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Abstract. It is well known that the quasi variational inequalities are equiva-
lent to the fixed point problems. We this equivalent alternative formulation to
discuss the existence of a solution of quasi variational inequalities under some
mild conditions. Since the quasi variational inequalities include variational in-
equalities, implicit complementarity problems and optimization problems as
special cases, results proved in this paper continue to hold these problems.
This shows that results proved in this paper can be viewed as an important
and significant improvement and refinement of the previous results.

1. Introduction

Variational inequality theory, which was introduced by Stampacchia [29] in
1964, has emerged as a fascinating and interesting branch of mathematical and
engineering sciences. The ideas and techniques of the variational inequalities are
being applied in a variety of diverse areas of sciences and proved to be productive
and innovative. It has been shown that this theory provides a simple, natural
and unified framework for a general treatment of unrelated problems, see [1]–[36]
and the references therein. These activities have motivated to generalize and
extend the variational inequalities and related optimization problems in several
directions using new and novel techniques. A useful and important generalization
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of the variational inequalities is known as quasi variational inequality with wide
range of applications in industry, finance, economics, engineering, network anal-
ysis, structural analysis, optimizations and operation research. In recent several
iterative type methods including projection, Wiener-Hopf equations, updating
the technique of solution, auxiliary principle and splitting methods for solving
variational inequalities, see, for example, Noor [17]–[20], [23, 24] and the refer-
ences therein for details. We would like to emphasize that the projection method
and its variant forms represent an important tool in the study of the existence
results and developing numerical methods for solving variational inequalities and
related optimization problems, the origin of which can be traced back to Lions and
Stampacchia [10]. The main idea in this technique is to establish the equivalence
between the variational inequalities and the fixed point problems. Essentially
using the projection technique, Noor [13] has proved that the quasi variational
inequalities are equivalent to the fixed-point problems. This alternative equiva-
lence formulation has been used to develop some numerical methods, sensitivity
analysis framework and dynamical system for quasi variational inequalities, see
[15]–[19] and the references therein. To the best of our knowledge, this approach
has not been used to discuss the existence of a solution of quasi variational in-
equalities. Inspired and motivated by the research going on this filed, we again
use the fixed point approach to discuss the existence of a solution of quasi vari-
ational inequalities under some mild conditions. As special cases, we also obtain
the existence results for the classical variational inequalities under some mild con-
ditions. In facts, results proved in this paper may be viewed as an improvement
and refinement of the previously known results.

2. Formulations and Basic Facts

Let H be a real Hilbert space, whose inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. Let K(u) be a closed and convex-valued set in H and
T : H −→ H be a nonlinear operator.

A quasi variational inequality consists in finding u ∈ K(u), such that

〈Tu, v − u〉 ≥ 0 (v ∈ K(u)). (2.1)

It is well known [1]–[10], [15]–[28] that a large class of obstacle, unilateral, contact,
free, moving, and equilibrium problems arising in economics, finance, physical,
mathematical, engineering and applied sciences can be studied in the unifying
and general framework of (2.1).

To convey an idea of the applications of the quasi variational inequalities, we
consider the second-order implicit obstacle boundary value problem of finding u
such that

−u′′ ≥ f(x) on Ω = [a, b]
u ≥ M(u) on Ω = [a, b]
[−u′′ − f(x)][u−M(u)] = 0 on Ω = [a, b]
u(a) = 0, u(b) = 0.

 (2.2)
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where f(x) is a continuous function and M(u) is the cost (obstacle) function.
The prototype encountered [2] is

M(u) = k + inf
i
{ui}. (2.3)

In (2.3), k represents the switching cost. It is positive when the unit is turned on
and equal to zero when the unit is turned off. Note that the operator M provides
the coupling between the unknowns u = (u1, u2, . . . , ui). We study the problem
(2.2) in the framework of the quasi variational inequality approach. To do so, we
first define the set K(u) as

K(u) = {v : v ∈ H1
0 (Ω) : v ≥ M(u), on Ω}, (2.4)

which is a closed convex-valued set in H1
0 (Ω), where H1

0 (Ω) is a Sobolev (Hilbert)
space. One can easily show that the energy functional associated with the problem
(2.2) is

I[v] = −
∫ b

a

(
d2v

dx2

)
vdx− 2

∫ b

a

f(x) (v) dx (v ∈ K(u))

=

∫ b

a

(
dv

dx

)2

dx− 2

∫ b

a

f(x) (v) dx (2.5)

= 〈Tv, v〉 − 2〈f, v〉

where

〈Tu, v〉 =

∫ b

a

(
d2u

dx2

)
(v) dx =

∫ b

a

du

dx

dv

dx
dx (2.6)

〈f, v〉 =

∫ b

a

f(x)(v)dx.

It is clear that the operator T defined by (2.6) is linear, symmetric and positive.
Using the technique of Noor [19, 20], one can show that the minimum of the
functional I[v] defined by (2.5) associated with the problem (2.2) on the closed
convex-valued set K(u) can be characterized by the inequality of type (2.1). See
also [1]–[29] for the formulation, applications, numerical methods and sensitivity
analysis of the quasi variational inequalities.

If K?(u) is the dual (polar) cone of the convex-valued cone K(u), then the
quasi variational inequalities (2.1) are equivalent to finding u such that

u ∈ K(u), Tu ∈ K?(u) and 〈u, Tu〉 = 0, (2.7)

which are called the quasi (implicit) complementarity problems. It is well known
that a wide class of problems arising in various branches of pure and applied
sciences can be studied via the implicit complementarity problems (2.7). For the
applications, numerical methods and physical formulation, see the references.

If the convex-valued set K(u) is independent of the solution u, that is, K(u) =
K, a closed convex set, then problem (1) is equivalent to finding u ∈ K, such that

〈Tu, v − u〉 ≥ 0 (v ∈ K), (2.8)
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which is known as the classic variational inequality introduced and studied by
Stampacchia [29] in 1964. For the state of the art in this theory; see [1]–[36].

We also need the following well-known concepts and results.

Lemma 2.1. Let K(u) be a closed convex-valued set in H. Then, for a given
z ∈ H, u ∈ K(u) satisfies the inequality

〈u− z, v − u〉 ≥ 0 (v ∈ K(u)),

if and only if

u = PK(u)z,

where PK(u) is the projection of H onto the closed convex-valued set K(u).

It is worth mentioning that the implicit projection operator PK(u) is not an
nonexpansive operator. This motivates us to consider the following assumption
on the projection operator PK(u) as:

Assumption 2.2. The projection operator PK(u) satisfies the following relation.

‖PK(u)w − PK(v)w‖ ≤ ν‖u− v‖ (v, u, w ∈ H),

where ν > 0 is a constant.

We remark that Assumption 2.2 is true for the special case,

K(x) = m(x) + K, (2.9)

which appears in many important applications [7], where m is a point-to-point
mapping and K is a closed convex set in H. It is well known that

PK(u)w = Pm(u)+Kw = m(u) + PK [w −m(u)] (w, u ∈ H). (2.10)

We remark that if the mapping m(u) is a Lipschitz continuous with constant
ν1 > 0, then, from (2.9) and (2.10), we have

‖Pm(u)Kw − Pm(v)+Kw‖ = ‖m(u)−m(v) + PK [w −m(u)]− PK [w −m(v)]‖
≤ 2‖m(u)−m(v)‖ ≤ 2ν1‖u− v‖.

This shows that the projection operator Pm(u)+K is Lipschitz continuous with
constant 2ν1 > 0. and satisfies Assumption 2.2 with ν = 2ν1.

Definition 2.3. An operator T : H → H is called µ-Lipschitzian if, there exists
a constant µ > 0, such that

||Tx− Ty|| ≤ µ||x− y|| (x, y ∈ H).

Definition 2.4. An operator T : H → H is called α-inverse strongly monotone
(or co-coercive )if, there exists a constant α > 0, such that

〈Tx− Ty, x− y〉 ≥ α||Tx− Ty||2 (x, y ∈ H).

Definition 2.5. An operator T : H → H is called r-strongly monotone if, there
exists a constant r > 0 such that

〈Tx− Ty, x− y〉 ≥ r||x− y||2 (x, y ∈ H).
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Definition 2.6. An operator T : H → H is called relaxed (γ, r)-cocoercive if,
there exists constants γ > 0, r > 0, such that

〈Tx− Ty, x− y〉 ≥ −γ||Tx− Ty||2 + r||x− y||2 (x, y ∈ H).

Remark 2.7. Clearly a r-strongly monotone operator or a γ-inverse strongly
monotone operator must be a relaxed (γ, r)-cocoercive operator, but the con-
verse is not true. Therefore the class of the relaxed (γ, r)-cocoercive operators
is the most general class, and hence Definition 2.6 includes both Definitions 2.4
and 2.5 as special cases.

Remark 2.8. From Definition 2.4, it follows that if T is α-inverse strongly mono-
tone (or co-coercive), than T is also Lipschitz continuous with constant 1

α
.

3. Main Results

In this Section, we show study the existence of a solution of the quasi variational
inequalities (2.1) under some mild conditions. For this purpose, we first of all
prove that the quasi variational inequalities are equivalent to the implicit fixed
point problem using Lemma 2.1. This result is due to Noor [13].

Lemma 3.1. The function u ∈ K(u) is a solution of the quasi variational in-
equality (2.1) if and only if u ∈ K(u) satisfies the relation

u = PK(u)[u− ρTu],

where ρ > 0 is a constant.

Lemma 3.1 implies that quasi variational inequalities and the fixed point prob-
lems are equivalent. This alternative equivalent formulation has played a signifi-
cant role in the studies of the quasi variational inequalities and related optimiza-
tion problems. We here use this equivalent formulation to prove the existence of
a solution of the quasi variational inequalities (2.1), which is the main motivation
of this paper.

Theorem 3.2. Let K(u) be a closed convex-valued subset of a Hilbert space H.
Let T be a relaxed (γ, r)-cocoercive and µ-Lipschitzian mapping of K(u) into H.
If Assumption (2.2) holds and∣∣∣∣ρ− r − γµ2

µ2

∣∣∣∣ <

√
(r − γµ2)2 − µ2(2ν − ν2)

µ2
(3.1)

r > γµ2 + µ
√

ν(2− ν), ν ∈ (0, 1), (3.2)

then there exists a solution u ∈ K(u) satisfying the quasi variational inequality
(2.1).

Proof. Let u ∈ K(u) be a solution of the quasi variational inequality (2.1). Then,
from Lemma 3.1, we have

F (u) = PK(u)[u− ρTu]. (3.3)
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Thus it is enough to show that the mapping F (u) defined by (3.3) has a fixed
point. For all u 6= v ∈ K(u), we consider

‖F (u)− F (v)‖ = ‖PK(u)[u− ρTu]− PK(v)[v − ρTv]‖
≤ ‖PK(u)[u− ρTu]− PK(v)[u− ρTu]‖

+ ‖PK(v)[u− ρTu]− PK(v)[v − ρTv]‖
≤ ν‖u− v‖+ ‖u− v − ρ(Tu− Tv)‖,

(3.4)

where we have used Assumption 2.2.
Now using the relaxed (γ, r)-cocercivity and µ-Lipschitz continuity of the op-

erator T, we have

‖u− v − ρ(Tu− Tv)‖2 = ‖u− v‖2 − 2ρ〈Tu− Tv, u− v〉+ ρ2‖Tu− Tv‖2

≤ ‖u− v‖2 − 2ρ[−γ‖Tu− Tv‖2 + r‖u− v‖2]

+ ρ2‖Tu− Tv‖2

≤ ‖u− v‖2 + 2ργµ2‖v − u‖2 − 2ρr‖u− v‖2

+ ρ2µ2‖u− v‖2

=
[
1 + 2ργµ2 − 2ρr + ρ2µ2

]
‖u− v‖2.

(3.5)

From (3.4) and (3.5), we have

‖F (u)− F (v)‖ ≤
{

ν +
√

1 + 2ργµ2 − 2ρr + ρ2µ2
}
‖u− v‖

= θ‖u− v‖,
(3.6)

where

θ = ν +
√

1 + 2ργµ2 − 2ρr + ρ2µ2. (3.7)

From (3.1) and (3.2), it follows that θ < 1. This shows that the mapping F (u)
defined by (3.3) is a contraction mapping and consequently has a fixed point
u ∈ K(u) satisfying the quasi variational inequality (2.1). �

If the convex-value set K(u) is independent of the solution u, that is, K(u) = K,
a closed convex set in H, then Theorem 3.2 reduces to the following uniqueness
and existence result for the classical variational inequalities (2.8) and appears to
a be new one.

Theorem 3.3. Let K be a closed convex subset of a Hilbert space H. Let T be a
relaxed (γ, r)-cocoercive and µ-Lipschitzian mapping of K(u) into H. If

ρ < 2
r − γµ2

µ2
, r > γµ2,

then there exists a unique solution u ∈ K satisfying the variational inequality
(2.8).

Proof. Uniqueness. Let u1 6= u2 ∈ K be two solutions of the variational
inequality (2.8). Then

〈Tu1, v − u1〉 ≥ 0 (v ∈ K) (3.8)
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〈Tu2, v − u2〉 ≥ 0 (v ∈ K). (3.9)

Taking v = u2 in (3.8) and v = u1 in (3.9) and adding the resultant, we have

〈Tu1 − Tu2, u1 − u2〉 ≤ 0. (3.10)

Using the relaxed γ, r), of the operator T, and from (3.10), we have

(r − γµ2)‖u1 − u2‖2 ≤ 〈Tu1 − Tu2, u1, u2〉 ≤ 0,

from which it follows that, since r > γµ2,

‖Tu1 − Tu2‖2 ≤ 0.

This is impossible. Thus, we have u1 = u2, the uniqueness of the solution.

Existence. Its proof follows from Theorem 3.2. �

We now consider the existence of a solution of the quasi variational inequalities
under the inverse strongly monotone operator T and this is the main motivation
of our next result.

Theorem 3.4. Let K(u) be closed convex-valued set in H. Let the operator T be
inverse strongly monotone with constant α > 0. If Assumption 2.2 holds and

|ρ− α| < α
√

1− ν(2− ν) (ν ∈ (0, 1)), (3.11)

then there exists a solution u ∈ K(u) satisfying the quasi variational inequality
(2.1).

Proof. Let u ∈ K(u) be a solution of (2.1). Then, using Lemma 3.1, (2.1) is
equivalent to solving the fixed point problem (3.3). Then, for u ∈ K(u), and
using the Assumption 2.2, we have (3.4).

Using the inverse strongly monotonicity of the operator T and from Remark
2.2, we have

‖u− vρ(Tu− Tv)‖2 = ‖u− v‖2 + ρ2‖Tu− Tv‖2 − 2ρ〈Tu− Tv, u− v〉
≤ ‖u− v‖2 + ρ2‖Tu− Tv‖2 − 2ρα‖Tu− Tv‖2

= ‖u− v‖2 + (ρ2 − 2ρα)‖Tu− Tv‖2

≤ ‖u− v‖2 +

(
ρ2 − 2ρα

α2

)
‖u− v‖2

=

(
1 +

ρ2 − 2ρα

α2

)
‖u− v‖2.

(3.12)

From (3.4) and (3.12), we have

‖F (u)− F (v)‖ ≤

{
ν +

√
1 +

ρ2 − 2ρα

α2

}
‖u− v‖

= θ1‖u− v‖,
where

θ1 = ν +

√
1 +

ρ2 − 2ρα

α2
.
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From (3.11), it follows that θ1 < 1. Thus the mapping F (u) defined by (3.3) is
a contraction mapping and consequently has fixed-point u ∈ K(u) satisfying the
quasi variational inequality (2.1). �

If the closed convex-valued set K(u) is independent of the solutionu, that is,
K(u) = K, then Theorem 3.4 collapses to the following result for the classical
variational inequality (2.8) and appears to be a new one.

Theorem 3.5. Let K be a closed convex set in H and let the operator T be
inverse strongly monotone with constant α > 0. If ρ ⊂ (0, 2α), then there exists
a unique solution u ∈ K satisfying the variational inequality (2.8).
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