
Banach J. Math. Anal. 2 (2008), no. 2, 107–120

Banach Journal of Mathematical Analysis

ISSN: 1735-8787 (electronic)
http://www.math-analysis.org

SPECTRAL RADIUS PRESERVERS OF
PRODUCTS OF MONNEGATIVE MATRICES∗

SEAN CLARK1, CHI-KWONG LI2∗ AND LEIBA RODMAN3

This paper is dedicated to Professor Josip E. Pečarić
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Abstract. A characterization of nonlinear spectral radius preserving maps is
obtained for the usual and triple products of nonnegative matrices.

1. Introduction

Preserver problems concern the characterization of maps on matrices or oper-
ators leaving invariant a certain function, a certain subset or a certain relation.
Earlier studies focused on linear maps with these properties. The literature on
this subject is extensive; see, for example, [5, 13] and monographs [9, 10, 11]. Re-
cently, researchers have studied preservers under mild assumptions. For instance,
for a given function ν on a matrix set M with a binary operator A◦B, researchers
study maps f : M → M satisfying ν(f(A) ◦ f(B)) = ν(A ◦B) for all A, B ∈ M;
[2, 3, 14] is a small selection of recent work on the topic. There has been interest
in studying such problem when ν(A) is the spectrum, the peripheral spectrum,
the numerical radius, the spectral norm, etc. Moreover, these problems have also
been considered for in more general contexts such as functions on operator alge-
bras or uniform algebras [9, 7, 12]; the latter two papers served as a motivation
for our study of peripheral spectrum preservers.
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It is worth noting that even without the linearity assumption, the preservers
often end up to be linear and have certain “standard” or “expected” form. Even
though the statements of results look similar to those of linear preservers, re-
searchers often have to develop new techniques to solve the preserver problems
with mild assumption. In some cases, one may get unexpected preservers, which
lead to better understanding and insight to the subjects under consideration.

The purpose of this paper is to characterize preservers of the spectral radius,
spectrum and peripheral spectrum of the product or the Jordan triple product
on entrywise nonnegative matrices. We note that the literature on preservers in
the context of entrywise nonnegative matrices is meager; see [8].

The following notation will be used throughout the paper:
M+

n stands for the set of n× n real matrices with nonnegative entries.
We assume n ≥ 2 throughout.
Eij ∈ M+

n the matrix unit: 1 in the (i, j)th position and zeros everywhere else.
r(A) the spectral radius of a matrix A.
σ(A) the spectrum (the set of eigenvalues) of a matrix A.
σp(A) = σ(A) ∩ {λ ∈ C : |λ| = r(A)} the peripheral spectrum of A.
tr (A) the trace of A.
pA(t) = det (tI − A) the characteristic polynomial of A.
At the transpose of A.
diag (x1, . . . , xn) diagonal matrix with x1, . . . , xn on the diagonal (in that order)
P ⊆ M+

n the group of permutation matrices.
PD ⊆ M+

n the group of matrices of the form PD where P is a permutation
matrix and D is a diagonal matrix with positive entries on the diagonal. Note
that A ∈ M+

n has the property that A is invertible and A−1 ∈ M+
n if and only if

A ∈ PD (see, e.g., [6] for a proof).

Here is our main theorem.

Theorem 1.1. For A, B ∈ M+
n , let A ∗B denote the usual product A ∗B = AB

or the Jordan triple product A ∗ B = ABA. Then the following statements (1) -
(4) are equivalent for a surjective function f : M+

n −→ M+
n :

(1)

r(A ∗B) = r(f(A) ∗ f(B)), (A, B ∈ M+
n ). (1.1)

(2)

σp(A ∗B) = σp(f(A) ∗ f(B)), (A, B ∈ M+
n ).

(3)

σ(A ∗B) = σ(f(A) ∗ f(B)), (A, B ∈ M+
n ).

(4) There exists a matrix Q ∈ PD such that either

f(A) = Q−1AQ, (A ∈ M+
n ),

or

f(A) = Q−1AtQ, (A ∈ M+
n ).
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Note that in Theorem 1.1 the function f is not assumed to be linear or multi-
plicative a priori.

The result of Theorem 1.1 for A∗B = A+B was obtained in [6] without the sur-
jective assumption. It would be interesting to remove the surjective assumption
in Theorem 1.1. We are not able to do that at present.

Since for A ∈ M+
n we always have r(A) ∈ σp(A), the implications (3) =⇒ (2)

=⇒ (1) are trivial. Also, (4) =⇒ (3) is easy to verify. It remains to show that (1)
implies (4). We first present some preliminary and auxiliary results in Section 2.
In particular, we prove a function f : M+

n → M+
n having some special properties

on matrix units will have the nice form described in Theorem 1.1 (4). Then we
show that a function f : M+

n → M+
n satisfying Theorem 1.1 (1) will possess the

special properties on matrix units, and hence f has the form in Theorem 1.1 (4).
This is done in Sections 3 and 4 for the usual product and Jordan triple product,
respectively.

2. Preliminaries

In this section we present some known results and easy observations that will
be often used, sometimes without explicit reference, throughout the paper. We
list several well-known properties of nonnegative matrices and their spectral radii
(see, for example, [4, Theorem 8.4.5] or [1]).

The following two observations are useful when considering the triple product.

Let
√

Eij =

{
Eik + Ekj : k 6= i, j if i 6= j

Eii if i = j
for which a trivial calculation shows√

Eij
2

= Eij. Clearly our choice of the specific k in the above definition does
not matter so long as it respects our constraint in each case. Note that this
construction requires n ≥ 3, so n = 2 will be covered separately.

Since r((BA)B) = r(B(BA)) = r(B2A) = r(AB2), we will use the following
three equivalent conditions for the triple product interchangeably:

r(BAB) = r(f(B)f(A)f(B))

r(B2A) = r(f(B)2f(A))

r(AB2) = r(f(A)f(B)2).

Lemma 2.1. Let f : M+
n −→ M+

n be a map that satisfies (1.1) and is surjective.
Assume further n ≥ 3 if A ∗B is the Jordan triple product. Then f is bijective.

Proof. Since we assume surjectivity, we will prove injectivity. Suppose A, B ∈ M+
n

satisfy f(A) = f(B). For any (i, j) pair with 1 ≤ i, j ≤ n, since AEij has all
columns zero except for the jth column, and the jth column of AEij is just the

ith column of A, we have r(A
√

Eij
2
) = r(AEij) = aji. Similarly r(B

√
Eij

2
) =

r(BEij) = bji. Then by our spectral radius conditions,

aji = r(AEij) = r(f(A)f(Eij)) = r(f(B)f(Eij)) = r(BEij) = bji,

or
aji = r(f(A)f(

√
Eij

2
)) = r(f(B)f(

√
Eij)

2) = r(B
√

Eij
2
) = bji.

Thus, A = B. �
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Remark 2.2. Since f is a bijection, it is simple to observe that its inverse f−1

fulfills (1.1) if f does, i.e.,

r(f(A) ∗ f(B)) = r(A ∗B) = r(f−1(f(A)) ∗ f−1(f(B))).

The following observations will be used throughout our discussion.

Lemma 2.3. Assume that the function f : M+
n → M+

n satisfies condition (1) in
Theorem 1.1. Then:

(a) For any A ∈ M+
n we have r(A) = r(f(A)).

(b) A ∈ M+
n is nilpotent if and only if f(A) is nilpotent.

(c) If A ∈ M+
n is nilpotent, i.e., r(A) = 0, then all diagonal elements of A and

f(A) are zeros.
(d) If in addition the range of f contains a matrix with positive entries, then

A is nonzero if and only if f(A) is nonzero.

Proof. Condition (a) follows from setting A = B in (1.1). Condition (b) follows
trivially from (a).

Condition (c) follows from nilpotency and nonnegativity. A nilpotent matrix
has all zero eigenvalues, so the sum of all eigenvalues, and equivalently the trace,
is zero. Since the trace is the sum of the diagonal entries, all of which are
nonnegative, we finally obtain that the diagonal entries must all be zero. By (b),
we get the conclusion on f(A).

For condition (d), let A ∈ M+
n , and let X ∈ M+

n be the matrix with all
entries equal to 1/n. Then X2 = X, and tr (A ∗X) =

∑n
i=1

∑n
j=1 aij/n. Hence,

if A 6= 0, then tr (A ∗ X) 6= 0 and hence 0 6= r(A ∗ X) = r(f(A) ∗ f(X)). It
follows that f(A) 6= 0. Similarly, if f(A) 6= 0 and if f(Y ) = Z, where Z is a
matrix with all entries positive in the range of f , then tr (f(A) ∗ Z) 6= 0. So
0 6= r(f(A) ∗ Z) = r(A ∗ Y ) and hence A 6= 0. �

Theorem 2.4. Let f : M+
n → M+

n , n ≥ 3, be such that

r(A) = r(f(A)) (A ∈ M+
n ), (2.1)

and let N = {(i, j) : 1 ≤ i, j ≤ n}. Assume that there exist a permutation τ on
the set N and a collection of positive numbers {γij : (i, j) ∈ N} that satisfies

(1) γij = 1/γji,
(2) τ(i, j) = (p, q) ⇒ τ(j, i) = (q, p),

and f has the property that

f(
∑

(i,j)∈S

Eij) =
∑

(i,j)∈S

γijEτ(i,j)

for all S ⊆ N , S 6= ∅. Then there exists a matrix Q ∈ PD such that either

f(Eij) = Q−1EijQ, ((i, j) ∈ N ), (2.2)

or

f(Eij) = Q−1Et
ijQ, ((i, j) ∈ N ). (2.3)
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Proof. Let Fij = f(Eij) for 1 ≤ i, j ≤ n. We adjust our map f via X 7→ P tf(X)P
for a suitable permutation matrix P so that Fjj = Ejj for j = 1, . . . , n. We
proceed in 4 steps:

Step 1. We show that Fij = γijEij or Fij = Eji/γij. We may assume i 6= j. Let

Fij = γijEpq, and assume p 6= i, j. Consider A = Eij + Eji + Epp. Then clearly
r(A) = 1. But f(A) = γijEpq + Eqp/γij + Epp, and pf(A)(t) = tn − tn−1 − tn−2 =

tn−2(t2−t−1), so r(f(A)) = 1+
√

5
2

> 1 = r(A), a contradiction. Similarly, assume
q 6= i, j, and we reach the same contradiction. In view of (2.1), we cannot have
p = q. Therefore Fij = γijEij or Fij = Eji/γij.

Step 2. We show that F1j = γ1jE1j and Fj1 = Ej1/γ1j, after possible replacement
of f by a map of the form X 7→ f(X)t.

We may assume that F12 = γ12E12 and F21 = E21/γ21; otherwise, use the
map X 7→ f(X)t. Now consider A = E12 + E2j + Ej1 for 3 ≤ j ≤ n. Then
r(A) = 1 = r(f(A)). But

f(A) = F12 + F2j + Fj1 = γ12E12 + F2j + Fj1,

and if F2j = γj2Ej2 or Fj1 = γ1jE1j, then f(A) is nilpotent, and r(f(A)) = 0, a
contradiction. So Fj1 = Ej1/γ1j which gives us F1j = γ1jE1j.

Step 3. We show that Fij = γijEij and Fji = Eji/γij.

We only need to consider the case 1 < i < j ≤ n. So let A = E1i + Eij + Ej1,
and we have

f(A) = F1i + Fij + Fj1 = γ1iE1i + Fij + Ej1/γ1j.

But again, if Fij = Eji/γij then f(A) is nilpotent. But then r(A) = 1 > 0 =
r(f(A)), a contradiction. Therefore, f(Eij) = γijEij and f(Eji) = Eji/γij.

Step 4. We show γij = γ1j/γ1i.

Consider the same matrix A = E1i + Eij + Ej1, with r(A) = 1 = r(f(A)). But
f(A) = γ1iE1i + γijEij + Ej1/γ1j, so

pf(A)(t) = tn − γ1iγij/γ1jt
n−3 = tn−3(t3 − γ1iγij/γ1j).

Then

σ(f(A)) = {0, 3

√
γ1iγij/γ1j, ω

3

√
γ1iγij/γ1j, ω

2 3

√
γ1iγij/γ1j}

(zero is present only if n > 3), where ω is the primitive cubic root of 1. Since

r(f(A)) = 1, we have 3
√

γ1iγij/γ1j = 1, so γ1iγij/γ1j = 1. Our conclusion follows.

Now replace f by the map X 7→ Df(X)D−1 with D = diag (1, γ12, . . . , γ1n).
Then we have f(Eij) = Fij = Eij for all 1 ≤ i, j ≤ n. Therefore, reversing our
modifications, for Q = PD ∈ PD, then f must be of the form (2.2) or of the
form (2.3). �
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3. The usual product

This section concerns the proof of “(1) ⇒ (4)” of Theorem 1.1 for the usual
product A ∗B = AB.

For the rest of this section, we always assume that f is a bijective (cf. Lemma
2.1) map on M+

n that satisfies

r(AB) = r(f(A)f(B)), (A, B ∈ M+
n ). (3.1)

Let us now define a set of matrices useful for our proof.

Definition 3.1. For every A ∈ M+
n define F(A) = {X ∈ M+

n : r(AX) > 0}.

The next few results examine and exploit the relationships between these sets
and the bijectivity of our function to extract relationships between a matrix and
its image.

Lemma 3.2. Suppose A = [aij] ∈ M+
n , B = [bij] ∈ M+

n .

(a) If there is (i, j) pair such that bij > 0 = aij then F(B) \ F(A) is non-
empty.

(b) The inclusion F(A) ⊆ F(B) holds if and only if bij > 0 whenever aij > 0,
i.e., there is γ > 0 such that γB − A ∈ M+

n .
(c) The following two conditions are equivalent:

(c.1) F(A) = F(B).
(c.2) aij = 0 if and only if bij = 0.

Proof. (a) Let aij = 0, and bij > 0. Let X = Eji. Then

r(BX) = bij > 0 = aij = r(AX).

So X ∈ F(B) and X /∈ F(A). The result follows.

(b) The necessity follows from (a): if aij > 0 = bij, then ∃X ∈ F(A) \ F(B).
To prove the sufficiency, assume that bij > 0 whenever aij > 0. Then there is

γ > 0 such that γB − A ∈ M+
n . So γB ≥ A (entrywise inequality), and then

γBX ≥ AX and r(γBX) ≥ r(AX) for all X ∈ M+
n . (We use here the well known

monotonicity property of the spectral radius, see, e.g., [4, Theorem 8.1.18] or [1].)
Thus, for any X ∈ F(A),

r(γBX) = γr(BX) ≥ r(AX) > 0.

So r(BX) > 0, thus X ∈ F(B). It follows that F(A) ⊆ F(B).
(c) Note that F(A) = F(B) if and only if F(A) ⊆ F(B) ⊆ F(A). By (b), this

is equivalent to any one of the following conditions:

(i) bij > 0 if and only if aij > 0. (ii) bij = 0 if and only if aij = 0. �

Corollary 3.3. A matrix X ∈ M+
n has exactly k nonzero entries if and only if

there is a sequence of matrices X1, . . . , Xk, . . . Xn2 in M+
n with Xk = X such that

F(Xi) is proper non-empty subset of F(Xi+1) for i = 1, . . . , n2 − 1.

Proof. If Xk = X has exactly k nonzero entries, we can replace zero entries with
nonzero entries one at a time to get Xk+1, . . . , Xn2 . Similarly, we can replace
nonzero entries with zeros one at a time to get the required Xk−1, Xk−2, . . . , X1.
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Observe that since we only replaced k− 1 nonzero entries with zeros, X1 6= 0. So
this construction yields the desired sequence.

Conversely, if X = X1, X2, . . . , Xn2 have the described property, then X1 6= 0
because F(X1) is non-empty. Moreover, by Lemma 3.2, Xi+1 has at least one
more nonzero entry than Xi. It follows that Xi must have exactly i nonzero
entries for each i, so the result follows. �

Note that for A ∈ M+
n , we have

F(f(A)) = {X ∈ M+
n : r(f(A)X) > 0} = {X ∈ M+

n : r(Af−1(X)) > 0}
= {f(Y ) ∈ M+

n : r(AY ) > 0} = f(F(A)).

Thus, we have the following.

Lemma 3.4. If A ∈ M+
n , then F(f(A)) = f(F(A)).

Corollary 3.5. A matrix X ∈ M+
n has exactly k nonzero entries if and only if

f(X) has exactly k nonzero entries.

Proof. Let X ∈ M+
n such that X has exactly k nonzero entries. By Corollary 3.3

there exist X1, . . . , Xn2 in M+
n with Xk = X such that F(Xi) is proper non-empty

subset of F(Xi+1) for i = 1, . . . , n2 − 1. By Lemma 3.4, we have

F(f(Xi)) = f(F(Xi)) ⊆ f(F(Xi+1)) = F(f(Xi+1)),

and the inclusion is strict in view of bijectivity of f . Thus, f(X1), . . . , f(Xn2)
is a sequence satisfying Corollary 3.3. So, f(Xk) = f(X) has k nonzero entries.
Applying the above proof to f−1 in place of f (see Remark 2.2) we see that
f−1(X) has k nonzero entries. �

This concludes our direct involvement with our (3.1) sets. Now we will use our
obtained results to characterize the image of another set of useful matrices: the
matrix units.

Lemma 3.6. Let f(Eij) = Fij for 1 ≤ i, j ≤ n. Then:
(a) For i 6= j, we have Fij = γijEpq for some 1 ≤ p, q ≤ n, p 6= q, where

γij > 0.
(b) {F11, . . . , Fnn} = {E11, . . . , Enn}.
(c) If i 6= j, then

Fij = γijEpq =⇒ Fji = γ−1
ij Eqp;

thus γji = γ−1
ij .

(d) There is a permutation τ of {(i, j) : 1 ≤ i, j ≤ n} with the properties that

τ(i, j) = (p, q) =⇒ τ(j, i) = (q, p) (3.2)

and Fij = γijEτ(i,j) for all pairs (i, j), 1 ≤ i, j ≤ n (we take γii = 1 for i =
1, 2, . . . , n).

(e) For f([akl]) = [xkl], we have γijaij = xτ(i,j).
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Proof. For (a) let i 6= j. From Corollary 3.5, Fij has exactly one nonzero entry.
But r(Fij) = r(Eij) = 0, so this nonzero entry is not on the diagonal, thus
Fij = γijEpq for some positive γij, p 6= q.

For (b), by Corollary 3.5 Fij has exactly one nonzero entry for all i, j. For i = j,
since r(Fii) = r(Eii) = 1, this nonzero entry must be on the diagonal, and it must
be 1. So Fii = Epp for some p. Furthermore, since r(FiiFkk) = r(EiiEkk) = 0
for i 6= k, no two Fii’s can have the same nonzero position, so we get the desired
result.

For (c), let i 6= j. So Fij = γijEpq for some (p, q), p 6= q. Since r(FijFji) =
r(EijEji) = 1, then the nonzero entry of Fji must be in the transposed position
to the nonzero entry of Fij to get a nonzero entry on the diagonal. Furthermore,
these entries therefore must be inverse to each other. Thus Fji = Eqp/γij.

Since for (p, q) 6∈ {(i, j), (j, i)} we have

r(FijFpq) = r(EijEpq) = 0 = r(EjiEpq) = r(FjiFpq),

it is clear that no other Fpq shares its nonzero position with Fij or Fji. Then our
τ can be defined by τ(i, j) = (p, q) if Fij = γijEpq, and is bijective by our above
discussion, so it is the permutation required by (d). Property (3.2) holds in view
of (c).

Finally for (e), note that

aij = r(AEji) = r([xij]f(Eji)) = r
(
[xij]γjiEτ(j,i)

)
= r

(
[xij]γ

−1
ij Et

τ(i,j)

)
= γ−1

ij xτ(i,j)

by (d). It follows that xτ(i,j) = γijaij. �

Corollary 3.7. Let N = {(i, j) : 1 ≤ i, j ≤ n}, and let S ⊆ N , S 6= ∅. Then

f(
∑

(i,j)∈S

Eij) =
∑

(i,j)∈S

Fij.

Proof. Let A =
∑

(i,j)∈S

Eij = [aij], and f(A) = [xij].

First observe that aij = 1 if (i, j) ∈ S and aij = 0 otherwise. From (e) we
have that γijaij = xτ(i,j). Then xτ(i,j) = γij if (i, j) ∈ S and xτ(i,j) = 0 otherwise.
Representing f(A) as a combination of matrix units, we get

f(A) =
∑

(i,j)∈N

xijEij =
∑

τ(i,j)∈S

γijEτ(i,j) =
∑

(i,j)∈S

Fij.

�

We are now ready to present the proof of Theorem 1.1 for the usual product.

Proof. Recall that the bijective map f : M+
n −→ M+

n has the property (3.1). If
n = 2, then Theorem 1.1 follows easily from Lemma 3.6 and Corollary 3.7. Thus
suppose n > 2. By Lemma 3.6 and Corollary 3.7, the hypotheses of Theorem
2.4 are satisfied. Thus, either (2.2) or (2.3) holds. For f(Eij) = Q−1EijQ, define
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f̂1(A) = Qf(A)Q−1, and for f(Eij) = Q−1Et
ijQ, define f̂2(A) = f̂1(A)t. Then

f̂1, f̂2 : M+
n −→ M+

n since Q, f(A), Q−1 ∈ M+
n . Also, for all A, B ∈ M+

n ,

r(AB) = r(f(A)f(B)) = r(Qf(A)(Q−1Q)f(B)Q−1) = r(f̂1(A)f̂1(B)),

and

r(AB) = r(f̂1(A)f̂1(B)) = r(f̂1(B)tf̂1(A)t) = r(f̂2(B)f̂2(A)) = r(f̂2(A)f̂2(B)),

thus we may use our previous machinery on these functions.
Trivially, f̂1(Eij) = f̂2(Eij) = Eij. Applying Lemma 3.6 to f̂k, we have γij = 1

and τ the identity permutation. Then for A = [aij] ∈ M+
n and f̂k(A) = [xij], we

apply part (e) of that lemma to get xij = xτ(i,j) = γijaij = aij, and so f̂k(A) = A.

Thus, f(A) = Q−1f̂1(A)Q = Q−1AQ or f(A) = Q−1f̂2(A)tQ = Q−1AtQ. �

4. The Triple Product

This section concerns the proof of “(1) ⇒ (4)” of Theorem 1.1 for the Jordan
triple product A ∗B = ABA. For the rest of this section, we always assume that
the surjective map f on M+

n satisfies

r(ABA) = r(f(A)f(B)f(A)), (A, B ∈ M+
n ). (4.1)

Note that by Lemma 2.1 f is automatically bijective if n > 2.
We first treat the special case when n = 2.

Lemma 4.1. Suppose n = 2 and A ∗ B = ABA. Then the implication “(1) ⇒
(4)” of Theorem 1.1 holds.

Proof. We divide the proof into several assertions. We will use the observation
that A ∈ M+

2 is a non-zero nilpotent if and only if it has exactly one non-zero
entry at the off-diagonal position.

Assertion 1 {f(E11), f(E22)} = {E11, E22}.

To see this, let f(Eii) = [xpq]. Observe that since all diagonal entries of a
nilpotent matrix are 0, r(E2

iiN) = r(EiiN) = 0 for any nilpotent matrix N . So
for N such that f(N) = E12, we have r(f(Eii)

2E12) = r(E2
iiN) = 0. But

f(Eii)
2E12 =

(
0 x2

11 + x12x21

0 x21(x11 + x22)

)
,

so x21(x11 + x22) = 0. By similar argument, we see that x12(x11 + x22) = 0.
Assume that x11 + x22 = 0. Then

f(Eii)
2 = diag (x12x21, x12x21) = x12x21I.

But for i 6= j,

0 = r(EiiEjj) = r(f(Eii)
2f(Ejj)) = r(x12x21f(Ejj)) = x12x21r(f(Ejj)) = x12x21.

This is impossible, for then r(f(Eii)) = 0 6= 1 = r(Eii) which is a contradiction.
So we must have x21 = x12 = 0.
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Thus, f(E11) = diag (x11, x22) and f(E22) = diag (y11, y22) for some nonnega-
tive numbers x11, x22, y11, y22. But then

f(E11)
2f(E22) =

(
x2

11y11 0
0 x2

22y22

)
.

Since 0 = r(EiiEjj) = r(f(Eii)
2f(Ejj)), we have x2

11y11 + x2
22y22 = 0. Now, since

x11 +x22 > 0 and y11 +y22 > 0, f(E11) and f(E22) must have exactly one nonzero
entry on the diagonal in different positions, and that nonzero entry must be 1.
This completes the proof of Assertion 1.

Replacing f by the map X 7→ P tf(X)P for a suitable permutation matrix P ,
we may assume that f(Eii) = Eii. Additionally, up to transposition, f(E12) =(

0 γ
0 0

)
for γ ≥ 0. Observe that since Eij is nonzero, we have γ > 0. We

will assume this is the case since if it is not we can instead consider the map
X → f(X)t.

After these modifications, we can proceed to prove the following.

Assertion 2 Let A = [aij] and f(A) = [fij]. Then fii = aii.

To see this, simply consider fii = r(E2
iif(A)) = r(E2

iiA) = aii.

Assertion 3

Let X =

(
1 1
0 0

)
, Y =

(
0 0
1 1

)
. Then

f(X) = E11 + γE12 and f(Y ) = γ−1E21 + E22. (4.2)

Let f(X) = [xij], f(Y ) = [yij]. Then x11 = 1 = y22, x22 = 0 = y11 by the
previous assertion. But then

f(X)2 =

(
1 + x12x21 x12

x21 x12x21

)
, f(Y )2 =

(
y12y21 y12

y21 1 + y12y21

)
,

which gives us
0 = r(X2E22) = r(f(X)2E22) = x12x21

and
0 = r(Y 2E11) = r(f(Y )2E11) = y12y21.

Now
0 = r(X2E12) = r(f(X)2γE12) = γx21,

so x21 = 0. Similarly,

1 = r(Y 2E12) = r(f(Y )2γE12) = γy21,

so y21 = γ−1 and y12 = 0.
Finally, observe X2Y = X, so

1 = r(X2Y ) = r(f(X)2f(Y )) = r(f(X)f(Y )).

But f(X)f(Y ) =

(
γ−1x12 x12

0 0

)
, therefore, x12 = γ, giving us the desired result

(4.2).
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We can now modify our function by X → Df(X)D−1 where D = diag (γ−1, 1)
so f(X) = X and f(Y ) = Y . With this additional modification, we can complete
the proof of our lemma by proving the following.

Assertion 4 f(A) = A for all A ∈ M+
2 .

Let A = [aij] and f(A) = [xij]. Then by Assertion 2 xii = aii. Furthermore,

X2A = XA =

(
a11 + a21 a12 + a22

0 0

)
and

f(X)2f(A) = f(X)f(A) =

(
a11 + x21 x12 + a22

0 0

)
,

so
a11 + x21 = r(X2f(A)) = r(X2A) = a11 + a21,

thus a21 = x21.
Repeating the same calculation with Y yields a12 = x12. Thus aij = xij, so

f(A) = A. �

Now, we turn to the case when n > 2.

Remark 4.2. It is clear from our consideration of n = 2 that the arguments in
Section 3 are not directly extendable to the triple product. However, we shall
adapt the same approach and modify it as needed to obtain our new result for
n ≥ 3. For those results having similar proofs exhibited in Section 3, we shall
restate the results but often suppress the proof.

For every A ∈ M+
n define

F̃(A) = {X ∈ M+
n : r(AX2) > 0}.

Lemma 4.3. Suppose A = [aij], B = [bij] ∈ M+
n .

(a) If there is (i, j) pair such that bij > 0 = aij then F̃(B) \ F̃(A) 6= ∅.
(b) The inclusion F̃(A) ⊆ F̃(B) holds if and only if bij > 0 whenever aij > 0,

i.e., there is γ > 0 such that γB − A ∈ M+
n .

(c) The following two conditions are equivalent:

(c.1) F̃(A) = F̃(B).
(c.2) aij = 0 if and only if bij = 0.

Proof. (a) Let aij = 0, and bij > 0. Let X =
√

Eji. Then r(BX2) = bij > 0 =

aij = r(AX2), so X ∈ F̃(B) and X /∈ F̃(A). The result follows.
(b) The necessity follows from (a): if aij > 0 = bij, then there exists X ∈

F̃(A) \ F̃(B).
To prove the sufficiency, assume that bij > 0 whenever aij > 0. Then there

is γ > 0 such that γB − A ∈ M+
n . So γB ≥ A, so r(γBX) ≥ r(AX) for all

X ∈ M+
n . Thus, for any X ∈ F̃(A),

r(γBX2) = γr(BX2) ≥ r(AX2) > 0,

thus X ∈ F̃(B). It follows that F̃(A) ⊆ F̃(B).
Finally, (c) follows easily from (b). �
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Corollary 4.4. A matrix X ∈ M+
n has exactly k nonzero entries if and only

if there is a sequence of matrices X1, X2, . . . X = Xk, . . . , Xn2 in M+
n such that

F̃(Xi) is proper non-empty subset of F̃(Xi+1) for i = 1, . . . , n2 − 1.

Proof. Similar to that of Corollary 3.3. �

Note that for A ∈ M+
n , we have

F̃(f(A)) = {X ∈ M+
n : r(f(A)X2) > 0} = {X ∈ M+

n : r(A(f−1(X))2) > 0}
= {f(Y ) ∈ M+

n : r(AY 2) > 0} = f(F̃(A)).

So, we have the following.

Lemma 4.5. If A ∈ M+
n , then F̃(f(A)) = f(F̃(A)).

Corollary 4.6. A matrix X ∈ M+
n has exactly k nonzero entries if and only if

f(X) has exactly k nonzero entries.

Proof. Similar to that of Corollary 3.5. �

Lemma 4.7. Let f(Eij) = Fij for 1 ≤ i, j ≤ n.
(a) If i 6= j, then Fij = γijEpq for some 1 ≤ p, q ≤ n, with p 6= q and γij > 0.
(b) We have {F11, . . . , Fnn} = {E11, . . . , Enn}.
(c) There is a permutation τ of {(i, j) : 1 ≤ i, j ≤ n} such that Fij = γijEτ(i,j)

and Fji = γjiE
t
τ(i,j), for all pairs (i, j); moreover, τ satisfies the property:

τ(i, j) = (p, q) =⇒ τ(j, i) = (q, p).

(d) For f([aij]) = [xij], we have γijaij = xτ(i,j).

Proof. For (a), let i 6= j. By Corollary 4.6, Fij has exactly one nonzero entry. But
r(Fij) = r(Eij) = 0, so this nonzero entry is not on the diagonal, thus Fij = γijEpq

for some γij > 0, p 6= q.
For (b), again by Corollary 4.6 Fii has exactly one nonzero entry, and since

r(Fii) = r(Eii) = 1, this nonzero entry must be on the diagonal, and it must be
equal 1. So Fii = Epp for some p. Furthermore, since r(FiiFkk) = r(EiiEkk) = 0
for i 6= k, no two Fii’s can have the same nonzero position, so we get the desired
result.

For (c), let i 6= j. By Lemma 4.3 (a) we have that F̃(Eij) 6⊆ F̃(Eji) and vice

versa, so by Lemma 4.5 we have F̃(Fij) 6⊆ F̃(Fji). It is clear then that Fij and Fji

do not have the same nonzero position. However, consider A = Eij + Eji. Then

by our lemmas, we know that F̃(Eij) ⊆ F̃(A) and F̃(Eji) ⊆ F̃(A), so it follows

that F̃(Fij) ⊆ F̃(f(A)) and F̃(Fji) ⊆ F̃(f(A)). By Corollary 4.6, f(A) must
have exactly two nonzero entries. But by Lemma 4.3 (b), the nonzero positions
of Fij and Fji must lie in the nonzero positions of f(A), so each must occupy a
distinct nonzero position of f(A). (It is not possible for Fij and Fji to have the

same nonzero position; indeed, if they did, then we would have F̃(Fij) = F̃(Fji)
and

f(F̃(Eij)) = F̃(f(Eij)) = F̃(Fij) = F̃(Fji) = F̃(f(Eji)) = f(F̃(Eji)),
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which gives a contradiction because f is bijective and F̃(Eij) 6= F̃(Eji).) Fur-
thermore, since r(f(A)) = r(A) = 1, the nonzero positions of A must form a
cycle, and so must be transposed of each other.

Thus if Fij = γijEpq then it must be the case that Fji = γjiEqp = γjiE
t
pq. By

our previous considerations it is clear that each Fij has a unique nonzero position
(p, q) with respect to one another so we may define a bijection τ(i, j) = (p, q)
accordingly, giving us the required permutation.

Finally for (d), we temporarily return to our square roots. By Corollary 4.6, for
i 6= j we have that f(

√
Eij) has exactly two nonzero entries, so either f(

√
Eij)

2 =

0 or f(
√

Eij)
2 has exactly 1 nonzero entry (note that f(

√
Eij) is nilpotent by

Lemma 2.3). Since

r(Fjif(
√

Eij)
2) = r(Eji

√
Eij

2
) = 1,

it must be the latter case. Moreover, if Fji = γjiEτ(j,i), then it is clear that

f(
√

Eij)
2 = Eτ(i,j)/γji. Now let A = [aij] and f(A) = [xij]. Fix i 6= j, and

consider r(A
√

Eji
2
) = r(AEji) = aij and

r(A
√

Eji
2
) = r(f(A)f(

√
Eji)

2) = r([xij]Eτ(j,i)/γij) = xτ(i,j)/γij.

Therefore, xτ(i,j) = γijaij. In the case i = j,
√

Eii = Eii, so

aii = r(AEii) = r(AE2
ii) = r([xij]Fii) = r([xij]Eτ(i,i)) = xτ(i,i). �

Corollary 4.8. Let N = {(i, j) : 1 ≤ i, j ≤ n}, and let S ⊆ N , S 6= ∅. Then

f(
∑

(i,j)∈S

Eij) =
∑

(i,j)∈S

Fij.

The proof is completely analogous to that of Corollary 3.7.
We note the following equalities:

γji = 1/γij, (i, j, 1 ≤ i, j ≤ n).

Indeed, f(Eij + Eji) = Fij + Fji, so

γijγji = r(Fij + Fji) = r(Eij + Eji) = 1.

We are now ready to prove the implication “(1) ⇒ (4)” in Theorem 1.1 for the
Jordan triple product.

Proof. Recall that f : M+
n −→ M+

n has the property (4.1). Using Corollary 4.8
and Theorem 2.4, we see that f must satisfy either (2.2) or (2.3). For f(Eij) =

Q−1EijQ, define f̂1(A) = Qf(A)Q−1, and for f(Eij) = Q−1Et
ijQ, define f̂2(A) =

f̂1(A)t. Then f̂1, f̂2 : M+
n −→ M+

n since Q, f(A), Q−1 ∈ M+
n . Also, for all

A, B ∈ M+
n ,

r(AB2) = r(f(A)f(B)2) = r(Qf(A)f(B)2Q−1) = r(Qf(A)(Q−1Q)f(B)2Q−1)

= r((Qf(A)Q−1)(Qf(B)Q−1)2) = r(f̂1(A)f̂1(B)2),
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and

r(AB2) = r(f̂1(A)f̂1(B)2) = r((f̂1(B)t)2f̂1(A)t)

= r(f̂2(B)2f̂2(A)) = r(f̂2(A)f̂2(B)2).

Trivially, f̂1(Eij) = f̂2(Eij) = Eij. Applying Lemma 4.7 to f̂k we have γij = 1
and τ(i, j) = (i, j). Now the proof is completed exactly as in the case of the usual
product. �
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