

Ann. Funct. Anal. 2 (2011), no. 2, 42–50

ANNALS OF FUNCTIONAL ANALYSIS

ISSN: 2008-8752 (electronic)

URL: www.emis.de/journals/AFA/

THE UNIVALENCE CONDITIONS FOR A FAMILY OF INTEGRAL OPERATORS

LAURA STANCIU^{1*} AND DANIEL BREAZ²

Communicated by M. S. Moslehian

ABSTRACT. The main object of the present paper is to discuss some univalence conditions for a family of integral operators. Several other closely-related results are also considered.

1. Introduction and preliminaries

Let $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk and \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in \mathcal{U} and satisfy the following usual normalization condition

$$f(0) = f'(0) - 1 = 0.$$

Also, let S denote the subclass of A consisting of functions f(z) which are univalent in U.

We begin by recalling a theorem dealing with a univalence criterion, which will be required in our present work.

In [1], Pascu gave the following univalence criterion for the functions $f \in \mathcal{A}$.

Theorem 1.1. (Pascu [1]). Let $f \in A$ and $\beta \in \mathbb{C}$. If $Re(\beta) > 0$ and

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zf''(z)}{f'(z)} \right| \le 1 \, (z \in \mathcal{U})$$

Date: Received: 12 June 2011; Accepted: 25 July 2011.

Key words and phrases. Analytic functions; Univalence conditions; Integral Operators.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 30C55; Secondary 30C45.

then the function $F_{\beta}(z)$ given by

$$F_{\beta}(z) = \left(\beta \int_{0}^{z} t^{\beta - 1} f'(t) dt\right)^{\frac{1}{\beta}}$$

is in the univalent function class S in U.

In this paper, we consider three general families of integral operators. The first family of integral operators, studied by Breaz and Breaz [2], is defined as follows:

$$F_{\alpha_1,\alpha_2}, \cdots, \alpha_n, \beta(z) = \left(\beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt\right)^{\frac{1}{\beta}}$$
(1.1)

The second family of integral operators was introduced by Breaz and Breaz [3] and it has the following form:

$$G_{\alpha_{1},\alpha_{2}}, \cdots, \alpha_{n}(z) = \left(\left(\sum_{i=1}^{n} (\alpha_{i} - 1) + 1 \right) \int_{0}^{z} \prod_{i=1}^{n} (f_{i}(t))^{\alpha_{i} - 1} dt \right)^{\frac{1}{\left(\sum_{i=1}^{n} (\alpha_{i} - 1) + 1\right)}}$$

$$(1.2)$$

Finally, Breaz and Breaz [4] considered the following family of integral operators

$$H_{\alpha_1,\alpha_2}, \cdots, \alpha_n, \beta(z) = \left(\beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i} dt\right)^{\frac{1}{\beta}}$$
(1.3)

In the present paper, we propose to investigate further univalence conditions involving the general families of integral operators defined by (1.1), (1.2) and (1.3).

2. Main results

Theorem 2.1. Let the functions $f_i \in \mathcal{A}, (i \in \{1, \dots, n\})$ and α_i, β be complex numbers with $\text{Re}(\beta) \geq 0$ for all $i \in \{1, 2, \dots, n\}$. If

(a).
$$4\sum_{i=1}^{n} \frac{1}{|\alpha_i|} \le \operatorname{Re}(\beta), \quad \operatorname{Re}(\beta) \in (0,1)$$

or

(b).
$$\sum_{i=1}^{n} \frac{1}{|\alpha_i|} \le \frac{1}{4}, \quad \operatorname{Re}(\beta) \in [1, \infty)$$

then the function $F_{\alpha_1,\alpha_2}, \dots, \alpha_n, \beta(z)$ defined by (1.1) is in the class S.

Proof. We define the function

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt.$$
 (2.1)

Because $f_i \in \mathcal{S}$, for $i \in \{1, 2, \dots, n\}$, we have

$$\left| \frac{zf_i'(z)}{f_i(z)} \right| \le \frac{1+|z|}{1-|z|} \tag{2.2}$$

for all $z \in \mathcal{U}$.

Now, we calculate for h(z) the derivates of the first and second order. From (2.1) we obtain

$$h'(z) = \prod_{i=1}^{n} \left(\frac{f_i(z)}{z}\right)^{\frac{1}{\alpha_i}}$$

and

$$h''(z) = \frac{1}{\alpha_i} \sum_{i=1}^n \left(\frac{f_i(z)}{z} \right)^{\frac{1-\alpha_i}{\alpha_i}} \left(\frac{zf_i'(z) - f_i(z)}{z^2} \right) \prod_{k=1 \atop k=-i}^n \left(\frac{f_k(z)}{z} \right)^{\frac{1}{\alpha_i}}.$$

After the calculus we obtain that

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \frac{1}{\alpha_i} \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right)$$

which readily shows that

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| = \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \sum_{i=1}^{n} \frac{1}{\alpha_i} \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right) \right| \\
\leq \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} \frac{1}{|\alpha_i|} \left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| \\
\leq \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} \frac{1}{|\alpha_i|} \left(\left| \frac{zf_i'(z)}{f_i(z)} \right| + 1 \right). \tag{2.3}$$

From (2.2) and (2.3) we obtain

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\frac{1 + |z|}{1 - |z|} + 1 \right)$$

$$\le \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\frac{2}{1 - |z|} \right)$$

$$\le \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left(\frac{2}{1 - |z|} \right) \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|}.$$
(2.4)

Now, we consider the cases

*i*1).
$$0 < \text{Re}(\beta) < 1$$
.

We have

$$1 - |z|^{2\text{Re}(\beta)} \le 1 - |z|^2 \tag{2.5}$$

for all $z \in \mathcal{U}$.

From (2.4) and (2.5), we have

$$\frac{1 - \left|z\right|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{1 - \left|z\right|^2}{\operatorname{Re}(\beta)} \left(\frac{2}{1 - \left|z\right|} \right) \sum_{i=1}^n \frac{1}{|\alpha_i|}$$

$$\leq \frac{4}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} \frac{1}{|\alpha_i|}.$$
 (2.6)

Using the condition (a). and (2.6) we have

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le 1 \tag{2.7}$$

for all $z \in \mathcal{U}$.

$$i2$$
). $\operatorname{Re}(\beta) \geq 1$.

We have

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \le 1 - |z|^2 \tag{2.8}$$

for all $z \in \mathcal{U}$.

From (2.8) and (2.4) we have

$$\left| \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le \left(1 - |z|^2\right) \left(\frac{2}{(1 - |z|)}\right) \sum_{i=1}^n \frac{1}{|\alpha_i|}$$

$$\leq 4\sum_{i=1}^{n} \frac{1}{|\alpha_i|}.\tag{2.9}$$

Using the condition (b). and (2.9) we obtain

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le 1 \tag{2.10}$$

for all $z \in \mathcal{U}$.

From (2.7) and (2.10) we obtain that the function $F_{\alpha_1,\alpha_2}, \dots, \alpha_n, \beta(z)$ defined by (1.1) is in the class S.

Setting n = 1 in Theorem 2.1 we have

Corollary 2.2. Let $f \in \mathcal{A}$ and α, β be complex numbers with $Re(\beta) \geq 0$. If

(a).
$$\frac{4}{|\alpha|} \le \operatorname{Re}(\beta)$$
, $\operatorname{Re}(\beta) \in (0,1)$

or

(b).
$$\frac{1}{|\alpha|} \le \frac{1}{4}$$
, $\text{Re}(\beta) \in [1, 2]$

then the function

$$F(z) = \left(\beta \int_0^z t^{\beta - 1} \left(\frac{f(t)}{t}\right)^{\frac{1}{\alpha}} dt\right)^{\frac{1}{\beta}}$$

is in the class S.

Theorem 2.3. Let the functions $f_i \in \mathcal{A} (i \in \{1, 2, \dots, n\})$, β, α_i be complex numbers for all $i \in \{1, 2, \dots, n\}$, $\beta = (\sum_{i=1}^{n} (\alpha_i - 1) + 1)$ and $\text{Re}(\beta) \geq 0$. If

(a).
$$4\sum_{i=1}^{n} |\alpha_i - 1| \le \text{Re}(\beta), \quad \text{Re}(\beta) \in (0, 1)$$

or

(b).
$$\sum_{i=1}^{n} |\alpha_i - 1| \le \frac{1}{4}, \quad \operatorname{Re}(\beta) \in [1, \infty)$$

then the function $G_{\alpha_1,\alpha_2}, \cdots, \alpha_n(z)$ defined by 1.2 is in the class S.

Proof. Defining the function h(z) by

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i - 1} dt$$

we take the same steps as in the proof. of Theorem 2.1. Then, we obtain that

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| = \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \sum_{i=1}^{n} (\alpha_i - 1) \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right) \right| \\
\leq \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i - 1| \left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| \\
\leq \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i - 1| \left(\left| \frac{zf_i'(z)}{f_i(z)} \right| + 1 \right). \tag{2.11}$$

From (2.2) and (2.11) we obtain

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i - 1| \left(\frac{1 + |z|}{1 - |z|} + 1 \right)$$

$$\leq \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i - 1| \left(\frac{2}{1 - |z|} \right)$$

$$\leq \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left(\frac{2}{1 - |z|} \right) \sum_{i=1}^{n} |\alpha_i - 1|. \tag{2.12}$$

Now, we consider the cases

*i*1).
$$0 < \text{Re}(\beta) < 1$$
.

We have

$$1 - |z|^{2\text{Re}(\beta)} \le 1 - |z|^2 \tag{2.13}$$

for all $z \in \mathcal{U}$.

From (2.12) and (2.13), we have

$$\left| \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{1 - |z|^2}{\operatorname{Re}(\beta)} \left(\frac{2}{1 - |z|} \right) \sum_{i=1}^n |\alpha_i - 1|$$

$$\leq \frac{4}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i - 1|. \tag{2.14}$$

Using the condition (a). and (2.14) we have

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le 1 \tag{2.15}$$

for all $z \in \mathcal{U}$.

$$i2$$
). Re(β) ≥ 1 .

We have

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \le 1 - |z|^2 \tag{2.16}$$

for all $z \in \mathcal{U}$.

From (2.12) and (2.16) we have

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le \left(1 - |z|^2\right) \left(\frac{2}{(1 - |z|)}\right) \sum_{i=1}^{n} |\alpha_i - 1|
\le 4 \sum_{i=1}^{n} |\alpha_i - 1|.$$
(2.17)

Using the condition (b). and (2.17) we obtain

$$\frac{1 - \left|z\right|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le 1 \tag{2.18}$$

for all $z \in \mathcal{U}$.

From (2.15) and (2.18) we obtain that the function $G_{\alpha_1,\alpha_2}, \dots, \alpha_n(z)$ defined by (1.2) is in the class S.

Setting n = 1 in Theorem 2.3 we have

Corollary 2.4. Let $f \in A$ and α be complex number with $Re(\alpha) \geq 0$. If

(a).
$$4 |\alpha - 1| \le \text{Re}(\alpha)$$
, $\text{Re}(\alpha) \in (0, 1)$

or

(b).
$$|\alpha - 1| \le \frac{1}{4}$$
, $Re(\alpha) \in [1, 2]$

then the function

$$G(z) = \left(\alpha \int_0^z (f(t))^{\alpha - 1} dt\right)^{\frac{1}{\alpha}}$$

is in the class S.

Theorem 2.5. Let the functions $f_i \in \mathcal{A}, (i \in \{1, \dots, n\})$ and α_i , β be complex numbers with $\text{Re}(\beta) \geq 0$ for all $i \in \{1, 2, \dots, n\}$. If

(a).
$$4\sum_{i=1}^{n} |\alpha_i| \le \operatorname{Re}(\beta), \quad \operatorname{Re}(\beta) \in (0,1)$$

or

(b).
$$\sum_{i=1}^{n} |\alpha_i| \le \frac{1}{4}, \quad \operatorname{Re}(\beta) \in [1, \infty)$$

then the function $H_{\alpha_1,\alpha_2}, \cdots, \alpha_n, \beta(z)$ defined by (1.3) is in the class S.

Proof. Defining the function h(z) by

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i} dt.$$

we take the same steps as in the proof. of Theorem 2.1.

Then we obtain that

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| = \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \sum_{i=1}^{n} \alpha_i \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right) \right| \\
\leq \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| \left| \frac{zf_i'(z)}{f_i(z)} - 1 \right| \\
\leq \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| \left(\left| \frac{zf_i'(z)}{f_i(z)} \right| + 1 \right). \tag{2.19}$$

From (2.2) and (2.19) we obtain

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| \left(\frac{1 + |z|}{1 - |z|} + 1 \right) \\
\le \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \sum_{i=1}^{n} |\alpha_i| \left(\frac{2}{1 - |z|} \right) \\
\le \frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left(\frac{2}{1 - |z|} \right) \sum_{i=1}^{n} |\alpha_i|.$$
(2.20)

Now, we consider the cases

*i*1).
$$0 < \text{Re}(\beta) < 1$$
.

We have

$$1 - |z|^{2\text{Re}(\beta)} \le 1 - |z|^2 \tag{2.21}$$

for all $z \in \mathcal{U}$.

From (2.20) and (2.21), we have

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{1 - |z|^2}{\operatorname{Re}(\beta)} \left(\frac{2}{1 - |z|} \right) \sum_{i=1}^n |\alpha_i|$$

$$\le \frac{4}{\operatorname{Re}(\beta)} \sum_{i=1}^n |\alpha_i|.$$
(2.22)

Using the condition (a). and (2.22) we have

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le 1 \tag{2.23}$$

for all $z \in \mathcal{U}$.

$$i2$$
). Re(β) ≥ 1 .

We have

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \le 1 - |z|^2 \tag{2.24}$$

for all $z \in \mathcal{U}$.

From (2.24) and (2.20) we have

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le \left(1 - |z|^2\right) \left(\frac{2}{(1 - |z|)}\right) \sum_{i=1}^n |\alpha_i|$$

$$\le 4 \sum_{i=1}^n |\alpha_i|. \tag{2.25}$$

Using the condition (b). and (2.25) we obtain

$$\frac{1 - |z|^{2\operatorname{Re}(\beta)}}{\operatorname{Re}(\beta)} \left| \frac{zh''(z)}{h'(z)} \right| \le 1 \tag{2.26}$$

for all $z \in \mathcal{U}$.

From (2.23) and (2.26) we obtain that the function $H_{\alpha_1,\alpha_2}, \dots, \alpha_n, \beta(z)$ defined by (1.3) is in the class S.

Setting n = 1 in Theorem 2.5 we have

Corollary 2.6. Let $f \in \mathcal{A}$ and α, β be complex numbers with $Re(\beta) \geq 0$. If

(a).
$$|\alpha| \le \frac{\operatorname{Re}(\beta)}{4}$$
, $\operatorname{Re}(\beta) \in (0,1)$

or

(b).
$$|\alpha| \le \frac{1}{4}$$
, $\operatorname{Re}(\beta) \in [1, 2]$

then the function

$$H(z) = \left(\beta \int_0^z t^{\beta - 1} \left(\frac{f(t)}{t}\right)^{\frac{1}{\alpha}} dt\right)^{\frac{1}{\beta}}$$

is in the class S.

Acknowledgement. This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the European Social Fund-Investing in People.

References

- N.N. Pascu, On a univalence criterion II, in Itinerant Seminar on Functional Euations, Approximation and Convexity Cluj-Napoca, 1985, 153–154, Preprint 86-6, Univ. Babes-Bolyai, Cluj-Napoca, 1985.
- 2. D. Breaz and N. Breaz, The univalent conditions for an integral operator on the classes S(p) and \mathfrak{T}_2 , J. Approx. Theory Appl. 1 (2005), no. 2, 93–98.
- D. Breaz and N. Breaz, Univalence of an integral operator, Mathematica 47(70) (2005), no. 1, 35–38.

- 4. D. Yang and J. Liu, On a class of univalent functions, Int. J. Math. Math. Sci. 22 (1999), no. 3, 605–610.
- 1 Department of Mathematics, University of Piteşti, Târgul din Vale Str., No.1, 110040, Piteşti, Argeş, România.

E-mail address: laura_stanciu_30@yahoo.com

 2 Department of Mathematics, "1 Decembrie 1918", University of Alba Iulia, Alba Iulia, Str. N. Iorga, 510000, No. 11-13, România.

E-mail address: dbreaz@uab.ro