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ABSTRACT. We give a characterization of hypercyclic abelian semigroup G of
affine maps on C". If G is finitely generated, this characterization is explicit.
We prove in particular that no abelian group generated by n affine maps on
C™ has a dense orbit.

1. INTRODUCTION

Let M,,(C) be the set of all square matrices of order n > 1 with entries in C and
GL(n, C) be the group of all invertible matrices of M, (C). A map f: C* — C"
is called an affine map if there exist A € M, (C) and a € C" such that f(z) =
Az +a, z € C". We denote f = (A, a), we call A the linear part of f. The map f
is invertible if A € GL(n,C). Denote by M A(n, C) the vector space of all affine
maps on C" and GA(n, C) the group of all invertible affine maps of M A(n, C).

Let G be an abelian affine sub-semigroup of M A(n, C). For a vector v € C",
we consider the orbit of G through v: G(v) = {f(v): f € G} C C". Denote by E
the closure of a subset £ C C". The group §G is called hypercyclic if there exists
a vector v € C" such that G(v) = C". For an account of results and bibliography
on hypercyclicity, we refer to the books [7] and [13].

The notion of hypercyclicity was investigated by many authors. More specific
questions which arise naturally is to characterize this property for special types
of matrices. N.S. Feldman proves in [12], that there are hypercyclic semigroup
generated by (n + 1) diagonal matrices on C" and that there are no hypercyclic
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semigroup generated by n diagonalizable matrices on C". In [9], G. Costakis,
D. Hadjiloucas and A. Manoussos prove that for every positive integer n = 2
there exist Ay, ..., A, of n X n non-(simultaneously) diagonalizable matrices over
R generating an abelian hypercyclic semigroup. C.Costakis and I.Parissis prove
in [11], that the minimum number of n X n matrices in Jordan form over R which
generating an abelian hypercyclic semigroup is n + 1. In [I5], M.Javaheri con-
structs an explicit example of a 2-generator dense subsemigroup of 2 x 2 real
matrices, and in [16], he proves that in both real and complex cases, there exists
a pair of matrices that generates a dense subsemigroup of the set of n x n matri-
ces. Moreover, he gives in [14], some examples of n x n matrices A and B over
the filed K = R or C such that for almost every x € K", the orbit of x under the
action of the semigroup generated by A and B is dense in K". S.Shkarin proves
in [19], that the minimal number of matrices generating an abelian hypercyclic
semigroup on C" (respectively, on R" ) is n+1 ( respectively, %—i—#). H.Abel
and A.Manoussos bring together in [2], some results about the density of sub-
semigroups of abelian Lie groups, the minimal number of topological generators
of abelian Lie groups and a result about actions of algebraic groups. In [10], G.
Costakis, D. Hadjiloucas and A. Manoussos give some results of locally hyper-
cyclic abelian semigroup.

In this paper we will explore these notions to abelian semigroup affine.

We let C* = C\{0}, R* = R\{0} and Ny = N\{0}. Let n € Ny be fixed, denote
by:

e By =(e1,...,en41) the canonical basis of C"™ and I,,,; the identity matrix of
GL(n+1,C).

For each m =1,2,...,n+ 1, denote by:

e T,,(C) the set of matrices over C of the form

W 0
21 H

. (1.1)
Am,1 -+ Amm-1 M

Let » € N and n = (ny,...,n,) € Nj such that ny +---+n, = n+ 1. In
particular, r < n + 1. Write
e K,,(C)=T,(C)®---a& T, (C). In particular if » = 1, then K, ;(C) =
Tn1(C) and n = (n + 1).
e exp: M,;;(C) — GL(n+1,C) is the matrix exponential map; set exp(M) =
€M7 M e Mn+1((C).
e Define the map & : GA(n, C) — GL(n+1, C)

=t — |1 )
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We have the following composition formula

1 0|1 Of 1 0

a A|l|b B| |Ab+a AB|’
Then @ is an injective homomorphism of groups. It is continuous and it forms a
bijection unto its image. Write

e G =P(G), it is an abelian sub-semigroup of GL(n + 1,C).
e Define the map V¥ : MA(n, C) — M,+1(C)

F=a— [0 )

We can see that W is injective and linear. Hence W (M A(n, C)) is a vector subspace
of M, 11(C). We prove (see Lemma 2.5) that ® and W are related by the following
property

exp(V¥(MA(n,C))) = ¢(GA(n,C)).

Let consider the normal form of G: By Proposition 2.2, there exists a P €
®(GA(n,C)) and a partition 5 of (n + 1) such that G' = P"'GP c K,,(C) N
®(M A(n,C)). For such a choice of matrix P, we let
e g = exp '(G) N (P(K,,(C)P). If G C K;,(C), we have P = I,;; and
g=exp '(G)NK,,(C).
oq=U"1(gNU¥(MA(n,C))) C MA(n,C). Then qis an additive sub-semigroup of
M A(n,C) and we have ¥(q) = g'. By Corollary 2.9, we have exp(¥(q)) = ®(G).
°q,={f(v), feqcC" vel

For groups of affine maps on K" (K = R or C), their dynamics were recently
initiated for some classes in different point of view, (see for instance, [17], [15],
[8], [6]). The purpose here is to give analogous results as for linear abelian sub-
semigroup of GL(n,C) [1, Theorem 1.1].

Our main results are the following:

Theorem 1.1. Let G be an abelian sub-semigroup of M A(n,C). Then the fol-
lowing are equivalent:

(i) G is hypercyclic.
(i) the orbit G(wy) is dense in C™.
(ill) qu, @s an additive sub-semigroup dense in C".

Where wy is a particular point in C", defined in section 3 and has a form related

to G.

For a vector v € C", we write v = Re(v) + ilm(v) where Re(v) and Im(v) € R™.
The next result can be stated as follows:

Theorem 1.2. Let G be an abelian sub-semigroup of M A(n,C) and let fi,..., f, €
G generating G* and let f{,..., f, € q be such that UV = ®(fy),...,e" ) =
®(f,). Then the following are equivalent:
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(i) G is hypercyclic.

p T

SINfi(wo) + 2im Y Z(pa(Pe®)), if r>2
= k=2

k=1
éNf,g(wo), ifr=1

is an additive sub-semigroup dense in C". (The projection py and the
vectors e®) are defined in the section 3).

(ii> Quo =

Corollary 1.3. Let G be an abelian sub-semigroup of M A(n,C) and G = ®(G).
Let P € ®(GA(n,C)) such that P'GP C K,,(C) where 1 <r < n+1 and
n = (ny,...,n.) € Nj. If G is generated by 2n — r + 1 commuting invertible
affine maps, then it has no dense orbit.

Corollary 1.4. Let G be an abelian sub-semigroup of M A(n,C). IfG is generated
by n commuting invertible affine maps, then it has no dense orbit.

2. NORMAL FORM OF ABELIAN AFFINE GROUPS

The concept of a normal form of linear abelian groups was introduced in [1],
by A.Ayadi and H.Marzougui which was generalized in [5], to the abelian linear
semigroups. In [3], A.Ayadi gave the following normal form for any abelian
group of affine maps of C". Let r € N and n = (n4,...,n,) € Nj such that
n+---+n-=n+1

Proposition 2.1. [5] Let G’ be an abelian sub-semigroup of M,,(C), m >
1. Then there erists P € GL(m,C) such that P~'G'P is a sub-semigroup of
K,y (C), for somer’ <m andn = (n,...,n.,) € Ny.

Denote by Ky (C) := K, .(C) N GL(n + 1, C).

Proposition 2.2. [3, Proposition 2.1] Let G be an abelian subgroup of GA(n,C)
and G = ®(G). Then there exists P € ®(GA(n,C)) such that P"'GP is a
subgroup of K; . (C)N®(GA(n,C)), for somer < n+1 andn= (ny,...,n,) € Nj,

A more computational version of Proposition 2.2 for the semigroup case, is the
following;:

Proposition 2.3. Let G be an abelian sub-semigroup of M A(n,C) and G =
®(G). Then there exists P € ®(GA(n,C)) such that P"'GP is a subgroup of
Ky (C)N®(GA(n,C)), for somer <n+1 andn=(ny,...,n,) € N.

Proof. Suppose first, G C GL(n + 1,C). Let G be the group generated by G.
Then G is abelian and by Proposition 2.2, there exists a P € ®(GA(n,C)) such
that P~'GP is an abelian subgroup of K .(C), for some r € {1,...,n + 1} and
n € (No)". In particular, P~'GP C K} (C).
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Suppose now, G C M,,,1(C). For every A € G, there exists Ay € C such that
(A—Xal,+1) € GL(n+1,C) (one can take A4 non eigenvalue of A). Write L be

the group generated by L := {A — Aal,41: A€ G}. Then L is an abelian sub-
semigroup of GL(n+1,C). Hence by above, there exists a P € &(GA(n,C)) such

that P~'LP C K; (C), for some 1 € (No)". As
PULP ={P'AP — Msl,;1 : A€G}

then P~'GP C K,,(C). This proves the proposition. O

The group G’ = P~'GP is called the normal form of G. Since P € ®(GA(n,C))
and G C (M A(n,C)) then G' C (M A(n,C)). As & is an injective homomor-
phism, G’ := ®71(G’) is an abelian semigroup of M A(n,C) which is called the
normal form of G.

The proof of Theorem 1.1 is broken up into a series of lemmata.

Lemma 2.4. [, Proposition 3.2] exp(K,(C)) = K; .(C).
Lemma 2.5. [3, Lemma 2.8] exp(¥ (M A(n,C)) = GA(n,C).

Lemma 2.6. [3, Lemma 2.9] If N € PK, ,(C)P~! such that " € ®(GA(n,C)),
then there exists k € Z such that N — 2iknl,1 € V(M A(n,C)).
Denote by G* = GNGL(n+ 1,C).
Lemma 2.7. [, Lemma 4.2] One has exp(g) = G*.
Denote by:
e ¢! = gNW(MA(n,C)). It is an additive sub-semigroup of M, 1(C) (because

by Lemma 3.2, g is an additive sub-semigroup of M, (C)).
eg. ={Bu: Beg'} cC", weC".

Corollary 2.8. [3, Corollary 2.11] Let G = ®(G). We have g = g' + 2inZI,, .
We let G* =GN GA(n,C).
Corollary 2.9. We have exp(¥(q)) = ®(G*).

Proof. By Lemmas 2.7 and 2.8, We have G = exp(g) = exp(g' + 2i7ZI,11) =
exp(g!). Since g' = ¥(q), we get exp(¥(q)) = ®(G). O
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3. PROOF OF THEOREM 1.1

Let G be the semigroup generated by G and Cl,; = {AM,+1: X e C}

Then G is an abelian sub-semigroup of GL(n + 1,C). By Proposition 2.2, there
exists P € ®(GA(n,C)) such that P~'G'P is a sub-semigroup of K (C) for some

r<n-+1andn = (ng,...,n.) € Nj and this also implies that P-IGP is a
sub-semigroup of K; .(C). Set g = exp Y (G)N(PK,,(C)P~) and g, = {Bu, :
B € g}. Denote by:

o uy = (e11,...,6.1) € C"™ where ex; = (1,0,...,0) € C™, for k =1,...,r.
So ug € {1} x C™.

e py : Cx C" — C" the second projection defined by po(x1,...,Tp41) =
(.TQ, . 7$n+1>-

o k) — (egk), . eﬁk)) € C"*! where
% | 0eCv if j#Ek < <
EA { €k,1 if j=kF for every 1<j k<t

e vy = Pug. So vy € {1} x C", since P € (GA(n,C)).

e wy = p2(vy) € C™. We have vy = (1, wy).

Since P € ®(GA(n,C)), we have Puy = vy € {1} x C". Then we have the
following theorem, applied to G:

Theorem 3.1. [0, Theorem 1.1] Under the notations above, the following prop-
erties are equivalent:
(i) G has a dense orbit in C"+!.
(ii) the orbit G(uvg) is dense in C"*1.
(i) 8y, s an additive sub-semigroup dense in C"*1.

Lemma 3.2. [, Lemma 4.1] The sets g and g are additive subgroups of M, 1(C).
In particular, g,, and g,, are additive subgroups of C"1.

Recall that ¢! = gN U (MA(n,C)) and q = ¥ (g!) € MA(n,C).

Lemma 3.3. Under the notations above, one has:
(i) g=g" 4+ Clpy1.
(i) {0} X duy = -

Proof. (i) Let B € g, then e € G. One can write e® = \A for some \ €
C* and A € G. Let u € C such that e# = X, then ef~#+1 = A Since
B — plyq € PK, . (C)P7Y so B — ulyy € exp ' (G) N PK,,(C)P™' = g. By
Corollary 2.8, there exists k € Z such that B’ :== B — ul,.1 + 2iknl,, € g’
Then B € g' + CI,,;; and hence g C g' + CI,,4;. Since gt € g and CI,,; C g, it
follows that g! + CI,,; C g (since g is an additive group, by Lemma 3.2). This
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proves (i).
(i) Since ¥(q) = g' and vy = (1, wy), we obtain for every f = (B,b) € q,

o=t 3[4

- 0
o _b+Bw0

- ]
I 7 (wo) '
Hence g1110 == {O} X qwo.

Lemma 3.4. The following assertions are equivalent:
(i) Quy = Ccn.
(ii) g_,})o = {0} x C™.
(iii) g,, = C"*L.

Proof. (i) <= (i1) follows from the fact that {0} X g, = g}, (Lemma 3.3,(ii)).
(44) = (444) : By Lemma 3.3,(ii), 8, = g, + Cvo. Since vy = (1,wo) ¢ {0} x C"
and CI,,;; C g, we obtain Cvy C g,, and so Cvy C 'g_m Therefore C"! =
{0} x C" @ Cuy = g_})o @ Cup C 8y, (since, by Lemma 3.2, g,, is an additive sub-
semigroup of C"*'). Thus g,, = C"*".

(iii) = (i1) : Let « € C", then (0,2) € g, and there exists a sequence
(Am)men C g such that lim A,vy = (0,z). By Lemma 3.3, we can write

m——+00

A, v9 = Ao + Bvg with A, € C and B,,, = [ bO Bpl } c g! for every m € N.
Since B,,vy € {0} x C" for every m € N then A,,v9 = (A, b + B wo + o).
It follows that liT Apn, = 0 and liT Anpvg = liT Bnvg = (0,z), thus
(0,2) € gl . Hence {0} x C" C gl . Since g' C ¥(MA(n,C)), g} C {0} x C"
then we conclude that gl = {0} x C". O

Lemma 3.5. Let © € C" and G = ®(G). The following are equivalent:

(i) G(a) = C".
(i) G(1,z) = {1} x C".

(iii) G(1,2) = Cr+L.

Proof. (i) <= (ii) : is obvious since {1} x G(z) = G(1,z) by construction.
(1ii) = (ii) : Let y € C™ and (B,,)m be asequence in G such that lim B,,(1,z) =

m—+00

(1,y). One can write B,, = Ap®(fmn), with f,, € G and A, € C*, thus
Bn(l,z) = (Am, Amfm(z)), so liT Am = 1. Therefore, li?lz O(fm)(1,2) =

lim ﬁBm(l,x) = (1,y). Hence, (1,y) € G(1,x).

m— 00
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(it) = (4i1) : Since C"*1\ ({0} x C*) = |J A ({1} x C") and for every \ € C*,
AeC*
AG(1,z) € G(1,z), we get

Crt = Cr 1\ ({0} x Cn)
= [Jr({1} xcn

= U AG(1,z) C G(1,z)

AeC*

Hence C™! = G(1, z). O

i An orbit O of G is called somewhere dense orbit if the interior of its closure

040,

Proposition 3.6. Let G be an abelian subsemigroup of M,(C) and G* = G N
GL(n,C). Then G is hypercyclic (resp. has a somewhere dense orbit) if and only
if so is (resp. has) G* .

Proof. Suppose that G*(u) # 0, for some v € K". Then () # G*(u) C G(u)

and so G(u) # 0. Conversely, suppose that G(u) # (), for some u € C". By
proposition 2.1, one can suppose that G is an abelian sub-semigroup of I, ,(C).
Write G’ := (G\G*) U {[,,}. then G’ is a sub-semigroup of G.

-If G'={I,} then G = G* and so G* has a somewhere dense orbit.

-If G"#{l,} then

G(u) C U  Im(A) | uG(u).
Ae(G'\{In})

As every A € (G'\{I,.}), is non invertible, then Im(A) C |J Hy where
k=1

<7<
Hy = {u:[ul"">ur]T€Cn> u; € CY, up € {0} x € 1;;ET’ }

It follows that

G(u) C <0Hk) U G*(u),

k=1
and so

a@C<OHQU5%ﬁ

o

Since dimH, =n — 1, [;k = (), for every 1 < k < r and therefore G*(u) #
0. O
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Lemma 3.7. Let G be an abelian subsemigroup of K, (C), G* = GNGL(n,C)
and g* = exp ' (G*) N K, .(C). Then g = g*.

Proof. Let G’ = G\G*. Since e* € GL(n,C) for every A € M,(C) and G’ C
M,(C)\GL(n,C) then exp ' (G*) =0. As g= (exp ' (G')NK,,(C))Ug* then
g=g" O

Proof of Theorem 1.1. (ii) = (i) : is obvious.

(1) = (4i) : Suppose that G is hypercyclic, so G(x) = C" for some x € C". By
Lemma 3.5,(iii), G(1,2) = C** and by Theorem 3.1, G(vy) = C*™. Then by
Lemma 3.5, G(wy) = C", since vy = (1, wy).

(ii) = (iii) : Suppose that G(wg) = C". By Lemma 3.5, G(vy) = C*™* and by
Theorem 3.1, g,, = C**!. Then by Lemma 3.4, §p, = C".

(iii) == (ii) : Suppose that §u, = C". By Lemma 3.4, g,, = C"*! and by
Theorem 3.1, G(vg) = C™!. Then by Lemma 3.5, G(wy) = C™. O

4. FINITELY GENERATED SUBGROUPS

Recall the following result proved in [5] which applied to G can be stated as
following:

Proposition 4.1. [5, Proposition 5.1] Let G be an abelian sub-semigroup of
M, (C) such that G* is generated by Ay, ..., A, and let By, ..., B, € g such that
A, =¢€P, k=1,...,p and P € GL(n + 1,C) satisfying P"*GP C K,,(C).
Then:

p T P r
g= NBj+2iry ZPJiP~' and g, =Y NBj+ » 2inZPe®,
k=1 k=1

k=1 k=1

where J, = diag(Jx 1, ..., Jpr) with Jy; =0¢€ T,,(C) ifi # k and Jyp = I,

Proposition 4.2. Let G be an abelian sub-semigroup of GA(n,C) such that G* is
generated by fi,..., f, and let fi,..., f, € q such that VU = d(fp), k=1,..,p.
Let P be as in Proposition 2.2. Then:

D r
>N (wo) + ZQiﬁZpQ(Pe(’“)), if r>2
=1 k=2

’éNf,’c(wo), if r=1

Quo =
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Proof. Let G = ®(G). Then G is generated by ®(f1),...,®(f,). Apply Proposi-
tion 4.1 to G, A, = ®(fx), Bx = ¥(f;) € g', then we have

p r
g=> ZU(f})+2nZY PJP".

k=1 k=1

p
We have Y ZV(f;) C Y(MA(n,C)). Moreover, for every k = 2,...,r, Ji €
k=1

U(MA(n,C)), hence PJ,P~! € U(MA(n,C)), since P € ®(GA(n,C)). However,
mPJ,P~t ¢ W(MA(n,C)) for every m € Z\{0}, since J; has the form J; =
diag(1, J') where J' € M,(C). As g' = gN Y (MA(n,C)), then mPJ, P! ¢ g!
for every m € Z\{0}. Hence we obtain:

p T
SINU(fL) + S 26nZP I P7Y if r>2
k=1 k=2

,ém(fl;), ifr=1

g =

Since Jyup = e®), we get

p r

SN (f)ve + S 2inZPe® | if r > 2
k=2

k=1

P

> NU(fi)vo, if r=1
k=1

1 _
gv0<_

By Lemma 3.3,(iii), one has {0} x g, = g, and ¥(f;)vo = (0, f(wo)), so
duwo = p2 (g1, ). It follows that

p r
Y ONF (wo) + Z2i7TZp2(Pe(k)), if r>2
k=1 k=2

’éNf,g(wo), if r=1

JQug =

The proof is completed. H

Proof of Theorem 1.2: This follows directly from Theorem 1.1, Proposition 4.2.

Proof of Corollary 1.3: First, by Proposition 77, if F' = Zuy +- - -+ Zuy,, up € C
with m < 2n, then F' cannot be dense in C". Now, by the form of q,,, in Proposi-

tion 4.2, q,, cannot be dense in C" and so Corollary 1.3 follows by Theorem 1.2.
O

Proof of Corollary 1.4: Since n < 2n —r + 1 (because r < n + 1), Corollary 1.4
follows from Corollary 1.3. OJ
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5. EXAMPLE

Lemma 5.1. [12, Lemma 2.2] Let g, ..., q, be n positive numbers linearly in-
dependent over Q. Then H = {(my —moa, ..., m, —moay,) : mg,...,m, € N}
1s dense in R™.

We identify C* to R?" and by applying the Lemma 5.1, we obtain the following
result:

Lemma 5.2. Let aq,...,qp, B1,. .., 0, be 2n positive numbers linearly indepen-
dent over Q. Then H = N" +iN" — N(ay + i1, ..., a, +1i0,) is dense in C".

Lemma 5.3. [I] The elements of the set {\/m, m € N and \/m ¢ N} are

linearly independent over Q.

Example 5.4. Let G the sub-semigroup of GA(2,C) generated by f1 = (A;,a1),
fo=(Az,as), fs = (A3,a3) and fy = (A4, a4) Where A} = I, a; = (2im,0),
A2 = dmg (176277), a9 = (0, O), A3 == ]27

az = (2im,0), Ay = dig (1, 6_2\/5_2i\ﬁ) as = (—2v2 — 2iV/3, 0).
Then G is hypercyclic.

Proof. First one can check that G is abelian: f;f; = f; f; for every ¢,7 = 1,2, 3, 4.
Denote by G = ®(G). Then G is generated by

1 00 10 0
O(fi)=1]2r 1 0|, ®(f))=|01 0 |,
0 0 1 00 e
1 00 1 0 0
O(fs)=| 2 1 0|, &(f))=| —2v2-2iV/3 1 0
0 01 0 0 e2V5-2iVT

Let f! = (B, b;), i = 1,2, 3,4 where
By = diag(0,0) =0, b = (27, 0),
B, = diag(0, 27), bg (0, 0),
Bs = diag(0, 0), = (2im, 0),
B — diagl0, ~2v5 - 2V%), by = (~23 - 25, 0)

Then we have ¥V = &(f;), i =1,2,3,4.
Here r = 2, n = (2,1), G is an abelian sub-semigroup of K7, ,,(C). We have

P =1 uy = v = (1,0,1), e? = (0,0,1) and wy = (0,1). By Proposition 4.2,
4

Guo = Y Nfi(wo) + 2inZpy(e®). Then H C qu,, where
k=1

H = N(2r,0) + N(0, 27) + N(2i, 0) — 2N(V2 + iv/3, V54 iv/7) + N(0, 2ir).

By Lemma 5.3, one has v/2, /3, v/5 and v/7 are rationally independent, then
by Lemma 5.2, H is dense in C?| 5o is ¢y,. By Theorem 1.2, G is hypercyclic. [
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Example 5.5. Let G the sub-semigroup of GA(3,C) generated by f; = (Aj,a4),
fo=(A2,a2), fs = (A3,a3), f1 = (A4, 1) and f5 = (A5, a5) where 4, =13, a1 =
(27T7 07 0)7 A2 = dlag(L 627ra 1)7 Az = (07 271—)7 AS = dlag(L L 62”r)a asz =
(2im, 0, 0), Ay = diag(1, 1, €*™), a4 = (0, 0, 0) and

As = diag(1, e 2V572VT o=2VII=2VI3) 0 (92— 2iV/3, 0, 0).
Then G is hypercyclic.

Proof. First one can check that G is abelian: f; f; = f; f; foreveryi,j = 1,2,3,4,5.
Denote by G = ®(G). Then G is generated by

1 0 0 0 10 0 O
2r 1 0 O 01 0 O
(I)(fl) = 0 01 0 ) q)(fQ) = 0 0 6277 0 ’
0 0 0 1 00 0 1
1 0 0 0 1 00 O
2w 1 0 0 010 O
(I)(f?») = 0O 01 0 (I)(f4) = 001 0 )
0 0 01 0 0 0 e
and
1 0 0 0
—2v2—-2iv/3 1 0 0
q)(f5) = 0 0 672\/572i\ﬁ 0 )
0 0 0 e 2VI-2iVI3

Let f! = (B, b;), 1 = 1,2,3,4,5 where
By =0, b= (2w 0, 0),
B, = diag(0, 2w, 0), by = (0, 0, 0),
Bs = diag(0, 0, 2im), b3 = (2im, 0, 0),
B, = diag(0, 0, 27), by = (0, 0, 0),
Bs = diag(0, —2v/5 — 2ivV/7, —2v/11 — 2iv/13), by = (—=2v2 —2iV/3, 0, 0).
Then we have ¥V = &(f;), i =1,2,3,4,5.
Here r = 2, n = (2,1,1), G is an abelian sub-semigroup of K7, ;) ;(C). We
have P = I, ug = vo = (1,0,1,1), e® = (0,0,1,0), ¢® = (0,0,0,1) and
wo = (0,1,1). By Proposition 4.2, q,,, = iNf,g(wo)+2i7er2(e(2))+2i7TZp2(e(3)).
Then H C qq,, where =

H = 27N° + 2inN° — 2N(V2 + i3, V5 +ivV7, V11 +iV13).

By Lemma 5.3, one has v/2, V3, v/5, /7, V11 and V13 are rationally inde-
pendent then by Lemma 5.2, H is dense in C?, 50 is qy,. By Theorem 1.2, G is
hypercyclic. 0
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