for all x € B,

o w 2k+1B
Sa(fo)(z) < ; 1f 17720 ey &“)_?(((b(iﬂ(gkﬂ);)))

o0

SO Mg @ny @ (G(w(2' B))). (3.6)

Recall that, by (2.12) with ¢ as in (3.2), there exists some jy, € N such that, for
all k € N,
2(k+1)jo B
1 <log u
w(2kio B)
Moreover, by this, the fact that ®~1(¢(-)) is decreasing and the assumptions of
¢, we have

oo (I+1)j0
=2 2 2ewB))
> e (G(w(2'B))) +jo D 2 (G(w(27B)))

i=1

AN

A

e’} . w(2leB)
B otw(B) + Y e owisy) [ 2

w(2(l_1)jOB) t

VR el (e(t)

< 3 (p(w(B))) + IZ / e
sorum) + [ TP a g towm), 60
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where the last inequality is deduced from the fact that
oo (I)—l t
e A ) (3.5)
(see [37, Lemma 5.3] and the proof of [37, Corollary 3.2]). From (3.6) and (3.7),
it follows that, for all z € B,

Sulf2)(@) S D (GBIl o
which further implies that

@ (—Sa(f”("””) ) < ow(B)).

HfHMngn)

Therefore,

1 Sa(f2)(2)
d dr < 1.
ST s <r|f||M5,¢(Rn)> wlede s
By this and Lemma 3.3(i), we have

1Sul s S 1l oy (39)
which, together with (3.3), completes the proof of Theorem 3.6. O

For a Young function ®, a function ¢ : R x (0,00) — (0,00) and a weight w
on R”, the space Mg’ #(R") is defined by a way same as Definition 3.1, via using
¢(cp,w(B)) instead of ¢(w(B)), where cp is the center of the ball B. Then, by an
argument similar to that used in the proof of Theorem 3.6, we have the following
boundedness of S, on Mg’ #(R™), the details being omitted.

Theorem 3.7. Let o € (0,1], ® be a Young function which is of upper type p
and lower type py with 1 < py < p1 < 00 and w € A, (R™). Assume that there

exists a positive constant C' such that, for all z € R" and 0 < r < s < o0,

/oo ¢($t,t_) dt < Co(x,r), ¢(w,5) < Co(x,r) and (z,r)r < Cé(x,s)s.

Then there exists a positive constant C such that, for all f € Mg”‘b(R”),
156 (P)I578.0@ny < ClIS 5720 gny-

For example, let ¢(z,7) := r*® for all z € R™ and r € (0,00) with —1 <
M) < 0 and sup,epn A(z) < 0. Then ¢ satisfies all the assumptions of Theorem
3.7.

Since g,(f) is pointwise comparable to S, (f), we have the following corollary
of Theorem 3.6, the details being omitted.

Corollary 3.8. Let a € (0,1], ® be a Young function which is of upper type p
and lower type py with 1 < py < p; < oo, w € A, (R") and ¢ be nonincreasing.

Assume that there exists a positive constant C' such that, for all 0 < r < s < 00,

/OO @ dt < 5¢(r) and ¢(r)r < 6’¢(5)5-



248 Y. LIANG, E. NAKAI D. YANG, J. ZHANG

Then there exists a positive constant C' such that, for all f € M2?¢(R"™),
Hga(f)HMfqu’(Rn) < CHfHMgﬁ(Rn)-

Similarly, there exists a corollary similar to Corollary 3.8 of Theorem 3.7, the
details being omitted.

Theorem 3.9. Let a € (0,1], ® be a Young function which is of upper type p
and lower type py with 1 < py < p1 < 00, w € A, (R"™) and ¢ be nonincreasing.

Assume that there exists a positive constant C' such that, for all 0 <r < s < 00,

o0 t ~ -

/ @ dt < Co(r) and ¢(r)r < Co(s)s.
If A > min{max{3, p1},3 + 2a/n}, then there exists a positive constant C such
that, for all f € M2?*(R"),
193,02 @y < ClF Il pgeo gy
Proof. For any ball B := B(xg,rg) C R" with o € R" and rg € (0,00), let
f=1Ix2B+ X@epr = fi + fo

Since, for any a € (0,1], g5, is sublinear, we know that, for all z € B,

Irna(N)(@) < 930 (f1)(2) + 930 (f2)(@).

Similar to the estimate for f; in the proof of Theorem 3.6, by Proposition 2.11
with ¢ as in (3.2), Lemma 3.4, the fact that ¢ is nonincreasing and Lemma 3.3(i),
if A > min{max{{2,p},3 4+ 2a/n}, we conclude that

1930 (FD)lle0.8 S 1F 11120 m (3.10)

To estimate fo, from (2.17), Lemma 3.5, (3.1) and (3.7), we deduce that, for

all j € Z, and x € B,
e d(w(2F 1B
Sass (@) S 2 S |l gy 3o
k=1

O (¢(w(241B)))

S22 I f gy oy @ (S(w(241B)))
k=1

<P o @ (S(w(B))). (3.11)
By this, we further see that

Soa,Zj (fg)(.l’)
’ (23j"/2\|fH

) S o(w(B)),

My (Rm)

which further implies that

- Sar(f)@) \ o
w(B)<b(w(B))/Bq) <23jn/2HfHM$’¢(Rn)> (x)dx S 1.

From this and Lemma 3.3(i), we deduce that
1Sa.25 (fo) o0 S 2721 £ 1|y oy
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By this and (3.9), we know that, if A > 3,

1930 (f2) o685 S

1+ sz()\3)n/2] Hf|’M$’¢(R") S Hf”Mff’d’(R”)’
j=1

which, combined with (3.10), completes the proof of Theorem 3.9. O

Theorem 3.10. Let a € (0,1], ® be a Young function which is of upper type py
and lower type py, 1 < py < p1 < oo with w € A, (R") and ¢ be nonincreasing.

Assume that there exists a positive constant C' such that, for all0 <r < s < o0,

/OO @ dt < 5(;5(7’) and ¢(r)r < 6"25(5)5-

If A > min{max{3, p1},3 + 2a/n}, then there ezists a positive constant C such
that, for all f € M2?*(R"),

116: 93 d (Nl a0 @y < CNFlagze @ny-

Proof. Without loss of generality, we may assume that ||b||gymom@n) = 1; otherwise,
we replace b by b/||b||mo(rn). Fix any ball B := B(xzg,rp) C R" with 2, € R"
and rp € (0,00). Let

f=TIxe+ [X@epe = 1+ fo
Since, for any « € (0, 1], [b, S,] is sublinear, we know that, for all z € B,

[0 93,0l (F) () < b, 93.6](F1)(2) + b, 93.0] (f2) (2)-
Let po:= || f|lo,¢.25. From Proposition 2.17 with ¢ as in (3.2), it follows that

[ et gl dss [ @),

n

which, combined with Lemma 3.4, further implies that

w(B)>¢1(w(B)) /BQI> ([b, giaL(fl)(x» wie) do
1 1(z
S B Lo ® (V%) wie) de
1 T
~ S BTHEN (% )l) wiz)de ~ 1

From this and Lemma 3.3(i), we further deduce that

10, 93l (D)l 06,8 S 1 lop28 S | f Il pee@ny- (3.12)
Next, we turn to estimate [b, g} ,](f2). By (2.19), we know that, for all z € B,

IS R {/ / (t+ P —zﬂ)m

? dydt
thrl

X  sup
0eCa(R™)

/ [b(z) = bslily — 2) fo(z) d=
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(z) + (z).
For any x € B, by (2.16), (3.11) and A > 3, we conclude that
Ira(f2)(@) S 2oy @7 (G(w(B))),
which further implies that, for all x € B,
1(2) S [b() = balll fl o0 @ (S(w(B))).

From this, the fact that ® is lower type po and upper type p; and (2.21) with
o(z, 1) replaced by w(x), it follows that

_ _ 1@ ) de
o(w(B))uw(B) /e (ufuan)) @

1 -1
< 1 ( e / (Ib(z) — bl @ (d(w(B)))) w(x) dx
5 /|b ) — bg|?° + |b(z) — bpP*|w(x) dr < 1.

By this and Lemma 3.3(i), we know that

Moes S N f I aee@ny- (3.13)
For II(x), we find that, for all z € B,

AL L)

) 1/2
dy dt
x [ sup / b(=) — blfu(y — 2) fo(2) dz] ’
9eCa(R?) | JRA t
¢ An
_.I_
Z{/ /23 1< |z—y| <2t (t"‘ ]a:—y])
. 1/2
dy dt
x [ up | [ b6~ bslly - 02 dz] lu
0eCa(R™) | JR"
g 2—j)\n/2 {/OO/
j; 0 Jja—y|<2it
) 1/2
dy dt
X[ sup /[b(Z)—bB]et(y—Z)ﬁ(Z)dZ] 54_1
ocCa(®n) | RN t

= 2P (x). (3.14)
j=0
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For j € Z., by the fact that 6 € C,(R™) is uniformly bounded, we know that, for
all x € B,

s [[ we-wisena] {T [ Aal”
’ ~ 2k+1B\2kB b 2k—i=2p J|z—y|<2it gt

k=1

PRI |
S P GE] fyry HO ~ allf
k=1

2k+1p

: 1
—I—23Jn/22m‘52k+13 — bg| [F(2)ldz
k=1

— H,(2) + Gy ().
For H;(x), by Lemma 3.5, we know that

% k+1 k+1
. 3jn/2 w2 B)p(w(2"'B))
Hj(x) 5 2" Z |2k+1B|
1

[6(-) = barsipl—=
2 B w()

By an argument similar to that used in the estimate for (2.25), we have

w2 B)¢(w(2'B)) 1 ¢(w(2*'B))

o () = baeorpl— <= .
215 sozn B (G(w(B))

k=1

X

B 1 llo,6,2641 5
&, 261

w()
From this, (3.1) and (3.7), it follows that, for all z € B,

H;(z) < 23jn/2’|f||M$’¢(]Rn) Z (IJ_l(gb(w(QkHB)))

k=1
S 22| £l pymo oy @ (S(w(B))). (3.15)
For G;(x), by the fact that
|bor1p — bp| S (k4 1)[|bl Mo,
Lemma 3.5 and (3.5), we conclude that, for all z € B,

[e.9]

Gy(2) <2923 (k4 1)

k=1

[f(2)|d=

|2k+1B| 2k+1B\2’“B
[es]

S22 fll oy D (R + 1T ((w (25 BY)).
k=1

By (2.12), we know that there exists some jo € N such that, for all £k € N,
w(20+1io B)
1< log | ————=—
s (*
From this, (3.8) and the fact that ®'(¢(-)) is decreasing, it follows that

o0

Y (k+ 1o (¢(w(2"'B))

k=1
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2jo—1 oo (k+2)jo—1

= (k+1D)2  (pw@B))+> . Y | (o(w(2+' B)))
k=1 k=1 i=(k+1)jo
2j0—1

<) (k+ 1) (g(w(2"B))) +2g02 (k + 1)~ (¢p(w(2+V0 BY))
k=1

S (G(w(B))) + Y (k+ 1)@ (p(w(2*PB)))

w(2(k+1)joB) dt

SO g(w(B)) + 3 (k+ DB (G B)) [ <

w(2%70 B) t

00 w(g(kJrl)joB) 1
Se B +Y 0+ ) [ 2 100)

w(2%90 B) t

o0

B w(2(k+io B) bel(gzﬁ(t)) w(2k90 B) 1
< p! B — 7 -d
S o owB) + 3 Rl
00 w(g(k+1)joB) ®_1(¢<t)) t 1
<ot B — —dsd
~ (¢(U)( ))) + kz:;/w(ijOB) t \/w(B) S st
o * 1% eT(0)
R B B
> 2 (g(s))

S 7 (o(w(B))) +

w(B) s

Thus, we find that, for all x € B,
Gj(x) S 22| fll yyo oy @ (S(w(B)))

By this, (3.15) and (3.14), together with A > 3, we see that, for all z € B,

(2) <

1+ Z 2—j()\—3)n/2] ||f||M$7¢(Rn)q)_1(¢(w(B)))v

j=1
which, combined with Lemma 3.3(i), implies that
Mllo,p,5 S 11 1720 @ny-
From this and (3.13), we deduce that
116; 93l (f2) 26,8 S [1F 1|10 2y
which, combined with (3.12), completes the proof of Theorem 3.10.

OJ

By using an argument similar to that used in the proof of Theorem 3.10, we can
prove that [b, S,] and [b, g,] are bounded, respectively, on M>¢(R") as follows,

the details being omitted.
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Proposition 3.11. Let a € (0,1], ® be a Young function which is of upper type
p1 and lower type py, 1 < po < p1 < 00, w € A, (R™) and ¢ be nonincreasing.

Assume that there exists a positive constant C such that, for all0 <r < s < oo,
oo A(t _ -
/ @ dt < Co(r) and ¢(r)r < Co(s)s.

Then there exists a positive constant C' such that, for all f € M2¢(R™),
11 Sal (M)l 2o @y < CllFppzemn

and
1[0, ga](f)”]\ﬁ’vﬁ[@n) < OHfHMg@(Rny
4. BOUNDEDNESS OF INTRINSIC LITTLEWOOD—PALEY FUNCTIONS ON

MUSIELAK—ORLICZ CAMPANATO SPACES

In this section, we establish the boundedness of intrinsic Littlewood—Paley
functions on the Musielak-Orlicz Campanato space which was introduced in [31].
We begin with recalling the notion of Musielak—Orlicz Campanato spaces.

Definition 4.1. Let ¢ be a growth function satisfying ¢ € A,(R"), p € [1,00)
and ¢ € [1,00). A locally integrable function f on R™ is said to belong to the
Musielak—Orlicz Campanato space L#1(R™), if

£l coaqmn)

q 1/q
= sup S / I7z) = 5| P (93 x5l ) dx
sere [Ixallze@n | /B | 9(@, IXBl 56 @n) ’ b

is finite, where the supremum is taken over all balls B of R™ and fp as in (1.1).

Motivated by [20], we also introduce a subspace L£(R™) of L#(R™).

Definition 4.2. Let ¢ be a growth function satisfying ¢ € A,(R™), p € [1, 00)
and ¢ € [1,00). A locally integrable function f on R" is said to belong to L£7(R™),
if

£l 22 @ny
f(x) — essinf f(y)]? v
E—— o (2. Ixsl gl ) do
Bckn ||XBlle@n | Jp | ¢(a, x5l 7o rny)

is finite, where the supremum is taken over all balls B of R".

Remark 4.3. (i) Since the growth function here is slightly different from [31]
(see Remark 2.2(i)), the Musielak—-Orlicz Campanato space here is also slightly
different from |

(i) L29(R™) C L99(R™).

Before proving the main results of this section, we need the following technical
lemma.
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Lemma 4.4. Let ¢ be a growth function satisfying ¢ € A,(R™), p € [1,00) and
q € [1,00). Then, for any ball B := B(zg,r) C R™ with xy € R™ and r € (0, 00),
f e L(R) and 5 € (max{n(L —1),0},00), there exists a positive constant C,
independent of f and B, such that

BB -
r?|B| / W) = ol 0 o maum,
R

IxBllze@n) Jan 177 [y = @o|"*7

Proof. Let B := B(xg,r) C R", with o € R" and r € (0,00), and f € L#9(R").

Write
ge T8 4 |y — $O|n+ﬁ

|f ()
Srﬁ/Brn+ﬁ+|y P dy+z /2

kB\Qk 1B
=Tp+ > I (4.1)
k=1
For Iy, by the Holder inequality, we know that
b S o [ 170 - galdy S 0 s, (42)
|B| | Bl

For any k& € N, by the Holder inequality again, we have

| forz — [ <Z|f2ﬂB_f23 15| < Z|2] 1B|/2 . — fapldy

e sz
Z S llceaen. (43)

Since ¢ € A,(R") and ¢ is of uniformly lower type py, we see that, for all j € Z,
@ (2B,277 gl k) S 27770 (2B, sl ) S 1.
which further implies that, for all j € Z,

X2 Bl Le(mr) S 2jnp/p°\|XBHL<P(R")-

By this, the Holder inequality and (4.3), we conclude that, for any k € N,

| 1w = falday < [ 180) = sl dy+ 2Bl s fa

k
QkTL% + 2kn Z 2.7”(%_1
7=1

< 2" x sl e )l £ 2oy, (4.4)

S Ixsllze@n | flleoagn)
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where s := max{1,p/po}. By (4.4) and § € (max{n(

ZI’“ < Z Qk(n+ﬂ)rn+g‘/2 |f(y) — fBldy
=1

k
k=1 B

1),0}, 00), we see that

p _
Po

(e}

n(s—1—6/n) IXB| Lo @n IxBllLe @
$ D 2t IR ey § S I lesa,
k=1

which, together with (4.1) and (4.2), completes the proof of Lemma 4.4. O

One of the main results of this section is as follows.

Theorem 4.5. Let o € (0,1], g € (1,00), ¢ be a growth function as in Definition
2.1 and p € Ay(R") with p € [1,00). Ifn(L —1) <a and p < ¢, then, for any
f € LPR™), go(f) is either infinite everywhere or finite almost everywhere and,
in the latter case, there exists a positive constant C', independent of f, such that

g0 ()

Proof. We only need to show that, for all f € L£#(R"), if there exists some
u € R™ such that g,(f)(u) < oo, then, for any ball B := B(zy,r) C R", with
o € R" and r € (0,00), and B 3 u,

{ /B [ga<f><x> ~ inf ga(f)(f)r [ (= Ixllzken )] dx}

S Ixsllre@n 1f || coamn)-

ﬁf’q(R”) S CHfHLyp,q(Rn).

1/q

To this end, for any = € B, since, for any 0 € Co(R"), [, 0(z)dz =0 and
inf ga(f)(7) < galf)(u) < 0,
we write

g0 (F)(@) — int g (1)@
r 1/2
< { [ atr- fB1xQB><x,t>]2@}

t
1/2

+ {/or[Aa([f ~ JelXamp) (. OF %}
+sup

=:Ti(z) + Ly(z) + I3(x). (4.5)
Since ¢ € A,(R") and 1 < p < ¢/, we have p € Ay (R") and

[o (-, ”XBHZi(Rn))]liq € A (R").
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From (4.3), the fact that S, is bounded on L% (R") with ¢ € (1,00) and w €
A (R™) (see [19, Theorem 7.2]) and g, (f)(x) and S,(f)(z) are pointwise compa-
rable for all x € R", it follows that

{/B[h(x)]q [90 (x, HXBHZ;(Rn))]l—q dx}l/q
: {/ [9a([f — fB]x28)(@)]* [ (x, ”XBHZ«%(M))]I_(] dx}l/q
{/ 7@) = 5" [90 (x: HXBHZ;(va)>]1_q da:}l/q
: {/23 |f(z) = fonl’ [90 (33, HX2BHZ«1>(R"))]1_ dw}l/q
! {/23 fos = Jal" [90 <x7 HXzBHZ;(R")ﬂ a d:l:}l/q
S xsllze@n 1 f | ceawny + | f2n — [B] {/QB [‘P (33, HXQBHZ;(W))T—(J dx}l/q

B 1—q 1/q
) Dy e (1+—|23| ] Jo (o sl )

S HXB”L*"(R")Hf”ﬁ%q(Rny (4.6)

To estimate I(x), since, for any z € (2B)%, z € B and t € (0,7), we have
|z — 2| > |z — 2| — |x — x| > 2r —r > t, by the fact that, for any 6 € C,(R"),
9eCa (R™)

supp ¢ C B(0, 1), we conclude that
1 T —z
7 [ o5 ve - e
t (QB)C t

Thus, for all z € B, I5(x) =0

For any z, x E B, from the Minkowski inequality and the fact that, for any
0 € Co(R™) fRn da; = 0, we deduce that

[Caweor Y | [aneor )"
»

Aa(lf = fB]X(2B)U)(x7t> = Ssup =0.

i ) 1/2
& - dt
<[ sw |9t($—2)—9t(fc—2)l\f(2)—fB!dZ] -
ro|peca(rn) Jrr 13
i ) 1/2
e dt
< / sup /|9t r—2z)— 0T —2)||f(2) — fB]dz] n
r GGCQ R™)
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1/2

2
> dt
+ / sup / ceedz| — =:J1 + Jo.
r o |6eca(®rn) JBe 13
For Jy, since 6 € C,(R™) is uniformly bounded, we have
1/2
<11 2 dt
s {/ [ 1) - fal] 7}
S {/T tznﬂ} / |f(2) — fBldz

X Bl e )

d < e g ©,q(R"). 4
S 106 = ol S EEEE f coaen (4.7

For J,, since, for all t € (r,00), 2, & € Band z € B®, we have t+|z—z| > |ro—2|
and t + |T — z| > |xg — z|, from this, the Minkowski inequality, the fact that, for

€ (0,1], € € (max{n(p/po — 1),0}, ), there exists a positive constant C' such
that, for any 6 € C,(R™), and x;, x2 € R",

16(21) = 0(x2) < Clay = 2o *[(1+ [aa[) 7"+ (L4 [2o) T (48)
(see [18, p. 775]) and Lemma 4.4, it follows that, for any =, = € B,

> 1 [z —7\“ t e
ng(/T {/Bt_( ) )
¢ n—+e Zdt 12
+ (m) ]|f(z)—f3|dz} ry
<UL w6 () -]
~1J. [N |z — 2| B t
1 /p\2 N
§/Bc|f(2)—f3|{/r 752—71(;) (|x0—z|> 7} dz

rlf(z) — [ x5 Le @
s [ DBl o Dol gy, (49)
B

|0 — 2|+ |B|

which, together with (4.7), ¢ € A, (R™) C Ay(R") and ¢(B, ||XB||Z;(Rn)) =1,
further implies that

1 1—q 1/q
{/B[Ig(:c)]q [90 (fﬁ ||XB”Z¢(R">>} dx}
, » 1—q 1/q
S ollenlilessier gy { f, o (olztes)]

S Ixsllze@m) | fll coan)- (4.10)

1/2
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Combining (4.5), (4.6) and (4.10), we know that

{/B {g‘” (@) = Inf ga(/ )@]q o (= Ixsllitn)] d:c}

S Ixsllze@ | fll coany,

1/q

which completes the proof of Theorem 4.5. 0

Corollary 4.6. Let a € (0,1], ¢ be a growth function satisfying 0 < pg < p; <1
and ¢ € A,(R™) with p € [1,00). If n(p% — 1) < a, then, for any f € LS(R"),
9a(f) is either infinite everywhere or finite almost everywhere and, in the latter
case, there exists a positive constant C, independent of f, such that

9o (f)

Proof. We only need to show that, for all f € L#1(R"), if there exists some
u € R™ such that g,(f)(u) < oo, then, for any ball B := B(xy,r) C R", with
g € R" and r € (0,00), and B 3 u,

{/B {ga“ @) - ;2£9a<f><f>] dx} < lxs o | Fllcw e

Since 0 < py < p; < 1, by [31, Theorem 2.7], we find that, for any ¢ € (1, p)
| fllzeagmny ~ || fllzermny. By this, the Hélder inequality, ¢ (B, HXBHZ;(R’I ) =
and Theorem 4.5, we have

L [ a0 - 80 00 @)]

IxBlle®n) JB

< i { [ w00 - mL a0 @] [o (o hualiten)] " )

S llzeaggny ~ I Fllcon @ny-

This finishes the proof of Corollary 4.6. 0

1/q

On S,, we have the following boundedness from L£#7(R") to L£(R").
Theorem 4.7. Let a € (0,1], ¢ € (1,00), ¢ be a growth function as in Definition
2.1 and p € Ay(R") with p € [1,00). Ifn(L —1) <a and p < ¢, then, for any

f € LPYR™), Sy(f) is either infinite everywhere or finite almost everywhere and,
in the latter case, there exists a positive constant C', independent of f, such that

||Sot(f) 29(R") < CHfHL%q(Rn)

Proof. We only need to show that, for all f € L£#(R"), if there exists some
u € R™ such that S,(f)(u) < oo, then, for all balls B := B(zo,r) C R", with
o € R" and r € (0,00), and B 3 u,

{[[ [0 5o o (- twoites)]) " or}

S Ixsllze @[ fllzea@n.
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To this end, for any = € B, since, for any 0 € C,(R™) fR" x)dxr =0 and
inf Sa(f)(7) < Sal(f)(u) < oo,

we write

Sa(f)(z) — inf Sa(f)(@)

< { / " [ A b0 }1/2
N

{//2/x L )]2tfjl}1/

([, wor )

=: 11 (z) + Ly(z) + I3(z). (4.11)

For I;(x), by using an argument similar to that used in the estimate for (4.6),

we have
{/B[Il(x)]q [90 (:zc HXBH;;(Rn))]l—q dl‘}l/q

S lIxsllze@n1fllzoa@n).- (4.12)

For I(z), x € B, noticing that, for any 6 € C,(R"), supp § C B(0,1), [x—y| <

t and t € (0,7/2), we have |y — | < 3r/2, by this, together with z € (2B), we
further see that |y — 2| > |z — x| — |20 — y| > 2r — & > ¢ and hence

Al = Iobvame) )= s N[0 (V55 1102) ol

Thus, for all z € B, Is(x) = 0.
For any z, = 6 B, from the Minkowski inequality and the fact that, for any
0 € Co(R™) fRn dx = 0, we deduce that

{//24 " " tnﬂ} {//2/|x i<t )]thjl}m
- {/T: /B(z()’t)[Aa(f)(y — 2o+, ) Cigfllt}
_ {/T: /B(mo,t)[Aa(f)(y — 20+ 7, 1)) cgit}lm

0 L dydt)'?
S{/ / |Aa(y — zo 4+ 2, t) — Ag(y — 20 + 7, t)|° tgﬂ}
r/2 J B(zo,t)

+sup
TeB
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< / / sup /|9t(y—x0—|—x—z)
r/2 J B(zo,t) |0€Ca(R™) J B

2 1/2
~ dy dt
iy — w0+ 3 — 2)|I/(2) - fB\dz] e }

2
°° dy dt
+ / / sup / s dz gﬂ
r/2 J B(wo,t) | 6€Ca(®n) JBE t

= Jl + Jg.

For Jq, since 6 € C,(R™) is uniformly bounded, by using an argument similar
to that used in the estimate for (4.7), we have

1/2

x5l

Rn
SPS 21 £l o). (4.13)

~ B
For Jy, from (4.8), we deduce that, for any z, = € B, y € B(zo,t),t € (r/2,00),
z e B and 0 € C,(R"),

|zog — 2] <3t+|y —zo+x—2|, |ro—2<3t+|y—z0+T— 2|
and hence

0y — o+ — 2) — Oy — mg + 7 — 2))]

1 [z =2\ t e t e
S - + =
~ g t t+y—xo+x— 2z t+ly—zo+7— 2|
~I\ & n—+e
o1 |z — | t |
~on t |zg — 2|

which, together with Lemma 4.4 and an argument similar to that used in the
estimate for (4.9), further implies that

IxBllLe @
Sy ) (4.14)

Combining (4.13) with (4.14), by an argument similar to that used in the
estimate for (4.10), we obtain

{/B[Ig(z)]q [90 (x, HXBHZ;(Rn)ﬂlq d;c}l/q

1 . 1—q l/q
< Mol ooz { f, o (5 ol o

S xsllze @[ fllcoa@n,
which, together with (4.11) and (4.12), completes the proof of Theorem 4.7. [

Jo S

By Theorem 4.7 and an argument similar to that used in the proof of Corollary
4.6, we can prove that S, is bounded from £#!(R") to ££(R") as follows, the
details being omitted.
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Corollary 4.8. Let a € (0, 1] and ¢ be a growth function satisfying 0 < py < p; <
1 and ¢ € A,(R™) with p € [1,00). If n(L —1) <, then, for any f € LA R™),

Sa(f) is either infinite everywhere or finite almost everywhere and, in the latter
case, there exists a positive constant C', independent of f, such that

156 (f)
Finally, we have the following boundedness of g5 , from £#4(R") to L£9(R").

Lf,l(Rn) S C”f”l:w,l(Rn).

Theorem 4.9. Let o € (0,1], ¢ € (1,00) and ¢ be a growth function as in
Definition 2.1 and ¢ € A,(R™) with p € [1,00). If n(pﬂo —1)<a,p<dq and
Ae(3+ 270‘, 00), then, for any f € LPI(R™), g5 ,(f) is either infinite everywhere
or finite almost everywhere and, in the latter case, there exists a positive constant
C, independent of f, such that

1950 (f)

Proof. We only need to show that, for all f € L£#9(R"), if there exists some
u € R™ such that g5 ,(f)(u) < oo, then, for any ball B := B(xg,r) C R", with
o € R" and r € (0,00), and B 3 u,

q 1— /g
{301 = 2 (0@ o (o olidn)] " e
S Ixsllre@m | flleea@n)-

To this end, for any z € B, since, for any 6 € Co(R"), [5, 0(z)dz = 0 and
inf 63, (F)®) < 63, (F)(w) < o0,

corny < Ol fllceamny.-

we write

Grale) - nf g1, ()@

([ [ (=) oo}
[ L (i) oy ﬁf}m
- { [ (ﬁ) [Aal P, 1) 2T }1/2 —: 1) + 11(a)

For any = € B, by the fact that, for all 0 € Co(R"), [, 0(2) dz = 0, we know
that

1) = { [ () 0= s jfiff}m
e e 1
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' t . , dy dt
< {/0 /23 (m) [Aa(f = fB)(y — 0 + 2,1)] v

> A EETEES SIE
b1 0 2k+1 B\ZkB thrl 0 g '

k=1

For Iy(z), we further have

Iy(z)

< ' + " [Aa(lf = fBlX4B)(y — 20 + @, )] diﬁt
/0 /QB (t+|~”50 3/|> !

{// (t+|:c0—y|> 4 a([f_fB]X(‘*B)“)(y_xOJFW)]?Ctlfflf

=: Ji(z) + Jo(x).
For any t € (0,7), x € B, y € 2B and z € (43)8, it holds true that

}1/2

}1/2

ly—xo+a—z >z —z—|xog—y| > |xg— 2| — |z — 20| —2r > 4r —1r —2r > t.

From this and the fact that, for any 6 € C,(R"), supp 6 € B(0,1), we deduce

that §(¥="+2=2) = 0, which further implies that Jo(x) = 0. By this,
Ji(z) < g;a([f — flxap)(x) for all z € B,

the fact that, when A € (3 + =%, 00), g3 ,, is bounded on L (R") with ¢ € (1,

o0)

and w € A,(R"), and an argument similar to that used in the estimate for (4.6),

we know that

{/B[Io(x)]q [@ (a:, ||XB||Z;(Rn)>] 1-q dx}l/q

S Ixsllze@m L f || coagny-

As for I (z), we have

[ o 531)
S -
{ 0 Jorripokp \t+ |70 — ¥

dydt)
<[Aallf = Falxarsan)(y — o + 2, 2L }

[ s )
+ -
0 Jorripokp \t+ |70 — ¥

dydr )"
x[Aa([f = fB]X(zkHB)G)(’lJ — xo + 1)) tfﬂ }

=: Hi(z) + Gg(x).

(4.15)
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By using an argument similar to that used in the estimate for Jo(z), we have
Gi(z) =0 for all z € B. Thus, if A > 3, by the fact that 6 € C,(R") is uniformly
bounded, we then see that

T t\" 1 > dyar |
= P — —|f(2) = fzld
B {/O /2k+lB\2kB (t+|l’0—y|) [lk+23 tn|f(z) fB| Z:| tn-i-l }
r n k \3n 1/2
¢ (2'r) 1
S Y dt _ d
~ {/0 (ri> t3n+1 } |:|2/€+QB| ok+2 |f(Z) fB| Z:|

kn(A—3) 1
2" — — d
2 |2k+2B‘ Lk+23 |f(Z) fB‘ 2

which, together with (4.4), A > 3 + 2% and o > n(L —1), further implies that

Shsy an(s—%wXBHﬂHmeq(Rn)
= 1]
x5 e @)
S BB g (1.16)

where s := max{p/po, 1}.
Combining (4.15) and (4.16), we know that

1/q
_ 1—
{ JH@P o o e ™)1 dx}
S lIxsllze@n L fllzoaen. (4.17)

To estimate II(x), for any =, * € B, from the Minkowski inequality and the
fact that, for any 6 € Co(R"), [, 0(x) dz = 0, we deduce that

{ I ] Gt) e ‘j,%fﬁ’f}m

- { I ] Ge) e fiﬁt}m

- {/m [ () 1t oty o) igff}m
- {/m [ ()t oy o 0 ‘jgﬁf}m
UL (), o=

IN
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9 1/2
_ dy dt
Oy — o+ T — 2)||f(2) — f3l dz] tfﬂ

An 2
* t dy dt
/ / (—) sup / yﬂ =: Ry + Ro.
v Jre \T+ |20 — beCa(Rn) J BE tn

For Ry, since 6 € C,(R™) is uniformly bounded, by an argument similar to that
used in the estimate for (4.7), we have

o0 ¢ g 2 gyat)
R; < S il _ d
= Gm) e -] 25
00 00 n 1/2
<[ ] ()
0<|zo—yl<t 5 J2i-lt<|zo—y|<2it t+ [zo — Y t

j
[/ |f(2) — [B] dz}
X Bl Le@n)

< ©,q(R")-

For Ry, from (4.8), we deduce that, forany x, ¥ € B, j € Z,,y € B(x,2't),t €
(r,00), z € BSand 6 € C,(R™), it holds true that |zo—z| < 27t +|y—zo+x— 2|+,
|zg — 2] < 27t + |y — 29 + T — z| + r and hence

0,y —x0+2 —2) — 0y —x0+ 7 — 2)|

|z — 2]\ t e t e
<— + =
~ g t t+ |y —xo+x— 2 t+y—xzo+ 77—z
I\ @ 7 n—+e
o1 |z — Z| 2t |
~on t |zg — Z|

which, together with Lemma 4.4 and an argument similar to that used in the
estimate for (4.9), further implies that

/ / <t+!xo—y!)
» {/B”in(u;a)a
* <t+|y—xi+i—z\)n+e

S/Bc|f(2)—f3\{/roo/n (m)mﬁ%eya

t )'ﬂ—l—e
t+ |y —zo+x— 2|

2
dyd
£2) — Js dz} o

1/2
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1/2

2
( t )"*6 ( ¢ )"*E dy dt
+ — dz
t+ 1y —zo+x— 2| t+y—ao+7T— 2| trtl
n
1 1 /r\2e
yonvA / ) =0
/ ‘Z 20— 1t<|zg—y|<29¢t 2 2\t
i 29 qy it ;
z
|z — 2| A
1/2
o 1 /r\2 t 2% dy dt
+ = = (%) d
/BU |f(2) — fB] {/r /:z:0y|<t £2n \ ¢ <|x0 _ z|) | <
S ! RN e BV O 7
Z 2in(A—3—2¢/n)/2 +1 {\/r tl+2a—2¢ dt} /BB ’-TD _ Z’nJre dz
| f(z) — n
R e et
B

j=1
|70 — 2|+ | B

which, together with the estimate of R, further implies that, for all z € B,

~

HXBHDP(R")
L(z) § =5 I oo

Thus, we have

1—q 1/q
{/B[H(m)]q [90 <$v ||XB||Z;(R“)>} dx} S ixslle@ml fll coa@nys

which, combined with (4.17), completes the proof of Theorem 4.9. [

By Theorem 4.9 and an argument similar to that used in the proof of Corollary
4.6, we can prove that g5 , is bounded from £#!(R") to LZ'(R") as follows, the
details being omitted.

Corollary 4.10. Let « € (0,1] and ¢ be a growth function satisfying 0 < py <
p <1 and ¢ € Ay(R™) withp € [1,00). If n(L —1) <a and X € (3+ 2 o),
then, for any f € LOY(R™), g} o(f) is either infinite everywhere or finite almost
everywhere and, in the latter case, there exists a positive constant C', independent

of f, such that
1930 (Pl 2o gny < Cllfll 2o @n).-
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