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HYPERCYCLIC ABELIAN SEMIGROUPS
OF AFFINE MAPS ON Cn
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Communicated by P. K. Sahoo

Abstract. We give a characterization of hypercyclic abelian semigroup G of
affine maps on Cn. If G is finitely generated, this characterization is explicit.
We prove in particular that no abelian group generated by n affine maps on
Cn has a dense orbit.

1. Introduction

Let Mn(C) be the set of all square matrices of order n ≥ 1 with entries in C and
GL(n, C) be the group of all invertible matrices of Mn(C). A map f : Cn −→ Cn

is called an affine map if there exist A ∈ Mn(C) and a ∈ Cn such that f(x) =
Ax+a, x ∈ Cn. We denote f = (A, a), we call A the linear part of f . The map f
is invertible if A ∈ GL(n, C). Denote by MA(n, C) the vector space of all affine
maps on Cn and GA(n, C) the group of all invertible affine maps of MA(n, C).

Let G be an abelian affine sub-semigroup of MA(n, C). For a vector v ∈ Cn,
we consider the orbit of G through v: G(v) = {f(v) : f ∈ G} ⊂ Cn. Denote by E
the closure of a subset E ⊂ Cn. The group G is called hypercyclic if there exists
a vector v ∈ Cn such that G(v) = Cn. For an account of results and bibliography
on hypercyclicity, we refer to the books [7] and [13].

The notion of hypercyclicity was investigated by many authors. More specific
questions which arise naturally is to characterize this property for special types
of matrices. N.S. Feldman proves in [12], that there are hypercyclic semigroup
generated by (n + 1) diagonal matrices on Cn and that there are no hypercyclic
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semigroup generated by n diagonalizable matrices on Cn. In [9], G. Costakis,
D. Hadjiloucas and A. Manoussos prove that for every positive integer n = 2
there exist A1, . . . , An of n×n non-(simultaneously) diagonalizable matrices over
R generating an abelian hypercyclic semigroup. C.Costakis and I.Parissis prove
in [11], that the minimum number of n×n matrices in Jordan form over R which
generating an abelian hypercyclic semigroup is n + 1. In [15], M.Javaheri con-
structs an explicit example of a 2-generator dense subsemigroup of 2 × 2 real
matrices, and in [16], he proves that in both real and complex cases, there exists
a pair of matrices that generates a dense subsemigroup of the set of n× n matri-
ces. Moreover, he gives in [14], some examples of n × n matrices A and B over
the filed K = R or C such that for almost every x ∈ Kn, the orbit of x under the
action of the semigroup generated by A and B is dense in Kn. S.Shkarin proves
in [19], that the minimal number of matrices generating an abelian hypercyclic

semigroup on Cn (respectively, on Rn ) is n+1 ( respectively, n
2
+ 5+(−1)n

4
). H.Abel

and A.Manoussos bring together in [2], some results about the density of sub-
semigroups of abelian Lie groups, the minimal number of topological generators
of abelian Lie groups and a result about actions of algebraic groups. In [10], G.
Costakis, D. Hadjiloucas and A. Manoussos give some results of locally hyper-
cyclic abelian semigroup.

In this paper we will explore these notions to abelian semigroup affine.

We let C∗ = C\{0}, R∗ = R\{0} and N0 = N\{0}. Let n ∈ N0 be fixed, denote
by:
• B0 = (e1, . . . , en+1) the canonical basis of Cn+1 and In+1 the identity matrix of
GL(n + 1, C).
For each m = 1, 2, . . . , n + 1, denote by:
• Tm(C) the set of matrices over C of the form

µ 0
a2,1 µ

...
. . . . . .

am,1 . . . am,m−1 µ

 (1.1)

Let r ∈ N and η = (n1, . . . , nr) ∈ Nr
0 such that n1 + · · · + nr = n + 1. In

particular, r ≤ n + 1. Write
• Kη,r(C) := Tn1(C) ⊕ · · · ⊕ Tnr(C). In particular if r = 1, then Kη,1(C) =
Tn+1(C) and η = (n + 1).
• exp : Mn+1(C) −→ GL(n+1, C) is the matrix exponential map; set exp(M) =
eM , M ∈ Mn+1(C).
• Define the map Φ : GA(n, C) −→ GL(n + 1, C)

f = (A, a) 7−→
[
1 0
a A

]
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We have the following composition formula[
1 0
a A

] [
1 0
b B

]
=

[
1 0

Ab + a AB

]
.

Then Φ is an injective homomorphism of groups. It is continuous and it forms a
bijection unto its image. Write
• G = Φ(G), it is an abelian sub-semigroup of GL(n + 1, C).
• Define the map Ψ : MA(n, C) −→ Mn+1(C)

f = (A, a) 7−→
[
0 0
a A

]
We can see that Ψ is injective and linear. Hence Ψ(MA(n, C)) is a vector subspace
of Mn+1(C). We prove (see Lemma 2.5) that Φ and Ψ are related by the following
property

exp(Ψ(MA(n, C))) = Φ(GA(n, C)).

Let consider the normal form of G: By Proposition 2.2, there exists a P ∈
Φ(GA(n, C)) and a partition η of (n + 1) such that G′ = P−1GP ⊂ Kη,r(C) ∩
Φ(MA(n, C)). For such a choice of matrix P , we let
• g = exp−1(G) ∩ (P (Kη,r(C))P−1). If G ⊂ K∗

η,r(C), we have P = In+1 and

g = exp−1(G) ∩ Kη,r(C).
• q = Ψ−1(g∩Ψ(MA(n, C))) ⊂ MA(n, C). Then q is an additive sub-semigroup of
MA(n, C) and we have Ψ(q) = g1. By Corollary 2.9, we have exp(Ψ(q)) = Φ(G).
• qv = {f(v), f ∈ q} ⊂ Cn, v ∈ Cn.

For groups of affine maps on Kn (K = R or C), their dynamics were recently
initiated for some classes in different point of view, (see for instance, [17], [18],
[8], [6]). The purpose here is to give analogous results as for linear abelian sub-
semigroup of GL(n, C) [4, Theorem 1.1].

Our main results are the following:

Theorem 1.1. Let G be an abelian sub-semigroup of MA(n, C). Then the fol-
lowing are equivalent:

(i) G is hypercyclic.
(ii) the orbit G(w0) is dense in Cn.
(iii) qw0 is an additive sub-semigroup dense in Cn.

Where w0 is a particular point in Cn, defined in section 3 and has a form related
to G.

For a vector v ∈ Cn, we write v = Re(v) + iIm(v) where Re(v) and Im(v) ∈ Rn.
The next result can be stated as follows:

Theorem 1.2. Let G be an abelian sub-semigroup of MA(n, C) and let f1, . . . , fp ∈
G generating G∗ and let f ′1, . . . , f

′
p ∈ q be such that eΨ(f ′

1) = Φ(f1), . . . , e
Ψ(f ′

p) =
Φ(fp). Then the following are equivalent:
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(i) G is hypercyclic.

(ii) qw0 =


p∑

k=1

Nf ′k(w0) + 2iπ
r∑

k=2

Z(p2(Pe(k))), if r ≥ 2

p∑
k=1

Nf ′k(w0), if r = 1

is an additive sub-semigroup dense in Cn. (The projection p2 and the
vectors e(k) are defined in the section 3).

Corollary 1.3. Let G be an abelian sub-semigroup of MA(n, C) and G = Φ(G).
Let P ∈ Φ(GA(n, C)) such that P−1GP ⊂ Kη,r(C) where 1 ≤ r ≤ n + 1 and
η = (n1, . . . , nr) ∈ Nr

0. If G is generated by 2n − r + 1 commuting invertible
affine maps, then it has no dense orbit.

Corollary 1.4. Let G be an abelian sub-semigroup of MA(n, C). If G is generated
by n commuting invertible affine maps, then it has no dense orbit.

2. Normal form of abelian affine groups

The concept of a normal form of linear abelian groups was introduced in [4],
by A.Ayadi and H.Marzougui which was generalized in [5], to the abelian linear
semigroups. In [3], A.Ayadi gave the following normal form for any abelian
group of affine maps of Cn. Let r ∈ N and η = (n1, . . . , nr) ∈ Nr

0 such that
n1 + · · ·+ nr = n + 1.

Proposition 2.1. [5] Let G′ be an abelian sub-semigroup of Mm(C), m ≥
1. Then there exists P ∈ GL(m, C) such that P−1G′P is a sub-semigroup of
Kη′,r′(C), for some r′ ≤ m and η′ = (n′1, . . . , n

′
r′) ∈ Nr′

0 .

Denote by K∗
η,r(C) := Kη,r(C) ∩GL(n + 1, C).

Proposition 2.2. [3, Proposition 2.1] Let G be an abelian subgroup of GA(n, C)
and G = Φ(G). Then there exists P ∈ Φ(GA(n, C)) such that P−1GP is a
subgroup of K∗

η,r(C)∩Φ(GA(n, C)), for some r ≤ n+1 and η = (n1, . . . , nr) ∈ Nr
0.

A more computational version of Proposition 2.2 for the semigroup case, is the
following:

Proposition 2.3. Let G be an abelian sub-semigroup of MA(n, C) and G =
Φ(G). Then there exists P ∈ Φ(GA(n, C)) such that P−1GP is a subgroup of
K∗

η,r(C) ∩ Φ(GA(n, C)), for some r ≤ n + 1 and η = (n1, . . . , nr) ∈ Nr
0.

Proof. Suppose first, G ⊂ GL(n + 1, C). Let Ĝ be the group generated by G.

Then Ĝ is abelian and by Proposition 2.2, there exists a P ∈ Φ(GA(n, C)) such

that P−1ĜP is an abelian subgroup of K∗
η,r(C), for some r ∈ {1, . . . , n + 1} and

η ∈ (N0)
r. In particular, P−1GP ⊂ K∗

η,r(C).
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Suppose now, G ⊂ Mn+1(C). For every A ∈ G, there exists λA ∈ C such that

(A− λAIn+1) ∈ GL(n + 1, C) (one can take λA non eigenvalue of A). Write L̂ be

the group generated by L := {A− λAIn+1 : A ∈ G}. Then L̂ is an abelian sub-
semigroup of GL(n+1, C). Hence by above, there exists a P ∈ Φ(GA(n, C)) such

that P−1L̂P ⊂ K∗
η,r(C), for some η ∈ (N0)

r. As

P−1LP =
{
P−1AP − λAIn+1 : A ∈ G

}
then P−1GP ⊂ Kη,r(C). This proves the proposition. �

The group G′ = P−1GP is called the normal form of G. Since P ∈ Φ(GA(n, C))
and G ⊂ Φ(MA(n, C)) then G′ ⊂ Φ(MA(n, C)). As Φ is an injective homomor-
phism, G ′ := Φ−1(G′) is an abelian semigroup of MA(n, C) which is called the
normal form of G.

The proof of Theorem 1.1 is broken up into a series of lemmata.

Lemma 2.4. [4, Proposition 3.2] exp(Kη,r(C)) = K∗
η,r(C).

Lemma 2.5. [3, Lemma 2.8] exp(Ψ(MA(n, C)) = GA(n, C).

Lemma 2.6. [3, Lemma 2.9] If N ∈ PKη,r(C)P−1 such that eN ∈ Φ(GA(n, C)),
then there exists k ∈ Z such that N − 2ikπIn+1 ∈ Ψ(MA(n, C)).

Denote by G∗ = G ∩GL(n + 1, C).

Lemma 2.7. [4, Lemma 4.2] One has exp(g) = G∗.

Denote by:
• g1 = g ∩ Ψ(MA(n, C)). It is an additive sub-semigroup of Mn+1(C) (because
by Lemma 3.2, g is an additive sub-semigroup of Mn+1(C)).
• g1

u = {Bu : B ∈ g1} ⊂ Cn+1, u ∈ Cn+1.

Corollary 2.8. [3, Corollary 2.11] Let G = Φ(G). We have g = g1 + 2iπZIn+1.

We let G∗ = G ∩GA(n, C).

Corollary 2.9. We have exp(Ψ(q)) = Φ(G∗).

Proof. By Lemmas 2.7 and 2.8, We have G = exp(g) = exp(g1 + 2iπZIn+1) =
exp(g1). Since g1 = Ψ(q), we get exp(Ψ(q)) = Φ(G). �
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3. Proof of Theorem 1.1

Let G̃ be the semigroup generated by G and CIn+1 = {λIn+1 : λ ∈ C}.
Then G̃ is an abelian sub-semigroup of GL(n + 1, C). By Proposition 2.2, there
exists P ∈ Φ(GA(n, C)) such that P−1GP is a sub-semigroup of K∗

η,r(C) for some

r ≤ n + 1 and η = (n1, . . . , nr) ∈ Nr
0 and this also implies that P−1G̃P is a

sub-semigroup of K∗
η,r(C). Set g̃ = exp−1(G̃)∩ (PKη,r(C)P−1) and g̃v0 = {Bv0 :

B ∈ g̃}. Denote by:
• u0 = (e1,1, . . . , er,1) ∈ Cn+1 where ek,1 = (1, 0, . . . , 0) ∈ Cnk , for k = 1, . . . , r.
So u0 ∈ {1} × Cn.
• p2 : C × Cn −→ Cn the second projection defined by p2(x1, . . . , xn+1) =
(x2, . . . , xn+1).

• e(k) = (e
(k)
1 , . . . , e

(k)
r ) ∈ Cn+1 where

e
(k)
j =

{
0 ∈ Cnj if j 6= k
ek,1 if j = k

for every 1 ≤ j, k ≤ r.

• v0 = Pu0. So v0 ∈ {1} × Cn, since P ∈ Φ(GA(n, C)).
• w0 = p2(v0) ∈ Cn. We have v0 = (1, w0).
Since P ∈ Φ(GA(n, C)), we have Pu0 = v0 ∈ {1} × Cn. Then we have the

following theorem, applied to G̃:

Theorem 3.1. [5, Theorem 1.1] Under the notations above, the following prop-
erties are equivalent:

(i) G̃ has a dense orbit in Cn+1.

(ii) the orbit G̃(v0) is dense in Cn+1.
(iii) g̃v0 is an additive sub-semigroup dense in Cn+1.

Lemma 3.2. [4, Lemma 4.1] The sets g and g̃ are additive subgroups of Mn+1(C).
In particular, gv0 and g̃v0 are additive subgroups of Cn+1.

Recall that g1 = g ∩Ψ(MA(n, C)) and q = Ψ−1(g1) ⊂ MA(n, C).

Lemma 3.3. Under the notations above, one has:

(i) g̃ = g1 + CIn+1.
(ii) {0} × qw0 = g1

v0
.

Proof. (i) Let B ∈ g̃, then eB ∈ G̃. One can write eB = λA for some λ ∈
C∗ and A ∈ G. Let µ ∈ C such that eµ = λ, then eB−µIn+1 = A. Since
B − µIn+1 ∈ PKη,r(C)P−1, so B − µIn+1 ∈ exp−1(G) ∩ PKη,r(C)P−1 = g. By
Corollary 2.8, there exists k ∈ Z such that B′ := B − µIn+1 + 2ikπIn+1 ∈ g1.
Then B ∈ g1 + CIn+1 and hence g̃ ⊂ g1 + CIn+1. Since g1 ⊂ g̃ and CIn+1 ⊂ g̃, it
follows that g1 + CIn+1 ⊂ g̃ (since g̃ is an additive group, by Lemma 3.2). This
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proves (i).
(ii) Since Ψ(q) = g1 and v0 = (1, w0), we obtain for every f = (B, b) ∈ q,

Ψ(f)v0 =

[
0 0
b B

] [
1
w0

]
=

[
0

b + Bw0

]
=

[
0

f(w0)

]
.

Hence g1
v0

= {0} × qw0 .
�

Lemma 3.4. The following assertions are equivalent:

(i) qw0 = Cn.

(ii) g1
v0

= {0} × Cn.

(iii) g̃v0 = Cn+1.

Proof. (i) ⇐⇒ (ii) follows from the fact that {0} × qw0 = g1
v0

(Lemma 3.3,(ii)).
(ii) =⇒ (iii) : By Lemma 3.3,(ii), g̃v0 = g1

v0
+ Cv0. Since v0 = (1, w0) /∈ {0}×Cn

and CIn+1 ⊂ g̃, we obtain Cv0 ⊂ g̃v0 and so Cv0 ⊂ g̃v0 . Therefore Cn+1 =
{0} × Cn ⊕ Cv0 = g1

v0
⊕ Cv0 ⊂ g̃v0 (since, by Lemma 3.2, g̃v0 is an additive sub-

semigroup of Cn+1). Thus g̃v0 = Cn+1.

(iii) =⇒ (ii) : Let x ∈ Cn, then (0, x) ∈ g̃v0 and there exists a sequence
(Am)m∈N ⊂ g̃ such that lim

m→+∞
Amv0 = (0, x). By Lemma 3.3, we can write

Amv0 = λmv0 +Bmv0 with λm ∈ C and Bm =

[
0 0
bm B1

m

]
∈ g1 for every m ∈ N.

Since Bmv0 ∈ {0}×Cn for every m ∈ N then Amv0 = (λm, bm + B1
mw0 + λmw0).

It follows that lim
m→+∞

λm = 0 and lim
m→+∞

Amv0 = lim
m→+∞

Bmv0 = (0, x), thus

(0, x) ∈ g1
v0

. Hence {0} × Cn ⊂ g1
v0

. Since g1 ⊂ Ψ(MA(n, C)), g1
v0
⊂ {0} × Cn

then we conclude that g1
v0

= {0} × Cn. �

Lemma 3.5. Let x ∈ Cn and G = Φ(G). The following are equivalent:

(i) G(x) = Cn.

(ii) G(1, x) = {1} × Cn.

(iii) G̃(1, x) = Cn+1.

Proof. (i) ⇐⇒ (ii) : is obvious since {1} × G(x) = G(1, x) by construction.

(iii) =⇒ (ii) : Let y ∈ Cn and (Bm)m be a sequence in G̃ such that lim
m→+∞

Bm(1, x) =

(1, y). One can write Bm = λmΦ(fm), with fm ∈ G and λm ∈ C∗, thus
Bm(1, x) = (λm, λmfm(x)), so lim

m→+∞
λm = 1. Therefore, lim

m→+∞
Φ(fm)(1, x) =

lim
m→+∞

1
λm

Bm(1, x) = (1, y). Hence, (1, y) ∈ G(1, x).
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(ii) =⇒ (iii) : Since Cn+1\({0} × Cn) =
⋃

λ∈C∗
λ ({1} × Cn) and for every λ ∈ C∗,

λG(1, x) ⊂ G̃(1, x), we get

Cn+1 = Cn+1\({0} × Cn)

=
⋃

λ∈C∗

λ ({1} × Cn)

=
⋃

λ∈C∗

λG(1, x) ⊂ G̃(1, x)

Hence Cn+1 = G̃(1, x). �

An orbit O of G is called somewhere dense orbit if the interior of its closure
◦
O 6= ∅.

Proposition 3.6. Let G be an abelian subsemigroup of Mn(C) and G∗ = G ∩
GL(n, C). Then G is hypercyclic (resp. has a somewhere dense orbit) if and only
if so is (resp. has) G∗ .

Proof. Suppose that
◦

G∗(u) 6= ∅, for some u ∈ Kn. Then ∅ 6=
◦

G∗(u) ⊂
◦

G(u)

and so
◦

G(u) 6= ∅. Conversely, suppose that
◦

G(u) 6= ∅, for some u ∈ Cn. By
proposition 2.1, one can suppose that G is an abelian sub-semigroup of Kη,r(C).
Write G′ := (G\G∗) ∪ {In}. then G′ is a sub-semigroup of G.

- If G′ = {In} then G = G∗ and so G∗ has a somewhere dense orbit.
- If G′ 6= {In} then

G(u) ⊂

 ⋃
A∈(G′\{In})

Im(A)

 ∪G∗(u).

As every A ∈ (G′\{In}), is non invertible, then Im(A) ⊂
r⋃

k=1

Hk where

Hk :=

{
u = [u1, . . . , ur]

T ∈ Cn, uj ∈ Cnj , uk ∈ {0} × Cnk−1 1 ≤ j ≤ r,
j 6= k

}
.

It follows that

G(u) ⊂

(
r⋃

k=1

Hk

)
∪G∗(u),

and so

G(u) ⊂

(
r⋃

k=1

Hk

)
∪G∗(u).

Since dimHk = n − 1,
◦

Hk = ∅, for every 1 ≤ k ≤ r and therefore
◦

G∗(u) 6=
∅. �
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Lemma 3.7. Let G be an abelian subsemigroup of Kη,r(C), G∗ = G ∩GL(n, C)
and g∗ = exp−1(G∗) ∩ Kη,r(C). Then g = g∗.

Proof. Let G′ = G\G∗. Since eA ∈ GL(n, C) for every A ∈ Mn(C) and G′ ⊂
Mn(C)\GL(n, C) then exp−1(G∗) = ∅. As g = (exp−1(G′) ∩ Kη,r(C))∪ g∗ then
g = g∗. �

Proof of Theorem 1.1. (ii) =⇒ (i) : is obvious.

(i) =⇒ (ii) : Suppose that G is hypercyclic, so G(x) = Cn for some x ∈ Cn. By

Lemma 3.5,(iii), G̃(1, x) = Cn+1 and by Theorem 3.1, G̃(v0) = Cn+1. Then by

Lemma 3.5, G(w0) = Cn, since v0 = (1, w0).

(ii) =⇒ (iii) : Suppose that G(w0) = Cn. By Lemma 3.5, G̃(v0) = Cn+1 and by

Theorem 3.1, g̃v0 = Cn+1. Then by Lemma 3.4, qw0 = Cn.
(iii) =⇒ (ii) : Suppose that qw0 = Cn. By Lemma 3.4, g̃v0 = Cn+1 and by

Theorem 3.1, G̃(v0) = Cn+1. Then by Lemma 3.5, G(w0) = Cn. �

4. Finitely generated subgroups

Recall the following result proved in [5] which applied to G can be stated as
following:

Proposition 4.1. [5, Proposition 5.1] Let G be an abelian sub-semigroup of
Mn(C) such that G∗ is generated by A1, . . . , Ap and let B1, . . . , Bp ∈ g such that
Ak = eBk , k = 1, . . . , p and P ∈ GL(n + 1, C) satisfying P−1GP ⊂ Kη,r(C).
Then:

g =

p∑
k=1

NBk + 2iπ
r∑

k=1

ZPJkP
−1 and gv0 =

p∑
k=1

NBkv0 +
r∑

k=1

2iπZPe(k),

where Jk = diag(Jk,1, . . . , Jk,r) with Jk,i = 0 ∈ Tni
(C) if i 6= k and Jk,k = Ink

.

Proposition 4.2. Let G be an abelian sub-semigroup of GA(n, C) such that G∗ is
generated by f1, . . . , fp and let f ′1, . . . , f

′
p ∈ q such that eΨ(f ′

k) = Φ(fk), k = 1, .., p.
Let P be as in Proposition 2.2. Then:

qw0 =


p∑

k=1

Nf ′k(w0) +
r∑

k=2

2iπZp2(Pe(k)), if r ≥ 2

p∑
k=1

Nf ′k(w0), if r = 1
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Proof. Let G = Φ(G). Then G is generated by Φ(f1), . . . , Φ(fp). Apply Proposi-
tion 4.1 to G, Ak = Φ(fk), Bk = Ψ(f ′k) ∈ g1, then we have

g =

p∑
k=1

ZΨ(f ′k) + 2iπZ
r∑

k=1

PJkP
−1.

We have
p∑

k=1

ZΨ(f ′k) ⊂ Ψ(MA(n, C)). Moreover, for every k = 2, . . . , r, Jk ∈

Ψ(MA(n, C)), hence PJkP
−1 ∈ Ψ(MA(n, C)), since P ∈ Φ(GA(n, C)). However,

mPJ1P
−1 /∈ Ψ(MA(n, C)) for every m ∈ Z\{0}, since J1 has the form J1 =

diag(1, J ′) where J ′ ∈ Mn(C). As g1 = g ∩ Ψ(MA(n, C)), then mPJ1P
−1 /∈ g1

for every m ∈ Z\{0}. Hence we obtain:

g1 =


p∑

k=1

NΨ(f ′k) +
r∑

k=2

2iπZPJkP
−1, if r ≥ 2

p∑
k=1

NΨ(f ′k), if r = 1

Since Jku0 = e(k), we get

g1
v0

=


p∑

k=1

NΨ(f ′k)v0 +
r∑

k=2

2iπZPe(k), if r ≥ 2

p∑
k=1

NΨ(f ′k)v0, if r = 1

By Lemma 3.3,(iii), one has {0} × qw0 = g1
v0

and Ψ(f ′k)v0 = (0, f ′k(w0)), so

qw0 = p2

(
g1

v0

)
. It follows that

qw0 =


p∑

k=1

Nf ′k(w0) +
r∑

k=2

2iπZp2(Pe(k)), if r ≥ 2

p∑
k=1

Nf ′k(w0), if r = 1

The proof is completed. �

Proof of Theorem 1.2: This follows directly from Theorem 1.1, Proposition 4.2.

Proof of Corollary 1.3: First, by Proposition ??, if F = Zu1 + · · ·+Zum, uk ∈ Cn

with m ≤ 2n, then F cannot be dense in Cn. Now, by the form of qw0 in Proposi-
tion 4.2, qw0 cannot be dense in Cn and so Corollary 1.3 follows by Theorem 1.2.
�

Proof of Corollary 1.4: Since n ≤ 2n− r + 1 (because r ≤ n + 1), Corollary 1.4
follows from Corollary 1.3. �
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5. Example

Lemma 5.1. [12, Lemma 2.2] Let α1, . . . , αn be n positive numbers linearly in-
dependent over Q. Then H = {(m1−m0α1, . . . ,mn−m0αn) : m0, . . . ,mn ∈ N}
is dense in Rn.

We identify Cn to R2n and by applying the Lemma 5.1, we obtain the following
result:

Lemma 5.2. Let α1, . . . , αn, β1, . . . , βn be 2n positive numbers linearly indepen-
dent over Q. Then H = Nn + iNn − N(α1 + iβ1, . . . , αn + iβn) is dense in Cn.

Lemma 5.3. [1] The elements of the set {
√

m, m ∈ N and
√

m /∈ N} are
linearly independent over Q.

Example 5.4. Let G the sub-semigroup of GA(2, C) generated by f1 = (A1, a1),
f2 = (A2, a2), f3 = (A3, a3) and f4 = (A4, a4) where A1 = I2, a1 = (2iπ, 0),

A2 = diag (1, e2π) , a2 = (0, 0) , A3 = I2,

a3 = (2iπ, 0) , A4 = dig
(
1, e−2

√
5−2i

√
7
)

a4 = (−2
√

2− 2i
√

3, 0).

Then G is hypercyclic.

Proof. First one can check that G is abelian: fifj = fjfi for every i, j = 1, 2, 3, 4.
Denote by G = Φ(G). Then G is generated by

Φ(f1) =

 1 0 0
2π 1 0
0 0 1

 , Φ(f2) =

 1 0 0
0 1 0
0 0 e2π

 ,

Φ(f3) =

 1 0 0
2iπ 1 0
0 0 1

 , Φ(f4) =

 1 0 0

−2
√

2− 2i
√

3 1 0

0 0 e−2
√

5−2i
√

7

 .

Let f ′i = (Bi, bi), i = 1, 2, 3, 4 where

B1 = diag(0, 0) = 0, b1 = (2π, 0),

B2 = diag(0, 2π), b2 = (0, 0),

B3 = diag(0, 0), b3 = (2iπ, 0),

B4 = diag(0, −2
√

5− 2i
√

7), b4 = (−2
√

2− 2i
√

3, 0).

Then we have eΨ(f ′
i) = Φ(fi), i = 1, 2, 3, 4.

Here r = 2, η = (2, 1), G is an abelian sub-semigroup of K∗
(2,1),2(C). We have

P = I2, u0 = v0 = (1, 0, 1), e(2) = (0, 0, 1) and w0 = (0, 1). By Proposition 4.2,

qw0 =
4∑

k=1

Nf ′k(w0) + 2iπZp2(e
(2)). Then H ⊂ qw0 , where

H = N(2π, 0) + N(0, 2π) + N(2iπ, 0)− 2N(
√

2 + i
√

3,
√

5 + i
√

7) + N(0, 2iπ).

By Lemma 5.3, one has
√

2,
√

3,
√

5 and
√

7 are rationally independent, then
by Lemma 5.2, H is dense in C2, so is qw0 . By Theorem 1.2, G is hypercyclic. �
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Example 5.5. Let G the sub-semigroup of GA(3, C) generated by f1 = (A1, a1),
f2 = (A2, a2), f3 = (A3, a3), f4 = (A4, a4) and f5 = (A5, a5) where A1 = I3, a1 =
(2π, 0, 0), A2 = diag(1, e2π, 1), a2 = (0, 2π) , A3 = diag(1, 1, e2iπ), a3 =
(2iπ, 0, 0), A4 = diag(1, 1, e2π), a4 = (0, 0, 0) and

A5 = diag(1, e−2
√

5−2i
√

7, e−2
√

11−2i
√

13), a5 = (−2
√

2− 2i
√

3, 0, 0).

Then G is hypercyclic.

Proof. First one can check that G is abelian: fifj = fjfi for every i, j = 1, 2, 3, 4, 5.
Denote by G = Φ(G). Then G is generated by

Φ(f1) =


1 0 0 0
2π 1 0 0
0 0 1 0
0 0 0 1

 , Φ(f2) =


1 0 0 0
0 1 0 0
0 0 e2π 0
0 0 0 1

 ,

Φ(f3) =


1 0 0 0

2iπ 1 0 0
0 0 1 0
0 0 0 1

 , Φ(f4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2π

 ,

and

Φ(f5) =


1 0 0 0

−2
√

2− 2i
√

3 1 0 0

0 0 e−2
√

5−2i
√

7 0

0 0 0 e−2
√

11−2i
√

13

 ,

Let f ′i = (Bi, bi), i = 1, 2, 3, 4, 5 where

B1 = 0, b1 = (2π, 0, 0),

B2 = diag(0, 2π, 0), b2 = (0, 0, 0),

B3 = diag(0, 0, 2iπ), b3 = (2iπ, 0, 0),

B4 = diag(0, 0, 2π), b4 = (0, 0, 0),

B5 = diag(0, −2
√

5− 2i
√

7, −2
√

11− 2i
√

13), b5 = (−2
√

2− 2i
√

3, 0, 0).

Then we have eΨ(f ′
i) = Φ(fi), i = 1, 2, 3, 4, 5.

Here r = 2, η = (2, 1, 1), G is an abelian sub-semigroup of K∗
(2,1,1),3(C). We

have P = I4, u0 = v0 = (1, 0, 1, 1), e(2) = (0, 0, 1, 0), e(3) = (0, 0, 0, 1) and

w0 = (0, 1, 1). By Proposition 4.2, qw0 =
4∑

k=1

Nf ′k(w0)+2iπZp2(e
(2))+2iπZp2(e

(3)).

Then H ⊂ qw0 , where

H = 2πN3 + 2iπN3 − 2N(
√

2 + i
√

3,
√

5 + i
√

7,
√

11 + i
√

13).

By Lemma 5.3, one has
√

2,
√

3,
√

5,
√

7,
√

11 and
√

13 are rationally inde-
pendent then by Lemma 5.2, H is dense in C3, so is qw0 . By Theorem 1.2, G is
hypercyclic. �
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