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FIXED POINT AND COMMON FIXED POINT THEOREMS
FOR THE MEIR-KEELER TYPE FUNCTIONS IN CONE

BALL-METRIC SPACES

CHIMING CHEN∗, PEISHAN TSAI

Communicated by H.-K. Xu

Abstract. In this paper, we define a new cone ball-metric and get fixed points
and common fixed points for the Meir-Keeler type functions in cone ball-metric
spaces.

1. Introduction and preliminaries

Huang and Zhang [3] have introduced the concept of the cone metric space,
replacing the set of real numbers by an ordered Banach space, and they showed
some fixed point theorems of contractive type mappings on cone metric spaces.
In 2006, Mustafa and Sims [5] introduced a more appropriate generalization of
metric spaces, G-metric spaces. Recently, Beg et al. [2] introduced the notion of
generalized cone metric spaces, and proved some fixed point results for mappings
satisfying certain contractive conditions. In this paper, we define a new cone
ball-metric and get fixed point and common fixed results for the Meir-Keeler
type functions in cone ball-metric spaces.

Throughout this paper, by R+, we denote the set of all non-negative numbers,
while N is the set of all natural numbers, and we recall some definitions of the
cone metric spaces and some of the properties [3], as follow:

Definition 1.1. [3] Let E be a real Banach space and P a subset of E. P is
called a cone if and only if:

(i) P is nonempty, closed, and P 6= {θ},
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(ii) a, b ∈ R+, x, y ∈ P ⇒ ax+ by ∈ P ,
(iii) x ∈ P and −x ∈ P ⇒ x = θ.

For given a cone P ⊂ E, we can define a partial ordering with respect to P
by x 4 y or x < y if and only if y − x ∈ P for all x, y ∈ E. The real Banach
space E equipped with the partial ordered induced by P is denoted by (E,4).
We shall write x ≺ y to indicate that x 4 y but x 6= y, while x � y will stand
for y − x ∈ intP , where intP denotes the interior of P .

The cone P is called normal if there exists a real number K > 0 such that for
all x, y ∈ E,

θ 4 x 4 y ⇒ ‖x‖ ≤ K‖y‖.
The least positive number K satisfying above is called the normal constant of P .

The cone P is called regular if every non-decreasing sequence which is bounded
from above is convergent, that is, if {xn} is a sequence such that

x1 4 x2 4 · · · 4 xn 4 · · · 4 y,

for some y ∈ E, then there is x ∈ E such that ‖xn − x‖ → 0 as n → ∞.
Equivalently, the cone P is regular if and only if every non-increasing sequence
which is bounded from below is convergent. It is well known that a regular cone
is a normal cone. Moreover, P is called stronger minihedral if every subset of E
which is bounded above has a supremum [1].

In the following we always suppose that E is a real Banach space with a stronger
minihedral regular cone P and intP 6= φ, and 4 is a partial ordering with respect
to P .

Metric spaces are playing an important role in mathematics and the applied
sciences. In 2003, Mustafa and Sims [5] introduced a more appropriate and robust
notion of a generalized metric space as follows.

Definition 1.2. [5] Let X be a nonempty set, and let G : X ×X ×X → [0,∞)
be a function satisfying the following axioms:

(1) G(x, y, z) = 0 if and only if x = y = z;
(2) G(x, x, y) > 0, for all x 6= y;
(3) G(x, y, z) ≥ G(x, x, y), for all x, y, z ∈ X;
(4) G(x, y, z) = G(x, z, y) = G(z, y, x) = · · · (symmetric in all three vari-

ables);
(5) G(x, y, z) ≤ G(x,w,w) +G(w, y, z), for all x, y, z, w ∈ X.

Then the functionG is called a generalized metric, or, more specifically aG-metric
on X, and the pair (X,G) is called a G-metric space.

This research subject is interesting and widespread. But is too abstract makes
the human difficulty with to understand. So we introduce the concept of cone
ball-metric spaces and we prove fixed point results on such spaces for functions
satisfying the contractions involving the Meir-Keeler type functions.

We introduce the following notion of the cone ball-metric B.

Definition 1.3. Let (X, d) be a cone metric space, B : X × X × X → E,
x, y, z ∈ X and we denote

δ(B) = sup{d(a, b) : a, b ∈ B},
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and

B(x, y, z) = δ(B),

where B = ∩{F ⊂ X|F is a closed ball and {x, y, z} ⊂ F}. Then we call B
a ball-metric with respect to the cone metric d, and (X,B) a cone ball-metric
space. It is clear that B(x, x, y) = d(x, y).

Remark 1.4. It is clear that the cone ball-metric B has the following properties:

(1) B(x, y, z) = θ if and only if x = y = z;
(2) B(x, x, y) � θ, for all x 6= y;
(3) B(x, x, y) 4 B(x, y, z), for all x, y, z ∈ X;
(4) B(x, y, z) = B(x, z, y) = B(z, y, x) = · · · (symmetric in all three vari-

ables);
(5) B(x, y, z) 4 B(x,w,w) + B(w, y, z), for all x, y, z, w ∈ X;
(6) B(x, y, z) 4 B(x,w,w) + B(y, w, w) + B(z, w, w), for all x, y, z, w ∈ X.

Definition 1.5. Let (X,B) be a cone ball-metric space and {xn} be a sequence
in X. We say that {xn} is

(1) Cauchy sequence if for every ε ∈ E with θ � ε, there exists n0 ∈ N such
that for all n,m, l > n0, B(xn, xm, xl)� ε.

(2) Convergent sequence if for every ε ∈ E with θ � ε, there exists n0 ∈ N
such that for all n,m > n0, B(xn, xm, x) � ε for some x ∈ X. Here x is
called the limit of the sequence {xn} and is denoted by limn→∞ xn = x or
xn → x as n→∞.

Definition 1.6. Let (X,B) be a cone ball-metric space. Then X is said to be
complete if every Cauchy sequence is convergent in X.

Proposition 1.7. Let (X,B) be a cone ball-metric space and {xn} be a sequence
in X. Then the following are equivalent:

(i) {xn} converges to x;
(ii) B(xn, xn, x)→ θ as n→∞;

(iii) B(xn, x, x)→ θ as n→∞;
(iv) B(xn, xm, x)→ θ as n,m→∞.

Proposition 1.8. Let (X,B) be a cone ball-metric space and {xn} be a sequence
in X, x, y ∈ X. If xn → x and xn → y as n→∞, then x = y.

Proof. Let ε ∈ E with θ � ε be given. Since xn → x and xn → y as n → ∞,
there exists n0 ∈ N such that for all m,n > n0,

B(xn, xm, x)� ε

3
and B(xn, xm, y)� ε

3
.

Therefore,

B(x, x, y) 4 B(x, xn, xn) + B(xn, x, y)

= B(x, xn, xn) + B(y, xn, x)

4 B(x, xn, xn) + B(y, xm, xm) + B(xm, xn, x)

� ε

3
+
ε

3
+
ε

3
= ε.
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Hence, B(x, x, y)� ε
α

for all α ≥ 1, and so ε
α
−B(x, x, y) ∈ P for all α ≥ 1. Since

ε
α
→ θ as α → ∞ and P is closed, we have that −B(x, x, y) ∈ P . This implies

that B(x, x, y) = θ, since B(x, x, y) ∈ P . So x = y. �

Proposition 1.9. Let (X,B) be a cone ball-metric space and {xn}, {ym}, {zl} be
three sequences in X. If xn → x, ym → y, zl → z as n→∞, then B(xn, ym, zl)→
B(x, y, z) as n→∞.

Proof. Let ε ∈ E with θ � ε be given. Since xn → x, ym → y, zl → z as n→∞,
there exists n0 ∈ N such that for all n,m, l > n0,

B(xn, x, x)� ε

3
, B(ym, y, y)� ε

3
, B(zl, z, z)� ε

3
,

Therefore,

B(xn, ym, zl) 4 B(xn, x, x) + B(x, ym, zl)

4 B(xn, x, x) + B(ym, y, y) + B(y, x, zl)

4 B(xn, x, x) + B(ym, y, y) + B(zl, z, z) + B(z, x, y)

� ε

3
+
ε

3
+
ε

3
+ B(x, y, z),

that is,

B(xn, ym, zl)− B(x, y, z)� ε.

Similarly,

B(x, y, z)− B(xn, ym, zl)� ε.

Therefore, for all α ≥ 1, we have

B(xn, ym, zl)− B(x, y, z)� ε

α
,

and

B(x, y, z)− B(xn, ym, zl)�
ε

α
.

These imply that
ε

α
− B(xn, ym, zl) + B(x, y, z) ∈ P,

ε

α
+ B(xn, ym, zl)− B(x, y, z) ∈ P.

Since P is closed and ε
α
→ θ as α→∞, we have that

lim
n,m,l→∞

[−B(xn, ym, zl) + B(x, y, z)] ∈ P,

lim
n,m,l→∞

[B(xn, ym, zl)− B(x, y, z)] ∈ P.

These show that

lim
n,m,l→∞

B(xn, ym, zl) = B(x, y, z).

So we complete the proof. �
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2. Main results

In the section, we first recall the notion of the Meir-Keeler type function. A
function ψ : R+ → R+ is said to be a Meir-Keeler type function (see [4]), if for
each η ∈ R+, there exists δ > 0 such that for t ∈ R+ with η ≤ t < η + δ, we
have ψ(t) < η. We now define a new weaker Meir-Keeler type function in a cone
ball-metric space (X,B), as follows:

Definition 2.1. Let (X,B) be a cone ball-metric space with cone P , and let
ψ : intP ∪ {θ} → intP ∪ {θ}. Then the function ψ is called a weaker Meir-
Keeler type function in X, if for each η, θ � η, there exists δ, θ � δ such
that for x, y, z ∈ X with η 4 B(x, y, z) � δ + η, there exists n0 ∈ N such that
ψn0(B(x, y, z))� η.

Further, we let the function ψ : intP∪{θ} → intP∪{θ} satisfying the following
conditions:

(i) ψ be a weaker Meir-Keeler type function;
(ii) for each t ∈ intP , we have θ � ψ(t)� t and ψ(θ) = θ;
(iii) for tn ∈ intP ∪ {θ}, if limn→∞ tn = γ � θ, then limn→∞ ψ(tn)� γ;
(iv) {ψn(t)}n∈N is non-increasing.

Then we call this mapping a ψ-function.

We now state our main common fixed point result for the weaker Meir-Keeler
type function in a cone ball-metric space (X,B), as follows:

Theorem 2.2. Let (X,B) be a complete cone ball-metric space, P be a regular
cone in E and f, g be two self-mapplings of X such that fX ⊂ gX. Suppose that
there exists a ψ-function such that

B(fx, fy, fz) 4 ψ(L(x, y, z)), (2.1)

where

L(x, y, z) ∈ {B(gx, gy, gz),B(gx, fx, fx),B(gy, fy, fy),B(gz, fz, fz)}.

If gX is closed, then f and g have a coincidence point in X.
Moreover, if f and g commute at their coincidence points, then f and g have

a unique common fixed point in X

Proof. Given x0 ∈ X. Since fX ⊂ gX, we can choose x1 ∈ X such that gx1 =
fx0. Continuing this process, we define the sequence {xn} in X recursively as
follows:

fxn = gxn+1 for each n ∈ N ∪ {0}.

In what follows we will suppose that fxn+1 6= fxn for all n ∈ N, since if fxn+1 =
fxn for some n, then fxn+1 = gxn+1, that is , f, g have a coincidence point xn+1,
and so we complete the proof.

By (2.1), we have

B(fxn, fxn+1, fxn+1) 4 ψ(L(xn, xn+1, xn+1)),
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where

L(xn, xn+1, xn+1) ∈ {B(gxn, gxn+1, gxn+1),B(gxn, fxn, fxn),

B(gxn+1, fxn+1, fxn+1),B(gxn+1, fxn+1, fxn+1)}
= {B(fxn−1, fxn, fxn),B(fxn−1, fxn, fxn),

B(fxn, fxn+1, fxn+1),B(fxn, fxn+1, fxn+1)}
∈ {B(fxn−1, fxn, fxn),B(fxn, fxn+1, fxn+1)}.

Therefore, by the condition (ii) of ψ, we conclude that for each n ∈ N,

B(fxn, fxn+1, fxn+1) � B(fxn−1, fxn, fxn),

and

B(fxn, fxn+1, fxn+1) 4 ψ(B(fxn−1, fxn, fxn))

4 · · ·
4 ψn(B(fx0, fx1, fx1)).

Since {ψn(B(fx0, fx1, fx1))}n∈N is non-incresing, it must converge to some
η, θ 4 η. We claim that η = θ. On the contrary, assume that θ � η.
Then by the definition of the ψ-function, there exists δ, θ � δ such that for
θ � B(fx0, fx1, fx1) with η 4 B(fx0, fx1, fx1)� δ+η, there exists n0 ∈ N such
that ψn0(B(fx0, fx1, fx1)) � η. Since limn→∞ ψ

n(B(fx0, fx1, fx1)) = η, there
exists m0 ∈ N such that η 4 ψmB(fx0, fx1, fx1)� δ + η, for all m ≥ m0. Thus,
we conclude that ψm0+n0(B(fx0, fx1, fx1)) � η. So we get a contradiction. So
limn→∞ ψ

n(B(fx0, fx1, fx1)) = θ, and so we have limn→∞ B(fxn, fxn+1, fxn+1) =
θ.

Next, we claim that the sequence {fxn} is a Cauchy sequence. Suppose that
{fxn} is not a Cauchy sequence. Then there exists γ ∈ E with θ � γ such that
for all k ∈ N, there are mk, nk ∈ N with mk > nk ≥ k satisfying:

(1) mk is even and nk is odd,
(2) B(fxnk

, fxmk
, fxmk

) < γ, and
(3) mk is the smallest even number such that the conditions (1), (2) hold.

Since limn→∞ B(fxn, fxn+1, fxn+1) = θ and by (2), (3), we have that

γ 4 B(fxnk
, fxmk

, fxmk
)

4 B(fxnk
, fmk−1, fmk−1) + B(fxmk−1, fxmk

, fxmk
)

4 B(fxnk
, fxmk−2, fxmk−2) + B(fxmk−2, fxmk−1, fxmk−1)

+B(fxmk−1, fmk
, fmk

)

4 γ + B(fxmk−2, fxmk−1, fxmk−1) + B(fxmk−1, fxmk
, fxmk

).

Taking limk→∞, we deduce

lim
k→∞
B(fxnk

, fxmk
, fxmk

) = γ.

Since

B(fxnk−1, fxmk−1, fxmk−1) 4 B(fxnk−1, fxnk
, fxnk

) + B(fxnk
, fxmk

, fxmk
)

+B(fxmk
, fxmk−1, fxmk−1).
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Taking limk→∞, we deduce

lim
k→∞
B(fxnk−1, fxmk−1, fxmk−1) 4 γ. (2.2)

On the other hand,

γ 4 B(fxnk
, fxmk

, fxmk
)

4 B(fxnk
, fxnk−1, fxnk−1) + B(fxnk−1, fxmk

, fxmk
)

4 B(fxnk
, fxnk−1, fxnk−1) + B(fxnk−1, fxmk−1, fxmk−1)

+B(fxmk−1, fxmk
, fxmk

).

Taking limk→∞, we also deduce

γ 4 lim
k→∞
B(fxnk−1, fxmk−1, fxmk−1). (2.3)

By (2.2) and (2.3), we get

lim
k→∞
B(fxnk−1, fxmk−1, fxmk−1) = γ.

And, by (2.1), we have that

B(fxnk
, fxmk

, fxmk
) 4 ψ(L(xnk

, xmk
, xmk

))

where

L(xnk
, xmk

, xmk
) ∈ {B(gxnk

, gxmk
, gxmk

),B(gxnk
, fxnk

, fxnk
),

B(gxmk
, fxmk

, fxmk
),B(gxmk

, fxmk
, fxmk

)}
= {B(fxnk−1, fxmk−1, fxmk−1),B(fxnk−1, fxnk

, fxnk
),

B(fxmk−1, fxmk
, fxmk

),B(fxmk−1, fxmk
, fxmk

)}.

(I) If
L(xnk

, xmk
, xmk

) = B(fxnk−1, fxmk−1, fxmk−1),

then taking limk→∞, we deduce

lim
k→∞
B(fxnk−1, fxmk−1, fxmk−1) = γ,

and
γ 4 lim

k→∞
B(fxnk

, fxmk
, fxmk

)� γ,

a contradiction.

(II) If
L(xnk

, xmk
, xmk

) = B(fxnk−1, fxnk
, fxnk

),

or
L(xnk

, xmk
, xmk

) = B(fxmk−1, fxmk
, fxmk

),

then taking limk→∞, we deduce

lim
k→∞
B(fxnk−1, fxnk

, fxnk
) = θ,

lim
k→∞
B(fxmk−1, fxmk

, fxmk
) = θ,

and
γ 4 lim

k→∞
B(fxnk

, fxmk
, fxmk

) 4 θ,
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a contradiction.
Follow (I) and (II), we get the sequence {fxn} is a Cauchy sequence.
Since X is complete and gX is closed, there exist ν, µ ∈ X such that

lim
n→∞

g(xn) = lim
n→∞

f(xn) = g(µ) = ν.

We shall show that µ is a coincidence point of f and g, that is, we claim that

B(gµ, fµ, fµ) = θ.

If not, assume that B(gµ, fµ, fµ) 6= θ, then by (2.1), we have

B(gµ, fµ, fµ) 4 B(gµ, fxn, fxn) + B(fxn, fµ, fµ)

4 B(gµ, fxn, fxn) + ψ(L(xn, µ, µ)),

where

L(xn, µ, µ) ∈ {B(gxn, gµ, gµ),B(gxn, fxn, fxn),B(gµ, fµ, fµ),B(gµ, fµ, fµ)}.

(III) If
L(xn, µ, µ) = B(gxn, gµ, gµ),

then taking limn→∞, we deduce

lim
n→∞

B(gxn, gµ, gµ) = B(gµ, gµ, gµ) = θ,

and

B(gµ, fµ, fµ) = lim
n→∞

B(gµ, fxn, fxn) + lim
n→∞

ψ(B(gxn, gµ, gµ))

4 θ,

a contradiction.

(IV) If
L(xn, µ, µ) = B(gxn, fxn, fxn),

then taking limn→∞, we deduce

lim
n→∞

B(gxn, fxn, fxn) = B(gµ, gµ, gµ) = θ,

and

B(gµ, fµ, fµ) = lim
n→∞

B(gµ, fxn, fxn) + lim
n→∞

ψ(B(gxn, fxn, fxn) 4 θ,

a contradiction.

(V) If
L(xn, µ, µ) = B(gµ, fµ, fµ),

then

B(gµ, fµ, fµ) = ψ(B(gµ, fµ, fµ))� B(gµ, fµ, fµ),

a contradiction.
Follow (III)-(V), we obtain that B(gµ, fµ, fµ) = θ, that is, gµ = fµ = ν, and

so µ is a coincidence point of f and g.
Suppose that f and g commute at µ. Then

fν = fgµ = gfµ = gν.
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Later, we claim that B(fµ, fν, fν) = θ. By (2.1), we have

B(fµ, fν, fν) 4 ψ(L(µ, ν, ν)),

where

L(x, y, z) ∈ {B(gµ, gν, gν),B(gµ, fµ, fµ),B(gν, fν, fν),B(gν, fν, fν)}
= {B(fµ, fν, fν),B(fµ, fµ, fµ),B(fν, fν, fν),B(fν, fν, fν)}
= {B(fµ, fν, fν), θ}.

Therefore, if

B(fµ, fν, fν) 4 ψ(B(fµ, fν, fν))� B(fµ, fν, fν),

then we get a contradition, which implies that B(fµ, fν, fν) = θ, B(ν, fν, fν) =
θ, that is, ν = fν = gν. So ν is a common fixed point of f and g.

Let ν be another common fixed point of f and g. By (2.1),

B(ν, ν, ν) = B(fν, fν, fν) 4 ψ(L(ν, ν, ν)),

where

L(x, y, z) ∈ {B(gν, gν, gν),B(gν, fν, fν),B(gν, fν, fν),B(gν, fν, fν)}
= {B(fν, fν, fν),B(fν, fν, fν),B(fν, fν, fν),B(fν, fν, fν)}
= {B(fν, fν, fν), θ}
= {B(ν, ν, ν), θ}.

Therefore, we also conclude that B(ν, ν, ν) = θ, that is ν = ν. So we show that
ν is the unique common fixed point of g and f . �

Next, we state the following fixed point resuts for the weaker Meir-Keeler type
functions in ball-metric spaces.

Theorem 2.3. Let (X,B) be a complete cone ball-metric space, P be a regular
cone in E and f : X → X. Suppose that there exists a ψ-function such that

B(fx, fy, fz) 4 ψ(L(x, y, z)) for all x, y, z ∈ X, (2.4)

where

L(x, y, z) ∈ {B(x, y, z),B(x, fx, fx),B(y, fy, fy),B(fx, y, z)}

Then f has a unique fixed point (say µ) in X and f is continuous at µ.

Proof. Given x0 ∈ X. Define the sequence {xn} in X recursively as follows:

fxn−1 = xn for each n ∈ N.

In what follows we will suppose that xn+1 6= xn for all n ∈ N, since if xn+1 = xn
for some n, then xn+1 = fxn = xn, and so we complete the proof.

By (2.4), we deduce

B(xn, xn+1, xn+1) = B(fxn−1, fxn, fxn)

4 ψ(L(xn−1, xn, xn)),
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where

L(xn−1, xn, xn) ∈ {B(xn−1, xn, xn),B(xn−1, fxn−1, fxn−1),

B(xn, fxn, fxn),B(fxn−1, xn, xn)}
= {B(xn−1, xn, xn),B(xn−1, xn, xn),

B(xn, xn+1, xn+1),B(xn, xn, xn)}
= {B(xn−1, xn, xn),B(xn, xn+1, xn+1)}.

If

L(xn−1, xn, xn) = B(xn, xn+1, xn+1),

then

B(xn, xn+1, xn+1) 4 ψ(L(xn−1, xn, xn))

� B(xn, xn+1, xn+1),

a contradiction. So we deduce that

B(xn, xn+1, xn+1) 4 ψ(L(xn−1, xn, xn))

� B(xn−1, xn, xn),

and

B(xn, xn+1, xn+1) 4 ψ(B(xn−1, xn, xn))

4 ψ2(B(xn−2, xn−1, xn−1))

4 · · · · · ·
4 ψn(B(x0, x1, x1)).

Since {ψn(B(x0, x1, x1))}n∈N is non-incresing, it must converge to some η, η < θ.
We claim that η = θ. On the contrary, assume that η � θ. Then by the
definition of the ψ-function, there exists δ � θ such that for x0, x1 ∈ X with
η 4 B(x0, x1, x1)� δ+ η, there exists n0 ∈ N such that ψn0(B(fx0, fx1, fx1))�
η. Since limn→∞ ψ

n(B(x0, x1, x1)) = η, there exists m0 ∈ N such that η 4
ψmB(x0, x1, x1)� δ+η, for all m ≥ m0. Thus, we get ψm0+n0(B(x0, x1, x1))� η,
and we get a contradiction. So limn→∞ ψ

n(B(x0, x1, x1)) = θ, and so we have
limn→∞ B(xn, xn+1, xn+1) = θ.

For m,n ∈ N with m > n > κ0, we claim that the following result holds:

B(xn, xm, xm) ≺ ε for all m > n > κ0. (2.5)

Let ε ∈ E with ε � 0 be given. Since limn→∞ ϕ
n(B(x0, x1, x1)) = θ and

ψ(ε)� ε, there exists κ0 ∈ N such that

ψn(B(x0, x1, x1))� ε− ψ(ε) for all n ≥ κ0,

that is,

B(xn, xn+1, xn+1)� ε− ψ(ε) for all n ≥ κ0. (2.6)

We prove (2.5) by induction on m. Assume that the inequality (2.5) holds for
m = k. Then by (2.6), we have that for m = k + 1,
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B(xn, xk+1, xk+1) 4 B(xn, xn+1, xn+1) + B(xn+1, xk+1, xk+1)

� B(xn, xn+1, xn+1) + ψ(B(xn, xk, xk)

� ε− ψ(ε) + ψ(ε)

= ε.

Thus, we conclude that B(xn, xm, xm) � ε for all m > n > κ0. So {xn} is a
Cauchy sequence in X. Since (X,B) is a complete cone ball-metric space, there
exists µ ∈ X such that limn→∞ xn = µ, that is, B(xn, xn, µ)→ θ.

For n ∈ N, we have

B(µ, µ, fµ) 4 B(µ, µ, xn) + B(xn, xn, fµ)

4 B(µ, µ, xn) + B(fxn−1, fxn−1, fµ)

4 B(µ, µ, xn) + ψ(L(xn−1, xn−1, µ)),

where

L(xn−1, xn−1, µ) ∈ {B(xn−1, xn−1, µ),B(xn−1, fxn−1, fxn−1),

B(xn−1, fxn−1, fxn−1),B(fxn−1, xn−1, µ)}
= {B(xn−1, xn−1, µ),B(xn−1, xn, xn),

B(xn−1, xn, xn),B(xn, xn−1, µ)}.

(I) If

L(xn−1, xn−1, µ) = B(xn−1, xn−1, µ),

then

B(µ, µ, fµ)� B(µ, µ, xn) + B(xn−1, xn−1, µ).

Letting n→∞, we conclude that B(µ, µ, fµ) = θ, and so µ = fµ.

(II) If

L(xn−1, xn−1, µ) = B(xn−1, xn, xn),

then

B(µ, µ, fµ)� B(µ, µ, xn) + B(xn−1, xn, xn).

Letting n→∞, we conclude that B(µ, µ, fµ) = θ, and so µ = fµ.

(III) If

L(xn−1, xn−1, µ) = B(xn, xn−1, µ) 4 B(xn, xn−1, xn−1) + B(xn−1, xn−1, µ),

then

B(µ, µ, Tµ)� B(µ, µ, xn) + B(xn, xn−1, xn−1) + B(xn−1, xn−1, µ).

Letting n→∞, we conclude that B(µ, µ, fµ) = θ, and so µ = fµ.
Follow (I), (II) and (III), we have that µ is a fixed point of f .
Let ν be another fixed point of f with µ 6= ν. Then

B(µ, ν, ν) = B(fµ, fν, fν) 4 ψ(L(µ, ν, ν)),
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where

L(µ, ν, ν) ∈ {B(µ, ν, ν),B(µ, fµ, fµ),B(ν, fν, fν),B(fµ, ν, ν)}
= {B(µ, ν, ν),B(µ, µ, µ),B(ν, ν, ν),B(µ, ν, ν)}
= {B(µ, ν, ν)}, θ}.

Therefore, if B(µ, ν, ν) � B(µ, ν, ν), then we get a contradiction. So µ = ν, and
we show that µ is a unique fixed point of f .

To show that f is continuous at µ. Let {yn} be any sequence in X such that
{yn} convergent to µ. Then

B(µ, µ, fyn) = B(fµ, fµ, fyn)

4 ϕ(L(µ, µ, yn)),

where

L(µ, µ, yn) ∈ {B(µ, µ, yn),B(µ, fµ, fµ),B(µ, fµ, fµ),B(fµ, µ, yn)}
= {B(µ, µ, yn), θ}.

Thus
B(µ, µ, fyn)� B(µ, µ, yn).

Letting n → ∞. Then we deduce that {fyn} is convergent to fµ = µ. Hence f
is continuous at µ. �

By Theorem 2.3, we immediate get the following corollary.

Corollary 2.4. Let (X,B) be a complete cone ball-metric space, P be a regular
cone in E and f : X → X. Suppose that there exists a ψ-function such that

B(fx, fy, fz) 4 ψ(B(x, y, z) (x, y, z ∈ X).

Then f has a unique fixed point (say µ) in X and f is continuous at µ.

In the sequel, we introduce the stronger Meir-Keeler cone-type function φ :
intP ∪{θ} → [0, 1) in cone ball-metric spaces, and prove the fixed point theorem
for this type of function.

Definition 2.5. Let (X,B) be a cone ball-metric space with cone P , and let

φ : intP ∪ {θ} → [0, 1).

Then the function φ is called a stronger Meir-Keeler type function, if for each
η ∈ P with η � θ, there exists δ � θ such that for x, y, z ∈ X with η 4
B(x, y, z)� δ + η, there exists γη ∈ [0, 1) such that φ(B(x, y, z)) < γη.

Theorem 2.6. Let (X,B) be a complete cone ball-metric space, P be a regular
cone in E and f : X → X. Suppose that there exists a stronger Meir-Keeler type
function φ : intP ∪ {0} → [0, 1) such that

B(fx, fy, fz) 4 φ(L(x, y, z)) · L(x, y, z) for all x, y, z ∈ X, (2.7)

where

L(x, y, z) ∈ {B(x, y, z),B(x, fx, fx),B(y, fy, fy),B(fx, y, z)}
Then f has a unique fixed point (say µ) in X and f is continuous at µ.
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Proof. Given x0 ∈ X. Define the sequence {xn} in X recursively as follows:

fxn−1 = xn for each n ∈ N.
In what follows, we will suppose that xn+1 6= xn for all n ∈ N, since if xn+1 = xn
for some n, then xn+1 = fxn = xn, and so we complete the proof.

By (2.7), we deduce

B(xn, xn+1, xn+1) = B(fxn−1, fxn, fxn)

4 φ(L(xn−1, xn, xn)) · L(xn−1, xn, xn)

� γη · L(xn−1, xn, xn),

where

L(xn−1, xn, xn) ∈ {B(xn−1, xn, xn),B(xn−1, fxn−1, fxn−1),

B(xn, fxn, fxn),B(fxn−1, xn, xn)}
= {B(xn−1, xn, xn),B(xn−1, xn, xn),

B(xn, xn+1, xn+1),B(xn, xn, xn)}
= {B(xn−1, xn, xn),B(xn, xn+1, xn+1)}.

If
L(xn−1, xn, xn) = B(xn, xn+1, xn+1),

then

B(xn, xn+1, xn+1) � γη · B(xn, xn+1, xn+1),

a contradiction. So we deduce that

B(xn, xn+1, xn+1) 4 φ(L(xn−1, xn, xn))

� γη · B(xn−1, xn, xn).

Then the sequence {B(xn, xn+1, xn+1)} is decreasing and bounded below. Let
limn→∞ B(xn, xn+1, xn+1) = η < θ. Then there exists κ0 ∈ N and δ � θ such that
for all n > κ0

η 4 B(xn, xn+1, xn+1)� η + δ.

For each n ∈ N, since φ : intP ∪ {θ} → [0, 1) is a stronger Meir-Keeler
type function, for these η and δ we have that for xκ0+n, xκ0+n+1 ∈ X with
η 4 B(xκ0+n, xκ0+n+1, xκ0+n+1) � δ + η, there exists γη ∈ [0, 1) such that
φ(B(xκ0+n, xκ0+n+1, xκ0+n+1)) < γη. Thus, by (2.7), we can deduce

B(xκ0+n, xκ0+n+1, xκ0+n+1) = φ(B(xκ0+n−1, xκ0+n, xκ0+n)) · B(xκ0+n−1, xκ0+n, xκ0+n)

� γη · B(xκ0+n−1, xκ0+n, xκ0+n),

and it follows that for each n ∈ N,

B(xκ0+n, xκ0+n+1, xκ0+n+1) � γη · B(xκ0+n−1, xκ0+n, xκ0+n)

� · · ·
� γnη · B(xκ0 , xκ0+1, xκ0+1).

So
lim
n→∞

B(xκ0+n, xκ0+n+1, xκ0+n+1) = θ, since γη < 1.
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We next claim that limm,n→∞ B(xκ0+n, xκ0+m, xκ0+m) = θ. For m,n ∈ N with
m > n, we have

B(xκ0+n, xκ0+m, xκ0+m) 4
m−1∑
i=n

B(xκ0+i, xκ0+i+1, xκ0+i+1)

�
γm−1η

1− γη
B(xκ0+1, xκ0+2, xκ0+2),

and hence B(xκ0+n, xκ0+m, xκ0+m)→ θ as m,n→∞, since 0 < γη < 1.
By the properties of the cone ball-metric, we obtain

B(xκ0+n, xκ0+m, xκ0+l) 4 B(xκ0+n, xκ0+m, xκ0+m) + B(xκ0+m, xκ0+m, xκ0+l),

taking limit as m,n, l → ∞, we get B(xκ0+n, xκ0+m, xκ0+l) → θ. So {xn} is a
Cauchy sequence. Since (X,B) is a complete cone ball-metric space, there exists
µ ∈ X such that limn→∞ xn = µ, that is, B(xn, xn, µ)→ θ.

For n ∈ N, we have

B(µ, µ, fµ) 4 B(µ, µ, xn) + B(xn, xn, fµ)

4 B(µ, µ, xn) + B(fxn−1, fxn−1, fµ)

4 B(µ, µ, xn) + φ(L(xn−1, xn−1, µ)) · L(xn−1, xn−1, µ)

4 B(µ, µ, xn) + γη · L(xn−1, xn−1, µ),

where

L(xn−1, xn−1, µ) ∈ {B(xn−1, xn−1, µ),B(xn−1, fxn−1, fxn−1),

B(xn−1, Txn−1, fxn−1),B(fxn−1, xn−1, µ)}
= {B(xn−1, xn−1, µ),B(xn−1, xn, xn),

B(xn−1, xn, xn),B(xn, xn−1, µ)}.

(I) If
L(xn−1, xn−1, µ) = B(xn−1, xn−1, µ),

then

B(µ, µ, fµ) 4 B(µ, µ, xn) + γη · B(xn−1, xn−1, µ).

Letting n→∞, we conclude that B(µ, µ, fµ) = θ, and so µ = fµ.

(II) If
L(xn−1, xn−1, µ) = B(xn−1, xn, xn),

then

B(µ, µ, fµ) 4 B(µ, µ, xn) + γη · B(xn−1, xn, xn).

Letting n→∞, we conclude that B(µ, µ, Tµ) = θ, and so µ = fµ.

(III) If

L(xn−1, xn−1, µ) = B(xn, xn−1, µ) 4 B(xn, xn−1, xn−1) + B(xn−1, xn−1, µ),

then

B(µ, µ, fµ) ≤ B(µ, µ, xn) + γη · [B(xn, xn−1, xn−1) + B(xn−1, xn−1, µ)].
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Letting n→∞, we conclude that B(µ, µ, fµ) = θ, and so µ = fµ.
Follow (I), (II) and (III), we have that µ is a fixed point of f .
Let ν be another fixed point of f with µ 6= ν. Then

B(µ, ν, ν) = B(fµ, fν, fν)

4 ψ(L(µ, ν, ν)) · L(µ, ν, ν)

� γη · L(µ, ν, ν),

where

L(µ, ν, ν) ∈ {B(µ, ν, ν),B(µ, fµ, fµ),B(ν, fν, fν),B(Tµ, ν, ν)}
= {B(µ, ν, ν),B(µ, µ, µ),B(ν, ν, ν),B(µ, ν, ν)}
= {B(µ, ν, ν), θ}.

Thus if B(µ, ν, ν) � γη · B(µ, ν, ν), then we get a contradiction. So µ = ν, and
we show that µ is a unique fixed point of T .

To show that f is continuous at µ. Let {yn} be any sequence in X such taht
{yn} convergent to µ. Then

B(µ, µ, fyn) = B(fµ, fµ, fyn)

4 ψ(L(µ, µ, yn)) · L(µ, µ, yn)

� γη · L(µ, µ, yn),

where

L(µ, µ, yn) ∈ {B(µ, µ, yn),B(µ, Tµ, Tµ),B(µ, fµ, fµ),B(fµ, µ, yn)}.
Thus

B(µ, µ, Tyn)� γη · B(µ, µ, yn).

Letting n → ∞. Then we deduce that {fyn} is convergent to fµ = µ. Hence f
is continuous at µ. �
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