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Abstract. As generalizations of the arithmetic and the geometric means, for

positive real numbers a and b, the power difference mean Jq(a, b) =
q

q+1
aq+1−bq+1

aq−bq ,

the Lehmer mean Lq(a, b) = aq+1+bq+1

aq+bq and the Heron mean Kq(a, b) = (1 −
q)
√
ab+ q a+b

2 are well known.
In this paper, concerning our recent results on estimations of the power

difference mean, we obtain the greatest value α = α(q) and the least value
β = β(q) such that the double inequality for the Lehmer mean

Kα(a, b) < Lq(a, b) < Kβ(a, b)

holds for any q ∈ R. We also obtain an operator version of this estimation.
Moreover, we discuss generalizations of the results on estimations of the power
difference and the Lehmer means.This argument involves refined Heinz opera-
tor inequalities by Liang and Shi.

1. Introduction

Many researchers investigate means of positive numbers or operators. In what
follows, we use the following notations for several means of two positive real
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764 M. ITO

numbers a and b. For q ∈ R,

A(a, b) =
a+ b

2
(arithmetic mean), G(a, b) =

√
ab (geometric mean),

H(a, b) =
2ab

a+ b
(harmonic mean), LM(a, b) =

a− b

log a− log b
(logarithmic mean),

Jq(a, b) =



q

q + 1

aq+1 − bq+1

aq − bq
if q ̸= 0,−1,

a− b

log a− log b
if q = 0,

ab(log a− log b)

a− b
if q = −1,

(power difference mean),

Lq(a, b) =
aq+1 + bq+1

aq + bq
(Lehmer mean),

Kq(a, b) = (1− q)
√
ab+ q

a+ b

2
(Heron mean).

These means are symmetric, that is, A(a, b) = A(b, a), G(a, b) = G(b, a) and so
on. We note that Jq(a, a) ≡ lim

b→a
Jq(a, b) = a. It is well known that

H(a, b) ≤ G(a, b) ≤ LM(a, b) ≤ A(a, b),

A(a, b) = J1(a, b) = L0(a, b) = K1(a, b),

LM(a, b) = J0(a, b),

G(a, b) = J−1
2
(a, b) = L−1

2
(a, b) = K0(a, b),

H(a, b) = J−2(a, b) = L−1(a, b),

and also Jq(a, b), Lq(a, b) and Kq(a, b) are monotone increasing on q ∈ R.
As estimations of these means, the following relation is well known.

LM(a, b) ≤ Kα(a, b) for all a, b > 0 if and only if α ≥ 1

3
. (1.1)

The inequality LM(a, b) ≤ K 1
3
(a, b) is sometimes called the classical Pólya in-

equality [4, 14, 18]. In [1], Bhatia proved (1.1) by using Taylor expansion. Re-
cently, inspired by (1.1) and its proof in [1], we obtained estimations of the power
difference mean by the Heron mean as follows:

Theorem 1.A ([7]). For all a, b > 0 with a ̸= b, we have the following.

(i) Let q ∈ (0, 1
2
) ∪ (1,∞). Then

K 2q
q+1

(a, b) < Jq(a, b) < K 2q+1
3
(a, b).

(ii) Let q ∈ (1
2
, 1). Then

K 2q+1
3
(a, b) < Jq(a, b) < K 2q

q+1
(a, b).
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(iii) Let q ∈ (−1
2
, 0]. Then

G(a, b) = K0(a, b) < Jq(a, b) < K 2q+1
3
(a, b).

(iv) Let q ∈ (−∞, −1
2
). Then

K 2q+1
3
(a, b) < Jq(a, b) < K0(a, b) = G(a, b).

The given parameters of Kα(a, b) in each case are best possible.

A part of Theorem 1.A is shown by Xia, Hou, Wang and Chu [17]. We remark
that equalities hold between Jq(a, b) andKα(a, b) for some α = α(q) if q = 1, 1

2
, −1

2
,

and also Theorem 1.A implies (1.1) by putting q = 0.
Here, an operator means a bounded linear operator on a Hilbert space H. An

operator T is said to be positive (denoted by T ≥ 0) if (Tx, x) ≥ 0 for all x ∈ H,
and also an operator T is said to be strictly positive (denoted by T > 0) if T is
positive and invertible. A real-valued function f defined on J ⊂ R is said to be
operator monotone if

A ≤ B implies f(A) ≤ f(B)

for selfadjoint operators A and B whose spectra σ(A), σ(B) ⊂ J , where A ≤ B
means B − A ≥ 0. We remark that xf(x−1), f(x−1)−1 and x

f(x)
are operator

monotone if f > 0 is operator monotone on (0,∞).
Kubo and Ando [10] investigated an axiomatic approach for operator means.

In [10], they obtained that there exists a one-to-one correspondence between an
operator mean M and an operator monotone function f ≥ 0 on [0,∞) with
f(1) = 1. We remark that f is called the representing function of M, and also
an operator mean M can be defined by

M(A,B) = A
1
2f(A

−1
2 BA

−1
2 )A

1
2 (1.2)

if A > 0 and B ≥ 0.
For two strictly positive operators A and B, the arithmetic mean A(A,B), the

geometric mean G(A,B) and the harmonic mean H(A,B) are defined as follows:

A(A,B) =
A+B

2
, G(A,B) = A

1
2 (A

−1
2 BA

−1
2 )

1
2A

1
2 , H(A,B) =

(
A−1 +B−1

2

)−1

.

They are typical examples of operator means, and their representing functions
are

A(1, x) =
x+ 1

2
, G(1, x) =

√
x, H(1, x) =

2x

x+ 1
.

Now it is permitted to consider binary operations given by (1.2) for general
real-valued functions. The logarithmic mean LM(A,B), the power difference
mean Jq(A,B), the Lehmer mean Lq(A,B), and the Heron mean Kq(A,B) are
given by LM(1, x), Jq(1, x), Lq(1, x) and Kq(1, x), respectively. For −2 ≤ q ≤ 1,
it is known in [2, 5, 6, 16] that Jq(A,B) is increasing on q and Jq(A,B) is an
operator mean. For −1 ≤ q ≤ 0, it is known in [13] that Lq(A,B) is increasing
on q and Lq(A,B) is an operator mean. Obviously Kq(A,B) is an operator mean
for 0 ≤ q ≤ 1.
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In [7], we obtain an operator version of Theorem 1.A as a generalization of
Fujii, Furuichi and Nakamoto’s result in [3].

In this paper, we obtain estimations of the Lehmer mean by the Heron mean
concerning Theorem 1.A and its operator version. Moreover, we discuss gener-
alizations of our results on estimations of the power difference and the Lehmer
means. This argument involves refined Heinz inequalities by Liang and Shi [11].

2. Lemmas

In this section, as lemmas to prove our main results, we show two properties
of functions hk(q) for k = 1, 2, . . . and q ∈ R defined by

hk(q) ≡
(q + 1)2k − q2k∑k

i=1

(
2k
2i

)
q2(k−i)

(2.1)

and hk(0) ≡ 1 for convenience’ sake. Here,

(
n

r

)
=

n!

r!(n− r)!
is a binomial

coefficient for nonnegative integers n and r such that 0 ≤ r ≤ n. We remark that
h1(q) = 2q + 1 in particular.

Lemma 2.1. The limit h∞(q) ≡ lim
k→∞

hk(q) exists and h∞(q) =


2 (q > 0),

1 (q = 0),

0 (q < 0).

Proof. Firstly, we state the following relation (2.2) which is important to prove
results in this paper. By putting j = k − i,

2
k∑

i=1

(
2k

2i

)
q2(k−i) = 2

k−1∑
j=0

(
2k

2(k − j)

)
q2j

= 2
k∑

j=0

(
2k

2j

)
q2j − 2q2k = (q + 1)2k + (q − 1)2k − 2q2k.

(2.2)

If q ̸= 0, the following holds by (2.2).

hk(q) =
(q + 1)2k − q2k

1
2
{(q + 1)2k + (q − 1)2k − 2q2k}

=
2
{
1−

(
q

q+1

)2k}
1 +

(
q−1
q+1

)2k − 2
(

q
q+1

)2k (if q ̸= −1) (2.3)

=
2
{(

q+1
q

)2k − 1
}

(
q+1
q

)2k
+
(
q−1
q

)2k − 2
. (2.4)

Now we divide the range of q into four cases.

(Case 1) If q > 0, then −1 < q−1
q+1

< 1 and 0 < q
q+1

< 1. Therefore (2.3) implies

h∞(q) = 2.
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(Case 2) If −1
2

< q < 0, then q−1
q+1

< −1 and −1 < q
q+1

< 0, so that we have

h∞(q) = 0.

(Case 3) If q < −1
2
, then −1 < q+1

q
< 1 and q−1

q
> 1. Therefore (2.4) implies

h∞(q) = 0.

(Case 4) If q = 0, then hk(0) = 1 → 1 as k → ∞.

Hence the proof is complete. □

Lemma 2.2. Let hk(q) for q ∈ R as in (2.1). Then the following assertions hold:

(i) If k ≥ 2, then

h1(q)− hk(q) =
2q(2q + 1)(2q − 1)∑k

i=1

(
2k
2i

)
q2(k−i)

∑
u,v,w≥0

u+v+w=k−2

(q + 1)2u(q − 1)2vq2w.

(ii) If k ≥ 1 and q > 0, then

hk(q)− h∞(q) =
2q − 1∑k

i=1

(
2k
2i

)
q2(k−i)

∑
v,w≥0

v+w=k−1

(q − 1)2vq2w.

Proof. (i) We have only to show the case q ̸= 0. Since we get

h1(q)− hk(q) = 2q + 1− (q + 1)2k − q2k∑k
i=1

(
2k
2i

)
q2(k−i)

=
(2q + 1)

∑k
i=1

(
2k
2i

)
q2(k−i) −

{
(q + 1)2k − q2k

}∑k
i=1

(
2k
2i

)
q2(k−i)

,

we have only to show

κ1(q) ≡ (2q + 1)
k∑

i=1

(
2k

2i

)
q2(k−i) − {(q + 1)2k − q2k}

= 2q(2q + 1)(2q − 1)
∑

u,v,w≥0
u+v+w=k−2

(q + 1)2u(q − 1)2vq2w.
(2.5)
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By (2.2), the equation (2.5) holds since

κ1(q) = (2q + 1)
k∑

i=1

(
2k

2i

)
q2(k−i) − {(q + 1)2k − q2k}

=
2q + 1

2

{
(q + 1)2k + (q − 1)2k − 2q2k

}
− {(q + 1)2k − q2k}

=
1

2

{
(2q + 1)(q + 1)2k + (2q + 1)(q − 1)2k − 2(2q + 1)q2k − 2(q + 1)2k + 2q2k

}
=

1

2

{
(2q − 1)(q + 1)2k + (2q + 1)(q − 1)2k − 4q · q2k

}
=

1

2

[
(2q − 1)

{
(q + 1)2k − q2k

}
− (2q + 1)

{
q2k − (q − 1)2k

}]
(∗)
= 2q(2q + 1)(2q − 1)

∑
u,v,w≥0

u+v+w=k−2

(q + 1)2u(q − 1)2vq2w,

and the last equality (∗) holds since

(2q − 1)
{
(q + 1)2k − q2k

}
− (2q + 1)

{
q2k − (q − 1)2k

}
= (2q − 1) {(q + 1)2 − q2}

{
(q + 1)2(k−1) + (q + 1)2(k−2)q2 + · · ·+ (q + 1)2q2(k−2) + q2(k−1)

}
−(2q + 1) {q2 − (q − 1)2}

{
q2(k−1) + q2(k−2)(q − 1)2 + · · ·+ q2(q − 1)2(k−2) + (q − 1)2(k−1)

}
= (2q + 1)(2q − 1)

k−1∑
i=1

{
(q + 1)2i − (q − 1)2i

}
q2(k−1−i)

= (2q + 1)(2q − 1)
k−1∑
i=1

{
(q + 1)2 − (q − 1)2

}
×

{
(q + 1)2(i−1) + (q + 1)2(i−2)(q − 1)2 + · · ·+ (q − 1)2(i−1)

}
q2(k−1−i)

= 4q(2q + 1)(2q − 1)
k−1∑
i=1

{
i−1∑
j=0

(q + 1)2j(q − 1)2(i−1−j)

}
q2(k−1−i)

= 4q(2q + 1)(2q − 1)
∑

u,v,w≥0
u+v+w=k−2

(q + 1)2u(q − 1)2vq2w.

Therefore the desired result holds.
(ii) We get

hk(q)− h∞(q) =
(q + 1)2k − q2k∑k

i=1

(
2k
2i

)
q2(k−i)

− 2

=
(q + 1)2k − q2k − 2

∑k
i=1

(
2k
2i

)
q2(k−i)∑k

i=1

(
2k
2i

)
q2(k−i)

,
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so we have only to show

κ2(q) ≡ (q + 1)2k − q2k − 2
k∑

i=1

(
2k

2i

)
q2(k−i)

= (2q − 1)
∑
v,w≥0

v+w=k−1

(q − 1)2vq2w.
(2.6)

By (2.2), the equation (2.6) holds since

κ2(q) = (q + 1)2k − q2k − 2
k∑

i=1

(
2k

2i

)
q2(k−i)

= (q + 1)2k − q2k −
{
(q + 1)2k + (q − 1)2k − 2q2k

}
= q2k − (q − 1)2k

= {q2 − (q − 1)2}
{
q2(k−1) + q2(k−2)(q − 1)2 + · · ·+ q2(q − 1)2(k−2) + (q − 1)2(k−1)

}
= (2q − 1)

∑
v,w≥0

v+w=k−1

(q − 1)2vq2w.

Hence the proof is complete. □

3. Main results

Firstly, we obtain estimations of the Lehmer mean of two positive real numbers
by the Heron mean.

Theorem 3.1. For all a, b > 0 with a ̸= b, we have the following.

(i) Let q ∈ (1
2
,∞). Then

K2(a, b) < Lq(a, b) < K2q+1(a, b).

(ii) Let q ∈ (0, 1
2
). Then

K2q+1(a, b) < Lq(a, b) < K2(a, b).

(iii) Let q ∈ (−1
2
, 0). Then

G(a, b) = K0(a, b) < Lq(a, b) < K2q+1(a, b).

(iv) Let q ∈ (−∞, −1
2
). Then

K2q+1(a, b) < Lq(a, b) < K0(a, b) = G(a, b).

The given parameters of Kα(a, b) in each case are best possible.

We remark that equalities hold between Lq(a, b) and Kα(a, b) in the following
cases.

Lq(a, b) = K2q+1(a, b) = K2(a, b) for q = 1
2
.

Lq(a, b) = K2q+1(a, b) = K1(a, b) for q = 0.

Lq(a, b) = K2q+1(a, b) = K0(a, b) for q = −1
2
.

To prove Theorem 3.1, we shall show the following propositions.
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Proposition 3.2. The following statements hold:

(i) Let q ∈ (−1
2
, 0) ∪ (1

2
,∞). Then

Lq(1, x) < Kα(1, x) for all x > 0 with x ̸= 1 if and only if α ≥ 2q + 1.

(ii) Let q ∈ (−∞, −1
2
) ∪ (0, 1

2
). Then

Lq(1, x) > Kα(1, x) for all x > 0 with x ̸= 1 if and only if α ≤ 2q + 1.

Proposition 3.3. The following statements hold:

(i-1) Let q ∈ (1
2
,∞). Then

Lq(1, x) > Kα(1, x) for all x > 0 with x ̸= 1 if and only if α ≤ 2.

(i-2) Let q ∈ (−1
2
, 0). Then

Lq(1, x) > Kα(1, x) for all x > 0 with x ̸= 1 if and only if α ≤ 0.

(ii-1) Let q ∈ (0, 1
2
). Then

Lq(1, x) < Kα(1, x) for all x > 0 with x ̸= 1 if and only if α ≥ 2.

(ii-2) Let q ∈ (−∞, −1
2
). Then

Lq(1, x) < Kα(1, x) for all x > 0 with x ̸= 1 if and only if α ≥ 0.

Proof of Proposition 3.2. (i) Let q ∈ (−1
2
, 0) ∪ (1

2
,∞). Firstly we show that α ≥

2q + 1 ensures

Lq(1, x) =
xq+1 + 1

xq + 1
< (1− α)

√
x+ α

x+ 1

2
= Kα(1, x)

for all x > 0 with x ̸= 1.
(3.1)

By putting x = e2t, (3.1) holds if and only if

e(q+1)t + e−(q+1)t

eqt + e−qt
< (1− α) + α

et + e−t

2
for all t ∈ R \ {0}. (3.2)

Since both sides of (3.2) are even functions, we have only to consider the case
t > 0. Then, (3.2) for t > 0 is equivalent to

f(t) ≡ (eqt + e−qt)

{
(1− α) + α

et + e−t

2

}
− (e(q+1)t + e−(q+1)t)

= 2 cosh(qt) {(1− α) + α cosh t} − 2 cosh((q + 1)t) > 0 for all t > 0.
(3.3)
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Therefore we prove (3.3). By Taylor expansion, we have

f(t) = 2

(
1 +

q2t2

2!
+

q4t4

4!
+ · · ·

){
(1− α) + α

(
1 +

t2

2!
+

t4

4!
+ · · ·

)}
− 2

{
1 +

(q + 1)2t2

2!
+

(q + 1)4t4

4!
+ · · ·

}
= 2

(
1 +

q2

2!
t2 +

q4

4!
t4 + · · ·

)(
1 +

α

2!
t2 +

α

4!
t4 + · · ·

)
− 2

{
1 +

(q + 1)2

2!
t2 +

(q + 1)4

4!
t4 + · · ·

}
= 2

∞∑
k=1

{
q2k

(2k)!
+

k∑
i=1

q2(k−i)α

(2i)!(2k − 2i)!
− (q + 1)2k

(2k)!

}
t2k

= 2
∞∑
k=1

ϕk,q(α) t
2k,

where

ϕk,q(α) ≡
q2k

(2k)!
+

k∑
i=1

q2(k−i)α

(2i)!(2k − 2i)!
− (q + 1)2k

(2k)!
for k = 1, 2, . . . . (3.4)

Then ϕk,q(α) > 0 if and only if

α >
(q + 1)2k − q2k∑k

i=1

(
2k
2i

)
q2(k−i)

= hk(q).

By (i) in Lemma 2.2, q ∈ (−1
2
, 0) ∪ (1

2
,∞) ensures that h1(q) > hk(q) for all

k ≥ 2. Therefore, if α ≥ 2q + 1 = h1(q), then ϕ1,q(α) ≥ 0 and ϕk,q(α) > 0 for all
k ≥ 2, that is, (3.3) holds.

On the other hand, if α < 2q + 1 = h1(q), then ϕ1,q(α) < 0 holds, that is,
f(t) < 0 for sufficiently small t > 0. Therefore (3.3) assures α ≥ 2q + 1.

We can prove (ii) similarly, so the proof is complete. □
Proof of Proposition 3.3. (i) Let q ∈ (−1

2
, 0) ∪ (1

2
,∞). Then by the same way to

the proof of Proposition 3.2, we have only to consider the case that

f(t) = 2
∞∑
k=1

ϕk,q(α) t
2k < 0 holds for all t > 0, (3.5)

that is, α < hk(q) for k = 1, 2, . . ., where ϕk,q(α) is defined in (3.4), and also hk(q)
is in (2.1).

(i-1) Let q ∈ (1
2
,∞). By (ii) in Lemma 2.2, q ∈ (1

2
,∞) ensures that hk(q) >

h∞(q) for all k ≥ 1, so that (3.5) holds if α ≤ 2 = h∞(q) by Lemma 2.1.
On the other hand, for any ϵ > 0, there exists a natural number n0 such that

n ≥ n0 implies h∞(q) < hn(q) < h∞(q) + ϵ. If αϵ ≡ h∞(q) + ϵ > 2 = h∞(q), then
ϕn,q(αϵ) > 0 holds for n ≥ n0, that is, f(t) > 0 for sufficiently large t. Therefore
(3.5) assures α ≤ 2.
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(i-2) Let q ∈ (−1
2
, 0). Then hk(q) > h∞(q) = 0 for all k ≥ 2 by Lemma 2.1.

Therefore (3.5) holds if α ≤ 0. We can show “only if” part by the same way to
(i-1).

We can prove (ii-1) and (ii-2) similarly, so the proof is complete. □
Proof of Theorem 3.1. By putting x = b

a
in Propositions 3.2 and 3.3, we imme-

diately obtain the desired result. □
We remark that we obtain the following inequalities on hyperbolic functions

by (3.3) in the proof of Proposition 3.2. This proposition corresponds to [7,
Proposition 3.4]. Of course, we can produce related inequalities from other results
in Propositions 3.2 and 3.3.

Proposition 3.4. Let q > 1
2
. Then the following inequalities hold.

(i) If α ≥ 2q + 1, then

(α− 2) cosh((q + 1)t) + 2(1− α) cosh(qt) + α cosh((q − 1)t) > 0

holds for all t > 0.

(ii) (2q−1) cosh((q+1)t)+(2q+1) cosh((q−1)t) > 4q cosh(qt) for all t > 0.

Proof. (i) is shown by applying the product-to-sum formula to (3.3). We have
(ii) by putting α = 2q + 1 in (i). □

Next, we state estimations of the Lehmer mean of two strictly positive oper-
ators. In [7], we obtained estimations of the power difference mean for positive
operators as a generalization of Fujii, Furuichi and Nakamoto’s result in [3].

Theorem 3.A ([7]). Let A and B be positive invertible operators.

(i) Let q ∈ (0, 1
2
) ∪ (1,∞). Then

K 2q
q+1

(A,B) ≤ Jq(A,B) ≤ K 2q+1
3
(A,B).

(ii) Let q ∈ (1
2
, 1). Then

K 2q+1
3
(A,B) ≤ Jq(A,B) ≤ K 2q

q+1
(A,B).

(iii) Let q ∈ (−1
2
, 0]. Then

G(A,B) = K0(A,B) ≤ Jq(A,B) ≤ K 2q+1
3
(A,B).

(iv) Let q ∈ (−∞, −1
2
). Then

K 2q+1
3
(A,B) ≤ Jq(A,B) ≤ K0(A,B) = G(A,B).

The given parameters of Kα(A,B) in each case are best possible.

Similarly, we have the following result on the Lehmer mean Lq(A,B).

Theorem 3.5. Let A and B be positive invertible operators.

(i) Let q ∈ (1
2
,∞). Then

K2(A,B) ≤ Lq(A,B) ≤ K2q+1(A,B).
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(ii) Let q ∈ (0, 1
2
). Then

K2q+1(A,B) ≤ Lq(A,B) ≤ K2(A,B).

(iii) Let q ∈ (−1
2
, 0). Then

G(A,B) = K0(A,B) ≤ Lq(A,B) ≤ K2q+1(A,B).

(iv) Let q ∈ (−∞, −1
2
). Then

K2q+1(A,B) ≤ Lq(A,B) ≤ K0(A,B) = G(A,B).

The given parameters of Kα(A,B) in each case are best possible.

Proof. We have Theorem 3.5 by putting x = A
−1
2 BA

−1
2 and applying the standard

operational calculus in Propositions 3.2 and 3.3. □

4. Generalizations involving refined Heinz operator inequalities

In this section, we discuss generalizations of the results in section 3. We con-
sider extensions of the power difference and the Lehmer means for two positive
real numbers a and b as follows: For p, q ∈ R,

Jp,q(a, b) =



(ab)
1−p+q

2
q

p

ap − bp

aq − bq
if p ̸= 0 and q ̸= 0,

(ab)
1+q
2
q(log a− log b)

aq − bq
if p = 0 and q ̸= 0,

(ab)
1−p
2

ap − bp

p(log a− log b)
if p ̸= 0 and q = 0,

√
ab if p = q = 0,

Lp,q(a, b) = (ab)
1−p+q

2
ap + bp

aq + bq
.

We remark that Jp,q(a, b) and Lp,q(a, b) are symmetric, and also Jq+1,q(a, b) =
Jq(a, b) and Lq+1,q(a, b) = Lq(a, b) hold. For positive real numbers a, b and for
q ∈ R, the Heinz mean is defined by

HZq(a, b) =
a1−qbq + aqb1−q

2
.

We remark that HZ0(a, b) = HZ1(a, b) = A(a, b), HZ 1
2
(a, b) = G(a, b) and

HZ1−q(a, b) = HZq(a, b) hold, and also HZq(a, b) is decreasing for q ≤ 1
2
and

increasing for q ≥ 1
2
. These properties ensure G(a, b) ≤ HZq(a, b) ≤ A(a, b) for

q ∈ [0, 1].
We consider opertor versions of these mean, and they are denoted by Jp,q(A,B),

Lp,q(A,B) and HZq(A,B) for A,B > 0. Here, we call inequalities

G(A,B) ≤ HZq(A,B) ≤ A(A,B) (4.1)

for q ∈ [0, 1] the Heinz operator inequalities [9, 11]. We state in the next section
that we have the results on operator monotonicity of the representing functions
of Jp,q(A,B) and Lp,q(A,B) by using Nagisa and Wada’s result in [12].
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Now we are ready to get generalizations of Theorems 3.A and 3.5. We obtain
estimations of Jp,q(A,B) and Lp,q(A,B) by extensions of the Heron mean

Kα,q(A,B) = (1− α)G(A,B) + αHZq(A,B).

We remark that Kα,q(A,B) are increasing for α ∈ R. We can also obtain gener-
alizations for positive real numbers by using

Kα,q(a, b) = (1− α)
√
ab+ α

a1−qbq + aqb1−q

2
,

but we omit them.

Theorem 4.1. Let A,B > 0 and p, q ∈ R with p ̸= q.

(i) If q
p−q

∈ (0, 1
2
) ∪ (1,∞), then

K 2q
p
, 1−p+q

2
(A,B) ≤ Jp,q(A,B) ≤ K p+q

3(p−q)
, 1−p+q

2
(A,B).

(ii) If q
p−q

∈ (1
2
, 1), then

K p+q
3(p−q)

, 1−p+q
2

(A,B) ≤ Jp,q(A,B) ≤ K 2q
p
, 1−p+q

2
(A,B).

(iii) If q
p−q

∈ (−1
2
, 0], then

G(A,B) = K0, 1−p+q
2

(A,B) ≤ Jp,q(A,B) ≤ K p+q
3(p−q)

, 1−p+q
2

(A,B).

(iv) If q
p−q

∈ (−∞, −1
2
), then

K p+q
3(p−q)

, 1−p+q
2

(A,B) ≤ Jp,q(A,B) ≤ K0, 1−p+q
2

(A,B) = G(A,B).

The given parameters α = α(p, q) of Kα,q(A,B) in each case are best possible.

Theorem 4.2. Let A,B > 0 and p, q ∈ R with p ̸= q.

(i) If q
p−q

∈ (1
2
,∞), then

K2, 1−p+q
2

(A,B) ≤ Lp,q(A,B) ≤ K p+q
p−q

, 1−p+q
2

(A,B).

(ii) If q
p−q

∈ (0, 1
2
), then

K p+q
p−q

, 1−p+q
2

(A,B) ≤ Lp,q(A,B) ≤ K2, 1−p+q
2

(A,B).

(iii) If q
p−q

∈ (−1
2
, 0), then

G(A,B) = K0, 1−p+q
2

(A,B) ≤ Lp,q(A,B) ≤ K p+q
p−q

, 1−p+q
2

(A,B).

(iv) If q
p−q

∈ (−∞, −1
2
), then

K p+q
p−q

, 1−p+q
2

(A,B) ≤ Lp,q(A,B) ≤ K0, 1−p+q
2

(A,B) = G(A,B).

The given parameters α = α(p, q) of Kα,q(A,B) in each case are best possible.
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Proof of Theorem 4.1. (i) For r ∈ (0, 1
2
) ∪ (1,∞) and t > 0,

K 2r
r+1

(1, t) < Jr(1, t) < K 2r+1
3
(1, t) (4.2)

holds by (i) in Theorem 1.A. Put r = q
p−q

and t = xp−q for p, q ∈ R with p ̸= q.

Then (4.2) is equivalent to

K 2q
p
(1, xp−q) < J q

p−q
(1, xp−q) < K p+q

3(p−q)
(1, xp−q). (4.3)

Since

x
1−p+q

2 J q
p−q

(1, xp−q) = x
1−p+q

2

q
p−q

q
p−q

+ 1

xq+(p−q) − 1

xq − 1
= x

1−p+q
2

q

p

xp − 1

xq − 1
= Jp,q(1, x)

and

x
1−p+q

2 Kα(1, x
p−q) = x

1−p+q
2

{
(1− α)x

p−q
2 + α

xp−q + 1

2

}
= (1− α)

√
x+ α

x
1+p−q

2 + x
1−p+q

2

2
= Kα, 1−p+q

2
(1, x),

(4.3) is equivalent to

K 2q
p
, 1−p+q

2
(1, x) < Jp,q(1, x) < K p+q

3(p−q)
, 1−p+q

2
(1, x). (4.4)

By putting x = A
−1
2 BA

−1
2 and applying the standard operational calculus in

(4.4), we obtain

K 2q
p
, 1−p+q

2
(A,B) ≤ Jp,q(A,B) ≤ K p+q

3(p−q)
, 1−p+q

2
(A,B).

We obviously get the best possibility on α = α(p, q) of Kα,q(A,B) by the above
argument.

We can show (ii), (iii) and (iv) similarly. Hence the proof is complete. □

Proof of Theorem 4.2. Noting that

x
1−p+q

2 L q
p−q

(1, xp−q) = x
1−p+q

2
xp + 1

xq + 1
= Lp,q(1, x),

we obtain the desired result by the same way as the proof of Theorem 4.1. □

Kittaneh and Krnić [9] obtained refined Heinz inequalities via the Hermite-
Hadamard inequality by considering the parameterized class of functions Fν :
(0,∞) → R, ν ∈ [0, 1] defined by

Fν(x) =


xν − x1−ν

log x
if x ̸= 1,

2ν − 1 if x = 1.
(4.5)

Liang and Shi [11] showed the following result on the Heinz mean and Fν(x) as
an improvement of the results in [9].
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Theorem 4.A ([11]). Let A,B > 0. If s, t ∈ [0, 1] satisfy

s, t ̸= 1

2
,

∣∣∣∣s− 1

2

∣∣∣∣ ≥ ∣∣∣∣t− 1

2

∣∣∣∣
and k ≥ 1

3
, then

HZt(A,B) ≤
(
1− (1− 2t)2

(1− 2s)2

)
G(A,B) +

(1− 2t)2

(1− 2s)2
HZs(A,B) (4.6)

and

1

2t− 1
A

1
2Ft(A

−1
2 BA

−1
2 )A

1
2 ≤

(
1− k

(1− 2t)2

(1− 2s)2

)
G(A,B)+k

(1− 2t)2

(1− 2s)2
HZs(A,B).

(4.7)

It is the essential part of (4.7) that

1

2t− 1
A

1
2Ft(A

−1
2 BA

−1
2 )A

1
2 ≤ (1− k)G(A,B) + kHZt(A,B) = Kk,t(A,B) (4.8)

for t ∈ [0, 1] \ {1
2
} and k ≥ 1

3
since the inequality (4.7) is led by (4.6) and (4.8).

We remark that (4.8) is a refinement of the first inequality in the Heinz operator
inequality (4.1) in the sense that (4.8) assures

G(A,B) ≤ 1

2t− 1
A

1
2Ft(A

−1
2 BA

−1
2 )A

1
2 ≤ K 1

3
,t(A,B) ≤ HZt(A,B). (4.9)

Theorems 4.1 and 4.2 assures the following refinements of the Heinz operator
inequalities including (4.9).

Corollary 4.3. Let A,B > 0 and p, q ∈ R with p ̸= q.

(i) If pq > 0 and |q| ≤ |p|
3
, then

G(A,B) ≤ K 2q
p
, 1−p+q

2
(A,B) ≤ Jp,q(A,B) ≤ K p+q

3(p−q)
, 1−p+q

2
(A,B) ≤ HZ 1−p+q

2
(A,B).

(ii) If pq > 0 and |p|
3
< |q| < |p|

2
, then

G(A,B) ≤ K p+q
3(p−q)

, 1−p+q
2

(A,B) ≤ Jp,q(A,B) ≤ K 2q
p
, 1−p+q

2
(A,B) ≤ HZ 1−p+q

2
(A,B).

(iii) If pq ≤ 0 and |q| < |p|, then
G(A,B) = K0, 1−p+q

2
(A,B) ≤ Jp,q(A,B) ≤ K p+q

3(p−q)
, 1−p+q

2
(A,B) ≤ HZ 1−p+q

2
(A,B).

Corollary 4.4. Let A,B > 0 and p, q ∈ R with p ̸= q. If pq < 0 and |q| < |p|,
then

G(A,B) = K0, 1−p+q
2

(A,B) ≤ Lp,q(A,B) ≤ K p+q
p−q

, 1−p+q
2

(A,B) ≤ HZ 1−p+q
2

(A,B).

Proof of Corollaries 4.3 and 4.4. Here, we give a proof of (i) in Corollary 4.3. If
p = 3q, that is q

p−q
= 1

2
, then

G(A,B) ≤ J3q,q(A,B) = K 2
3
, 1−2q

2
(A,B) ≤ HZ 1−2q

2
(A,B)

holds. If pq > 0 and 0 < |q| < |p|
3

hold, then it is equivalent to q
p−q

∈ (0, 1
2
).

Therefore (i) in Theorem 4.1 implies the desired inequalities since 2q
p

> 0 and
p+q

3(p−q)
< 2

3
.



ESTIMATIONS OF THE LEHMER MEAN BY THE HERON MEAN 777

(ii), (iii) in Corollary 4.3 and Corollary 4.4 are shown similarly by (ii), (iii) in
Theorem 4.1 and (iii) in Theorem 4.2, respectively. □

We remark that HZ 1−p+q
2

(A,B) ≤ A(A,B) holds if |p − q| ≤ 1. We recognize

that (iii) in Corollary 4.3 implies (4.9) as follows: By putting p = 1 − 2t and
q = 0, we have

G(A,B) = K0,t(A,B) ≤ J1−2t,0(A,B) ≤ K 1
3
,t(A,B) ≤ HZt(A,B),

so that we obtain (4.9) since

J1−2t,0(1, x) = xt 1

1− 2t

x1−2t − 1

log x
=

1

2t− 1
Ft(x).

5. Operator monotonicity of Jp,q(1, x) and Lp,q(1, x)

In this section, we discuss operator monotonicity of the representing functions
of Jp,q(A,B) and Lp,q(A,B), that is,

Jp,q(1, x) =



x
1−p+q

2
q

p

xp − 1

xq − 1
if p ̸= 0 and q ̸= 0,

x
1+q
2
q log x

xq − 1
if p = 0 and q ̸= 0,

x
1−p
2
xp − 1

p log x
if p ̸= 0 and q = 0,

√
x if p = q = 0,

Lp,q(1, x) = x
1−p+q

2
xp + 1

xq + 1
= x

1−p+q
2

x2p − 1

x2q − 1

xq − 1

xp − 1
.

We want to point out that Lp,q(1, x) can be expressed as the last form.
Nagisa and Wada [12] investigated operator monotonicity of the following func-

tions fα,β on (0,∞) including Jp,q(1, x) and Lp,q(1, x) (see also [8, 15]).

fα,β(x) =


xγ

n∏
i=1

xαi − 1

xβi − 1
if x ̸= 1,

n∏
i=1

αi

βi

if x = 1,

(5.1)

where α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn). In [12], they stated that
we have only to consider the setting |γ| ≤ 2, αi, βi ∈ (0, 2] and αi ̸= βj (i, j =
1, 2, . . . , n), and they obtained the following Theorem 5.A. We remark that they
also gave an equivalent condition for operator monotonicity, but it seems to be
difficult to calculate in general.

Theorem 5.A ([12]). Let |γ| ≤ 2, αi, βi ∈ (0, 2], αi ̸= βj (i, j = 1, 2, . . . , n) and
αi ≤ αj, βi ≤ βj if 1 ≤ i < j ≤ n. If it satisfies

0 ≤ γ −
n∑

i=1

F (βi, αi) and γ +
n∑

i=1

F (αi, βi) ≤ 1, (5.2)
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then we have that fα,β(x) in (5.1) is operator monotone on (0,∞), where the

function F : [0, 2]× [0, 2] → R is defined as follows:

F (a, b) =


a− b if a ≥ b, 0 ≤ b ≤ 1,

a− 1 if 1 < a, b ≤ 2,

0 if a < b, 0 ≤ a ≤ 1.

By applying Theorem 5.A, we know the domains of (p, q) for which Jp,q(1, x)
and Lp,q(1, x) are operator monotone.

Proposition 5.1. Let p, q ∈ [−2, 2].

(i) If (p, q) belongs to the domain
{
(p, q) :

∣∣|p| − |q|
∣∣ ≤ 1, |p|+ |q| ≤ 3

}
, then

Jp,q(1, x) is operator monotone on (0,∞).

(ii) If (p, q) belongs to the domain{
(p, q) :

|p|
2

≤ |q| ≤ 2|p|,
∣∣|p| − |q|

∣∣ ≤ 1

3
, 3|p|+ |q| ≤ 3, |p|+ 3|q| ≤ 3

}
∪{(p, q) : |p|+ |q| ≤ 1} ,

Lp,q(1, x) is operator monotone on (0,∞).

Corollary 5.2. Let t ∈ [0, 1]. Then J1−2t,0(1, x) =
1

2t− 1
Ft(x) is operator mono-

tone on (0,∞), where Ft(x) is defined as in (4.5).

Proof of Proposition 5.1. We only give a proof of (ii) since (i) is shown by the
same way. Put Lp,q(x) = Lp,q(1, x). We remark that

Lp,0(x) =
x

1+p
2 + x

1−p
2

2

is operator monotone if p ∈ [0, 1]. By the definition of Lp,q(x) and the relations

Lp,q(x) = L−p,q(x) = Lp,−q(x) = L−p,−q(x) and Lq,p(x) = Lp,q(x
−1)−1,

we have only to consider the case 0 < q ≤ p ≤ 1.
(a) Case p ≤ 2q. Put α = (q, 2p) and β = (p, 2q) in (5.1). Then we have

n∑
i=1

F (βi, αi) = F (p, q) + F (2q, 2p) =

{
p− q (q ≤ 1

2
),

p+ q − 1 (q > 1
2
),

n∑
i=1

F (αi, βi) = F (q, p) + F (2p, 2q) =

{
2p− 2q (q ≤ 1

2
),

2p− 1 (q > 1
2
).

Put γ = 1−p+q
2

. If q ≤ 1
2
, then

0 ≤ γ −
n∑

i=1

F (βi, αi) if and only if p− q ≤ 1

3
,

γ +
n∑

i=1

F (αi, βi) ≤ 1 if and only if p− q ≤ 1

3
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hold, so that the conditions in (5.2) hold if and only if p − q ≤ 1
3
. Similarly, if

q > 1
2
, then the conditions in (5.2) hold if and only if 3p+ q ≤ 3.

(b) Case 2q < p. Put α = (q, 2p) and β = (2q, p) in (5.1). Then we have

n∑
i=1

F (βi, αi) = F (2q, q) + F (p, 2p) = q,

n∑
i=1

F (αi, βi) = F (q, 2q) + F (2p, p) = p,

so the conditions in (5.2) hold if and only if p+ q ≤ 1.
Therefore Lp,q(x) = fα,β(x) is operator monotone if (p, q) belongs to the

domain{
(p, q) : 0 < q ≤ p ≤ 2q, p− q ≤ 1

3
, 3p+ q ≤ 3

}
∪ {(p, q) : 0 < 2q < p, p+ q ≤ 1} ,

by Theorem 5.A, so that we have the desired result. □

Proof of Corollary 5.2. Put p = 1− 2t and q = 0 in (i) of Proposition 5.1. □
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