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REPRESENTATIONS OF TOPOLOGICAL ALGEBRAS
BY PROJECTIVE LIMITS

MATI ABEL1

Communicated by Z. A. Lykova

Abstract. It is shown that a) it is possible to define the topology of any
topological algebra by a collection of F -seminorms, b) every complete locally
uniformly absorbent (complete locally A-pseudoconvex) Hausdorff algebra is
topologically isomorphic to a projective limit of metrizable locally uniformly
absorbent algebras (respectively, A-(k-normed) algebras, where k ∈ (0, 1] varies,
c) every complete locally idempotent (complete locally m-pseudoconvex) Haus-
dorff algebra is topologically isomorphic to a projective limit of locally idempo-
tent Fréchet algebras (respectively, k-Banach algebras, where k ∈ (0, 1] varies)
and every m-algebra is locally m-pseudoconvex. Condition for submultiplica-
tivity of F -seminorm is given.

1. Introduction

1. Let K be the field R of real numbers or C of complex numbers and X a
topological linear space over K. A neighbourhood O ⊂ X of zero is absolutely
k-convex, if λu + µv ∈ O for all u, v ∈ O and λ, µ ∈ K with |λ|k + |µ|k 6 1 and
is absolutely pseudoconvex, if O is absolutely k-convex for some k ∈ (0, 1], which
depends on O. Then every such neighbourhood O of zero is balanced (that is,
µO ⊂ O for |µ| 6 1) and pseudoconvex (that is, O defines a number kO ∈ (0, 1]
such that

O +O ⊂ 2
1
kOO).
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A topological algebra A over K with separately continuous multiplication (in
short, a topological algebra) is locally pseudoconvex if it has a base LA of neigh-
bourhoods of zero, consisting of absolutely pseudoconvex subsets. Herewith, when

inf{kO : O ∈ LA} = k > 0,

then A is is a locally k-convex algebra and when k = 1, then a locally convex
algebra. A locally pseudoconvex algebra A is locally absorbingly pseudoconvex
(in short locally A-pseudoconvex ), if A has a base LA of absorbent (that is, for
each a ∈ A and each O ∈ LA there exists a number N(a,O) > 0 such that
aO∪Oa ⊂ N(a,O)O) and pseudoconvex neighbourhoods of zero, and is a locally
multiplicatively pseudoconvex (in short locally m-pseudoconvex ) algebra, if every
O ∈ LA is idempotent (that is, OO ⊂ O). Locally A-(k-convex ) and locally
m-(k-convex ) algebras are defined similarly. In case k = 1 these algebras are
locally A-convex and locally m-convex algebras.

It is well-known (see, for example, [18, pp. 3–6] or [8, pp. 189 and 195]) that
it is possible to define the topology of every locally pseudoconvex algebra A by a
collection PA = {pλ : λ ∈ Λ} of kλ-homogeneous seminorms, where kλ ∈ (0, 1] for
each λ ∈ Λ. Recall that a seminorm p on A is k-homogeneous if p(µa) = |µ|kp(a)
for each a ∈ A. In case when for any a ∈ A and every pλ ∈ PA there exist
positive numbers M = M(a, λ) and N = N(a, λ) such that pλ(ab) 6Mpλ(b) and
pλ(ba) 6 Npλ(b) for each b ∈ A, then A is a locally A-pseudoconvex algebra, and
when M(a, λ) = N(a, λ) = pλ(a) for each a ∈ A and λ ∈ Λ, then a locally
m-pseudoconvex algebra. Moreover, A is a A-(k-normed) algebra, when the
topology of A is defined by a k-homogeneous norm ‖ · ‖, k ∈ (0, 1], such that
for any a ∈ A there exists positive numbers M(a) and N(a) such that ‖ab‖ 6
M(a)‖b‖ and ‖ba‖ 6 N(a)‖b‖ for each b ∈ A, and an m-(k-normed) algebra, if
N(a) = M(a) = ‖a‖ for each a ∈ A.

2. A topological algebra A is a locally idempotent algebra if it has a base
of idempotent neighbourhoods of zero. This class of topological algebras has
been introduced in [21, p. 31]. Locally m-convex algebras (see, for example,
[9, 10, 14, 15, 21, 22]) and locally m-pseudoconvex algebras (see, for example, [3,
5, 8]) have been well studied, locally idempotent algebras (without any additional
requirements) have been studied only in [16, 21, 4].

We shall say that a topological algebra A is
a) a locally absorbent algebra if A has a base of absorbent neighbourhoods of

zero.
b) a locally uniformly absorbent algebra if A has a base of uniformly absorbent

neighbourhoods of zero (that is, for each fixed a ∈ A and each neighbourhood O
of zero in A there exists a positive number λ(a) (which does not depend on O)
such that aO ∪Oa ⊂ λ(a)O);

3. It is well-known (it was first published in 1952 in [15, p. 17]) that every
complete locally m-convex Hausdorff algebra is topologically isomorphic to the
projective limit of Banach algebras. This result has been generalized to the case
of complete locally m-(k-convex) Hausdorff algebras in [2, Theorem 5], to the
case of complete locally A-convex Hausdorff algebras in [7, Theorem 2.2], and



146 MATI ABEL

to the case of complete locally m-pseudoconvex Hausdorff algebras in [8, pp.
202–204]. Moreover, it is known (see [17, Theorem 1]) that every complete topo-
logical Hausdorff algebra with jointly continuous multiplication is topologically
isomorphic to a projective limit of Fréchet algebras and every complete locally
convex Hausdorff algebra with jointly continuous multiplication is topologically
isomorphic to a projective limit of locally convex Fréchet algebras.

Similar representations of topological algebras (not necessarily with jointly con-
tinuous multiplication) by projective limits are considered in the present paper.

2. Topology defined by a collection of F -seminorms

1. Let X be a linear space over K. By F -seminorm on X we mean a map
q : X → R+ which has the following properties:

(q1) q(λx) 6 q(x) for each x ∈ X and λ ∈ K with |λ| 6 1;
(q2) limn→∞ q

(
1
n
x
)

= 0 for each x ∈ X;
(q3) q(x+ y) 6 q(x) + q(y) for each x, y ∈ X.

If from q(x) = 0 follows that x = θX , then q is called an F -norm on X. In this
case d(x, y) = q(x − y) for each x, y ∈ X defines a metric d on A which has the
property d(x+ z, y + z) = d(x, y) for each x, y, z ∈ X.

2. It is well-known (see, for example, [12, p. 39, Theorem 3]) that the topology
of any topological linear space X coincides with the initial topology defined by a
collection of F -seminorms on X. To show that the same situation takes place in
case of topological algebras, we prove first the following result.

Proposition 2.1. Let A be an algebra over K, Q = {qλ : λ ∈ Λ} a non-empty
collection of F -seminorms on A and τQ the initial topology on A, defined by the
collection Q. Then (A, τQ) is a topological algebra if Q satisfies the condition

(q4) for each fixed a ∈ A and for any ε > 0 and any λ ∈ Λ there exist δa > 0
and λa ∈ Λ such that qλ(ab) < ε and qλ(ba) < ε, whenever qλa(b) < δa.

Moreover, (A, τQ) is a topological algebra with jointly continuous multiplication if
Q satisfies the condition

(q5) for any ε > 0 and any λ ∈ Λ there exist δ > 0 and λ′ ∈ Λ such that
qλ(ab) < ε, whenever qλ′(a) < δ and qλ′(b) < δ,

and (A, τQ) is a locally idempotent algebra if Q satisfies the condition

(q6) for any ε > 0 and any λ ∈ Λ holds qλ(ab) < ε, whenever qλ(a) < ε and
qλ(b) < ε.

Proof. Since τQ is the initial topology on A defined by the collection Q, then
{Oλε : λ ∈ Λ, ε > 0} is a subbase of neighbourhoods of zero in (A, τQ), where
Oλε = {a ∈ A : qλ(a) < ε} is a balanced and absorbent set by (q1) and (q2) for
each ε > 0 and each λ ∈ Λ. It is easy to see that the addition (a, b) → a + b
in (A, τQ) is continuous by (q3) and the multiplication over K is continuous in
(A, τQ) by (q1). Therefore, (A, τQ) is a topological linear space.



REPRESENTATIONS OF TOPOLOGICAL ALGEBRAS 147

If now, in addition, Q satisfies the condition (q4), then the multiplication
(a, b) → ab in (A, τQ) is separately continuous. To show this, let O be an ar-
bitrary neighbourhood of zero in the topology τQ on A. Then there exist ε > 0,
n ∈ N and λ1, . . . , λn ∈ Λ such that

n⋂
k=1

Oλkε ⊂ O. (2.1)

For each fixed a ∈ A and each k ∈ Nn there are, by the condition (q4), a number
δa(k) > 0 and an index λa(k) ∈ Λ such that qλk(ab) < ε and qλk(ba) < ε whenever
qλa(k)(b) < δa(k). Let now δa = min{δa(1), . . . , δa(n)} and

Va =
⋂
k=1

Oλa(k)δa .

Then Va is a neighbourhood of zero in A in the topology τQ and

aVa ∪ Vaa ⊂
n⋂
k=1

[aOλa(k)δa(k) ∪Oλa(k)δa(k)a] ⊂
n⋂
k=1

Oλkε ⊂ O.

Hence, the multiplication in (A, τQ) is separately continuous. Consequently,
(A, τQ) is a topological algebra.

If, next, Q satisfies the condition (q5), then the multiplication (a, b) → ab is
jointly continuous in (A, τQ). To show this, let again O be an arbitrary neigh-
bourhood of zero in the topology τQ on A. Then there are ε > 0, n ∈ N and
λ1, . . . , λn ∈ Λ such that holds (2.1). Now, for each k ∈ Nn = {1, 2, . . . , n} there
are, by the condition (q5), a number δk > 0 and an index λ′k ∈ Λ such that
qλk(ab) < ε, whenever qλ′k(a) < δk and qλ′k(b) < δk. Let now δ = min{δ1, . . . , δn}
and

V =
⋂
k=1

Oλ′kδ
.

Then V is again a neighbourhood of zero in A in the topology τQ and

V V ⊂
n⋂
k=1

Oλ′kδk
Oλ′kδk

⊂
n⋂
k=1

Oλkε ⊂ O.

It means that the multiplication in (A, τQ) is jointly continuous. Consequently, in
this case (A, τQ) is a topological algebra with jointly continuous multiplication.

Let, in the end, Q satisfies the condition (q6). Then OλεOλε ⊂ Oλε for each
ε > 0 and λ ∈ Λ. Therefore, (A, τQ) has a base of idempotent neighbourhoods of
zero. Consequently, (A, τQ) is a locally idempotent algebra. �

Theorem 2.2. Every topological algebra (A, τ) defines a collection Q of
F -seminorms on A such that (A, τQ) is a topological algebra (in particular, when
(A, τ) is a topological algebra with jointly continuous multiplication, then (A, τQ)
is a topological algebra with jointly continuous multiplication) and τ = τQ.

Proof. Let M be the dense subset of R+ which consists of all non-negative rational
numbers, having a finite dyadic expansions, i.e, we may write every such number
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ρ on the form

ρ =
∞∑
n=0

δn(ρ) · 2−n,

where δ0(ρ) ∈ N0 := N ∪ {0}, δn(ρ) ∈ {0, 1} for each n ∈ N and δn(ρ) = 0 for n
sufficiently large.

Let L(A,τ) be a base of neighbourhoods of zero in (A, τ), consisting of closed
balanced sets and S = {Sλ : λ ∈ Λ} the set of all strings Sλ = (Un(λ)) in L(A,τ),
that is, Un(λ) ∈ L(A,τ) and Un+1(λ) + Un+1(λ) ⊂ Un(λ) for each n ∈ N0 (see [6,
p. 5]). For each λ ∈ Λ, Sλ = (Un(λ)) ∈ S and ρ ∈M let

Vλ(ρ) = U0(λ) + · · ·+ U0(λ)︸ ︷︷ ︸
δ0(ρ) summands

+
∞∑
n=1

δn(ρ) · Un(λ) (2.2)

and
qλ(a) = inf{ρ ∈M : a ∈ Vλ(ρ)}

for each a ∈ A and λ ∈ Λ. Then every qλ is a F -seminorm on A (see [12, pp.
39–40]) and

ker qλ =
∞⋂
n=0

Un(λ).

Indeed, if a ∈ ker qλ, then qλ(a) < 2−n for each n ∈ N0. Therefore, a ∈ Vλ(2−n) =
Un(λ) for each n ∈ N0. On the other hand, if a ∈ Un(λ) for each n ∈ N0, then
qλ(a) 6 2−n for each n ∈ N0. Hence qλ(a) = 0 or a ∈ ker qλ.

To show that Q = {qλ : λ ∈ Λ} satisfies the condition (q4), let a ∈ A,
λ ∈ Λ (by this we fix a string Sλ = (Un(λ)) in L(A,τ)) and ε > 0. Then there
exists a number nε ∈ N such that 1

2nε
< ε. Since the multiplication (a, b) → ab

in (A, τ) is separately continuous, then there exists a neighbourhood Va ∈ L(A,τ)

such that aVa∪Vaa ⊂ Unε(λ). Let (Un) be the string in L(A,τ), which is generated
by Va, that is, U0 = Va and other members Un of this string are defined by Va.
Hence, there exists an index λa ∈ Λ such that Sλa = (Un(λa)), where U0(λa) = Va
and Un(λa) = Un, if n > 1. Now, Va = Vλa(1) and

aVa ∪ Vaa ⊂ Unε(λ) = Vλ

( 1

2nε

)
.

Therefore, for every fixed a ∈ A and for any λ ∈ Λ and any ε > 0 there exist an
index λa ∈ Λ and a number εa > 0 such that qλ(ab) 6 2−nε < ε and qλ(ab) 6
2−nε < ε whenever qλa(b) < 1 (in the present case, εa = 1). Hence, the collection
Q satisfies the condition (q4). Consequently, (A, τQ) is a topological algebra by
Proposition 2.1.

In particular, when (A, τ) is a topological algebra with jointly continuous multi-
plication, then the multiplication in (A, τQ) is also jointly continuous. Indeed, let
λ ∈ Λ (by this we fix again a string Sλ = (Un(λ)) in L(A,τ)) and ε > 0. Then there
is again a number nε ∈ N such that 1

2nε
< ε. Since the multiplication (a, b)→ ab in

(A, τ) is jointly continuous, then there exists an element V ∈ LA such that V V ⊂
Unε(λ). Let now (Un) be the string in L(A,τ) for which U0 = V . Then there exists
an index λ′ ∈ Λ such that Sλ′ = (Un(λ′)), where U0(λ′) = V . If a, b ∈ V = Vλ′(1),
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then qλ′(a) < 1, qλ′(b) < 1 and from ab ∈ V V ⊂ Unε(λ) = Vλ(
1

2nε
) follows that

qλ(ab) 6 1
2nε

< ε. Hence, for each λ ∈ Λ and ε > 0 there exist λ′ ∈ Λ and ε′ > 0
such that qλ(ab) < ε, whenever qλ′(a) < 1 and qλ′(b) < 1 (in the present case,
ε′ = 1). This shows that Q satisfies the condition (q5). Consequently, (A, τQ) is
a topological algebra with jointly continuous multiplication by Proposition 2.1.

Next we show that τ = τQ. For it let U ∈ L(A,τ), Sλ0 = (Un(λ0)) be the
string in L(A,τ) for which U0(λ0) = U and let u ∈ Oλ01. Then qλ0(u) < 1. Hence
u ∈ Vλ0(1) = U0(λ0) = U . It means that Oλ01 ⊂ U . Since Oλ01 belongs to the
base of neighbourhoods of zero in (A, τQ), then τ ⊂ τQ. Let now O ∈ L(A,τQ).
Then there are ε > 0, m ∈ N and λ1, . . . , λm ∈ Λ (with this we fix m strings
Sλ1 = (Un(λ1)), . . . , Sλm = (Un(λm)) in L(A,τ)) such that

m⋂
k=1

Oλkε ⊂ O.

Again, there is a number nε ∈ N such that 1
2nε

< ε. Now,

U =
m⋂
k=1

Unε(λk)

is a neighbourhood of zero of A in the topology τQ. Since

Unε(λk) = Vλk

( 1

2nε

)
for each k ∈ Nm, then from u ∈ U follows that qλk(u) 6 1

2nε
< ε for each k ∈ Nm.

Hence, U ⊂ O. It means that τQ ⊂ τ . Consequently, τ = τQ. �

Corollary 2.3. Let (A, τ) be a locally pseudoconvex algebra; P = {pα : α ∈ A}
the collection of nonhomogeneous seminorms on A, which defines the topology τ ;
τP the topology on A, defined by the collection P; LA the base of neighbourhoods
of zero in A, which are closed and balanced sets; Q = {qS : S is a string in LA}
and τQ the topology on A, defined by the collection Q of F -seminorms on A.
Then τ = τP = τQ.

Proof. It is well-known that τ = τP and τ = τQ by Theorem 2.2. Hence, all these
three topologies coincide. �

3. In point of view of algebra it is important to know, when every F -seminorm,
defined by a string from LA, is submultiplicative.

Proposition 2.4. Let A be a topological algebra, LA the base of all closed and
balanced neighbourhoods of zero in A, and S = (Un) a string in LA. Then the
F -seminorm qS, defined by S, is submultiplicative if and only if the knots Un of
S satisfy the condition

UnUm ⊂ Un+m (2.3)

for all n,m ∈ N.

Proof. Let S = (Un) be a string in LA such that the F -seminorm qS, defined by S,
is submultiplicative (that is qS(ab) 6 qS(a)qS(b) for all a, b ∈ A). Let n,m ∈ N be
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fixed, a ∈ Un = VS( 1
2n

) and b ∈ Um = VS( 1
2m

). Then qS(a) 6 1
2n

and qS(b) 6 1
2m

.
Therefore,

qS(ab) 6
1

2n
1

2m
=

1

2n+m

or

ab ∈ VS
( 1

2n+m

)
= Un+m.

Hence, UnUm ⊂ Un+m.
Let now S = (Un) be a string in LA such that the knots Un of S satisfy the

condition (2.3) for all n,m ∈ N. Moreover, let ρ and σ be dyadic numbers such
that a ∈ VS(ρ), ρ 6 qS(a)+ε, b ∈ VS(σ) and σ 6 qS(b)+δ. Then ab ∈ VS(ρ)VS(σ).
For every s > 1 and l > 0 let

Ul(s) = Ul + · · ·+ Ul︸ ︷︷ ︸
s summands

.

Since

VS(ρ)VS(σ) = [U0(δ0(ρ)) +
∞∑
n=1

δn(ρ)Un ][U0(δ0(σ)) +
∞∑
n=1

δn(σ)Un] ⊂

U0(δ0(ρ)δ0(σ)) + T1 + T2 + T3

by (2.2), where

T1 =
∞∑
n=1

δn(ρ)Un[U0(δ0(σ))] ⊂
∞∑
n=1

δn(ρ)[Un(δ0(σ))] = T ′1

T2 = [U0(δ0(ρ))]
∞∑
n=1

δn(σ)Un ⊂
∞∑
n=1

δn(σ) [Un(δ0(ρ))] = T ′2

and

T3 =
∞∑
n=1

[ n∑
k=1

δk(ρ)δn−k+1(σ)UkUn−k+1

]
⊂

∞∑
n=1

[ n∑
k=1

δk(ρ)δn−k+1(σ)Un+1

]
= T ′3

by the condition (2.3). Hence,

ab ∈ U0(δ0(ρ)δ0(σ)) + T ′1 + T ′2 + T ′3 ⊂
VS(δ0(ρ)δ0(σ)) + VS(Kρ) + · · ·+ VS(Kρ)︸ ︷︷ ︸

δ0(σ) summands

+VS(Kσ) + · · ·+ VS(Kσ)︸ ︷︷ ︸
δ0(ρ) summands

+VS(Kρσ) ⊂

VS(δ0(ρ)δ0(σ)) + δ0(σ)VS(Kρ) + δ0(ρ)VS(Kσ) + VS(Kρσ)

= VS([δ0(ρ) +Kρ][δ0(σ) +Kσ]) = VS(ρσ)

because VS(α) +VS(β) ⊂ VS(α+ β) for each dyadic numbers α and β (see [12, p.
39], where

Kl =
∞∑
n=1

δn(l)
1

2n
and Klm =

∞∑
n=1

[ n∑
k=1

δk(l)δn−k+1(m)
] 1

2n+1
.

Therefore,
qS(ab) 6 ρσ 6 (qS(a) + ε)(qS(b) + ε),
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from which follows that qS is submultiplicative (because ε is an arbitrary positive
number). �

Corollary 2.5. Let A be a topological algebra, LA the base of closed and balanced
neighbourhoods of zero in A and QA = {qS : S is a string in LA} be the collection
of submultiplicative F -seminorms on A, which defines the topology of A. Then A
is a locally idempotent algebra.

Proof. Let A be a topological algebra such that every F -seminorm qS in QA is
submultiplicative, O ∈ LA an arbitrary element and S = (Un) the string in LA
with U0 = O. Since qS is submultiplicative, then all knots Un of the string S
satisfy the condition (2.3), by Proposition 2.4. Hence O is an idempotent set.
Therefore, A is a locally idempotent algebra. �

Remark 2.6. Recall that a topological algebra, for which every F -seminorm in QA
is submultiplicative, is an m-algebra in [16, p. 767], and an m-convex topological
algebra in [20, p. 335]. W. Żelazko in [21, p. 39] and V. Murali in [16, p. 766]
asked whether every locally idempotent algebra is an m-algebra? By Proposition
2.4, the answer is no, because idempotent knots of a string do not necessarily
satisfy the condition (2.3).

3. Main results

To represent topological algebras by projective limits, we need

Lemma 3.1. Let A be a locally uniformly absorbent (locally idempotent) Haus-
dorff algebra over K, LA the base of all closed, balanced and uniformly absorbent
(respectively, closed, balanced and idempotent) neighbourhoods of zero in A and
SA = (Un) a string in LA. Then the kernel

N(SA) =
∞⋂
n=1

Un

of SA is a closed two-sided ideal in A.

Proof. WhenN(SA) = {θA}, thenN(SA) is a closed two-sided ideal inA. Suppose
now that N(SA) 6= {θA}. Then there are elements a, b ∈ N(SA)\{θA}. Let n ∈ N
be an arbitrary fixed number. Since N(SA) ⊂ Un+1 and Un+1 + Un+1 ⊂ Un, then
a+ b ∈ Un for each n ∈ N. Hence, a+ b ∈ N(SA).

Let next λ ∈ K and a ∈ N(SA). Then a ∈ Un for each n ∈ N. If |λ| 6 1, then
λa ∈ Un for each n ∈ N, because Un is balanced. If |λ| > 1, let n0 ∈ N be a
natural number such that [|λ|]+1 6 2n0 and n an arbitrary fixed natural number
(Here [r] denotes the entire part of a real number r). Since

λa = [|λ|] λ
|λ|
a+ (|λ| − [|λ|]) λ

|λ|
a ∈ Un+n0 + · · ·+ Un+n0︸ ︷︷ ︸

[|λ|]+1 summands

⊂ Un,

because
∣∣ λ
|λ|

∣∣ = 1,
∣∣(|λ| − [|λ|]) λ

|λ|

∣∣ < 1 and every Un is balanced. Hence, λa ∈ Un
for each n ∈ N. Thus, λa ∈ N(SA).
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First, we assume that A is a locally uniformly absorbent algebra, a ∈ A and
b ∈ N(SA). Since A is a locally uniformly absorbent algebra, then there exists a
positive number λ(a) such that aUn ∈ λ(a)Un. Therefore, ab

λ(a)
∈ Un for each n ∈

N. Hence, ab ∈ λ(a)N(SA) ⊂ N(SA). Similarly, we can show that ba ∈ N(SA).
Consequently, N(SA) is a two-sided ideal in A.

Let now A be a locally idempotent algebra, a ∈ A, b ∈ N(SA) and n ∈ N.
Then there exists a positive number εn such that a ∈ εnUn (because every neigh-
bourhood of zero absorbs points). If |εn| 6 1, then εnUn ⊂ Un because Un is
balanced, and if |εn| > 1, then, from εnb ⊂ εnN(SA) ⊂ N(SA) ⊂ Un follows that

ab ∈ (εnUn)(ε−1
n Un) ⊂ UnUn ⊂ Un.

Hence, ab ∈ N(SA). Similarly, we can show that ba ∈ N(SA). Consequently,
N(SA) is again a two-sided ideal in A. �

Theorem 3.2. For any (real or complex) locally uniformly absorbent Hausdorff
algebra A there exists a projective system {Aλ;hλµ,Λ} of metrizable locally uni-
formly absorbent algebras and continuous homorphisms hλµ from Aλ to Aµ (when-
ever λ ≺ µ) such that A is topologically isomorphic to a dense subalgebra of the
projective limit lim←−Aλ of this system. In particular case, when, in addition, A is

complete, then A and lim←−Aλ are topologically isomorphic.

Moreover, if A is a locally A-pseudoconvex (locally A-convex) Hausdorff alge-
bra, then A is topologically isomorphic to a dense subalgebra of the projective
limit lim←−Aλ of A-(kλ-normed) algebras (respectively, A-normed algebras). In par-

ticular, when, in addition, A is complete, then A and lim←−Aλ are topologically

isomorphic.

Proof. 1) Let A be a locally uniformly absorbent Hausdorff algebra, LA the base
of closed, balanced and uniformly absorbent neighbourhoods of zero in A and
SA = {Sλ : λ ∈ Λ} the collection of all strings in LA. That is, every Sλ ∈ SA is a
sequence (Oλ

n) in LA, members Oλ
n of which satisfy the condition

Oλ
n+1 +Oλ

n+1 ⊂ Oλ
n

for each n ∈ N (see [6, p. 5]). We define the ordering ≺ in Λ in the following
way: we say that λ ≺ µ in Λ if and only if Sµ ⊂ Sλ, that is, if Sλ = (Oλ

n) and
Sµ = (Oµ

n), then Oµ
n ⊂ Oλ

n for each n ∈ N. It is easy to see that (Λ,≺) is a
partially ordered set. To show that (Λ,≺) is a directed set let Sλ1 = (Oλ1

n ) and
Sλ2 = (Oλ2

n ) be arbitrary fixed strings in SA and let Sµ = (Oµ
n) be the string in LA,

which we define in the following way: let Oµ
1 ∈ LA be such that Oµ

1 ⊂ Oλ1
1 ∩Oλ2

1 .
Further, for each n > 1, let Un+1 be a neighbourhood of zero in LA such that
Un+1 + Un+1 ⊂ Oµ

n and Oµ
n+1 be a neighbourhood in LA such that

Oµ
n+1 ⊂ Un+1 ∩Oλ1

n+1 ∩Oλ2
n+1.

Then

Oµ
n+1 +Oµ

n+1 ⊂ Un+1 ∩Oλ1
n+1 ∩Oλ2

n+1 + Un+1 ∩Oλ1
n+1 ∩Oλ2

n+1 ⊂ Un+1 + Un+1 ⊂ Oµ
n

for each n ∈ N. Since Sµ ∈ SA and Oµ
n ⊂ Oλ1

n ∩Oλ2
n for each n ∈ N, then λ1 ≺ µ

and λ2 ≺ µ. It means that (Λ,≺) is a directed set.
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For each λ ∈ Λ, let qλ be the F -seminorm on A, defined by the string Sλ = (Oλ
n),

Nλ =
∞⋂
n=1

Oλ
n

(Nλ is a closed two-sided ideal in A by Lemma 3.1), Aλ = A/ker qλ and πλ the
canonical homomorphism of A onto Aλ. Moreover, let qλ(πλ(a)) = qλ(a) for each
a ∈ A. Since ker qλ = Nλ (see the proof of Theorem 2.2), then qλ is a F -norm on
Aλ. Let τAλ be the topology on Aλ, defined by qλ. Thus, (Aλ, τAλ) is a metrizable
locally uniformly absorbent algebra for all λ ∈ Λ.

For any λ, µ ∈ Λ with λ ≺ µ let hλµ be the map defined by hλµ(πµ(a)) = πλ(a)
for each a ∈ A. Then hλµ is a continuous homomorphism from Aµ onto Aλ, hλλ is
the identity mapping on Aλ for each λ ∈ Λ and hλµ◦hµγ = hλγ for each λ, µ, γ ∈ Λ
with λ ≺ µ ≺ γ. Hence, {Aλ;hλµ,Λ} is a projective system of metrizable locally
uniformly absorbent algebras Aλ with continuous homomorphisms hλµ and

lim←−Aλ = {(πλ(a))λ∈Λ ∈
∏
λ∈Λ

Aλ : hλµ(πµ(a)) = πλ(a), whenever λ ≺ µ}

is the projective limit of this system.
Let e be the mapping defined by e(a) = (πλ(a))λ∈Λ for each a ∈ A and prλ the

projection of
∏

µ∈Λ Aµ onto Aλ for each λ ∈ Λ. Since prλ(e(a)) = πλ(a) for each
a ∈ A and λ ∈ Λ and πλ is continuous for each λ ∈ Λ, then e is a continuous map
from A into

∏
µ∈ΛAµ (see, for example, [19, Theorem 8.8]). Moreover, if a, b ∈ A

are such that e(a) = e(b), then πλ(a) = πλ(b) for each λ ∈ Λ. Therefore,

a− b ∈
⋂
λ∈Λ

Nλ =
⋂
O∈LA

O = θA,

because A is a Hausdorff space. It means that a = b. Hence, e is a one-to-one
map.

Let now O be any neighbourhood of zero in A, α an arbitrary fixed index in Λ
and

U =
[∏
λ∈Λ

Uλ

]
∩ e(A),

where Uα = πα(O) and Uλ = Aλ, if λ 6= α. Then U is a neighbourhood of zero in
e(A). Since

prα(U) ⊂ πα(O) = prα(e(O))

and α is arbitrary, then U ⊂ e(O). Hence, e is an open map. Taking this into
account, e is a topological isomorphism from A into

∏
λ∈ΛAλ.

To show that e(A) is dense in lim←−Aλ, let (aλ)λ∈Λ ∈ lim←−Aλ be an arbitrary

element and O an arbitrary neighbourhood of (aλ)λ∈Λ in lim←−Aλ. Then there is a

neighbourhood U of (aλ)λ∈Λ in
∏

λ∈ΛAλ such that O = U ∩ lim←−Aλ. Now, there

is a finite subset H ⊂ Λ such that
∏

λ∈Λ Uλ ⊂ U , where Uλ is a neighbourhood
of aλ in Aλ, if λ ∈ H, and Uλ = Aλ, if λ ∈ Λ \H. Let µ ∈ Λ be such that λ ≺ µ
for every λ ∈ H and

V =
⋂
λ∈H

h−1
λµ(Uλ).
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Then V is a neighbourhood of aµ in Aµ. Take an element a ∈ π−1
µ (V ). Then

πµ(a) ∈ V . Therefore, πλ(a) = hλµ(πµ(a)) ∈ Uλ for each λ ∈ H. It means that
e(a) ∈ U ∩ e(A) = O. Consequently, e(A) is dense in lim←−Aλ.

2) Let next A be a complete locally uniformly absorbent Hausdorff algebra,
(e(aα))α∈A a Cauchy net in e(A) and O any neighbourhood of zero in (A, τ).
Since e is an open map from A onto e(A), then e(O) is a neighbourhood of zero
in e(A). Thus, there exists an index α0 ∈ A such that e(aβ) − e(aγ) ∈ e(O) or
aβ − aγ ∈ O, whenever β, γ ∈ A, α0 ≺ β and α0 ≺ γ. It means that (aα)α∈A is
a Cauchy net in A. Since A is complete, then there is an element a0 ∈ A such
that (aα)α∈A converges to a0 in A . Thus (e(aα))α∈A converges to e(a0) in e(A)
because e is continuous. Consequently, e(A) is complete and, therefore, is closed
in lim←−Aλ.

3) Let now A be a locally A-pseudoconvex (locally A-convex) Hausdorff algebra
and P = {pλ : λ ∈ Λ} a saturated collection of kλ-homogeneous seminorms on
A with kλ ∈ (0, 1] for each λ ∈ Λ (respectively, a collection of homogeneous
seminorms on A) which defines the topology of A. We put Aλ = A/ ker pλ and
norms pλ on Aλ we define by pλ(πλ(a)) = pλ(a) for each a ∈ A and λ ∈ Λ, where
πλ is the canonical homomorphism from A onto Aλ. Then ker pλ is a two-sided
ideal in A and Aλ is an A-(kλ-normed) algebra (if A is a locally A-convex algebra,
then Aλ is an A-normed algebra) for each fixed λ ∈ Λ. The ordering ≺ in Λ we
define as follows: λ ≺ µ if and only if pλ(a) 6 pµ(a) for each a ∈ A. Then (Λ,≺)
is a directed set. Similarly as above, for each λ, µ ∈ Λ with λ ≺ µ, we define
homomorphisms hλµ from Aµ into Aλ by hλµ(πµ(a)) = πλ(a) for each a ∈ A.
Then hλµ with λ ≺ µ is a continuous map, because

pλ(hλµ(πµ(a))) = pλ(πλ(a)) = pλ(a) 6 pµ(a) = pµ(πµ(a))

for each a ∈ A. Again, similary as above, {Aλ;hλµ,Λ} is a projective system of
A-(kλ-normed) algebras (respectively, A-normed algebras) Aλ and A is topologi-
cally isomorphic to a dense subalgebra of the projective limit lim←−Aλ of this system

and in the complete case A and lim←−Aλ are topologically isomorphic. �

Theorem 3.3. For any (real or complex) locally idempotent Hausdorff algebra A

there exists a projective system {Ãλ; h̃λµ,Λ} of locally idempotent Fréchet algebras

and continuous homomorphisms h̃λµ from Ãµ to Ãα (whenever λ ≺ µ) such that

A is topologically isomorphic to a dense subalgebra of the projective limit lim←−Ãλ
of this system. In particular case, when, in addition, A is complete, then A and
lim←−Ãλ are topologically isomorphic.

Moreover, if A is a locally m-pseudoconvex (locally m-convex) Hausdorff al-
gebra, then A is topologically isomorphic to a dense subalgebra of the projective
limit lim←−Ãλ of kλ-Banach (respectively, Banach) algebras. In particular, when,

in addition, A is complete, then A and lim←−Ãλ are topologically isomorphic.

Proof. a) Let A be a locally idempotent Hausdorff algebra, LA the base of closed
and balanced neighbourhoods of zero in A and SA = {Sλ : λ ∈ Λ} the collection
of all strings in LA. Similarly as in the proof of Theorem 3.2, we define the
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ordering ≺ in Λ in the following way: we say that λ ≺ µ in Λ if and only if
Sµ ⊂ Sλ. Then (Λ,≺) is a directed set.

For each λ ∈ Λ, let qλ be the F -seminorm on A, defined by the string Sλ = (Oλ
n),

Nλ =
∞⋂
n=1

Oλ
n

(Nλ is a closed two-sided ideal in A by Lemma 3.1), Aλ = A/Nλ and let πλ be the
canonical homomorphism of A onto Aλ. Moreover, let qλ(πλ(a)) = qλ(a) for each
a ∈ A, Ãλ be the completion of Aλ, νλ the topological isomorphism from Aλ onto
a dense subalgebra of Ãλ (defined by the completion of Aλ), q̃λ the extension of
qλ ◦ ν−1

λ to Ãλ and τ̃λ the topology on Ãλ, defined by q̃λ. Then

q̃λ[(νλ ◦ πλ)(a)] = qλ(πλ(a)) = qλ(a)

for each a ∈ A and ker qλ = Nλ. Therefore, q̃λ is an F -norm on Ãλ. Since
Aλ is a metrizable locally idempotent algebra, then the multiplication in Aλ is
jointly continuous, because of which Ãλ is an algebra. Hence, (Ãλ, τ̃λ) is a locally
idempotent Fréchet algebra for each λ ∈ Λ.

Similarly as in the proof of Theorem 3.2, for each λ, µ ∈ Λ with λ ≺ µ we define
the map hλµ by hλµ(πµ(a)) = πλ(a) for each a ∈ A. Then hλµ is a continuous
homomorphism from Aµ into Aλ, hλλ is the identity mapping on Aλ for each λ ∈ Λ
and hλµ ◦ hµγ = hλγ for each λ, µ, γ ∈ Λ with λ ≺ µ ≺ γ. Since νλ ◦ hλµ ◦ ν−1

µ is

a continuous homomorphism from νµ(Aµ) into Ãλ, then (by [11, Proposition 5],

h̃λµ is continuous and linear and by the continuity of multiplication in Ãµ, h̃λµ
is submultiplicative similarly as in the proof of [13, Proposition 1, pp. 4–5] or in

the proof of [1, Proposition 3]) there exists a continuous extension h̃λµ from Ãµ
into Ãλ such that h̃λµ is a homomorphism and

h̃λµ[νµ(πµ(a))] = νλ[hλµ(πµ(a))] = νλ[πλ(a)]

for each a ∈ A and λ, µ ∈ Λ with λ ≺ µ. Since h̃λλ is the identity map on Ãλ
for each λ ∈ Λ and h̃λµ ◦ h̃µγ = h̃λγ, whenever λ, µ, γ ∈ Λ and λ ≺ µ ≺ γ, then

{Ãλ; h̃λµ,Λ} is a projective system of locally idempotent Fréchet algebras Aλ with

continuous homomorphisms h̃λµ from Ãµ into Ãλ and

lim←−Ãλ = {(νλ[πλ(a)])λ∈Λ ∈
∏
λ∈Λ

Ãλ : h̃λµ[νµ(πµ(a))] = νλ(πλ(a)), whenever λ ≺ µ}

is the projective limit of this system.
Let ẽ be the mapping which is defined by ẽ(a) = (νλ[πλ(a)])λ∈Λ from A into∏
µ∈Λ Ãµ for each λ ∈ Λ. Similarly as in the proof of Theorem 3.2, we can

show that ẽ is a topological isomorphism from A onto a dense subset of lim←−Ãλ.
Moreover, A and lim←−Ãλ are topologically isomorphic, if A is complete.

2) Let now A be a locally m-pseudoconvex (locally m-convex) Hausdorff alge-
bra. Then every algebra Aλ in the first part of the proof is a kλ-normed (respec-
tively, normed) algebra, because of which the completion Ãλ of Aλ is a kλ-Banach
(respectively, Banach) algebra. Similarly as in the first part of the proof, we can
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show that A is topologically isomorphic to a dense subalgebra of the projective
limit lim←−Ãλ of kλ-Banach (respectively, Banach) algebras. Moreover, A and lim←−Ãλ
are topologicaly isomorphic if A is complete. �

Remark 3.4. Theorem 3.3 in the case where A is complete is well known. For the
sake of completeness, this case has been added.

Corollary 3.5. Let A be a unital Hausdorff algebra, LA the base of closed and
balanced neighbourhoods of zero in A and QA = {qS : S is a string in LA}
the collection of F -seminorms, which defines the topology of A. If every qS is
submultiplicative, then A is locally m-pseudoconvex.

Proof. Let A be a Hausdorff algebra with unit element eA such that every
F -seminorm qS in QA is submultiplicative. Then A is a locally idempotent al-
gebra, by Corollary 2.5. For any S in LA, let AS = A/ ker qS, πS the canonical
homomorphism from A onto AS and qS the map defined by qS(πS(a)) = qS(a) for
each a ∈ A. Then qS is a submultiplicative F -norm on AS. Hence, the extension
q̃S (see the proof of Theorem 3.3) is a submultiplicative F -norm on the comple-
tion ÃS. To show that ÃS is a locally bounded algebra (that is, ÃS contains a
bounded neighbourhood of zero), let

OS = {x ∈ ÃS : q̃S(x) 6 1},

x0 an arbitrary element in OS and (αn) an arbitrary sequence in K which con-
verges to zero. We can assume that |αnn| 6 1 for each n ∈ N (otherwise, we can
use instead of (αn) the subsequence (αkn), for which |αknn| 6 1, because (αkn)
converges to zero as well). Since

0 6 q̃S(αnx0) = q̃S((αneA)x0) 6 q̃S((αnn)
1

n
eA)q̃S(x0) 6 q̃S(

1

n
eA),

then from

0 6 lim
n→∞

q̃S(λnx0) 6 lim
n→∞

q̃S(
1

n
eA) = 0

follows that (αnx0) converges to the zero element of A. It means (see, for exam-
ple, [12, Proposition 1, p. 34]) that OS is a bounded neighbourhood of zero in ÃS.
Hence, ÃS is a locally bounded algebra, and therefore, locally m-pseudoconvex.
Consequently, by Theorem 3.3, A is topologically isomorphic to a dense subalge-
bra W of the projective limit lim←−ÃS of complete locally m-pseudoconvex algebras

ÃS. Hence, W is a subalgebra of the product
∏

S⊂LA ÃS. Since any product of
locally m-pseudoconvex algebras is locally m-convex in the product topology and
any subalgebra of a locally m-pseudoconvex algebra is locally m-pseudoconvex
in subset topology, then W is locally m-pseudoconvex. Consequently, A is also
locally m-pseudoconvex. �

Corollary 3.6. Every unital m-algebra is locally m-pseudoconvex.
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