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1. INTRODUCTION AND PRELIMINARIES

This exposition paper is devoted to the theory of Abram Vilgelmovich Shtraus
and his disciples and followers. This theory studies the so-called generalized
resolvents of symmetric and isometric operators in a Hilbert space.

The object, which now is called a generalized resolvent of a symmetric oper-
ator, appeared for the first time in papers of Neumark and Krein in 40-th of
the previous century. At that time it was already known, due to the result of
Carleman, that each densely defined symmetric operator has a spectral function
(the term “spectral function” is due to Neumark). Neumark showed that each
spectral function of a (densely defined) symmetric operator is generated by the
orthogonal spectral function of a self-adjoint extension of the given symmetric
operator in a possibly larger Hilbert space (Neumark’s dilation theorem) [32].
In particular, this fact allowed him to describe all solutions of the Hamburger
moment problem in terms of spectral functions of the operator defined by the
Jacobi matrix [32, pp. 303-305]. However, as was stated by Neumark himself in
his paper [33, p. 285], despite of its theoretical generality this result did not give
practical tools for finding spectral functions in various concrete cases.

For operators with the deficiency index (1,1) Neumark proposed a description
of the generalized resolvents which was convenient for practical applications. As
one such an application Nevanlinna’s formula for all solutions of the Hamburger
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moment problem was derived [33, pp. 292-294]. In 1944, independently from
Neumark, another description of the generalized resolvents for operators with the
deficiency index (1,1) was given by Krein [18]. Krein also noticed a possibility of
an application of his results to a study of the moment problem and to the problem
of the interpolation of bounded analytic functions. In 1946 appeared the famous
paper of Krein which gave an analytic description of the generalized resolvents
of a symmetric operator with arbitrary equal finite defect numbers. Also there
appeared a description of all II-resolvents in the case that the operator is non-
negative (a IT-resolvent is a generalized resolvent generated by a non-negative self-
adjoint extension of the given operator). This paper of Krein became a starting
point for a series of papers devoted to constructions of Krein-type formulas for
various classes of operators and relations in a Hilbert space, in the Pontriagin
space, in the Krein space. Among other mathematicians we may mention the
following authors here (in the alphabetical order): Behrndt, Derkach, de Snoo,
Hassi, Krein, Kreusler, Langer, Malamud, Mogilevskii, Ovcharenko, Sorjonen,

see, e.g.: [20, 21, 24,2210, 28, 11, 8,29, 31, 3, 9] and references therein.
Starting from the paper of Krein [18] the theory of the resolvent matrix has

been developed intensively, see., e.g., papers of Krein and Saakyan [19], Krein and

Ovcharenko[23], Langer and Textorius [25], Derkach [7] and papers cited therein.

Krein-type formulas are close to the linear fractional transformation and this fact
suggested to apply them to interpolation problems, where such form appears by
the description of solutions.

On the other hand, in 1954, in his remarkable work [38], Shtraus obtained an-
other analytic description of the generalized resolvents of a (densely defined) sym-
metric operator with arbitrary defect numbers. Important features of Shtraus’s
formula, and of Shtraus-type formulas in general, are the following;:

1) An analytic function-parameter is bounded,
2) A low number of parameters in the formula: an analytic function-parameter
and the given operator.

These features allow to solve various matrix interpolation problems, in the non-
degenerate and degenerate cases simultaneously, see [13, 19, 50, 52]. Moreover,
these features give possibility to solve not only one-dimensional, but also two-
dimensional interpolation problems and to obtain analytic descriptions of these
problems (see, e.g. [71]).

The Shtraus formula set the beginning of a series of papers devoted to the
derivation of such type formulas for another classes of operators and their appli-
cations. The content of papers devoted to isometric and symmetric operators in
a Hilbert space is used in preparation of this survey. Formal references and list
of papers will be given below. Besides that, we should mention papers for the
generalized resolvents of operators related to the conjugation, see., e.g., papers of

Kalinina [17], Makarova [20, 27], and references therein. We should also mention
papers on the generalized resolvents of operators and relations in spaces with an
indefenite metric, see, e.g., papers of Gluhov, Nikonov [14, 35, 34], Gluhov [13],

Etkin [12], Utkin [11] and papers cited therein.
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Notice, that Shtraus-type formulas can be used to obtain Krein-type formulas,
see e.g. [2].

Thus, in the theory of generalized resolvents one can see two directions: the
derivation of Krein-type formulas and the derivation of Shtraus-type formulas.
The Krein formulas are partially described in books of Akhiezer and Glazman [1],
M.L. Gorbachuk and V.I. Gorbachuk [I5]. The Shtraus-type formulas can be
found only in separate papers. We think that it would be convenient to have an
exposition of the corresponding theory with full proofs and necessary corrections.

We omit references in the following text using only known facts from classical
books. Formal references to all appeared results will be given afterwards, in the
section “Formal credits”.

In Section 2 generalized resolvents of isometric and densely defined symmet-
ric operators in a Hilbert space are studied. Section 3 is devoted to generalized
resolvents of (not necessarily densely defined) symmetric operators in a Hilbert
space. Generalized resolvents of isometric and (not necessarily densely defined)
symmetric operators in a Hilbert space with gaps in their spectra are investigated
in Section 4. By a gap in a spectrum of a symmetric (an isometric) operator we
mean a real interval (respectively an arc of the unit circle T) which consists of
points of the regular type of the operator.

Notations.
R the set of all real numbers
C the set of all complex numbers
N the set of all positive integers
) the set of all integers
y/mn the set of all non-negative integers
C, {z€eC: Imz>0}
C_ {z€eC: Imz <0}
D {zeC: |z| <1}
T {z€eC: |z| =1}
D, {z€eC: |z| > 1}
T, {z€eC: |z| #1}
R, {z€C: Imz # 0}
R¢ the real Euclidean d-dimensional space, d € N
keO,p means that k € Zy, k < p,if p < c0; or k € Z,, if
p =00
Crxn the set of all complex matrices of size (K xN), K, N € N
CRon the set of all non-negative matrices from Cyyny, N € N
Iy the identity matrix of size (N x N), N € N
cr the transpose of the matrix C' € (K x N), K, N € N
C* the adjoint of the matrix C' € (K x N), K, N € N

1T, the half-plane C, or C_, which contains a point A € R,
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{zelly: e<|argz| <7 —¢}, O<e< i, AeR,
the set of all Borel subsets of a set M, which belongs C
or R d eN

the set of all scalar algebraic polynomials with complex
coefficients

a class of all analytic in a domain D C C operator-valued
functions F'(z), which values are linear non-expanding
operators mapping the whole N into N’, where N and
N' are some Hilbert spaces.

All Hilbert spaces will be assumed to be separable, and operators in them are
supposed to be linear. If H is a Hilbert space then

(';')H

the scalar product in H

the norm in H

the closure of a set M C H in the norm of H

the linear span of a set M C H

the closed linear span of a set M C H

the identity operator in H, i.e. Fyx =z, Vo € H

the null operator in H, i.e. Ogx =0, Ve € H

the operator in H with D(og) = {0}, og0 =0

the operator of the orthogonal projection on a subspace
H1 in H

Indices may be omitted in obvious cases. If A is a linear operator in H, then

the domain of A

the range of A

{r € H: Az =0} (the kernel of A)

the adjoint, if it exists

the inverse, if it exists

the closure, if A admits the closure

the restriction of A to the set M C H

a set of all points of the regular type of A

the norm of A, if it is bounded

the limit in the sense of the weak operator topology
the limit in the sense of the strong operator topology
the limit in the sense of the uniform operator topology

If A is a closed isometric operator then

(Eg — CA)D(A), where ( € C
H o M, where ( € C

R(A)

H oS R(A)

(En —¢V)™, C€C\T

If Ais a closed symmetric operator (not necessarily densely defined) then

[RRIF:

M

Lin M
span M

En

On

OH

Py, = Pgl
D(A)

R(A)

Ker A

A*

A—l

A

Al

pr(A)

Al

w. — lim

s. — lim

u. — lim

M = Mc(A)
N¢ = N(A)
My = M (A)
Ny = Noo(A)
Re=Re(V)
M, = M., (A)
N. = N.(A)
R, =R.(A)

(A—2Eg)D(A), where z € C
H o M., where z € C
(A — ZEH)il, A (C\]R
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2. GENERALIZED RESOLVENTS OF ISOMETRIC AND DENSELY-DEFINED
SYMMETRIC OPERATORS.

2.1. Properties of a generalized resolvent of an isometric operator. Con-
sider an arbitrary closed isometric operator V in a Hilbert space H. As it is well
known, for V' there always exists an unitary extension U, which acts in a Hilbert
space H O H. Define an operator-valued function R in the following way:

Re=Re(V) =Ryo(V) = P (B —CU) ', (€T

The function R is said to be the generalized resolvent of an isometric operator
V' (corresponding to the extension U).

Let {Fi}ico,2,) be a left-continuous orthogonal resolution of the unity of the
operator U. The operator-valued function

F,=PIF,  tel0,2n]

is said to be a (left-continuous) spectral function of the isometric operator
V' (corresponding to the extension U). Let F(J), 6 € B(T), be the orthogonal
spectral measure of the unitary operator U. The following function

F(5) = PIF(5), &€ B(T),

is said to be a spectral measure of the isometric operator V' (corresponding to
the extension U). Of course, the spectral function and the spectral measure are
related by the following equality:

F(&,)=F, §={2=¢%:0<¢p<t}, tel02n],

what follows from the analogous property of orthogonal spectral measures. More-
over, generalized resolvents and spectral functions (measures) are connected by
the following relation:

1 S|
(Roh, )y = /T PR g) = /0 —d(Fhg)n, Vh.geH,
(2.1)
which follows directly from their definitions. This relation allows to talk about the
one-to-one correspondence between generalized resolvents and spectral measures,
in the accordance with the well-known inversion formula for such integrals.

The generalized resolvents, as it is not surprising from their definition, have
much of the properties of the Fredholm resolvent (Ez — (U)™" of the unitary
operator U. The aim of this subsection is to investigate these properties and to
find out whether they are characteristic.

Theorem 2.1. Let V' be a closed isometric operator in a Hilbert space H, and
R; be an arbitrary generalized resolvent of V.. The following relations hold:

1) 2R, —(R¢)f = (2 — QR R f, for arbitrary z,{ € T, f € M(V);
2) RO = EH}.
3) For an arbitrary h € H the following inequalities hold:

1
Re(R¢h, h)g > §HhH3{, ¢ € Dy
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1
Re(RCh7 h)H < §||h||§{> C € ]D)e;

4) R is an analytic operator-valued function of a parameter ¢ in T,;
5) For an arbitrary ¢ € T.\{0} it holds:

R;=Ey - R

% .
Proof. Let U be a unitary operator in a Hilbert space H D H, which corresponds
to R¢(V). For the Fredholm resolvent Ry = R¢(U) = (B —(U) ™! of the unitary
operator U the following relation holds

ZRZ — CR’C = (Z — C)RZRQ, Z,C - Te,
which follows easily from the spectral decomposition of the unitary operator. By
applying the operator PH to the latter relation, we get

‘R, — (Re = (2 — OR.Re, 2z,( €T

Taking into account that for an arbitrary element f € M, f = (Ey — (V)gv,
gv € D(V), holds

Ref = (B — CU) (B — (V)gy = gv = Pl gv

= Pj(Eg —CU) N (Ez — (V)gv = P (B — CU)' f = Ref,
we conclude that the first property of R, is true.
The second property follows directly from the definition of a generalized resolvent.
Denote by {F; }ic(0,2x the left-continuous orthogonal resolution of the unity of the
operator U. For an arbitrary h € H holds

2 1
Re(R¢h, h)g = Re(Reh, h) 5 = Re/ ] Ce“d<Fth’ h) g
0 _
27 92 Eefit _ Ceit
= . d(Fh, h) T..
I e LU T
On the other hand, we may write
2w 1— 2
(1= PR et + (ot = [ = EatEn,mg +
2w 9 _ Ze—it _ Ceit
= . F = T..
/0 ‘1_Celt’2 d( th7h)H7 CG
Consequently, we have
1

Re(Reh, )i = 5 (1= [KP)IR¢AIG + IllE) . CeT.,

and the third property of the generalized resolvent of an isometric operator fol-
lows.
The fourth property follows directly from the same property of the resolvent of
the unitary operator U.
Using one more time the spectral resolution of the unitary operator U, we easily
check that

RZ—i—R% =Fg ¢ € T.\{0}.
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For arbitrary elements f, g from H we may write

= (1. (B -m0)a) = (5. (Bu—R) g)H, ¢ € T\{0}.

H
From the latter relation it follows the fifth property of the generalized resolvent.
O

Theorem 2.2. Let an operator-valued function R¢ in a Hilbert space H be given,
which depends on a complex parameter ¢ € T, and which values are linear opera-
tors defined on the whole H. This function is a generalized resolvent of a closed
1sometric operator in H if an only if the following conditions are satisfied:

1) There exists a number (o € D\{0} and a subspace L C H such that

(CR¢ = GoRey) f = (€ — Go)ReRe, f,
for arbitrary € T, and f € L; -

2) The operator Ry is bounded and Ryh = h, for allh € H & R L;
3) For an arbitrary h € H the following inequality holds:

1
Re(R¢h, h)g > §||h||fm ¢ € Dy

4) For an arbitrary h € H R¢h is an analytic vector-valued function of a

parameter  in Dy
5) For an arbitrary ¢ € D\{0} holds:

R =FEy — R% :

Proof. The necessity of the properties 1)-5) follows immediately from the previous
theorem.

Suppose that properties 1)-5) are true. At first we check that properties 1),2)
imply Ry = Ey. In fact, for an arbitrary element h € H, h = hy + ho, hy € R, L,
hy € H © R, L, using 2) we may write

Roh - Rghl + Rth - Rohl + hg.

There exists a sequence hy, (n € N) of elements of R, L, tending to h; asn — oo.
Since hy, = Reyfin, fin € L (n € N), by condition 1) with ( =0 and f = fi,
we get
—Co B¢y 1.0 = —CoRoR¢, f1ns n €N
Dividing by —(y and passing to the limit as n — oo we obtain that Roh; = hy.
Here we used the fact that Ry is continuous. Therefore we get Ryh = h.
By property 4) the following function

1
F(Q) = (Reh, by — 5l CeD,

is analytic and

1
Im F(0) = Im Euhuif = 0.
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From property 3) it follows that
1
Re F(() = Re(Reh, h)u — 5|l >0, (D,

This means that the function F'(¢) belongs to the Carathéodory class of all ana-
lytic in D functions satisfying the condition Re F'(¢) > 0. Functions of this class
admit the Riesz-Herglotz integral representation. Using this representation we
get
1 2m
(Reluh)n = FQ) + 5l = | —odotih),  CeD,

where o (t; h, h) is a left-continuous non-decreasing function on the interval [0, 27],
0(0; h, h) = 0. The function o(¢; h, h) with such normalization is defined uniquely
by the Riesz-Herglotz integral representation. Since

L/Qﬂi_;%_gdgagh,h)::(Rch,h)::(h,th)::(h,h)——(h,th), ¢ € D\{0},
0 —6€ :

where we used property 5), we get

2m 1 2m 1
Rihh) = (hh) — | ——=—do(t:h,h) = _do(t: h, h).
(Byho) = (k) = [ ot = [ = ettt

Therefore

21
1
Rehyh)g = —do(t; h, h T., h € H.
(C?)H /0 1_Cezt0—(77)a Ce €
For arbitrary h, g from H we set

1 1 '
Uwhy%:Zdth+%h+m—Zdth—%h—m+idth+@h+m)

—idth—%h—g)
Then

2m
/O : _lceit do’(t; h,g) = (Rch,g)H, (€T, h,ge H. (22)
The function o(t; h, g) is a left-continuous complex-valued function of bounded
variation with the normalization o(0;h,g) = 0. If for the function (R¢h,g)n
there would exist a representation of a type (2.2) with another left-continuous
complex-valued function of bounded variation (¢; h,g) with the normalization
c(0;h,g) =0, then

2m 1
_du(th, g) =0 T, 2.3
| =g =0, ce (2.3

where pu(t; h,g) :=o(t; h,g) —o(t; h,g). The function p is defined uniquely by its
trigonometric moments ¢, = fo% eFdu(t;h, g), k € Z. For || < 1, writing the
expression under the integral sign in (2.3) as a sum of the geometric progression
and integrating we get ¢, =0, k € Z.
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For |¢| > 1, the expression under the integral sign we can write as
o0

1 1 1 _.
S [
1— Cezt 1 — %e—zt Z Cke

k=0
and integrating we obtain that c_p =0, k € N.
Thus, the representation (2.2) for (R:h, g)n defines the function o(t;h, g) with
the above-mentioned properties uniquely.
For an arbitrary ¢ € T, and g, h € H, taking into account property 5), we may
write

T do(t; g, h )
/ i t) Z-t) = (Reg,h) = (9, R¢h) = (9. h — Rah)
0 1 — e ¢

=)~ ilog = [ doting) -~ [ Y
¢ 0 0 1—Z€

_ /2” do(t; h, g)

a 0 1— et

By the uniqueness of the representation (2.2) it follows that
o(t;g,h) =o(t;h,g),  h,ge H, tel0,2n].

From representation (2.2) and the linearity of the resolvent it follows that for
arbitrary aq, as € C and hy, hy, g € H holds

o(t;anhy + agha, g) = ayo(t; hy, g) + o (t; he, g), t €0,2n].

Moreover, since the function o(¢; h, h) is non-decreasing, the following estimate
is true:

27
o(t;h,h) < o(2m;h,h) = / do(t;h,h) = (h,h)y, te€]0,2n], he H. (24)
0

This means that o(¢; h, g) for each fixed ¢ from the interval [0, 27] is a bounded
bilinear functional in H, with the norm less or equal to 1. Consequently, it admits
the following representation

a(t;h,g) = (Eh, 9)m, t € [0, 2m],

where {E;}ico2+] is an operator-valued function of a parameter ¢, which values
are linear non-expanding operators, defined on the whole H . Let us study the
properties of this operator-valued function. Since

(Eth, g) = o(t;h,g) = o(t; g, h) = (Eug, h) = (h, Eyg),
for arbitrary h,g € H, the operators F; are all self-adjoint. The function
(Eth,h) = o(t;h,h) is non-decreasing of ¢ on the segment [0,27], for an arbi-

trary h € H. Since o(0;h,g) = 0, then Ey = Ep, and from (2.4) it is seen that
Ey, = Ey. Taking into account that for arbitrary ¢ € (0,2x] and h, g € H holds

lim (Eshag)H = lim U(S, h?.g) = U(t7 hvg) = (Eth‘7g)Ha
s—t—0 s—t—0
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we conclude that E; is left-continuous on the segment [0, 27 in the weak operator
topology sense. Also we have

|Eih — Eh|3 = (B, — E)*h, k) < (B — Ey)h,h) i — 0,

as s — t — 0. Here we used the fact that for a self-adjoint operator (F; — Ej)
with the spectrum in [0, 1] holds the inequality from the latter relation. This fact
follows directly from the spectral resolution of the self-adjoint operator (E; — Ej).
Therefore the function E; is left-continuous on the segment [0, 27] in the strong
operator topology sense, as well.

Consequently, {E;}icpo,27 is a generalized resolution of the identity. By the
well-known Neumark’s dilation theorem there exists an orthogonal resolution of
unity { £ }iejo,2n in a Hilbert space H O H, such that

Eh=PHEL — tel0,27], he H.
From (2.2) and the definition of E; it follows that

1 — (et
Here the convergence of the integral in the right-hand side is understood in the
sense of the strong convergence of the integral sums. The existence of the inte-
gral follows from the corresponding property of the orthogonal resolution of the
identity FEj.
For arbitrary ¢ € T.: ( # (o; f € L and g € H, we may write:

27r Et 27r Etf g
((CRC - CORCO fa C/ C zt — o / 1— G ezt

27 1
Rcz/ —dF, (€T, h,geH.
0

1
-6 [ el o

2 1 t 1
~-0) | = | el s

2w 1
(€= WReRo S0y = (=) [ = cd (iR f.)s
By the first condition of the theorem we conclude that

2w 1 t 1 2 1
/0\ —1 _ Ceitd/o —1 — Coeis d(ESfa g)H = /0 1——Celtd(EtR<Of7 g)H

By the continuity from the left of the function E; and the initial condition £y = 0,
the last relation imply that

/ ;st(Esfa g)H = (EtRCofa g)H7 te [07277]7 f € L, g€ H. (25)
o 1—Coe

Therefore

t

1

/—.dESf:EtRCOf, tefo,2n), fel (2.6)
o 1— (e
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From condition 3) of the theorem it follows that the equality R.h = 0, for some
h € H and ¢ € D, implies the equality A = 0. Thus, the operator R is invertible
for all ¢ € D.

Define the following operator

_ 1 (
Co
with the domain D(V) = R¢ L. For an arbitrary element g € R, L, g = R, f,

f € L, and an arbitrary h € H, we may write:

(Vg, )i = (1 ==

Vg Ey—R.') g, g € R L,

SRy~ Emlfih) = & (BB = ()

H CO

1 2 1 2m
‘Q(A TjagﬂﬂﬁmH—A AQﬁma

27 621& 2r t 1
— | B Ry = itg | _A(E.fh
| s = [ et [ i

27
- / ¢td(Eug, h)n. (2.7)
0

where we have used (2.5) in the last equality. Therefore

2
Vg =/ e'dEyg,  ge D(V).
0

Using the latter equality we shall check that the operator V' is isometric. In fact,
for arbitrary ¢;, g2 € D(V') holds

27 27
(V91;V92>H :/ €”d(Et91,Vg2)H :/ €th(917EtV92)H- (2~8)
0 0

On the other hand, for g» = R, f2, f2 € L, using the definition of the operator V'
and relation (2.6) we write
1 1
EVgy = C—Et(Rgo —E)fe = C_ (EtRe, fo — Eifa)
0 0

1 t 1 t t e’is
= — ——dFE, —/ dFE, ):/ ——dE. /5.
= ( /0 bR [ann) = [ dn g,
It follows that

eis
1 — (pe’s

b b
:/ elsd/ —i,.d(ETf%gl)H:/ e*d(Esga, g1)n
0 o 1—Cee 0

t
= / e "“(Esg1,92) 1,
0

where we used (2.5) to obtain the last equality. Substituting the obtained relation
in (2.8), we get (Vg1,Vge)n = (g1, g2)m. Thus, the operator V' is isometric.

- t
(917Eth2)H = (EtVQQagl)H = / d(Esf2agl)H
0
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From the definition of the operator V' it follows that
(BEy —GV)g=Rg'g, g€ D(\V)=RgL,
and therefore
(Er — GV)D(V) = L.
Consequently, the bounded operator (Ey — (oV) ™! is defined on the subspace L,

and therefore it is closed. Hence, V' is closed, as well.
Consider a unitary operator U in H, which corresponds to the resolution of the

identity {Et}te[o,%}i
21
U:/ €itdEt.
0

Let us show that U D V. For arbitrary elements g € D(V') and h € H holds

2 2 _
Vohn= [ ed(Bg bya = | cdEig.h)z = Ug b = (PUg.)
0 0
where we used relation (2.7). Therefore
Vg=PlUg,  ge D). (2.9)
Moreover, we have
gl = IVglle = 1P Uglla < 1Ugllg = llglla-
Therefore | PHUg|lx = |Ugl|, and
P}?Ug:Ug, g€ D(V).

Comparing the latter equality with (2.9) we conclude that U O V.
From (2.2) it follows that

2m 1 2w 1
h = ——d(Eh = ——d(Eth, 9) 5
(Fehg) = [ r—ezd(Bihog) = [ 1—ed(Bih. )

= ((Eﬁ - CU)71h7g>ﬁ = (PI{-II(EEI - CU)71h7g>H7 C € Tea hug € H.
Consequently, R¢, ¢ € T,, is a generalized resolvent of a closed isometric operator

V. O

Let us give conditions for the given operator-valued function R to be a gener-
alized resolvent of a concrete prescribed closed isometric operator.

Theorem 2.3. Let an operator-valued function R¢ in a Hilbert space H be given,
which depends on a complex parameter ¢ € T, and which values are linear oper-
ators defined on the whole H. Let a closed isometric operator V' in H be given.
The function R¢, ¢ € T, is a generalized resolvent of the operator V if an only
if the following conditions hold:

1) For all ¢ € T, and for all g € D(V') the following equality holds:
R(Ex —(V)g=y;
2) The operator Ry is bounded and Roh = h, for allh € H © D(V);
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3) For an arbitrary h € H the following inequality holds:
1
Re(Reh, h)u > Sllkll, ¢ €D;

4) For an arbitrary h € H Rch is an analytic vector-valued function of a
parameter ¢ in Dy
5) For an arbitrary ¢ € D\{0} the following equality is true:
Ri=Fy—R 3-
Proof. The necessity of properties 3)-5) follows from the previous theorem. Let
R; be a generalized resolvent of V', corresponding to a unitary operator U 2 V
in a Hilbert space H 2 H. Then

R(Ey —(V)g = Pl (B — CU) ™ (By — (V)g
= P (Ef —CU) " (By —(U)g=g, ge D(V).

Therefore condition 1) holds, as well. The second property follows from Theo-
rem 2.1, property 2).

Suppose that conditions 1)-5) from the statement of the theorem are satisfied.
Let us check that for the function R, conditions 1),2) from the previous theorem
are true. Choose an arbitrary (, € D\{0}. Let L := (Eyg — (,V)D(V). By the
first condition of the theorem we may write

Rey(Eg — GV)g = (Ex — V) (Exg — GV)g, ge D),
and therefore

Ref = (BEy — GV) ' f € D(V), feL; (2.10)
f=(En—GV)Rof,  feL
Ref = Re(En — GV)Ref,  f€eL, (€T (2.11)

Let us use condition 1) of the theorem with the vector g = R, f € D(V):
Ry f = Re(Enw — CV)Re f,  f€ L.

Assuming that ¢ # 0, we divide relation (2.11) by (, and subtract the last relation
divided by ¢ from it. Multiplying the obtained relation by ((y, we get the required
equality from condition 1) of Theorem 2.1. In the case = 0, the required equality
takes the following form: R, f = RoR¢, f, f € L, and it follows directly from the
first condition of the theorem with ( =0, g = R, f € D(V).

By relation (2.10) and the definition of L it follows that

Ry L= (Ey — GV) 'L = D(V). (2.12)

Consequently, the second condition of the theorem 2.1 follows from the second
condition of this theorem. Observe that conditions 3)-5) of Theorem 2.1 coincide
with the corresponding conditions of this theorem. Thus, applying Theorem 2.1
we conclude that the function R¢, ¢ € T, is a generalized resolvent of a closed
isometric operator in H. Moreover, in the proof of Theorem 2.1 such an operator
Vi was constructed explicitly. Recall that its domain was R L, and

1
Vig = g(EH — R:Ng, g € Re, L.
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Let us check that V' = Vj. By (2.12) we see that the domains of the operators
V and V; coincide. For an arbitrary g € D(V) = D(V;), using condition 1) we
write

Vig = ~(En — R:Vg = —(Ex — (B — GV))g = V.
Co Co

Thus, Vi =V, and therefore the function R, ¢ € T, is a generalized resolvent
of the operator V. O

In conclusion of this subsection, we establish some propositions which will be
used in what follows.

Proposition 2.4. Let F(\) be an operator-valued analytic function in a domain
D C C, which values are linear bounded operators in a Hilbert space H, defined
on the whole H. Suppose that at each point of the domain D there exists the
inverse F~Y(\), defined on the whole H. Assume that for each X\ € D there erists
an open neighborhood of this point in which ||F~Y(\)|| is bounded, as a function
of \. Then the operator-valued function F~Y(\) is analytic in D, as well.

Proof. Consider an arbitrary point u € D. We may write:
FI0N) = Fl () = —F I O0)(FO) — F()F~' (), AeD,  (2.13)
and therefore
[EZ ) = F7 )| < [[ETOVIEX) = ElH [ E~H (W) — 0,

as A — p. Thus, F71()) is continuous in the domain D in the uniform operator
topology.
From equality (2.13) it follows that

” __F“%u»—%F‘%uﬂ”UOF‘%uw

<|[-ro (A S FO) = FG) ) + ) | 770
=[P (52 = P - o) + 7 - F 0 F )|
« || (w)]
< 1O | 52 F ) = £ = 70+ 17700 = P 0] 101
«||[F ()] = 0,
as A — L. 0

Proposition 2.5. Let W be a linear non-expanding operator in a Hilbert space
H, and f be an arbitrary element from D(W') such that:

W fller = 11 fllar-
Then
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Proof. Since W is non-expanding, we may write
ICf+ gl =W+ 9lEH >0,  geDW), ¢eC.
Then
(Cf+9.Cf+9)— (CWf+Wg,cWf+Wg) =[CLIIfI*+2Re(((f, 9))
+llgll® = [CPIW £ — 2Re(C(W £, Wg)) — [[Wglf?

= llgll* = IWgl* + 2Re(¢[(f, 9) — (W[, Wg)]).
Thus, we obtain the inequality

lgll* = 1Wgll* +2Re(C[(f,9) — (W[, Wg)]) >0, ge&DW), ¢eC.
Set ( = —k((f,9) — (Wf, Wg)), k € N. Then we get
lgll* = Wgll* = 2k|(f.9) = (W[, Wg)]? 20, keN.
If k£ tends to the infinity we get (W f, Wa)g = (f,9)n. O

Proposition 2.6. Let W be a linear non-expanding operator in a Hilbert space
H, andV be a closed isometric operator in H. Then the following conditions are
equivalent:
(i) W2 V;
(i) W =V @& T, where T is a linear non-expanding operator in H, such that
D(T) € No(V), R(T) € Nuo(V).

Proof. (i)=-(ii). Let W D V. For an arbitrary element h € D(V') holds Wh = Vh,
|\Wh]|| = ||[VR] = ||h||. Applying the previous proposition we obtain that

(Wh,Wg) = (h,g),  heD(V), ge DW).
Denote M = D(W) N No(V') C No(V). Then
(Wh,Wg) =0, he D(V), ge M.

Therefore WM C Noo(V). Set T' = W|y. The operator T is a linear non-
expanding operator and D(T") C Ny(V'), R(T) C Noo(V).

Choose an arbitrary element f € D(W). It can be decomposed as a sum: f = f;+
fa, where fi € My(V) = D(V), fo € No(V'). Since f and f; belong to D(W), then
f2 belongs, as well. Therefore fo € M. Thus, we obtain: D(W) = D(V) & D(T),
where the manifold D(T') is not supposed to be closed.

The implication (ii)=-(i) is obvious. O

2.2. Chumakin’s formula for the generalized resolvents of an isometric
operator. The construction of the generalized resolvents using the definition of
the generalized resolvent is hard. It requires a construction of extensions of the
given isometric operator in larger spaces. Moreover, it may happen that different
extensions produce the same generalized resolvent. A convenient description of
generalized resolvents in terms of an analytic class of operator-valued functions
is provided by the following theorem.
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Theorem 2.7. An arbitrary generalized resolvent R, of a closed isometric oper-
ator V', acting in a Hilbert space H, has the following form:
Re=[Ey—((VOF)"', (€D, (2.14)

where F; is a function from S(D; No(V'), Noo(V)). Conversely, an arbitrary func-
tion Fr € S(D; No(V'), Noo(V)) defines by relation (2.14) a generalized resolvent
R of the operator V.. Moreover, to different functions from S(D; No(V'), Noo(V))
there correspond different generalized resolvents of the operator V.

Proof. Let R be an arbitrary generalized resolvent of the operator V' from the
statement of the theorem, which corresponds to a unitary extension U 2 V' in a
Hilbert space H 2 H. For an arbitrary ¢ € T. and h € M¢(V), h = (Ey —¢V)f,
f € D(V), we may write:
Reh = Py (Ef — CU)"'h = Py (B = CU) ™ (B — CU)f
=f=(Eg—C¢V)'h
R¢ D (Ex —(¢V)™"
By property 3) of Theorem 2.1, the operator R, is invertible for ¢ € D. Then
R:'D (Eu—(V), (€D
Set
1

T: = ¢ (Ex —R¢Y), ¢ eD\{0}.

The operator T¢ is an extension of the operator V. Suppose that a vector g € H
is orthogonal to the domain of the operator T¢, i.e.

OZ(Rch,g)H, Vh € H.
Then Rig = 0. Using property 3) of Theorem 2.1 we write
1

0=(9,Rég9)n = (R¢g,9)n = Re(Reg, 9)u > 3

Therefore g = 0. Thus, we see that ReH = H.
Using property 3) with arbitrary h € H we may write
a5 = (R, h)i < 2Re(Reh, h)y < 2|(Reh, h)n| < 2| Rehlm ] s
Ihls < 2|Rehllw, ¢ eD
Consequently, the operator Rgl is bounded and

IR <2 CeD. (2.15)

(9,9)u > 0.

Since R is closed, the operator Rgl is closed, as well. Hence, it is defined on the
whole space H. Thus, we conclude that the operator T¢ (¢ € D\{0}) is defined
on the whole H. Set

B¢ = Ep — R, (eD,
and we see that for ¢ € D\{0} we have B, = (T;. Using this fact and the equality
Ry = Ey, we obtain that B is defined on the whole space H, for all ¢ € ID. For
arbitrary ( € D and f € D(B¢), f = R¢ch, h € H, we write

IBcfll3 = (Reh — h,Reh — h) g = ||Rehl|3; — 2Re(Reh, h) i + || b3
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Using one more time property 3) of Theorem 2.1 we conclude that

1B fller < 11 fl

and therefore || B,|| < 1. Taking into account inequality (2.15) and using Proposi-
tion 2.4 we conclude that the function Rgl is analytic in D. Therefore the function
B¢ is also analytic in D, and By = 0. By the Schwarz lemma for operator-valued
functions the following inequality holds: ||B¢|| < ¢, ¢ € D. Therefore || T¢]| < 1,
¢ € D\{0}.

The function B¢, as an analytic operator-valued function, can be expanded into
the Maclaurin series:

B.=Y Ci*, (€D,
k=1

where C}, are some linear bounded operators defined on the whole H. Dividing
this representation by ¢ for ¢ # 0, we see that the function 7 coincides with a
Maclaurin series. Defining 7, at zero by continuity, we get an analytic function
in D.

Applying to Tr Proposition 2.6, we conclude that

TCZV@FQ CED,

where F is a linear non-expanding operator, defined on the whole Ny(V'), with
values in Ny (V). Since T¢ is analytic in D, then F¢ is analytic, as well. Therefore
Fr e S(D; No(V), Noo(V')). By the definitions of the functions T, and B, from
the latter relation we easily get formula (2.14) with ¢ € D\{0}. For ¢ = 0 the
validity of (2.14) is obvious.

Let us check the second statement of the theorem. Consider an arbitrary
function F, € S(D; No(V'), Noo(V')). Set

TCZV@FQ CE]D)

The function T¢ is an analytic. Observe that there exists the inverse (Ey—(T¢) ™!,
which is bounded and defined on the whole H, since ||(T¢|| < |¢| < 1. Moreover,
we have

[(Ex = CT)R| e > [[hle — S TRl e > (1= ISPz, h e H, ¢€D.
Therefore

1
_ -1
I(En = ¢T¢) ”§—1—|C|’ ¢ €D.

By Proposition 2.4, the function (Ey — (T¢)™! is analytic in D. Set
Re = (Ey — CTy) ™, ¢ eD,
and

RC:EH_ 1, CE]D)E.
S

For the function R, conditions 4) and 5) of Theorem 2.3 hold. Let us check the
validity of the rest of conditions of this Theorem. Condition 1) for { € D follows



GENERALIZED RESOLVENTS 193

from the definition of the function R.. Choose arbitrary ¢ € D, and g € D(V).
Then

1 -1\ * 1 —1
R; = FEy — ﬁ:EH—<(EH—:T1> ) :EH—<EH——TT>
¢ ¢ < ¢ <

* ]' * - 1 —1
:Tl EH__l EH__V Vg:gv
B ¢ ¢ ¢
since 77 2 V=1 Thus, condition 1) of Theorem 2.3 is true. Since Ry = Ey, then

<
condition 2) of Theorem 2.3 is true, as well.
Choose arbitrary h € H and ¢ € D. Notice that

Re(Reh, h) = % ((Reh h) + (h, Reh))

— % {((Bg — CT)""hoh) + (h, (Eg — CT)'h) }

Set f = (EH — CTC)flh. Then

Re(Reh, h) = £ {(7, (B — CTf) + (B — T, )}

= D)~ (FCTe) + ()~ (CTef 1))

On the other hand, the following equality is true:

(h.h) = (B —~ CTOf, (B — CT))

1
>
= U H) = (F.CT) = (T, D)+ CPIT )

Comparing last relations and taking into account the inequality [C|*[|T¢f]]* <
| £1|I?, we get: Re(R¢h, h) > L(h,h). Consequently, condition 3) of Theorem 2.3 is
true, as well. Therefore the function R is a generalized resolvent of the operator
V.

Let us check the last assertion of the theorem. Consider an arbitrary generalized
resolvent R¢ of the operator V. Suppose that R, admits two representations of

a type (2.14) with some functions Fr and F,. Then

~ 1
FC = FC = Z(EH - Rgl)|No(V)7 C € ]D)\{O}

By continuity these functions coincide at zero, as well. O
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Formula (2.14) is said to be the Chumakin formula for the generalized resolvents
of a closed isometric operator. This formula contains the minimal number of
parameters: the operator and the function-parameter F;. Due to this fact, it will
be not hard to use the Chumakin formula by solving interpolation problems.

2.3. Inin’s formula for the generalized resolvents of an isometric op-
erator. Consider a closed isometric operator V in a Hilbert space H. For the
operator V' we shall obtain another description of the generalized resolvents —
Inin’s formula, see formula (2.22) below. It has a less transparent structure, but
instead of this it is more general and coincides with Chumakin’s formula in the
case zp = 0. Inin’s formula turns out to be very useful in the investigation of
the generalized resolvents of isometric operators with gaps in their spectrum (by
a gap we mean an open arc of the unit circle D, which consists of points of the
regular type of an isometric operator).
An important role in the sequel will be played by the following operator:

V.= (V—-2En)(Ey —2V)™, z e D.

Notice that D(V,) = M, and R(V,) = M. It is readily checked that the operator
V., is isometric and

V = (Ve 2Ex) (By + 2V2) ' = (V2) .. (2.16)

Moreover, if V' is unitary, then V, is unitary, as well, and vice versa (this follows
from (2.16)).

Let \72 D V, be a unitary extension of the operator V,, acting in a Hilbert space
H D H. We can define the following operator

V=(V.+2E;)(Eq+ 2V.) ™, (2.17)

which will be a unitary extension of the operator V in H. Formula (2.17) es-
tablishes a one-to-one correspondence between all unitary extensions V of the
operator V, in a Hilbert space H O H, and all unitary extensions V of the
operator V' in H.

Fix an arbitrary point z; € . Consider an arbitrary linear non-expanding
operator C' with the domain D(C') = N,, and the range R(C) C N1 . Denote
Z0

Vie=V ®C; (2.18)
Vo =Voz = (Ve +ZEn)(Ey + 20V, o)™ (2.19)
If z5 # 0, we may also write:

1 |ZO|2 —1 NN |

Vo = Vc;ZO = —Fy+ —(EH + ZO‘/zO-C’) ; (220)
20 20 ’
1 1 — |22 _

Vie =2+ 2y - v 221

The operator V¢ is said to be an orthogonal extension of the closed isometric
operator V', defined by the operator C.
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Theorem 2.8. Let V' be a closed isometric operator in a Hilbert space H. Fix
an arbitrary point zo € D. An arbitrary generalized resolvent R, of the operator
V' has the following representation:

Re=[E— (Vo] CeD, (2.22)
where C(C) = C((;20) is a function from S(D; N,,, N1 ). Conversely, an arbi-
trary function C((; z9) € S(D; N,,, N1 ) generates by relation (2.22) a generalized
resolvent R of the operator V. To dzioﬁerent functions from S(D; N,,, N%) there

correspond different generalized resolvents of the operator V.

Proof. Let V be a closed isometric operator in a Hilbert space H, and z, € D\{0}
be a fixed point. Consider the following linear fractional transformation:

U — 2o

t=t(u) = T

which maps the unit circle T on T, and D on D.
Let V,, be an arbitrary unitary extension of the operator V,,, acting in a Hilbert

space H O H, and V be the corresponding unitary extension of the operator V',
defined by relation (2.17). Choose an arbitrary number u € T.\{0, Zy, i} Then

t =t(u) € T,N\{0, —Z0, —i} Moreover, the following conditions are equivalent:

1 1
u€T\0,2, —} &t € TA{0, —%, ——}. (2.23)
20 0

We may write:

~

(Vo —tEg) ™ = ((V ~%Ez) (B — V)™

- _U<EH — 2V)(Eg - zm-l) R
— (—11__535 (‘7 —uEz)(Eg — ZOXA/)_I> B .
_ 11_‘_;007"2(% oV —uE,)!
e
Therefore
—%(Eﬁ %‘Zo)‘l = _201(1_;;(?) a 15(11__—%(% - %‘7)‘1,
(B~ 17)" = 2y + S D gy gy
T gty B 1)
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Set & = 1, t = 1. Observe that u € T.\{0, %,ZO}, t € T\{0, —=0, —%} More-
over, we have

~ 1 ~ 1
u e Te\{O, —, Zo} St e Te\{O, —20, —:},
20 20

and the latter conditions are equivalent to the conditions from relation (2.23).
Then

o (1~ |z0f)
E,—av) = - g
(B —aV) R R Yy

(B — V.,

Applying the projection operator Pg to the both sides of the last relation we
come to the following equality:
20 u(1 — Jzof?) ~ 1
RHV = —= E P ~ u—z ‘/z ) GTB 07:7 )
V) u — 2o H+(u—zo)(1—z_0u) 1_2—0071( o) T \ %o %0}
(2.24)

where Rz(V), Ry(V,, ), are the generalized resolvents of the operators V' and V,,,
respectively.
Since Ryz(V) is analytic in T,, it is uniquely defined by the generalized resolvent
R;(V.,,), according to relation (2.24). The same relation (2.24) uniquely defines
the generalized resolvent Ry(V,,) by the generalized resolvent Rz (V).
Thus, relation (2.24) establishes a one-to-one correspondence between all gener-
alized resolvents of the operator V., and all generalized resolvents of the operator
V.

Let us apply Chumakin’s formula (2.14) to the operator V,,:

Ry(V.,) = [En — V., 0 F@)] ', TeD, (2.25)

where F(t) is a function of the class S(D; V,,, N1 ).
20

Consider relation (2.24) for points u € D\{0, 20}, what is equivalent to the
condition ¢t € D\{0, —zp}. In this restricted case relation (2.24) also establishes
a one-to-one correspondence between generalized resolvents. Using (2.24),(2.25)
we get

) [, s (VZO@F<a_ZO~>)]_1, 7 € D\{0, 20},

(u — 20)(1 — Zou) 1 —Zou
(2.26)

where F(t) € S(D; N,,, N1).
ZO —

Relation (2.26) establishes a one-to-one correspondence between all functions F'(t)
from S(D; N,,, N1 ), and all generalized resolvents of the operator V.
Z0

Set C(u) = F(&2%), v € D. Notice that C(@) € S(N.,; N1 ). We may write:
20

1—Zzou

u— 2o U — 2o u— 2

1—Zyu — ZoU U

1— 20
= (Ex — 20Vo(myzo) (B — 20Vo@ys)
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u — _
1 Zou(Vc —Z20En)(En — 20Ve(yzy)

1 — |2]? N
- %(EH W) Br — 20V

By substitution of the last relation into (2.26), after elementary calculations we
get

Ri(V) = (Eu — WVe@ys) s e D\{0,2}. (2.27)
Of course, in the case u = 0 relation (2.27) is true, as well. It remains to check
the validity of relation (2.27) in the case u = 2.
By Chumakin’s formula for Rz (V') we see that (Rz(V))™! is an analytic operator-
valued function in . Using (2.27) we may write:

(Rey(V)) ! = lim (Ra(V)™! = By = .~ lim Wy (229)

uU—20

where the limits are understood in the sense of the uniform operator topology.
The operator-valued function VZ;C@ =V, ®C(u) is analytic in D, and its values
are non-expanding operators in H. Then

(B + 20Vl = 1l = 2ol V)bl = (= [2oDlIBll, he H
1

1 — [zo|’

By Proposition 2.4 we obtain that the operator-valued function (£ H+ZOV+ @ )*1
is analytic in . Therefore Vo)., = (Vng;C(a) + ZoFy)(Ey + Zovocu)) 1 is
analytic in D, as well. Passing to the limit in relation (2.28) we get

(RZO(V))_l =Epy — ZOVC(ZO);ZO‘
Thus, relation (2.27) holds in the case u = z, as well. O

u € D.

(B + 20Vt o) 7l <

2.4. The generalized resolvents of a symmetric operator. A connection
with the generalized resolvents of the Cayley transformation of the
operator. Consider an arbitrary closed symmetric operator A in a Hilbert space
H. The domain of A is not supposed to be necessarily dense in H. It is well
known that for the operator A there always exists a self-adjoint extension A,
acting in a Hilbert space H O H. Define an operator-valued function R, in the
following way:

~ ~ -1
R, = Ry(A) = R, (A) = P/ (A - /\Eﬁ> i, AER..

The function R, is said to be a generalized resolvent of the symmetric operator
A (corresponding to the extension Z) The additional index s is necessary in
those case, where there can appear a muddle with the generalized resolvent of an
isometric operator.

Let {Et}teR be a left-continuous orthogonal resolution of the identity of the
operator A. The operator-valued function

E =PIE, teR,
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is said to be a (left-continuous) spectral function of a symmetric operator A
(corresponding to the extension A). Let E(J), 6 € B(R), be the orthogonal

spectral measure of the self-adjoint operator A. The function
E(0) = P{E@), &€ B(R),

is said to be a spectral measure of a symmetric operator A (corresponding to

the extension 2) The spectral function and the spectral measure of the operator
A are connected by the following relation:

E([0,t) =E, teR,

what follows from the analogous property of the orthogonal spectral measures.
Moreover, generalized resolvents and spectral functions (measures) of the operator
A are connected by the following equality:

1 1
Ry = [ S dEOR g = [ S dEBhgn, Vhge H (229
LT\ LT\

which follows directly from their definitions. By the Stieltjes-Perron inversion
formula this means that between generalized resolvents and spectral measures
there exists a one-to-one correspondence.

For arbitrary elements h,g € H we may write:

(Rh, 9)u = (Ba(A)h, g) iz = (h, BX(A)g) g = (h, Bx(A)g) 7
= (h,Rﬁg)H, A E Re,
(;I — AE)™! is the resolvent of the self-adjoint operator Aina

where R\(A) =
Hilbert space H, corresponding to R. Therefore
Ri\(A4) = R 5(A), A eR.. (2.30)
Choose and fix an arbitrary number z € R.. Consider the Cayley transformation
of the operator A:
U.=U,(A) = (A—ZEy)(A—z2Ey) ' =Eg + (2 —2)(A—2Ex)"".  (2.31)

The operator U, is closed and D(U,) = M., R(U,) = M5. It is readily checked
that U, is isometric. Since U, — Ey = (2 — z)(A — zEy) !, the operator U, has
no non-zero fixed points. The operator A is expressed by U, in the following way:

A= (ZUZ — EEH)<UZ — EH)il = ZEH + (Z —E)(UZ — EH)il.

Let AD Abea self-adjoint extension of the operator A, acting in a Hilbert space
H DO H. Then the following operator:

W, =(A—2E)(A—2E5) ' = Eg + (2 —2)(A — 2E5) ", (2.32)
is a unitary extension of the operator U,, acting in H , and having no non-zero
fixed points.

Conversely, if there is a unitary extension W, of the operator U,, acting in a
Hilbert space H and having no non-zero fixed points, then the operator

A= (zW,—2ZEz) (W, — Eg) ™' = 2E5 + (2 = 2)(W. — Eg) ", (2.33)
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will be a self-adjoint extension of the operator A, acting in H. Thus, between self-
adjoint extensions A of the operator A and unitary extensions W, of the operator
U,, acting in H and having no non-zero fixed points, there exists a one-to-one
correspondence according to formulas (2.29),(2.32).

Theorem 2.9. Let A be a closed symmetric operator in a Hilbert space H, which
domain is not necessarily dense in H. Let z € R, be an arbitrary fixed point, and
U, be the Cayley transformation of A. The following equality:
A—7Z A—Z)(A—
R, (V) = 22y 4 G222

z—Z z—Z

R\ (A), AeRN{z,zZ}, (2.34)
establishes a one-to-one correspondence between all generalized resolvents R\ (A)
of the operator A and those generalized resolvents Ry (U,) of the closed isometric
operator U, which are generated by extensions of U, without non-zero fized points.

In the case D(A) = H, equality (2.34) establishes a one-to-one correspondence
between all generalized resolvents R\ (A) of the operator A and all generalized
resolvents Ry.c(U) of the operator U,.

Proof. Choose and fix a point z € R.. Let R;\(A) be an arbitrary generalized
resolvent of a closed symmetric operator A. It is generated by a self-adjoint
operator A D A in a Hilbert space H O H. Consider the Cayley transformation
W, of the operator A, given by (2.32). As it was mentioned above, the operator
W, is a unitary extension of the operator U, acting in H, and having no non-zero
fixed elements. Consider the following linear fractional transformation:
A—z zZ(— =z
= A= .
¢= -7z’ ¢—1
Supposing that A € Re\{z,z}, what is equivalent to the inclusion ¢ € T.\{0}, we
write:

(Bp—cw.) ' = (Eﬁ - % (Eﬁ +(z—2)(A- ZEFI)_1>>1
=2 (A —amy )
- z_i(A—zE J(A—AE;)"!
_ Q:EE}? L@ _j%;_ 2l AE5) ™!

Applying the projection operator Pg to the first and to the last parts of this
relation we get relation (2.34). The function R,.(U,) is a generalized resolvent
of U, of the required class.

Conversely, suppose that R,.(U.) is a generalized resolvent of U,, generated
by a unitary extension W, O U,, acting in a Hllbert space H O H and having
no non-zero fixed elements. Define the operator A by equality (2.33). As it was
said above, the operator Aisa unitary extension of A in H. The operator W, is
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its Cayley’s transformation. Repeating for the operator A considerations at the
beginning of the proof we shall come to relation (2.34).

The correspondence (2.34) is obviously one-to-one. In fact, relation (2.34)
connects all values of two generalized resolvents except two points where they are
defined by the continuity.

Consider the case D(A) = H. Let Ry(U.) be an arbitrary generalized re-
solvent of the operator U,, which is generated by a unitary extension f/[\// 2 U,
acting in a Hilbert space H D H. Let he H be a fixed point of the operator W
W.h = h. For arbitrary element g € H we may write:

<h> Wzg)f{r = (th7 Wzg)f[ = (hag)ﬁa

(h7(Wz_Eﬁ)g)ﬁ:07 g€ H.
In particular, this implies that h L (U, — Ey)D(U,) = D(A). Therefore h €
H & H. Denote by M a set of all fixed elements of the operator W The set M
is a subspace in H which is orthogonal to H. Thus, we have H=H&M®H 1,
where H; is a subspace in H.
Consider an operator W, = WZ\ nom,- The operator W, has no non-zero fixed

points and it is a unitary extension of U, if it is considered as an operator in
H & H,;. Since for an arbitrary f € H we have:

(Bg — W)™\ f = (Byam, — (W)U,

then the operator W, also generates the generalized resolvent R, (U.).

Thus, the set of those generalized resolvents of the operator U,, which are gen-
erated by unitary extensions without non-zero fixed elements, coincides with the
set of all generalized resolvents of the operator U,. 0J

2.5. Shtraus’s formula for the generalized resolvents of a symmetric
densely defined operator. Consider a closed symmetric operator A in a Hilbert
space H, assuming that its domain is dense in H, D(A) = H. Fix an arbitrary
point z € R,, and consider the Cayley transformation U, of the operator A
from (2.31).

Let F' be an arbitrary linear bounded operator with the domain D(F') = N,(A)
and range R(F) C Nz(A). Set

U.p=U,r(A)=U, & F.

Thus, the operator U,.r(A) is a linear bounded operator defined on the whole H.
This operator has no non-zero fixed elements. In fact, let for an element h € H,
h=h;+ hQ, hy € MZ(A), hy € NZ<A>, we have

0= (Usr(A) — Eg)h = (U, — Exr)hy + Fhy — hs.

The first summand in the right-hand side of the last equality belongs to D(A),
the second summand belongs to Nz(A), and the third belongs to N, (A). But in

the case D(A) = H the linear manifolds D(A), Nz(A) and N,(A) are linearly
independent, and therefore we get an equality h; = ho = 0. Thus, we get h = 0.
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Define the following linear operator in H:
Ap = AF,z = (ZUZ;F — 7EH>(Uz;F — EH)il =zFEg + (Z — 5)(UZ;F — EH)il

Notice that the operator Ap. is an extension of the operator A. The opera-
tor Ap = Ap_, is said to be quasi-self-adjoint extension of a symmetric
operator A, defined by the operator F. We outline the following property:

AL, =ZEg+(Z—2) (Ul — Ex) ' =zEg+Z—-2)(U;'®@F*—Eg)™' = Ap: >
(2.35)

Theorem 2.10. Let A be a closed symmetric operator in a Hilbert space H with
the dense domain: D(A) = H. Fix an arbitrary point \g € R.. An arbitrary
generalized resolvent R of the operator A has the following form:

1

(AF A )\EH)_ , A E H)\o

Rs;)\ = -1 -~ )
(AF* )\EH> . Aelly,

(2.36)

where F(X) is a function from S(I1y; Ny, N5;). Conversely, an arbitrary func-
tion F(\) € S(Ix); Na,, N5;) defines by relation (2.36) a generalized resolvent
R\ of the operator A. To different functions from S(ILyy; Ny,, N5;) there cor-
respond different generalized resolvents of the operator A. Here Iy, is that half-
plane of Cy and C_, which contains the point A\g.

Proof. Let A be a closed symmetric operator in a Hilbert space H, D( ) =
and \g € R, be a fixed point. Consider an arbitrary generalized resolvent R
of the operator A. Let us use Theorem 2.9 with z = A¢. From equality (2.34
express R\ (A):

H>
A(A
) W

Mo~ ( AN ) -
Rsa(A) = — R, (U E , A€ R\{ o, Ao}
Observe that the linear fractional transformation ¢ = ’\*—@ maps the half-plane

A—Xo
II,, on D (and R on T). Thus, we can restrict the last relation and consider it
only for A € II,,\{\o}. In this case we may apply to the generalized resolvent
R, 23 (Uy,) Chumakin’s formula (2.14). Then

%X

Ao — Ao A —Xo -
RS;A(MZ(A—A_O)(A—AO)({EH A— AO(UM@@ »)]

A—Xo
0 EH) A e I, \{ Ao}, (2.37)
- No

where ®¢ is a function from S(ID; Ny, (A), N5;(A)). Denote
F()\):(I)ﬂ, A€ IIy,.

A—=Xg

Notice that F'(X) € S(ITx,; Ny, (A), N55(A)). Then

R\ (A) = . ({EH _AC /\O(UAO © F(A) _

(A = 2A0)(A = Ao) A=Xo
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A —No A —No } { A —No 1‘1
- 2 By — Uy, ® FO)| | Eny — Uy, ® F(\
2 By = 32U © PO | B - § 520 © FOV)
1 A=A !
— 5 B+ U0 FO) [ Bn - 3520 0 F )]
A — o ~ o
A€ I, \{ o} (2.38)
In the half-plane II,, the following inequality holds:
A=A
_O <1, AE H)\o'
A — o

Consider the open neighborhood of the point Ag:
1
D(/\()) = {Z € H)\O : |Z — )\0| < 51111)\0} .

In the closed neighborhood D()) the function ‘i:—% is continuous and attains

its maximal value ¢ < 1. Therefore

A— N
<g<1, A€ D()\).
f— (o)
For an arbitrary element h € H we may write:
£ = 3520 0 FO)| 1] > 101 - [F=52 10, © FOOpm)
LU VA = A=l
> (1=q)|nl,
and therefore
A= o ! 1
Ey— F < — D .
[ T —= (U, ® ()\))] STy A€ D(\o)

-1

Applying Proposition 2.4 we conclude that the function [E - ;\:%(U N B F ()\))]
is analytic in D()\o). Passing to the limit in relation (2.38) as A — \g we obtain:
1
Ao = Ao
Thus, relation (2.38) holds for A = )¢, as well.
In our notations, maid at the beginning of this subsection, we have Uy, & F'(\) =

Uxy;r(n)- According to our above remarks Uy, r(x) has no non-zero fixed elements.
Therefore there exists the inverse

Ry (A) = (=En + (Ux, & F(Xo))) -

A— Ao
A—Xo
= [AEy — MEu — ANsyron + MUsoroy] (Uneroy — En)
= —AEg + [)\OU)\O;F(/\) - )\_OEH} (UAO;F(A) - EH)il
= —-\Eyg+ AF()\);)\O, A e lly,.
From this relation we conclude that (2.36) holds for A € II,,.

-1

R;}\(/U =(A- )\_0) Ey — =Ux;r(x (U)\O 20 EH)

-1
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Suppose now that X is such that A € II,,. Applying the proved part of the
formula for A\ we get

_ -1
Using property (2.30) of the generalized resolvent and using relation (2.35) we

write )

-1
Rap =Rix = (A3 ~ M) = (Arm — Mn)
Consequently, relation (2.36) for A € I, is true, as well.

Conversely, let an operator-valued function F(A) € S(Iy,; Ny, N5;) be given.
Set
MQZF(ﬁil@), CeD

(—1

The function ®(¢) belongs to S(D; Ny, (A4), N5-(A)). By Chumakin’s formula (2.14),
to this function there corresponds a generalized resolvent R,.(U,). Define a
generalized resolvent R (A) of the operator A by relation (2.37). Repeating
for the generalized resolvent R\ (A) considerations after (2.37) we come to rela-
tion (2.36). Therefore the function F'(\) generates by relation (2.36) a generalized
resolvent of the operator A.

Suppose that two operator-valued functions Fj(A) and Fy(\), which belong to
S(ITxy; Ny, N ), generate by relation (2.36) the same generalized resolvent. In

this case we have
1

(AFl()\) — /\EH)fl = (AFQ()\) — )\EH)i , A€ H)\O,
and therefore
AFl(/\) = AFQ()\), A E H)\O.
From the last relation it follows that Uyy.r (x) = Uxg;ry(n), and we get the equality
Fi(\) = Fa()). O

Formula (2.36) is said to be the Shtraus formula for the generalized resolvents
of a symmetric operator with a dense domain.

3. GENERALIZED RESOLVENTS OF NON-DENSELY DEFINED SYMMETRIC
OPERATORS.

3.1. The forbidden operator. Throughout this subsection we shall consider a
closed symmetric operator A in a Hilbert space H, which domain can be non-
dense in H.

Proposition 3.1. Let A be a closed symmetric operator in a Hilbert space H and
z € R.. Let elements 1 € N,(A) and o € N=(A) be such that o — 1 € D(A), i.e.
they are comparable by modulus D(A). Then ||¢||lg = ||¢] a-

Proof. Since D(A) = (U, — Eg)M,(A), then there exists an element g € M, (A)
such that

p—p=U.g9—g
Then

o+U,g=v+g. (3.1)
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Using the orthogonality of summands in the left and right sides we conclude that

1015 + gll7 = el + 1U-gll7 = ez + laliz,
and the required equality follows. O

Corollary 3.2. Let A be a closed symmetric operator in a Hilbert space H. Then
D(A)NN.(A) ={0}, Vz e R..

Proof. It » € D(A) N N,(A), then applying Proposition 3.1 to elements ¢ and
© =0, we get ¢ = 0. 0J

Let z € R, be an arbitrary number. Consider the following operator:

X = X (A = o, e N, (A)N(Nz(A)+ D(A)),
where ¢ € Nz(A): v — p € D(A).
This definition will be correct if an element ¢ € AN such that ¥ — p € D(A),
is unique (its existence is obvious, since ¢ € (Nz(A) + D(A))). Let ¢1 € Nz
b — 1 € D(A). Then ¢ — ¢ € D(A). Since p — p; € N5, then by applying
Corollary 3.2 we get ¢ = ¢.

From Proposition 3.1 it follows that the operator X, is isometric. Observe that
D(A) = N,(A) N (Nz(A) + D(A)) and R(A) = Nz(A) N (N.(A) + D(A)). The
operator X, = X,(A) is said to be forbidden with respect to the symmetric
operator A.

Now we shall obtain another representation for the operator X,. Before this
we shall prove some auxiliary results:

Proposition 3.3. Let A be a closed symmetric operator in a Hilbert space H and
z € R,. The following two conditions are equivalent:

(i) Elements ¢ € N,(A) and p € Nz(A) are comparable by modulus D(A);
(i) Elements ¢ € N,(A) and p € NZ(A) admit the following representation:

Y= P/\I}Z(A)ha ¥ = PAI};(A)m (3.2)
where h € H 1s such that
Pl_yh = U.P{_ ah. (3.3)

If these conditions are satisfied, the element h is defined uniquely and admits
the following representation:

1

h=———= (AW - ) =2 + 2¢). (3.4)

Proof. (i) = (ii). As at the beginning of the proof of Proposition 3.1, we derive
formula (3.1), where g € M_(A). Set h = g+1. Applying P/\I;Z(A) to this equality
we obtain the first equality in (3.2). From (3.1) it follows that

e+ U.(h—1v)=h.

The summands in the left-hand side belong to orthogonal subspaces. Applying
the projection operators P/\I}; (4) and P/\Ifl;( Ay We obtain the following equalities:

(,OZPJ\I;E(A)]Z, UZ(h_ﬂ)):P/\I{IE(A)h)
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and therefore the second equality in (3.2) is satisfied. Using the latter equality
and the equality P h = P{i (¢ +v) = P} g = g, we may write
Pl_mh = U.g = U.P{_ ah.
Consequently, relation (3.3) is true, as well.
(ii) = (i). Set g = Py _h. Then
h=Pl h+Plh=g+1,
h=Pl h+P{lh=U.g+e,

and subtracting last equalities we obtain that ¢ —¢ = U,g—g € D(A). Moreover,
we have:

h=g+g=(U.~ B) (= 9) + 6= —=(A—B)(y —9) + ¥,

and relation (3.4) follows. O

Proposition 3.4. Let A be a closed symmetric operator in a Hilbert space H,
and z € R,. Then

Ho D(A)={heH: Pj_ah=U.Pj ah}.
Proof. For arbitrary elements g € M,(A) and h € H we may write:
(Uzga h)H = (Uzg7 P/I\Z[;(A)h)Hv

(gvh)H = (g>Pﬁz(A)h)H = (Uzga UZP/\I{[Z(A)h)Ha
and therefore
If h L D(A), then the left-hand side of the last equality is equal to zero, since
(U. — Eg)g € D(A). Then (P — U.Pff )h=0.
Conversely, if h € H is such that (Py,_ — U.Pt_ ) h =0, then we get (U, —
Eu)g,h)g =0, g € M,(A),ie. h L D(A). O

Corollary 3.5. Let A be a closed symmetric operator in a Hilbert space H. Then
<H o (A)) N M, (A) = {0}, Vz € R..

Proof. Let h € (H S m> NM,(A), z € R.. By Proposition 3.4 the following
equality holds:

Pl yh = U.P ah.
By Proposition 3.3 we obtain that elements v := PAffZ(A)h =0 and ¢ := P/\I};(A

h
)
are comparable by modulo D(A). By Proposition 3.1 we get ¢ = 0. From (3.4)
it follows that h = 0. [

Let us check that

X.P{ wh=PEnh,  heHeoD(A). (3.6)
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In fact, if ¢» € D(X.), then ¢» € N, and there exists ¢ € N such that ¢ — ¢ €
D(A). By Propositions 3.3 and 3.4 we see that there exists h € H © D(A):
¥ = Pyl 4yh. Therefore D(X,) C Py , (H © D(A)).

Conversely, let ¢ € Pl ,(H © D(A)), ¥ = P yh, h € H © D(A). By
Propositions 3.3 and 3.4 we obtain that ¢ and ¢ = PAI};( A)h are comparable by
modulus D(A). Consequently, we have ¢ € D(X.) and therefore P} w(H S
D(A)) C D(X.). Thus, equality (3.5) is true.

For an arbitrary element h € H & D(A) we set ¢ = PA%(A)h, © = PAI};(A)h.
By Propositions 3.3 and 3.4, we have ) — ¢ € D(A). Therefore ¢» € D(X,) and
X, = ¢, and equality (3.6) follows.

3.2. Admissible operators. We continue considering of a closed symmetric op-
erator A in a Hilbert space H. Fix an arbitrary point z € R.. As before, X, will
denote the forbidden operator with respect to A. Let V be an arbitrary operator
with the domain D(V) C N,(A) and the range R(V) C Nz(A). The operator
V' is said to be z-admissible (or admissible) with respect to symmetric
operator A, if the operator V — X, is invertible. In other words, V' is admissi-
ble with respect to the operator A, if the equality V¢ = X, can happen only if
1) = 0. Using the definition of the forbidden operator X, the latter definition can
be formulated in the following way: V' is admissible with respect to the operator
A if v € D(V), Vip —1p € D(A), implies ¢ = 0.

If the domain of the operator A is dense in H, then by (3.5) we get D(X,) =
{0}. Consequently, in the case D(A) = H, an arbitrary operator with the domain
D(V) C N.(A) and the range R(V) C Nz(A) is admissible with respect to A.

Let B be a symmetric extension of the operator A in the space H. Then its
Cayley’s transformation

W, = (B—-2Ey)(B—z2Ey) ' =Ey+ (2 —2)(B— zEy) ", (3.7)

is an isometric extension of the operator U,(A) in H, which has no non-zero fixed
elements. Moreover, we have:

B= (W, —2Eg) (W, — Eg) ' =2Ey + (2 —2)(W. — Eg)~". (3.8)

Conversely, for an arbitrary isometric operator W, O U,(A), having no non-zero
fixed elements, by (3.8) one can define a symmetric operator B O A. Thus,
formula (3.7) establishes a one-to-one correspondence between all symmetric ex-
tensions B O A in H, and all isometric extensions W, DO U,(A) in H, having no
non-zero fixed elements.

By Proposition 2.6, all such extensions W, have the following form:

W.,=U.(A)eT, (3.9)
where T is a isometric operator with the domain D(T) C N,(A) and the range
R(T) C Nz(A).

Conversely, if we have an arbitrary isometric operator 7' with the domain

D(T) C N,(A) and the range R(T) C Nz(A), then by (3.9) we define an iso-
metric extension W, of the operator U,(A). Question: what additional property
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should have the operator T" which guarantees that the operator W, has no non-
zero fixed elements? An answer on this question is provided by the following
theorem.

Theorem 3.6. Let A be a closed symmetric operator in a Hilbert space H, z € R
be a fixed point, and U, be the Cayley transformation of the operator A. Let V
be an arbitrary operator with the domain D(V) C N,(A) and the range R(V) C
N=(A). The operator U, &V having no non-zero fived elements if and only if the
operator V is z-admissible with respect to A.

Proof. Necessity. 'To the contrary, suppose that U, & V has no non-zero fixed
elements but V' is not admissible with respect to A. This means that there exists
a non-zero element ¢» € D(V) N D(X,) such that Vi = X4, where X, denotes
the forbidden operator. By (3.5),(3.6) there exists an element h € H & D(A):
Y= Pf}z ( A)h and

VP yh = XPy (nh = Py ah-
By Proposition 3.4 we obtain the following equality:
P./\]i/Ilg(A)h - UZP_/\];;I[Z(A)}L
Then

i.e. his a fixed element of the operator U, @& V. Since we assumed that U, &V
has no non-zero fixed elements, then h = 0, and therefore ¢» = 0. We obtained a
contradiction.

Sufficiency. Suppose to the contrary that V' is admissible with respect to A,
but there exists a non-zero element h € H such that

(U. ®V)h = U.P ayh+ VP myh =h = P{_yh+ P ah
Then the following equalities hold:
U-Pa.yh = Piaah
VP ah = P ah.

By Proposition 3.4 and the first of these equalities we get h € H © D(A). By
relations (3.5),(3.6) we see that ¢ := P/\IZ(A)h belongs to D(X,), and

X Pyt yh = Pt nyh = VP ayh,

ie. Vi = X 4. Since V is admissible with respect to A, then ¢y = 0. By the
definition of the operator X, the element ¢ := X, is comparable with 1 by
modulus D(A). By Proposition 3.1 we conclude that ¢ = 0. By Proposition 3.3
and formula (3.4) we get h = 0. The obtained contradiction completes the
proof. O

Remark 3.7. The last Theorem shows that formulas (3.7),(3.8) and (3.9) establish
a one-to-one correspondence between all symmetric extensions B of the operator
A in H, and all isometric operators T" with the domain D(T) C N,(A) and the
range R(T) C Nz(A), which are admissible with respect to A.
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A symmetric operator A is said to be mazimal if it has no proper (i.e. different
from A) symmetric extensions in H. By the above remark the maximality depends
on the number of isometric operators T' with D(T) C N,(A), R(T) C Nz(A),
which are admissible with respect to A.

Consider arbitrary subspaces of the same dimension: N? € N, (A) and N2 €
Nz(A). Let us check that there always exists an isometric operator V', which
maps N? on N2, and which is admissible with respect to the operator A. In
order to do that we shall need the following simple proposition.

Proposition 3.8. Let Hy and Hs are subspaces of the same dimension in a

Hilbert space H. Then there exists an isometric operator V with the domain
D(V) = H;y and the range R(V) = Hs, which has no non-zero fized elements.

Proof. Choose orthonormal bases {fi,}¢_, and {g.}¢_,, d < oo, in H; and Hs,
respectively. The operator

d d
UZOékfk :Zakgka ay € C,
k=0 =0

maps isometrically H; on Hs. Denote
H():{hEHlﬂHgl U]’L:h},

i.e. Hy is a set of the fixed elements of the operator U. Notice that Hy is a
subspace in H;. Choose and fix a number « € (0, 27). Set

Vh=e*Pth+UPHoy b, heH.

Suppose that g € H; is a fixed element V, i.e.
Vg=e"Pllg+UPY' y9=9=Phlg+ Piloy.g.
Since
(UPH 9, k) = (UP . 9,UR) = (Piliop.g.h) =0, Vh € Hy,
then U PII}?@ 1,9 L Ho, and equating summands in the previous equality we get
(e’ — 1)Pg]1g = 0 and UPglleHOg = PIIflleHog. Therefore P}I}If@HOg € Hy, and
PglleHog = 0. Thus, we get g = 0. 0
Consider the following linear manifold:

M={yeDX,)NN.: X0 € NJ}.

Set
Xz;O = Xz’M

Denote o

N =M CN? N.=R(X.o) C N
Since X, is isometric, we get

dim N, = dim NL.

Consider an arbitrary isometric operator ¥, which maps the subspace N? on the

subspace N2 of the same dimension. Set
K :=WN! C N2.



GENERALIZED RESOLVENTS 209

Since W is isometric we get
dim K = dim N/ = dim N, dim(N2 © K) = dim(N? & N)). (3.10)
We shall say that an isometric operator S corrects X, in N2, if the
following three conditions are satisfied:
1) D(S) = N, R(S) € N
2) dim(N2 & R(S)) = dim(N? & N));
3) S has no non-zero fixed elements in R(X..).

By Proposition 3.8 and the first equality in (3.10), there exists an isometric
operator, which maps NV on K, and has no non-zero fixed elements. By the second
equality in (3.10) condition 2) for this operator is satisfied, as well. Therefore an
wsometric operator correcting X ..o in N2 always exists.

Theorem 3.9. Let A be a closed symmetric operator in a Hilbert space H, z €
R be a fized point, N? € N,(A) and N2 € N3 (A) be subspaces of the same
dimension.

An arbitrary admissible with respect to A isometric operator V', which maps
N? on N2, has the following form:

where S is an isometric operator, which corrects X, in N2, and T is an isometric
operator with the domain D(T) = N? & N! and the range R(T) = N2 © R(S).

Conversely, an arbitrary isometric operator S, which corrects X,.o in N2, and
an arbitrary isometric operator T with the domain D(T) = NY& N’ and the range
R(T) = N2 & R(S), generate by relation (3.11) an admissible with respect to A
isometric operator V., which maps N° on N2.

Proof. Let us check the first assertion of the Theorem. Let V' be an admissible
with respect to A isometric operator, which maps N? on N2. Denote

Q=V|n, T =Vlnoen:,
and
S=Q(X.0)": N.— VN
Then L
V=5SX,00T.
The operator S is isometric. Let us check that it corrects X0 in N2. Since
dim(N? & R(S)) = dim(N? © (VN!)) = dim(V(N? © N’)) = dim(N? & N),

then the second condition from the definition of the correcting operator is satis-
fied. Let p € R(X.,0) is a fixed element of the operator S: Sy = Q(X..0) Ly = ¢.
Denote 1 = (X,.0) o = X;;é(p € M. Then Vi = Qi = X, 0. Since V is ad-
missible with respect to A isometric operator then ¥ = 0, and ¢ = mw = 0.
Thus, the operator S corrects X,.q in N2.

Conversely, let S be an arbitrary isometric operator which corrects X,.q in N2,
and T be an arbitrary isometric operator with the domain D(T) = N? © N! and
the range R(T) = N2 © R(S). Define the operator V by relation (3.11). The

operator V' is isometric and maps N? on N2. Let us check that V' is admissible
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with respect to A. Consider an arbitrary element ¢» € D(V') N D(X,) such that
Vi = X .

At first, we consider the case 1 € N’. In this case we have SX, .0 = X,1. By

the definition of the closure of an operator and by the continuity of X, we can
assert that there exists a sequence ¢, € D(X,,), n € N, such that ¢, — 1, and
X, = Xoo0t, — X_Z;OQ/J = X,9, as n — oco. Therefore SX,v» = X,1. By the
definition of the correcting operator, S can not have non-zero fixed elements in
R(X.0). Two cases are possible:
1) X.¢ € R(X.,) and X,¢ = 0. By the invertibility of X, this means that ¢ = 0.
2) X,¢ ¢ R(X,p). This means that ¢ ¢ D(X,0). Since ¢p € D(X,) N N.,
then it is possible only in the case X,1) ¢ N2. But this is impossible since
X,¢ =V € N2. Thus, this case should be excluded.

Consider the case 1 ¢ N.. In this case ¥ ¢ D(X,0) and v € N? = D(V).
By the definition of X.q, it is possible only if X,¢ ¢ N2. But then the equality
Vi = X1 will be impossible, since Vi) € N2. Consequently, the case ¢ ¢ N/
is impossible. Thus, we obtain that the operator V' is admissible with respect to
A. OJ

Corollary 3.10. Let A be a closed symmetric operator in a Hilbert space H. The
following assertions hold:

(i) The operator A is mazimal if and only if (at least) one of its defect num-
bers is equal to zero.

(ii) If A is maximal then D(A) = H.

Proof. (i): Necessity. Suppose to the contrary that A is maximal but its both
defect numbers are non-zero. Choose and fix an arbitrary number z € R.. Let
N? C N, (A) and N2 C N;(A) be some one-dimensional subspaces. By Theo-
rem 3.9, there exists an operator V', which is admissible with respect to A and
which maps N? on N2. By Remark 3.7 it follows that to the operator V there cor-
responds a symmetric extension B of the operator A, according to relations (3.7)-
(3.9). This extension is proper since to A by (3.7)-(3.9) there corresponds the
null isometric operator 7. We obtained a contradiction.

(ii): Sufficiency. Fix an arbitrary number z € R,. If one of the defect numbers is
equal to zero, then the Cayley transformation U,(A) does not have proper exten-
sions. Consequently, taking into account considerations after (3.8), the operator
A has no proper extensions.

(ii). Let A be maximal. From the proved assertion (i) it follows that one of
the defect numbers is equal to zero, i.e. N,(A) = {0}, for some z € R.. By
Corollary 3.5 we may write:

H & D(A) = (H © D(A)) N M.(4) = {0},

and therefore D(A) = H. O

3.3. Properties of dissipative and accumulative operators. A linear op-
erator A in a Hilbert space H is said to be dissipative (accumulative), if
Im(Ah, h)g > 0 (respectively Im(Ah, h)y < 0) for all elements h from D(A). A
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dissipative (accumulative) operator A is said to be maximal, if it has no proper
(i.e. different from A) dissipative (respectively accumulative) extensions in H.

We establish some properties of dissipative and accumulative operators, which
will be used later.

Theorem 3.11. Let A be a closed dissipative (accumulative) operator in a Hilbert
space H. The following assertions are true:

1) Points of C_ (respectively C ) are points of the reqular type of the operator
A. The following inequality holds:

1
[(A—¢En)7Y| < el £eC_ (Cy). (3.12)

2) Choose and fix a number z from C_ (respectively from C_). Let B be a
dissipative (respectively accumulative) extension of the operator A in the
space H. Consider the following operator

W, =(B—-ZEy)(B—z2Ey)' = Ey+ (2 —2)(B — zEg)"". (3.13)

The operator W, is a non-expanding extension of the operator U,(A) =
(A—ZEg)(A—2Ey)~' H, having no non-zero fized elements. Moreover,
we have:

B= (W, —2Eg) (W, — Eg) ' =2Ey + (2 — 2)(W. — Eg) ™" (3.14)

Conversely, for an arbitrary non-expanding operator W, 2 U,(A), having
no non-zero fized elements, by (5.1/) one defines a dissipative (respectively
accumulative) operator B O A. Formula (3.13) establishes a one-to-one
correspondence between all dissipative (respectively accumulative) exten-
sions B O A in H, and all non-expanding extensions W, 2 U,(A) H,
having no non-zero fixed elements.

3) If A is mazimal, then (A —zEy)D(A) = H, for all points z from C_ (re-
spectively C ). Conversely, if there exists a point z from C_ (respectively
C, ) such that (A — zoEy)D(A) = H, then the operator A is mazimal;

4) If A is mazimal, then D(A) = H.

Proof. 1) Consider the case of a dissipative operator A. Choose an arbitrary point
zfrom C_, z =x+1iy, x € R, y < 0. For an arbitrary element f € D(A) we may
write:

(A = 2Eu) fllf = (A = 2En)f —iyf, (A= 2Eu)f —iyf)n

= (A= 2Ep) fll7; — 2y Im(AS, )+ v 1 Iz = v* 1 11

Therefore the operator A — zEy has a bounded inverse and inequality (3.12)
holds.

In the case of an accumulative operator A, the operator — A is dissipative and we
may apply to it the proved part of the assertion.

2) Let z from C_ (respectively from C,) and B be a dissipative (respectively
accumulative) extension of the operator A in the space H. By the proved as-
sertion 1), the operator W, is correctly defined and bounded. For an arbitrary
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element g € D(W,) = (B — zEg)D(B), g = (B — zEg)f, f € D(B), we may
write:
”Wzg”%{ = (Wzg> Wzg)H = ((B _EEH)f7 (B _EEH)f)H
= |Bf% — 2(Bf. fu — 2(f, Bf )i + 21| fllir:
lgll7 = (B = 2En)f,(B — 2Eu) f)n

= |Bfl —2Bf. fw — 2(f, B )u + |21 f I
and therefore

IW.gllz = lgllzr = E = 2)(BSf, lu = (f, Bf)u) = 4(Im 2) Im(Bf, f)u < 0.

Since W, — Eg = (2 — 2)(B — zEx) ™!, then W, has no non-zero fixed elements.
Formula (3.14) follows directly from (3.13).

Conversely, let W, O U,(A) be a non-expanding operator having no non-zero
fixed elements. Define an operator B by equality (3.14). For an arbitrary element
feDB)=(W,—Eg)DW,), f=(W,— En)g, g € D(W,), we write:

(Bf. N = ((zW. —ZEn)g, (W= — En)g)n = 2| W.glliy — 2(W.g.9)u

—2(g,W.q9)u + Zllgl3;

Im(Bf, f)u = Im(2)[W.gl7 + Im(2)||gllF = Im(z) (W.gllF — llgll) -

Consequently, the operator B is dissipative (respectively accumulative). Since
W, D U.(A), then B O A. The correspondence, established by formulas (3.13),
(3.14) is obviously one-to-one.
3) Suppose to the contrary that the operator A is maximal but there exists a
number z from C_ (respectively C_) such that (A — zEx)D(A) # H. Consider
the following operator U, = U,(A) = (A — ZEy)(A — zEy)~! By the proved
assertion 2), the operator U, is non-expanding and has no non-zero fixed elements.
Moreover, U, is closed, since A is closed by assumption. Therefore U, is defined
on a subspace Hy = (A — zEy)D(A) # H. Set Hy = H © Hy, dimHy > 1.
Consider the following operator

Wz = Uz @01{2

The operator W, is a non-expanding extension of the operator U,. Let us check
that the operator W, has no non-zero fixed elements. Suppose to the contrary
that there exists a non-zero element h € H such that W.h = h. Then h ¢ D(U,),
since U, has no non-zero fixed elements. Let h = hy + hgy, hy € Hy, ho € Hy, and
hg 7& 0. Then

th - (Uz @OH2)<h1 + hg) — Uzhl - h - hl —|— h,g.

Therefore
1R llF > 1U-hallzr = 1hallZ + 213,

and we get hy = 0. The obtained contradiction shows that W, has no non-
zero fixed elements. By the proved assertion 2) to the operator W, # U, there
corresponds a dissipative (respectively accumulative) extension B # A of the
operator A. This contradicts to the maximality of the operator A, and the first
part of assertion 3) is proved.
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Suppose that we have a closed dissipative (respectively accumulative) operator
A in a Hilbert space H, and there exists a point zy from C_ (respectively C, )
such that (A — zoFy)D(A) = H. Suppose to the contrary that A is not maxi-
mal. Let B be a proper dissipative (respectively accumulative) extension of the
operator A. By the proved assertion 2), for the operator B there corresponds a
non-expanding operator W, from (3.13) with z = z(, having no non-zero fixed el-
ements. Moreover, we have D(W,,) = (B—z0Ey)D(B) 2 (A—zEx)D(A) = H.
Therefore D(W,,) = H = D(U,,), and we get W,, = U,,, B = A. We obtained a
contradiction, since B is a proper extension.
4) Consider an arbitrary element h € H: h L D(B). Choose and fix an arbitrary
number z from C_ (respectively C, ). By the proved assertion 3), the following
equality holds: (A—zFEy)D(A) = H. Therefore there exists an element f € D(A)
such that (A — zFy)f = h. Then

0= ((A—2Eu)f, )u = (Af, /)m — 2l flIH;

Im(Af, f)g = Im(2)|| f[17-
Since the left-hand side of the last equality is non-negative (respectively non-
positive), and the right-hand side is non-positive (respectively non-negative), then
f=0. ]

Remark 3.12. Consider a closed symmetric operator A in a Hilbert space H.
Choose and fix a number z from C_ (C_). Let B be a dissipative (respectively
accumulative) extension of the operator A in H. By assertion 2) of Theorem 3.11
for it there corresponds a non-expanding operator W, from (3.13), having no
non-zero fixed elements. By Proposition 2.6, such extensions W, O U,(A) have
the following form:

W,=U,(A)aT, (3.15)
where T is a linear non-expanding operator with the domain D(T) C N, (A) and
the range R(T) € Nz(A). By Theorem 3.6 it follows that 7' is admissible with
respect to the operator A.

Conversely, if we have an arbitrary non-expanding operator T', with the domain
D(T) C N.(A), the range R(T) C Nz(A), admissible with respect to A, then
by (3.15) one defines a non-expanding extension W, of the operator U,(A). By
Theorem 3.6 this extension has no non-zero fixed elements. Thus, there is a
one-to-one correspondence between admissible with respect to A non-expanding
operators T and non-expanding operators W, O U,(A) without non-zero fixed
elements.

Using the proved theorem we conclude that formulas (3.13)-(3.15) establish a
one-to-one correspondence between admissible with respect to A non-expanding
operators T, D(T') C N,(A), R(T') C N3(A), and dissipative (respectively accu-
mulative) extensions of the closed symmetric operator A.

3.4. Generalized Neumann’s formulas. The classical Neumann’s formulas
describe all symmetric extensions of a given closed symmetric operator A in
a Hilbert space H in the case D(A) = H. The following theorem provides a
description such extensions without the assumption D(A) = H, and it describes
dissipative and accumulative extensions of A, as well.
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Theorem 3.13. Let A be a closed symmetric operator in a Hilbert space H, and
z from C_ (C, ) be a fized number. The following formulas

D(B) = D(A) + (T — Ey)D(T), (3.16)
B(f + T — ) = Af + 2T¢ — 2,  f € D(A), ¢ € D(T), (3.17)

establish a one-to-one correspondence between all admissible with respect to A
isometric operators T, D(T) C N,(A), R(T) C Nz(A), and all symmetric exten-
sions B of the operator A. Moreover, we have

D(T)=N.(A) N R(B — zEg), (3.18)

T C(B—zEy)(B—zEx)"". (3.19)
A symmetric operator B is: closed / closed and mazimal / self-adjoint, if and
only if respectively: D(T) is: a subspace / D(T) = N,(A) or R(T) = Nz(A) /
D(T) = N,(A) and R(T) = Nz(A).

Formulas (3.16),(3.17) define a one-to-one correspondence between all admissi-
ble with respect to A non-expanding operators T, D(T) C N,(A), R(T) C Nz(A),
and all dissipative (respectively accumulative) extensions B of the operator A.
Also relations (3.18),(3.19) hold. A dissipative (respectively accumulative) op-
erator B: closed / closed and maximal, if and only if respectively: D(T) is: a

subspace / D(T) = N,(A).

Proof. Let A be a closed symmetric operator in a Hilbert space H, and z be
from C_ (C,). By Remark 3.7, formulas (3.7),(3.8) and (3.9) establish a one-
to-one correspondence between all symmetric extensions B of the operator A
in H, and all isometric operators T with the domain D(T) C N,(A) and the
range R(T) C Nz(A), which are admissible with respect to A. Let us check that
formulas (3.8),(3.9) define the same operator B, as formulas (3.16),(3.17). Let
the operator B be defined by formulas (3.8),(3.9). The domain of B is

D(B) = (W, = Eg)D(W.) = (U, ® T — Ey)(D(U:) + D(T))
If fe(U,—Eyg)DU,)N(T — Ey)D(T), then f = (U, — Ey)g, g € D(U,), and
f=(T—Ey)h, h € D(T). Then

(U.6T ~ Bu)lg— )=~ f =0,

i.e. g — h is a fixed element of the operator W,. Since W, has no non-zero fixed

elements, we get ¢ = h. Since g L h, then ¢ = 0 and f = 0. Thus, for the

operator B holds (3.16).

Consider arbitrary elements f € D(A) and ¢» € D(V). Then
B(f+VY—¢)=Bf+B(V - En)p = Af + BW. — Eg)¢

=Af+ (W, —ZEpg)Y = Af + 2V — Zp,
and therefore formula (3.17) holds, as well.
Since

NL(A) 1 (B — 2E)D(B) = N.(4) N D(V.) = N2(A) 1 (M.(4) + D(T))
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then relation (3.18) holds. Relation (3.19) means that 7' C W..

If the operator B is closed, then W, is closed, as well. Since W, is bounded,
it is defined on a subspace. Therefore D(W,) = R(B — zFEy) is closed, D(T) =
N.(A)N R(B — zEy) is closed and it is a subspace.

Conversely, if D(T) is a subspace then the direct sum M,(A)® D(T) = D(W,)
is closed. Therefore the operators W, and B are closed.

By Corollary 3.10 a closed symmetric operator B in a Hilbert space H is
maximal if and only if (at least) one of its defect numbers is equal to zero. This
is equivalent to the following condition: D(T) = N,(A) or R(T) = Nz(A).

If B if self-adjoint then its Cayley’s transformation W, is unitary, i.e. D(T) =
N.(A) and R(T) = Nz(A). Conversely, the last conditions imply that W, is
unitary, and therefore B is self-adjoint.

By Remark 3.12 formulas (3.13)-(3.15) establish a one-to-one correspondence
between admissible with respect to A non-expanding operators T', D(T') C N, (A),
R(T) C Nz(A), and dissipative (respectively accumulative) extensions of a closed
symmetric operator A. Formulas (3.16),(3.17) define the same operator B as
formulas (3.13)-(3.15). It is checked similar as it was done above for the case
of symmetric extensions. The proof of relations (3.18),(3.19), and the proof of
equivalence: (B is closed) < (B is a subspace) are the same.

Let B be closed and maximal. By assertion 3) of Theorem 3.11 we obtain that
R(B—zEy) = (B—zEy)D(B) = H. From (3.18) it follows that D(T) = N,(A).

Conversely, let D(T) = N,(A). Then

(B — 2E4)D(B) = D(W.) = M(A) & D(T) = M.(A) & N.(4) = H.
By assertion 3) of Theorem the operator B is maximal. O

Let A be a closed symmetric operator in a Hilbert space H, and z € R, be a
fixed number. Let T be an admissible with respect to A non-expanding operator
with D(T) C N,(A), R(T) € N>(A). An extension B of the operator A which
corresponds to 7" in formulas (3.16),(3.17) we denote by Ay = Az, and call a
quasi-self-adjoint extension of a symmetric operator A defined by the
operator 7T'. This definition agrees with the above given definition for the case
of a densely defined symmetric operator A.

3.5. Extensions of a symmetric operator with an exit out of the space.
Let A be a closed symmetric operator in a Hilbert space H. In order to construct
a generalized resolvent of A, according to its definition, one needs to construct
self-adjoint extensions Aof Ain larger Hilbert spaces HDH.

Choose and fix a Hilbert space HDH. Decompose it as a direct sum:

H=H®& H,, (3.20)

where H, = H& H. The operator A can be identified with the operator A & op,
in H, where og, is an operator in H, with D(og,) = {0}, 0,0 = 0.

Keeping in mind this important case, we shall now assume that in a Hilbert
space H of a type (3.20), where H, H, are some Hilbert spaces, there is given a
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symmetric operator A of the following form:
A=A6 A, (3.21)

where A, A, are symmetric operators in Hilbert spaces H,H,, respectively. Let
us investigate a possibility for the construction of symmetric and self-adjoint
extensions of the operator A and their properties. In particular, we can use the
generalized Neumann formulas.

Fix an arbitrary number z € R.. Since D(A) = D(A) & D(A,), then it can be
directly verified that

Mz(-A) = MZ(A) D Mz(Ae>>
N.(A) = N.(4) & N.(A.), (3.22)
Xo(A) = X.(4) ® X.(Ae), (3.23)

where X, (-) denotes the forbidden operator.

Let T be an arbitrary non-expanding operator in H with the domain D(T) =
N.(A) and the range R(T) C Nz(A). With respect to the decomposition (3.22)
(for z and Z) the operator T" has the following block representation:

Tll T12
T = : 3.24
( Ty T ) (3:24)
where T11 = Pr_a)T Py, (a), Ti2 = Prnoa)T Py, a.), To1 = Prnoan)T P ay, To2 =
PN;(Ae)TPNz(Ae)-

By the definition of the admissible operator the operator 7T is admissible with
respect to operator A if and only if relation

implies ¢ = 0. Using decompositions (3.23),(3.24) we see that the latter condition
is equivalent to the following one: relation

”¢1 € D(XZ(A))7 w2 € D(XZ(A6>>7

Ti)r + Tiotpe = X (A)1, Torhr + Toothe = X, (Ae)tba, (3.25)
implies 1, = 1y = 0.

Theorem 3.14. Let A be a closed symmetric operator of the form (3.21), where
A, A, are symmetric operators in some Hilbert spaces H and H., respectively.
Let z € R, be a fized number and T be a non-expanding operator in H = H® H,,
with the domain D(T) = N,(A) and the range R(T) C Nz (A). The following
assertions are true:
1) If T is z-admissible with respect to the operator A, then the operators Ty,
and Thy are z-admissible with respect to operators A and A., respectively.
2) If D(A) = H and Ty is z-admissible with respect to the operator A, then
the operator T is z-admissible with respect to the operator A.

Here operators Ty and Tye are the operators from the block representation (3.24)

forT.



GENERALIZED RESOLVENTS 217

Proof. Let us check assertion 1). Let t¢; be an element from D(X,(A)) such
that 71191 = X,(A)y;. Since T is non-expanding and the forbidden operator is
isometric, we may write:

loulls = 1T l)? = 1T |3 + | Tt |5

= X (A7 + 1 Toatn i = 1l + [ Tortn |17
Therefore To1101 = 0. Set 1)y = 0. We see that condition (3.25) is satisfied. By
the condition of the theorem T is admissible with respect to A, and therefore
11 = 0. This means that the operator T7; is admissible with respect to A.
In a similar way, if 15 is an element from D(X,(A.)) such that Tosthy = X, (A.)1a,
then

[l > [ Ta||” = 1 Thata|F + | Tootiall

= | Toathal3 + [ X:(A)WollF = |Tiatbally + 1021

Therefore Ti2102 = 0. Set 11 = 0. We conclude that condition (3.25) holds.

Consequently, we get 15 = 0.
Let us check assertion 2). Let ¢y € D(X,(A)), ¥2 € D(X,(Ae)), and rela-

tion (3.25) holds. Since D(A) = H, then by (3.5) the domain of the operator
X.(A) consists of the null element and ¢y = 0. The second equality in (3.25)
may be written as

Toathy = X.(Ac)tha.

Since Ty, is admissible with respect to A., we get 1) = 0. Consequently, T is
admissible with respect to A. O

Let us continue our considerations started before the formulation of the last
theorem. Let ¢y € N.(A) and ¢, € D(X,(A.)) be such elements (for example,
null elements) that

Tty + Toathy = X, (Ae)ta. (3.26)
Then

1Tty + Tl < ||[¢1lm- (3.27)
In fact, since T' is non-expanding, we have

1T (1 + )| 5 = || Tuths + Tiotha |3 + | To1t1 + Tootba|| 5

< iy + el
If (3.26) holds, then since X,(A.) is isometric we get (3.27). Moreover, if an
equality ||T(¢1 + 9)||zr = |11 + o]/ z holds, then in (3.27) we have an equality,
and vice versa.
Define the following operator:

DYy = O(2; A, Ty = Tuthy + Thathy,
where 1, € N,(A) is such an element, for which there exists ¢y € D(X,(A)):
Torihy + Tophs = X (Ac)tba.
Let us check that this definition is correct. If for 1, € N;(A) there exists another
element 1y € D(X,(A,)):

To19Un + T22@Z2 = Xz(Ae){/;%
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then subtracting last relations we obtain that

Toa (1o — 1;2) = X.(A) (Y2 — 1;2)

Set 11 = 0. We see that equality (3.26) holds, and therefore inequality (3.27) is
true and it takes the following form:

T2 (32 — o) || <0,

i.e. Tiopg = Ti21bs. Thus, the definition of the operator ® does not depend on
the choice of 1y and it is correct. By (3.27) the operator ® is non-expanding.
Moreover, the operator ® is isometric, if T is isometric (what follows from the
considerations before the definition of ®).

Remark 3.15. If it is additionally known that the operator T is admissible with
respect to the operator A., then it exists (X,(A4.) — Ty)~'. Consider an arbi-
trary element ¢; € D(®). By the definition of @, for the corresponding to 1), the
element v, equality (3.26) holds, and therefore 1y = (X, (A.) —Ths) ' To19;. Sub-
stitute this expression in the definition of the operator ® to obtain the following
representation:

Oipy = Tipy + Tha( XL (Ae) — T22)_1T211/)17 Yy € D(D). (3.28)

Theorem 3.16. Let A be a closed symmetric operator of the form (3.21), where
A, A are symmetric operators in some Hilbert spaces H and H., respectively.
Let z € R, be a fired number and T be a non-expanding operator in H = H & H,,
with the domain D(T) = N, (A) and the range R(T) C Nz(A). The operator T
is z-admissible with respect to A if and only if the operators ®(z; A, T) and T
are z-admissible with respect to the operators A and A., respectively. Here the
operators Tuy is an operator from the block representation (3.24) for T.

Proof. Necessity. Let an operator T be admissible with respect to A. By The-
orem 3.14 the operator Ty, is admissible with respect to A.. Consider an ele-
ment ¢y € D(P(z;A,T)) such that ®(z; A, T)y = X,(A);. By the definition
of the operator ®(z;A,T), the element ¢ belongs to N,(A) and there exists
Yo € D(X,(Ae)): Tortr + Toathe = X, (Ae)tbe. Moreover, we have ®(z; A, Ty, =
T11¢1 + Ti91be. Thus, conditions (3.25) are true. Since T is admissible with re-
spect to A, then these inequalities imply 11 = 15 = 0. Therefore the operator ®
is admissible with respect to A.

Sufficiency. Suppose that ®(z;.A,T) and Ty, are admissible with respect to A
and A., respectively. Consider some elements ¢y € D(X,(A)), ¥s € D(X,(A)),
such that (3.25) holds. This relation means that 1 € D(®) and ®ip; = X, (A)¢.
Since ® is admissible with respect to A, then ¢y = 0. From the second equality
in (3.25) it follows that Thothy = X, (A.)1hs. Since Toy is admissible with respect
to A., we get 1y = 0. Consequently, the operator T is admissible with respect to
the operator A. O

Now we shall obtain a more explicit expression for the domain of ® and for its
action.
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Theorem 3.17. Let A be a closed symmetric operator of the form (3.21), where
A, A, are symmetric operators in some Hilbert spaces H and H., respectively.
Let z € R, be a fired number and T be a non-expanding operator in H = H & H.,
with the domain D(T) = N, (A), and with the range R(T) C Nz(A). Then

D(®(2; A, T)) = P 4)0., (3.29)
®(z A, T)PL yh =Pl y(U.(A)®T)h, heb,, (3.30)

where
6. = {h e H: PI(U.(A)®T)h= P}}’Eh} . (3.31)

Proof. We shall need the next lemma on the structure of the set éz.

Lemma 3.18. In conditions of Theorem 3.17, the set éz consists of elements
h e H,

h = g1+ Y1+ g2 + 1o, (3.32)

where g1 S MZ<A)7 ¢1 € NZ<A)7 92 € MZ(A€)7 ¢2 € NZ<A€)7 such that
Py € D(X.(Ae)), X.(Ae)Pa = Torthy + Tooths, (3.33)
go = — Z(Ae —2Ep ) (X.(Ae) — En, )a. (3.34)

Proof. Consider an arbitrary element h € éz As each element of H , the element
h has a (unique) decomposition (3.32). Since

P}Eh:gz—i‘?ﬁm

PHUL(A) & T)h = PiL(U.(A)(g1 + g2) + Tt + 1))
= U,(Ae)ga + Torthy + Tootbe,
then by the definition of the set O, we obtain:
U:(Ae)g2 + Tonthr + Tooths = g2 + 1. (3.35)
Then
Doty + Togthy — by = (B, — Uo(Ac))g2 = (2 — 2)(Ac — 2En,)"'g2 € D(A,).

Since Ty1901 + Togths € Nz(A,), then ¢y € D(X,(A.)) and X, (A.)he = To1thy +
Ty91bs. From the latter relations it follows (3.33),(3.34).
Conversely, if for an element h € H of form (3.33) holds (3.33) and (3.34), then

(En, —U.(Ac))ge = (Z— 2)(Ae — ZEH6>_192 = (X.(Ae) — En, )t

= Tnpr + Toaths — o
Therefore equality (3.35) holds, which means that h € D(6.,). O
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(end of the proof of Lemma).

By the proved Lemma it follows that if ¢, € PN @Z, then ¢ € N,(A), and
there exists element ¢, € D(X,(A.) such that X, (A )wg To101 + Thot)s.

Conversely, if ¢, € N,(A), and there exists an element ¢ € D(X,(A.)) such
that X, ( )1/)2 T2177Z)1 +T22¢2, then X, ( )77[)2—1/}2 S D(Ae> Define g2 by (334),
and as g; we take an arbitrary element from M. (A). Then h := ¢ +g1+12+g2 €

@Z, and therefore i, € PN( )@

Comparing this with the definition of the operator ® we conclude that rela-
tion (3.29) holds.

Choose an arbitrary element h € PAPZ ( A)éz. By the proved Lemma, it has
representations (3.32), which elements satisfy relations (3.33),(3.34). Then

PAE/;(A)(Uz(A) ©T)h = P/\/ VT (b1 + 2) = Turhs + Tiaghe;

D(z; A, T)PN yh=0(2; A, Ty = Ty + Tioto,
and the required equality (3.30) follows. O

Corollary 3.19. In conditions of Theorem 3.17 consider the following operator
W,=U,(A)® ®(z;A,T). Then

D(W.) = Pfj6., (3.36)

W,PHh=PHU(A)@&T)h, heo,. (3.37)
Proof. By Lemma 3.18 we get M, (A) C éz Therefore
PO, = M.(A) + PE ;6. = M.(A) + D(®) = D(W.).

Let h be an arbitrary element from éz, having representation (3.32) which ele-
ments satisfy, according to Lemma 3.18, relations (3.33),(3.34). Using (3.30), we
may write

WP h = (U.(A) & (= A, T)) (g + 1) = Uo(A)gs + PRy

= Pl (U.(A) ® T)h + PIL 1y (U.(A) & T)h = P (U.(A) & T)h.
Therefore equality (3.37) holds. O

Consider our considerations interrupted by formulations of the last Theorem
and its Corollary. In the sequel we assume that the operator T is admissible
with respect to the symmetric operator A. In this case, by Theorem 3.16 and
Remark 3.15 the non-expanding operator ®(z;.A,T") is admissible with respect
to A and has a representation (3.28). By the generalized Neumann formulas
(Theorem 3.13), for the operator T' it corresponds a quasi-self-adjoint extension
A7 of the symmetric operator A.

Define the operator % on the manifold D( A7) N H in H in the following way:

Bh = B(z A, T)h = PIArh,  he D(Ap) N H. (3.38)
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Theorem 3.20. Let A be a closed symmetric operator of the form (3.21), where
A, A, are symmetric operators in some Hilbert spaces H and H., respectively.
Let z € R, be a fired number and T be a non-expanding operator in H = H & H.,
with D(T) = N,(A), R(T) C Nz(A), which is admissible with respect to A. The
operator B, defined on the manifold D(Ar) N H in H by equality (3.38), admits
the following representation:

%(2; -’47 T) = A@(Z;A,T)'

Proof. Consider a set éz, defined by (3.31). This definition we can rewrite in
another form:

0, = {he A ((Uz(A)@T)—Eg)heH}. (3.39)
Therefore B
(U.(A)@T)-Ez) 0, C H.
Since R ((U.(A) @ T) — Ez) = D(Ar), then
(U.(A)&T) — Ez)©. C HN D(Ar).

Conversely, an arbltrary element ¢ € H N D(Ar) has the following form g =
((U AT - )f, fe H. By (3.39) the element f belongs to the set 0,.
Therefore _

(U.(A)@T)— Egp)©.=HND(Ar) = D(B), (3.40)
where the operator B is defined by equality (3.38).
Consider the operator W, from the Corollary 3.19. By (3.37) we may write

(W.—Ep)Pfh = PH (U.(A) @ T) — Ez) h= (U.(A) & T) — Ez) h, he0..
(3.41)
Therefore _
(W, — Ey) PO, = D(B).
Taking into account relation (3.36) we get
(W, — Ex)D(W,) = D(B). (3.42)
Choose an arbitrary element u € D(%B). By (3.40) the element u has the following
form: u = ((U.(A)®T)— Eg) h, h € ©,. Then
Bu = PEATU
= Pff (2(U.(A) & T) = 2E;) (U(A) & T) - Eg) " ((U.(A) & T) = E) h
=Pl (2(U.(A)&T) —zEgz) h = PHU(A) @ T)h —zPHh
= 2W.PHh —zPHp = (W, — 2Ey)PHR

where we used (3.37). Since the operator ® is admissible with respect to the
operator A, then W, has no non-zero fixed elements. By formula (3.41) we get

Bu= (W, —zEy)(W. — Eg)" (U.(A) @ T)— Ez) h

= (ZWZ — ?EH)(W EH) U = ACD(z.AT) u € D(%)
Equality (3.42) shows that D(B) = D(Ag(:,a,1)). Therefore B = Agrary. O
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3.6. The operator-valued function B, generated by an extension of a
symmetric operator with an exit out of the space. Consider a closed
symmetric operator A in a Hilbert space H. Let Abe a self-adjoint extension of
A, acting in a Hilbert space H D H. Denote

S\ = {h € D(A): (A—\E;)h e H} . AeC (3.43)

SA:RREEA, AEEC;
£ = D(A)NH. (3.44)
Notice that the sets £,\, £y and £, contain D(A) Since for non-real \ for the
self-adjoint operator A holds (A — AE )D(A) H, then
(A — )\Eﬁ)SA =H, A€ R,. (3.45)
Observe that B B
£yN(H e H) ={0}, A €ER,. (3.46)
In fact, if h € £, N (H & H), then ((A — AEg)h,h)z = 0. Therefore 0 =
Im(Ah,h)z = (ImA)(h, h)7 and h = 0.
Define an operator-valued function B, = B,(A, A) for A € R., which values
are operators in H with the domain:
D(B,) = £y, (3.47)
and - - ~
B\PHh = Pl Ah, h € £y (3.48)
Let us check that such definition of the operator 2B, is correct. If an element
g € £, admits two representations: g = PHh1 Pth, hy, hy € £y, then

hy—hy = Plhy — PHhy+ P2 hy— P2 h,

HoH HOH

- PH@Hh P}?@Hh? H@H(hl hs).

Therefore hy — hy € £ N (H © H). By (3.46) we obtain that hy = hs.
The operator B, for each A € R, is an extension of A. Define an operator
Boo = Boo(A, A) in H in the following way:

Boo = PIA|g_. (3.49)

The operator B, is an extension of A, as well. Let us check that B, is sym-
metric. In fact, for arbitrary elements f, g € £, we may write

(Boof>9)ir = (PEAL, )i = (Af,9)5 = (. Ag) s

:(frPgAgﬁ{:(fﬁBmghf
We emphasize that the operator B, is not necessarily closed. The operator-
valued function 8, and the operator B, will play an important role in a de-
scription of the generalized resolvents of A.
Notice that

(A= AEz)h = (B — \Eg)PEh,  heg,, NeR.. (3.50)
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In fact, by the definitions of the sets £, and B », for an arbitrary element h from
£\ we may write:

(A= AEz)h = PH(A— AE;)h = PH AL — \PHh

— B\PHh— APfIh = (B — \Ey)Pfh.
Let us check that for A from C_ (C+) the operator By is a mazimal closed dis-
sipative (respectively accumulative) extension of A. In fact, using relation (3.50)
for an arbitrary element h from £, we may write:

(BAPH R, PHR) i = (BAPH I, 1)y = (Ah — NEg — PHh,h)y

= (A, h)y = A|Pg 3
Then ~ ~ ~
Tm(BAPh, PER)y = —| P h|% Tm A,

and therefore B, is a dissipative (respectively accumulative) extension of A.
By (3.45),(3.50) we get R(Bx—AEg) = (Br— AEy)PHE, = (A—AE;)€, = H.
Using formula (3.18) and the generalized Neumann formulas for the operator 98,
it corresponds a non-expanding operator T' with D(T') = N,(A). Therefore B,
is closed and maximal.
By the fourth assertion of Theorem 3.11 the operator B, is densely defined,
A eR..

Consider a generalized resolvent of A which corresponds to the self-adjoint
extension A: B

Ry=PH(A-XE;)™!, MeR.
Let us check that
R, = (%)\ — /\EH)_I, A €eR,. (351)

Consider an arbitrary element ¢ € H and denote h = (,ZI — AEj5)"'g, where
A € R,. Since h € D(A) and (A — AEgz)h € H, then h € £,. Moreover, we have

P}?h = R,g. By (3.50) we may write:
9= (A= AE;)h= (B — \Ey)PIh = (B, — A\Ey)Rag.

By the properties of maximal dissipative and accumulative operators (see Theo-
rem 3.11), there exists the bounded inverse (B, —AEx)~! defined on the whole H.
Applying this operator to the latter equality we get the required relation (3.51).

By (3.51) it follows that the generalized resolvent Ry of the symmetric operator
A s invertible for all A € R., and the operator R;l is densely defined. The
operator B, admits another definition by the generalized resolvent:

By=R'+ By, AER. (3.52)
Therefore B B
By = (Ry) '+ Ey =R'+ AEy
=Bs, AER,. (3.53)

where we used the property (2.30) of the generalized resolvent.
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Choose and fix a number Ay € R.. By Theorem 3.13, for the operator 8, for
A € II,, it corresponds an admissible with respect to A non-expanding operator,
which we denote by §()), with the domain N),(A) and the range in N5-(A).
Namely, we set

BN =3 ho, A, A) = (Ba = M) (Ba = MEr) 'y A€,
(3.54)
Notice that
B, = A@()\),)\ov AE H)\O. (355)
i.e. B, is a quasi-self-adjoint extension of the symmetric operator A, defined by

SN
By the generalized Neumann formulas for the operator 8., there corresponds

an admissible with respect to A isometric operator @, = ®,(Ao; A4, ﬁ) with the
domain D(®,) € Ny,(A) and the range R(®) € Nx-(A). This operator will be
used later.

Proposition 3.21. Let A be a closed symmetric operator in a Hilbert space H,
z € R, be an arbitrary fixed number, and T be a linear non-expanding operator
with D(T') = N,(A) and R(T) C Nz(A), which is z-admissible with respect to A.

Then the operator T™ is Z-admissible with respect to A and
(AT,Z>* = AT*,E-

Proof. By Theorem 3.13 the operator Ay, is maximal dissipative or accumulative,
since D(T) = N (A). By Theorem 3.11 we conclude that A7z, is densely defined
and therefore there exists its adjoint. By (3.14) we may write:

(Ar.)" = (2Eq + (: = 2)(U.(A) @ T — Ep) ")’

=ZEp + (Z - 2)(Uz(A) @ T* — Ey) .
Consequently, the operator Uz(A) @ T* has no non-zero fixed elements. By The-
orem 3.6 the operator T* is admissible with respect to A, and the last equality
gives the required formula. O

By the proved Proposition and formula (3.53) we may write:
By =B = (Az0000)" = A5 050 A€ 1D

Let us check that the operator-valued function §(\) is an analytic function of A
in a half-plane II,,. By (3.51) we may write:

%)\ — )\0EH = (%)\ — AoEH)R)\(%A — )\EH)
= ((%)\ - )\EH) + ()\ - )\O)EH) R)\<%)\ - /\EH>
= (Eg + (A= X)R\) (B — \Ep), A €eR,.
By the maximality of the dissipative or accumulative operator 8, the operator
(B —\E H)*1 exists and it is defined on the whole H. If we additionally assume

that A € II,,, then the operator (B, — \gEx) ! exists and is defined on the whole
H, as well. Then the operator

Eug+ (= X)Ry = (B — MEy)(By — A\Eg) !,
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has a bounded inverse:
(Ea+A=20)Ra) "' = (Ba=AEn)(Br—MEu) " = Eg+ (A=) (Br—XEpn) ',
defined on the whole H, for A € II,,. By property (3.12) we get

Ao — Al

But = 2Ry <1+ Ay

[(Br+ (A= Xo)Ra) | < T o)’ e I,

By Proposition 2.4 the function (Ex + (A — Ag)R,) ™! is analytic in the halfplane
IT,,. Using relation (3.51) we may write that

(B — )\_OEH)<%)\ —XMEp) P =Eg+ (Mo — )\_o)(%,\ — XoEg)?
=B+ (Mo — M) (B — AEg) (B — AEg)(Br — MoEy) ™
= By + (Mo — M)Ra(Ex + (A= X)Ry) 7,

is an analytic function in IT),. Then the function §()) is analytic in II,,, as well.
From our considerations we conclude that the operator-valued function 8B,
admits the following representation:

Ag()\) A A€ 11,
B, = R o, 3.56
A { AS"*(X),)\*O’ )\ 6 H)\O ( )

where §(\) is an analytic function of A in the half-plane II,,, which values are non-
expanding operators with D(F(A)) = N, (A4) and R(F(\)) € N5 (A), admissible
with respect to the operator A.

Our next aim will be derivation of a representation for the operator-valued
function F(A), which connects it with the so-called characteristic function of a
symmetric operator A. The next subsection will be devoted to the definition of
the characteristic function and some its properties.

3.7. The characteristic function of a symmetric operator. Let A be a
closed symmetric operator in a Hilbert space H. Choose an arbitrary number
A € R.. Notice that the operator T = Oz is admissible with respect to A. In
fact, suppose that for some h € H holds (Ux @ T)h = h. Let h = hy + hy,
hl S MX, hg S ./\/’X, then

(Us ® T)h = Uzhy = h = hy + ha,

and therefore

1hillF = 11Ushallzr = (1Rl + (1217
Consequently, we get hy = 0. Since the operator Uy has no non-zero fixed ele-
ments, then h; = h = 0. By Theorem 3.6 we obtain that 7" is admissible with

respect to A.
Consider a quasi-self-adjoint extension Ay := A, 5 of the operator A. By the
-

generalized Neumann formulas for A from C, (C_) the operator A, is maximal
closed dissipative (respectively accumulative) extension of A. By Proposition 3.21
it follows that

A=A o= Ay 0= Ax

ONX’A
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Moreover, by (3.16),(3.17) we may write:
D(A,) = D(A) + Nx(4), (3.57)
and
ANf+¥)=Af+X,  feD(A), ¢ e N3(A). (3.58)
Choose and fix an arbitrary number A\g € R, and consider the half-plane ITj,
containing the point )\¢. If we additionally suppose that A € II,,, for the quasi-
self-adjoint extension A, by the generalized Neumann formulas it corresponds
a non-expanding operator C()\) with D(C())) = N5:(A), R(C(N)) € Ny, (A).
Namely, the operator C'(\) is given by the following equality:

C(A) = C(X\ Ao, A) = (Ay — MEx)(Ay — XoEn A € Iy,

)|N%(A) ’

This operator-valued function C'(A) in the half-plane II,, is said to be the char-
acteristic function of the symmetric operator A. Observe that

Proposition 3.22. Let A be a closed symmetric operator in a Hilbert space H,
and X\, z € R, be arbitrary numbers: A € II,. The space H can be represented as
a direct sum:

H = M)(A) +N.(A).
The projection operator Py . in H on the subspace N,(A) parallel to the subspace
M (A) (i.e. the operator which to arbitrary vector h € H, h = hy + ha, hy €

Mi(A), hy € N.(A), put into correspondence a vector Py.h = hs) has the
following form:

A—7Z

Pir. = Pj\bf[z(A) (Az — zEp)(Az — )\EH)il- (3.60)

Z—Z

Proof. Since Az for Z from C, (C_) is a maximal dissipative (respectively ac-
cumulative) extension of A, then there exist the inverses (A — AEy)~' and
(As — 2Ey)!, defined on the whole H (see Theorem 3.11). The following oper-
ator:

S)\,z = (Ag — )\EH)<A2 - ZEH)_l = EH + (Z - )\)(Ag — ZEH)_l,
maps bijectively the whole space H on the whole H, and
S)\,z = (Ag — ZEH>(A2 - )\EH)il.

By (3.58) it follows that (A — zFEg)Y = (Z — 2)1, for an arbitrary ¢ € N,(A).
Therefore (Az — 2Ey) ™t = == Ep,(4). For an arbitrary g € N, (A) we may write:

zZ—z

Sneg =9+ (= N(A==2Bn) g =g+ ———g =

g, (3.61)

z—A zZ—A
zZ—z
to get

Sr:N(A) = N (A).
For an arbitrary vector f € D(A) holds:

S>\7Z(A — ZEH)f == (A — )\EH)f,
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and therefore
S)\,ZMZ(A) = M/\(A)
Choose an arbitrary element h € H, and set f = S;ih. Let f = f1 + fo,
fi € M.(A), f, € N.(A), then
h = Sx.fi + Sazfo € MA(A) + N.(A).

Therefore H = M (A) + N, (A). Suppose that v € M(A) NN,(A). Then there
exist elements u € M, (A) and w € N,(A) such that S, ,u = v and Sy ,w = v.
Therefore Sy .(u — w) = 0, and by the invertibility of Sy, we get v = w. Since
elements u and w are orthogonal, then © = w = 0 and v = 0. Thus, the required
decomposition of the space H is proved. Moreover, that for the element h holds

Z—A

Paah = Sxfo = S0Py f = SnaPr.ySn:h = —— Pl g)Shh
Z—A _ g B
T3 ZPNZ(A)<AE — 2Ey)(As — AEy) " h,
where we used relation (3.61). Thus, equality (3.60) is proved. 0

Continue our considerations started before the formulation of the last proposi-
tion. Define the following two operator-valued functions:

Q()\) = 73)\,)\07 K(>\) — P>‘7>‘0|./\/’%’ )\ - H)\O.

By representation (3.60) it follows that Q(A) and K(\) are analytic in the half-
plane II,. In fact, since the operator Ay is dissipative or accumulative, then
estimate (3.12) holds. By Proposition 2.4 we obtain that the operator-valued
function (A — AEg)~! is analytic in ITy,. Then the same is true for Q()\) and
P(N).

Let us check that for each A\ € IIy, the operator K(X) is non-expanding. In
fact, for arbitrary A € II, and ¢ € N5, we can assert that ¢» — K(\)i belongs
to My(A), and therefore v — K(A\)Y = (A — AEy)f, where f € D(A). Let
f = (Ux(A) — Eg)h, where h € My, (A). Then Af = (AU, (A) — Mo Ex)h.
Substituting expressions for f and Af in the expression for ¢ — K(\)y we get

P — KA\ = (MUxo(A) = MEm)h — AUy, (A) = Ep)h.
Therefore o
U+ (A= A0)Uno(A)h = KM + (A = Ao)h.
Using the orthogonality of the summands in the left-hand side and also in the
right-hand side we get

[ 11% 4 1A = Aol [Une (D)7 = (N7 + A = Aol IRl

Therefore
I = IRV E = 1Al
where 0y, == |A — Ao|? — |]A — Ag|®. It remains to notice that
Sxx = |Re A —ReXo)? + [ Im A — Im A\g|> — | Re A — Re \|?

—[Tm A —Im X\o? = | Im A + Im Ao|* — [Tm A — Im \o|* > 0, (3.62)

since Im A and Im \g have the same sign.
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Let us find a relation between the function K () and the characteristic function
C(A). Choose an arbitrary A € II, and an element 1) € N5-. By the Neumann
formula (3.17) we may write:

Aciyx(=CNY + ) = —XCN)Y + Ao
On the other hand, by (3.59),(3.57) and (3.58) we get
Aoz (CCNY + 1) = AN(=C(NY + ) = A(f + 1) = Af + A,
where f € D(A) and ¢, € N5(A) are some elements:
—C(\Y +v = f+11 € D(Ay).
Therefore o
—XC (MY + X = Af + M)y
Subtracting from the last equality the previous one, multiplied by A, we obtain
that
(Ao =N = (Ao = NC(A)Y = (A = AEp) .
Thus, the following inclusion holds:
(A =20)1 = (A = 2)C(A\)Y € My(A). (3.63)
Divide the both sides of the last equality by A — A and apply the operator Prro:

A—Xo
—P —C(NyY =0,
e Ao — C(A)Y
ie. C(\)y = %%PA,AOw' Therefore
A=A
C(\) = —K(\), A e lly,.
() = S5 ) "

Since K (A) is analytic in II), and non-expanding, then the characteristic function
C(A) is analytic and

A=A
oo < |5

, A e 1ly,. (3.64)
— Ao

Now we shall obtain another formula for the characteristic function C(\). Let
A € I, be an arbitrary number. Let us check that elements ¢ € N5(A) and

e Ny, (A) are connected by the following relation
(A= A0)Y — (A= Xo)i) € Mi(4), (3.65)
if and only if R
¥ =C(A).
The sufficiency of this assertion follows from relation (3.63). Suppose that rela-
tion (3.65) holds. Apply the operator P, , to the both sides of this equality:

(A= A0)Pasotd — (A = Ag) = 0,

and therefore N
-~ — Ap

= —P = C (A,

(G v Mot = C (A

what we needed to prove.
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3.8. A connection of the operator-valued function §(\) with the charac-
teristic function. Consider a closed symmetric operator A in a Hilbert space
H. Let A be a self-adjoint extension of A acting in a Hilbert space H D H.
Choose and fix an arbitrary number Ay from R.. For the extension A there
correspond operator-valued functions 8, = B, (A, Z) and §F(A\) = F(A\; Ao, A, fT)
(see (3.48),(3.54)).

As it was done above, the space H we represent as (3.20), where H, = HoH ,
and the operator A can be identified with the operator A & oy, .

Consider an operator A of the form (3.21), where A, is a symmetric operator

in a Hilbert space H,, such that A @ A, C A. In particular, we can take as A,
the operator oy,. Thus, the operator A is a self-adjoint extension of the operator
A.

By the generalized Neumann formulas, for the self-adjoint extension A of A
there corresponds an isometric operator 7' with the domain D(T') = N,,(A) and
the range R(T') = N5;(A), having block representation (3.24), where

T = Pr T Pry g4y Trz = Png () TP, (40),

Tor = Pr(a0 TP 1), To2 = Pri (a0 TPy (40)-

Denote C.(A) := C(\; N, Ae), i.e. Co(A) is a characteristic function of the oper-
ator A, in H.,. B B
By (3.16) the domain of A consists of elements f of the following form:

F=fi+ fat T +a) — b1 — Py

= [fi + Tuthr + Tiots — 1] + [fo + Tortpr + Tooths — 1o, (3.66)
where fi € D(A), fo» € D(A.), 1 € Ny (A4), ¥ € Ny, (Ae). Notice that an

expression in the first square brackets belongs to H, and in the second square
brackets belongs to H,. Formula (3.17) gives the following relation for the oper-

ator A:
ZJ}VI [Af1+Xo(Thatr +Thathe) — oth1] + [Ae fo + Ao (Torths + Togtha) — Agba). (3.67)

Here also an expression in the first square brackets belongs to H, and in the second
square brackets belongs to H.. Recall that the manifold £, (A € C) consists of

those elements f € D(A), for which (A — )\Eﬁ)f belongs to H. Subtracting

from relation (3.67) relation (3.66), multiplied by A, we see that the element f of
form (3.66) belongs to £, if and only if

(Ac — AEg, ) fa + (Ao — ) (Torhr + Taothe) — (>\_0 — Ny = 0. (3.68)

Suppose now that A € II,,. If relation (3.68) is satisfied then by the property
of the characteristic function, see the text with formula (3.65), we get

P2 = Ce(AN)(Torthr + Toatho). (3.69)
Moreover, by (3.68) we get

Jo=(Ac = AEw,) " (A = M) (Torthr + Taotha) — (A — Ao)tb2) - (3.70)
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Since A and ) lie in the same half-plane, then the number 8y 5, = |A— Xg|> — |\ —
Ao|? is positive, see (3.62). By the property of the characteristic function (3.64)

we obtain that L
.\ < |2—22
Ie.000 < [3=3

— Ao
The operator C.(A\)T22 may be considered as an operator in a Hilbert space
N, (Ae), defined on the whole Ny, (A.). Since Tay is non-expanding, then Cy ()75
is contractive and there exists the inverse (En;, (4.) — Co(N)Ts3)™t, defined on the

whole Ny, (4.). By (3.69) we get
Uy = (Enyy(a0) — Ce(N)Ta2) " Ce(N) Tort1. (3.71)

Conversely, if elements f; € D(A) and ¢y € N,,(A) we choose arbitrarily,
the element 1y we define by (3.71), and f, we define by (3.70) (this is correct
since (3.71) implies (3.69)) and therefore (A — Ao)(Ta1h1 + Toatha) — (A — Ag)1b2)
belongs to M, (A,)), then the element f of form (3.66) belongs to £,.

Thus, the set £, (A € II,,) consists of elements f of form (3.66), where f; €
D(A) and ¢; € N, (A) are arbitrary, ¢ and fy are defined by (3.71),(3.70).

Since the domain of By is PH £y, and its action is defined by (3.48), then D(B))
consists of elements of form:

f=fi + T + Tighy — 1,

where elements f; € D(A) and ¢y € N, (A) are arbitrary, and ¢, is defined
by (3.71). Moreover, we have

Byrf = Afi + Mo(Tuthr + Tiaths) — Aibs.

Substituting an expression for 1y from (3.71) in these expressions we obtain that
D(%B,) consists of elements of the following form:

f=hn+ (Tn + T12(ENAO(AE) - Ce(/\)TQQ)_IOe()\)T21> Py — Yy, (3.72)

where elements f; € D(A) and ¢y € N,,(A) are arbitrary. The action of the
operator 8, has the following form:

Baf = Afi + 2o (Ti + Taa(En 4 = CelN o) " ColW)Tor ) = Aotr. (3.73)

<1, )\EH)\O.

Using the obtained expression for the operator B, (A € II,,), we find expression
for F(A) = F(A; Ao, A, A). Since F(A) has the following form (see (3.54)):

F(A) = Exny, () + (Ao — Xo) (B — AOEH)—l‘MO(A) 7 (3.74)

then we need to define the action of the operator (B) — \gEy)~' on the set
Ny, (A). By (3.73), for an arbitrary element f € D(B)) of the form (3.72) we
may write:
(Br— MEn)f = (A= NEpg)fi + (Ao — Xo)tr.
Applying the operator (B, — A\gFg)~! to the both sides of the latter equality we
get
(Br— NoEn)”" ((A — XoEu)fi+ (Mo — )\_0)@01) =f
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=fi+ <T11 + TIQ(ENAO(Ae) — Ce()\>T22>_1Ce()\)T21) P — 1.

In particular, choosing f; = 0 we get

1
(Tn + T12(E/\/A (Ae) — Ce()\)Tm)_lCe()\)Tm) (0]
Ao — Ao

(Br — NoEpg) 'y =

)\0_)\07/}1, Py € Ny, (A).

Substituting the obtained relation for the operator (B\—M\gE) ™ |NA0(A) into (3.74),
we obtain that

F(Ni X, A, A) = Ty + Tia( B, (a0 — Ce(NTo2) 'Ce(N T, A € T0y,. (3.75)

This representation will play an important role for the analytic description of the
generalized resolvents of a symmetric operator A.

3.9. Boundary properties of the operator-valued function §(\): the case
of a densely defined symmetric operator A. Consider an arbitrary closed
symmetric operator A in a Hilbert space H, having a dense domain: D(A) = H.

Let A be a self-adjoint extension of the operator A, acting in a Hilbert space
H D H. Let us check that

PID(A) C D(A*), PHAL=A*PHh, ke DA). (3.76)
In fact, for arbitrary elements h € D(A) and f € D(A) we write:
(Af. Pi{h)n = (Af,h)g = (Af.h)g = (£, ANz = (£, Pi{ Ah) .
and the required relation follows. Using (3.76) we may write:
Ah=A*Plh+ P Ah,  he D(A). (3.77)

Consider the sets 2,\, £y and £, defined by equalities (3.43)-(3.44) for A € C.
By the definition of [y A, for an arbitrary element g from [y A it holds: 0 = PH (A—

AE5)g = P}?@HAQ \pa g 1
HeHAg = /\PﬁeHg, ge y, reC. (3.78)
Therefore N N _
Ag = A"Plg 4+ 2Pl w0 ge Ly, MeC.
It follows that
(A= AEz)g = (A* = \Ep)Plg. g€, reC. (3.79)

Proposition 3.23. Let A be a closed symmetric operator in a Hilbert space H,
D(A) = H, and A be a self-adjoint extension of A, acting in a Hilbert space
HDH. Let Ao € R, be an arbitrary number. For arbitrary complexr numbers A\
and Ay, A1 # X2, and arbitrary elements hy € E,\l, hy € E,\2, set

gk ‘= P[{]{hk :fk+§0k—|—¢k, kZZ 1,27 (380)
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where fr € D(A), or € N5 (A), Ui € N,\O(A). Then

AL — Ao

(hihe) g = (91,9201 + ——= (Y1, ¥2)r — (1, 02)m) - (3.81)

Proof. Notice that
1

A=A
1 — ~
= 5 (s Ak = ol ) = (A, )+ Ml o)
1
= (h17 h?)f[

Using relation (3.79) to a transformation of the left-hand side of the last expres-
sion we get

(1 (A= XaBg)ha) s = (A= M Eg)hy, ha) |

(ha, ha)jg = + ! — [(hl (A" = XoBEp) Pl ha) s — (A" = M En) Pl h2)ﬁ]
= 5 [ (4" = Mg = (A" = M) g2))
= (91, 92)m + (91, A"92)r — (A1, 92) ] -

A — Ao

Substituting here the expression for gx from (3.80), and taking into account that
A*or = Aok, A%, = Notg, k = 1,2, we obtain the required equality (3.81). O
Consider the operator-valued function 5, = B ,\(A,g), A € R,, and the op-
erator B, = Bo(A, A) (see (3.47), (3.48), (3.49)). As it was said above, the
operators B, (A € R,) and B, are extensions of the operator A in H. Therefore
%oo:A*‘Sooy %)\:A*Lg)\, )\ERe. (382)

Choose and fix an arbitrgry number \g € R,.. Consider the operator-valued
function §(A) = F(A; Ao, 4, A), A € 11, defined by (3.54). Choose arbitrary two
points X', A" € II,,, and arbitrary elements i’ € SN B € 5. Then the elements
PHh’ and PHh” belong to D(B,/) and D(B,~), respectively. By (3.55) and the

generahzed Neumann formulas we may write:
Pgh/ — f/ + S(}\/)w/ _ w/’ Pgh” — f// _|_ g(}\//)w/l _
where f', f" € D(A), ¢/, 0" € Ny, (A). By Proposition 3.23 we get

A0 " / ",

(hlw h”)ﬁ' = (Plljh,7 Pgh”)H +
On the other hand, we may write:

(h/ h//) - — (PHh/ P}IjeHh/ PHh// Pg@HhH)

(PHh/ PHh”)H‘i‘(PgeHh/ P;?@Hh”)
Therefore
(P PRt = 220 (0 0 = (5N S ))
HeH HoH Y ) HJ-
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Multiplying the both sides of the last equality by XA’ and taking into ac-
count (3.78) we get

~ ~ AV
(PR AN PEL A = (O = o)~ (00" — (B0, 5O ).

(3.83)
Equality (3.83) will be used in the sequel. Also we shall need the following
proposition.

Proposition 3.24. If a sequence of elements of a Hilbert space is bounded and all
its weakly convergent subsequences have the same weak limit, then the sequence
converges weakly.

Proof. Let $ = {h,}22,, h, € H, be a bounded sequence of elements of a Hilbert
space H. Suppose to the contrary that all weakly convergent subsequences of )
converge to an element h € H, but the sequence $ does not converge to h. In
this case there exists an element g € H such that (h,,g)g does not converge to

(h,g)m, as n — oo. Therefore there exists a number ¢ > 0, and a subsequence
{hn, }324, such that

(s )it = (hs 9| = (B, = h 9| = &, k€N, (3.84)

Since the sequence {h,, }7°, is bounded, it contains a weakly convergent sub-
sequence. This subsequence, by assumption, should converge weakly to to an
element h. But this is impossible according to (3.84). The obtained contradic-
tion completes the proof. O

Let continue our considerations started before the statement of the last propo-
sition. Recall that the operator B, = B (A, A) is a (not necessarily closed)
symmetric extension of the operator A in H. By the Neumann formulas for it
there corresponds an isometric operator ®,, = P (Ao; 4, A) with the domain
D(®,) € Ny, (A) and the range R(®) € Ny (A). The operator @, was al-
ready defined for the general case of a not necessarily densely defined operator A
(below (3.55)).

Theorem 3.25. Let A be a closed symmetric operator in a Hilbert space H,
m = H, and A be a self-adjoint extension of A, acting in a Hilbert space
H D H. Let Ay € R, be an arbitrary number, {\}°2,, A\n € Il,, be a number
sequence, tending to oo, {1, 2, ¥, € Ny, (A), be a sequence, weakly converging
to an element 1, and

Anl®

Su
neg |:| IH] /\n’

(Wallir = 130 Aoy A, AYioallr) [ < 0. (3.85)

Then ¢ € D(Py(No; A, A)), and the sequence {§(N\,)n}o2, converges weakly to
an element ®1p. Moreover, if the sequence {1, }5°, converges to 1 in a strong
sense, then

n—oo
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Proof. Since clements A, belong to ITy,, then by relation (3.55) we get B, (4, A) =
Agrnro A i) for every n € No Since ¢, € Ny (4) = D(F(\n)), then by the
generalized Neumann formulas elements (A, )i, —tbn, € D(B(A,)) = £y, n € N,
Consider a sequence of elements g, € £, , n € N, such that

ngn = S ()0 — U, n € N.
By (3.77) we may write:

= MoS (M) U0 — A + H@HAgn, n € N.
Therefore
Pl Ag, = MFO)tn — Notbn,  neN. (3.87)
Observe that

IPH Agallr < PolllEODI N alle + Pollltnlla <K,  neN,

where K is a constant. Here we used the fact that F(\) is non-expanding and
a weakly convergent sequence is bounded. Let us use formula (3.83), with X' =

V= )\m W= h" = On:

[An]®

(PH Agn,P Agn)H_Im)\OI "

HoH HoH

((wna wn)H - (S()‘n)wna%’(kwwn)H)

An|?
= 1m 21 (s [§ e elle) (Rl + [l
Mol
T
From (3.85) it follows that ||PgeHZgn||H < K, where K5 is a constant. Thus,

we conclude that the sequence {Ag,}>>, is bounded. By (3.78) the following
equality holds:

< [Im Ao Unllr = I8 An)nll ) 2l ar-

I o5 H
)\—PH@HAgn: HonIns n € N,
and therefore
pa endn — 0, n — 0o. (3.88)

Since a bounded set in a Hilbert space is weakly compact, then from the sequence
{Ag,}72, we can select a weakly convergent subsequence. Let {Agy, }7>, be an
arbitrary subsequence which converges weakly to an element h € H:

Agn, = h, k- . (3.89)
Then Pf?ggnk - Pgh, as k — oo. From (3.87) it follows that

1
Sy )y, — P§h+ °w, k— oo. (3.90)
0



GENERALIZED RESOLVENTS 235

Denote ¢ := %P}? h + i:gzb By the weak completeness of a Hilbert space the
element ¢ belongs to N5-(A). By the definition of elements g, we may write:

By (3.88),(3.90) we get

Since A is closed, and the weak closeness of an operator is equivalent to its
closeness, then from (3.89) and the last relation it follows that ¢ —¢ € D(A) and

A(p — 1) = h. (3.91)

Since elements ¢ and 1 belong to the space H, then ¢ — ¢ € D(A)N H =
Lo = D(B). As it was mentioned before the statement of the theorem, by the
Neumann formulas for the operator B, there corresponds an isometric operator
® ... By (3.16) the following equality holds:

Therefore p — 1 = f 4+ ®ou —u, f € D(A), u € D(Py). Since p € Ny(A),
b € Ny, (A), by the linear independence of the manifolds D(A), N,,(A) and
N5;(A), we obtain that f = 0, u = 1 and ®u = ¢. Thus, the element 1
belongs to D(®,,) and ®otp = . Therefore relation (3.91) takes the following
form:

A(®oct) =) = h.
Then relation (3.89) becomes

Agn, = A(Doet) — 1)), k — o0.

Thus, an arbitrary weakly convergent subsequence of a sequence {Zgn};’f’:l has
the same limit. By Proposition 3.24 we conclude that the sequence {Ag,}> ; is
a weakly convergent and its limit is equal to A(®1) — ). Then

Pi{ Agy — PA(dp —v),  n— o
By relation (3.77) we may write:
P A(®ot) — 1) = AP (Dosth — 1)) = A®oct) — Mg
By (3.87) and two last relations we get
)\OS()\n)wn - )\_07% - )\Oq)oow - )\_07% n— oo,
ie.
S = @ooth,  m — 00,
Thus, the first assertion of the theorem is proved. Suppose that the sequence
{1, }5°, converges strongly to the element ).

It is known that if a sequence F' = {f,}32,, f. € H, of a Hilbert space H
converges weakly to an element f then

1f 113 < limy, oo |l fulle- (3.92)
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In fact, we may write
£ = T [(fu Pl

If {|| for |} 22, is a convergent subsequence of a sequence {|| f,,||#}52;, then
1718 = T 1o £l < T ol

From the last relation it follows the required estimate (3.92).
Applying estimate (3.92) to the sequence {F(\,)1n}o2, we obtain an estimate:

[Pocthllar < Lim,, oIS (An)tonl |-
On the other hand, since () is non-expanding, then

s [§ )l < Tt ([l = 461 = @it

Therefore lim,, o |[§(A\)Unllr = |Poc?||m, and a sequence {F(A,)1, 12, con-
verges strongly to an element ®,,. It remains to notice that

< ||¢ - ¢nl|H + HS()‘n)Q/}n - (I)oow”H — 0, n — oo.
Thus, relation (3.86) is proved. O

Corollary 3.26. In conditions of Theorem 3.25, if one additionally assumes that
the sequence {\,}5°, belongs to a set

M5, ={\elly: c<|argh|<m—c}, O<e< g
then condition (3.85) can be replaced by the following condition:

sup [|Aa] ([l = 80 do, A, Aol | < o0, (3.93)

Proof. In fact, if the sequence {\,}72; belongs to the set II5 , then

[Anl
<M N
[Tm A,| = e
where M is a constant, hot depending of n. Therefore from (3.93) it follows (3.85).

0J
Notice that from relation (3.45) it follows that
S\=(A-XEp)'H, & =Ra(A)H, AeR, (3.94)

where Ry (A) is the generalized resolvent of A, corresponding to the self-adjoint

extension A.

Proposition 3.27. Let A be a closed symmetric operator in a Hilbert space H,
and A be a self-adjoint extension of A, acting in a Hilbert space H 2 H. Let
Ry and Ry, N\ € R,, denote the resolvent of A and the generalized resolvent of
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™

A, corresponding to the extension Av, respectively, and Ao € R, 0 < e < 7 be
arbitrary numbers. Then the following relations hold:

lim (=AR\h) =h, heH;

AETI5 |, A—oo

lim (=ARyg) =g, ge H.

AETIS |, A—o0

Proof. Choose an arbitrary sequence {A,}72;, A, € 115, tending to oo, and an
arbitrary element h € H. Let us check that

ARy, b — —h, n — oo. (3.95)

Let A\, = 0, + 7, 0p, 7 € R, n € N. Notice that since numbers \, belong to
the set II5 , it follows an estimate:

<M, neN, (3.96)

Tn

where M is a constant, not depending on n. Using the functional equation for
the resolvent we write

Ry, — R)\o = ()\n - AO)RAnRAm
AnR)\nR)\o = _RAO + R)\n + )\oR)\nR)\O, n € N. (397)
Since

|An] = |70l

< |mal (H I

n

. Op
1+ —
Tn

) S |Tn|M17

then 7, — co as n — 0o. On the other hand, by the functional equation for the
resolvent we may write:

IBAfI% = (RSRAS, )it = (RsBf i = ——((Rs — R\ flu

A— A
1 N 1 _
= E(RAJC,f)H_( o) = mlm(RAfvf)Hv AeR,, feH.
Therefore | .
IR, flIH < ml(Rxnf, Nul < |T—|||Rxnf||H||fHH;
1 _
| B, fllar < mllfllm neN,feH,
1
IR < Eak n € N. (3.98)
It follows that
||R)\nHH_>07 n — oQ.

By (3.97) we get
w. — lim )\nR)\nR)\O = —R)\O.

n—o0

In particular, we obtain that

ARy, u = —u, u € Ry,H = D(A).
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By (3.98) and (3.96) the following inequality holds:

On + 17y,

Il 1< My+1, neN.

n

[AnBr, || <

<

n

Since the sequence of linear operators {\, Ry, }52, converges (in the strong op-
erator topology) on a dense set and the norms of the operators are uniformly
bounded, by the Banach-Steinhaus Theorem the sequence {\, Ry, }5°, converges
on the whole H to a continuous linear operator. By the continuity, this limit
operator coincides with —FE5. Thus, relation (3.95) is proved, and the required
relations in the statement of the theorem follow. 0J

Theorem 3.28. Let A be a closed symmetric operator in a Hilbert space H,
D(A) = H, and A be a self-adjoint extension of A, acting in a Hilbert space
H D H. Let Ao € R be an arbitrary number, ¥ be an arbitrary number from
D(Po(Mo; A, A)), and a vector-valued function (\), A € IL,,, with values in
Ny (A), is defined by the following formula:

A

P(A) = mPNAO(A)(A* — M Em)RA(Y — Poct)), (3.99)

where Ry is a generalized resolvent of A, corresponding to the self-adjoint exten-
sion A. Then

lim  ¥(\) =, lim  F(A Ao, A, () = Boctp,  (3.100)

AEILS |, A—oo A€EIIS, |, A—oo

and there exists a finite limit

lim {i_ W), (0 — (s(AW(A),s«)mo)H]} .

)\1C€H§\07 >\)<_>OO )\ - g

Her60<€<§.

Proof. Denote g = ®us(Mo; A, A)t) — 0 € D(Bus) = £ = D(A) N H, and by
R, and Ry, A € R,, we denote the resolvent of A and the generalized resolvent
of A, corresponding to the extension g, respectively. Consider the following two
vector-valued functions:

G\ = —ARyg, g(\) = PHG(\) = —ARyg, A el

Then the function ¥ () from the statement of the theorem takes the following

form:
1
A
VO =

Notice that by (3.94), the element g(A) belongs to £,, and therefore by (3.82)
the definition of the function ¢(\) is correct. By Proposition 3.27 we get:

—P{ (A" = XNEr)g(N), A€l

lim  g(\) =g, lim g\ =g, 0<e< g (3.101)

AETI, | )\—>oog AETTS,_, A—oo
0 0
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Moreover, by Proposition 3.27 with A = Avg we obtain that
A= d (A = i (AR =, fim AT0)
(3.102)

By (3.94) it follows that the element §()\) belongs to £5 C D(A). By (3.76) we
write

o) = PIGO) € D), PEAGO) = A%g(N),  Aell,.
From the last expression and (3.102) we obtain that

Piig= lim PHAGN) = lim A%g(\), Aelly,

)\Eﬂio, A—00 )\Eﬂio, A—00
or, taking into account property (3.76), we write:

lim  A*g(\) = A%g, A €Tl (3.103)

A€IIS, |, A—so0

Passing to the limit in the above expression for the function ¥ (\), using (3.101)
and (3.103), we get:

1
Aeﬂiljfr&—wo B Ao — )\_OPAI}&O(A) (A" = Ao Er)g.
By the definition of the element g the following equality holds: (A* — \gFEpy)g =
(Ao — )\_o)w. Substituting it into the previous relation we obtain the first relation
in (3.100).
As it was already noticed, the element g(\) belongs to £, = D(B,(4, A)),
and therefore by the definition of the function F(\; Ao, A4, g) and the generalized

Neumann formulas we write:
gA) = fFA) +FNi(A) —i(A), A€l

where f(A\) € D(A), ¥1(N\) € Ny, (A). Using the above expression for 1)(\) we
directly calculate:

1
(A) = 3 )\—P/\}/IAO(AKA* —MEr)g(A) =Pi(A), A elly,.
0 N0

Therefore
gA) = FA) +FNA) —v(A), A€l
Observe that

1 —
— P (A= XoEn)g(\) = FNe(N), A € 11,
)\0 — )\0 20
Consequently, by (3.101),(3.103) and the definition of g, we get:
Aenglj,mx%o SN = N Aenil;fgm Py (AT = Ao Er)g(A)

1 —
A /\/AO( 9 — Aog) (8

i.e. the second relation in (3.100) is satisfied, as well.
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Let us use relation (3.83) for X' = X\, M = ¢, I/ = G(\), " = §(C), PEN = g(N),
P = g(¢):

(PR AT PR AT = (o = Xa) =2 (6O
~(FORO). FOVO)n).

By relation (3.102), the left-hand side has a finite limit as A,{ — oo, A, ¢ € 11§,
and the last assertion of the theorem follows. O

Proposition 3.29. Let A be a closed symmetric operator in a Hilbert space H,
m = H, and A be a self-adjoint extension of A, acting in a Hilbert space
H D H. Suppose that the operator A is a direct sum of two maximal symmetric
operators. Let \g € R, be an arbitrary number, 1 be an arbitrary element from
D(®o(No; A, A)). Then there exists a finite limit

| s .
)\,CEH%;TH)\,Cﬁoo {A—_Z |:(¢7 w>H - (8’(/\7 )\07 A7 A>¢78’(<7 /\07 A? A)¢)Hi| } . )
3.104

H67“60<6<%.

Proof. The operator A has the following form: A = A; & Ay, where Ay is a
maximal symmetric operator in a Hilbert space Hy, k = 1,2, and H = H, & Hs.
Suppose at first that the domain of the regularity of A, is a half-plane II,,, and
the domain of the regularity of A; is II_,,. Recalling a similar situation in (3.22)
we may write:

N,\(A) = N)\(Al), Nx(A) = Nx(Ag), A E H/\o'

Calculate the function (), defined in (3.99). Let 9" be an arbitrary element
from Ny, (A), and A € II,. From (3.94) it follows that the element Ry1" belongs
to the manifold £, = D(B,(A, A)), which by (3.82) lies in D(A*). Using (3.51)
we write:

(A" = AE)R)Y = (Br — AEg)RaY = (By — AEg)(Bx — AEy) ' =4/
Conversely, if an element g belongs to £, and (A* — AEg)g = ¢/, then g =
(Br — ABp) "Y' = Ry, _

Since Ry¢)' € £, = D(8,), then by definition of the function F(\; Ay, A, A)

and the generalized Neumann formulas we write:
R\ = f 4+ F(N)y — 4,
where f € D(A), ¥; € N),(A). On the other hand, consider an element
A—Xo 1
P2 2204y~ AER) IS+ (BN - E _——y
g )\_)\O( 2 ) SNV + (F(N) H))\_)\O?ﬂ
Observe that §(\)y € N5(A) = N5(Az), and the point A belongs to the domain
of the regularity of A,, and therefore the first summand in the right-hand side is
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defined correctly. By the generalized Neumann formulas the element ¢’ belongs
to D(*B,) = £). Moreover, we have:
A—A
(A" = AEn)g' = 7 )\_O(A — AEg)(As — AEg,) ' F(A)/
— Ao
g = NFO) =t — (o = Nt = ¢
A= Xo A= Xo '
By the above considerations we conclude that Ry’ = ¢’. Notice that
* * )‘0 - )‘_0
Py (A" = MEr)RyY = P (1) (A" = NEn)g' = T Y. (3.105)
Consider an arbitrary element ¢ € N5-(A) = N5-(A2) C Hy. Since A belongs to
the domain of the regularity of Ay, we may write:

Ryp = P}?(Z— AEy)lo = (Ay — AEg) o

It follows that
P (A" = XEm)Rap = Py (4 (A" = NEn)(As — M)

= P/\%O(A)(A — MER) (A= AEy) o =0. (3.106)

Let 9 be an arbitrary element from D(®oo(Ao; A, A)) € Ny, (A), and A € II,,.
Using (3.105) with ¢’ =+ and (3.106), calculate the function ¥ () from (3.99):

A A

\) = — P (A" = NEn)RA(Y — Pot)) = ———
BN = S Pl (A7 = ME R = ) = S
By Theorem 3.28 we conclude that there exists a limit (3.104).

In the case when the domain of the regularity of A, is a half-plane II_) , and
the domain of the regularity of A, is II,,, we can reassign the operators A; and
As.

In the case when the domain of the regularity of the operators A; and A, is
the same half-plane (II,, or II_,,), the operator A is itself a maximal symmetric
operator. In this case we set H; = H, Hy, = {0}, Ay = A and Ay = Op,. For
the self-adjoint operator A, the both half-planes II,, and II_,, are the domains
of the regularity and we can apply the proved part of the theorem. O]

Y, A e IIy,.

Theorem 3.30. Let \g € R, be an arbitrary number and F(\) be an analytic in
the half-plane 11, operator-valued function, which values are linear non-expanding
operators with the domain D(F (X)) = Ny and the range R(F(\)) C Na, where
Ny and Ny are some Hilbert spaces. Let {\,}32,, A\, € Ily,, be a sequence of
numbers, converging to 0o, {gn}e,, gn € N1, be a sequence of elements, weakly
converging to an element g, and

Aol

sup | 225 (Ll = 1FOle)| < o0 107
Then there exists a finite limit
. A

et {52 .90 — (PO F Qv (3.108)
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H6T60<€<%.

Proof. Consider the operator A of the following form: A = A; ® Ay, where A; is
a maximal densely defined symmetric operator in a Hilbert space Hy, k = 1,2,
and define H = H; & H,. Choose the operators A; and As such that the domain
of the regularity of the operator A, will be II,,, the domain of the regularity of
Ay will be II_y,, and it holds:

dim/\f,\o (Al) = dim Nl, dll’IlNE(AQ) = dim NQ.

The required operators A; and A, is not hard to construct by using the Neumann
formulas. As in (3.22) and in the proof of the previous proposition we may write:

N)\(A) = N)\(Al) = dim Nl, NX(A) = NX(AZ) = dim NQ, A E H,\O.

Consider arbitrary isometric operators U and W, mapping respectively N; on
N (A1), and Ny on N5-(Az). Consider the following operator-valued function:

FL(\) =WFMNU!, A €I,

The function Fj()\) is analytic in the half-plane II,,, and its values are linear
non-expanding operators from N, (A) into N5-(A). Since A is densely defined,
we can apply the Shtraus formula (2.36) Namely, the following formula

R)\ — (AFl()\) - )\.EH)il7 )\ S H)\O,

defines a generalized resolvent R, of A. It follows that

AF1(>\) = R;l + \Ey, AE HAO-
The generalized regolvent R, is generatgd by a (not necessarily unique) self-
adjoint extension A in a Hilbert space H 2 H. Consider the operator-valued
function B(A, A), A € R.. Comparing the above expression for Ap ) with
formula (3.52) we conclude that

%A:AFl()\)> )\EH)\O.

Recalling the definition of the function §(A; Ao, A4, Z) we see that

Fido, A, A) = F(N), A€l
Denote

Yn :=Ugn, ¢:=Ug, n € N.

By the condition of the theorem we get that the sequence v, weakly converges
to the element ¢. From (3.107) it follows that

|)‘n|2 ( e

= 13O Ao, A, AV, )< .
o (1l = 1503 0. 4. Ay ) | < o0
By Theorem 3.30 we conclude that ¢ € D(®(Ag; A, g)) We may apply Propo-
sition 3.29, and (3.104) follows. From that relation it follows the required rela-
tion (3.108). O]

sup [
neN

Now we can state a theorem connecting the operator @m(AO;A,E) with the
operator-valued function F(A; Ao, A, A).



GENERALIZED RESOLVENTS 243

Theorem 3.31. Let A be a closed symmetric operator in a Hilbert space H,
D(A) = H, and A be a self-adjoint extension of A, acting in a Hilbert space
H D H. Let Ao € Re, 0 < e < %, be arbitrary numbers. Then the following
relations hold:

D(®oc (Mo A, A)) = {h € Ny, (A) :

limyers ano [\l = IO A0, A D) < +o0f,  (3109)
Doc(No; A, A)p = dm B Ao, A, AV, e D(Poo(No; A, A)). (3.110)

Proof. Suppose that ¢ € D(®y(Ao; A, A)) € Ny (A). Check the inequality
n (3.109). If ¢» = 0, then the inequality is obvious. Assume that 1) # 0. Consider
an arbitrary sequence {\,}52;, A, € II5 , converging to co. By (3.99) we define
the function ¥(A), A € II,,. Set

Gn = V() € Ny (4), n € N.
By Theorem 3.28 the following relation hold:
lm g, = ¢, lim ;Ao 4, A)g, = Boct),
n—oo

n—oo

and there exists a finite limit

nm{ AP [<gn,gn>H—<s<An>gms<An>gn>H]}

~ L i { Pl gl — 18O gall i) gller + st)gnnm} |

21 n—oo | Im A\,
Notice that

gnllz + 1FAn)gnllr = (101l + 1Pl = 2 ¢, 0 — o0,

since @, is isometric. Since 1 # 0, it follows that there exists a finite limit

lim {I‘m' lgallsr — 15 )gnIIH]}-

n—oo

We can apply Theorem 3.30 to the sequences {\,}>, {g,}52,, which converges
to g, and the function F(A; Ao, A, A), mapping Ny, (A) in N5-(A), and obtain that
there exists a finite limit

i {2 (1ot ~ 10l |
AETT | A-bo0

ol el = 1Ol ol + IS0l . (1)

Since the operator §(\) is non-expanding, then
(A = Pocthll = IF(An) Y — F(An)gn + F(An)gn — Pt
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. 00 : e :
Since the sequence {\,};2, was an arbitrary sequence from II§ , converging to
oo, then

€IS, Ao

Thus, relation (3.110) is proved. We may write:
m — ([FN)Yl + [¢]) = [Pctlla + [vlla = 2[4 a-

AL |, A—o0

From the latter relation and (3.111) it follows that there exists a finite limit:

i {2 ol — 15006l b = 100)

€IS A—vo0

Therefore there exists a finite limit

)\2
Amgﬁm{ﬁJMM¢m—wmmwm}=uw»

In particular, there exists a finite limit

hm{|%‘[WWr%WOwWﬂ}=UWN

n—00 | Im )\n|

Now suppose that the sequence {\,}2; is such that there exists a (finite or
infinite) limit

T (Dl [l — 150w l1}
ImM\,

Since ‘ S

<1, n €N, then
tim {0l 161 = 5 ()1}

L |An|? Im A\,
- s {2l (ot — 150l [P

The required estimate in (3.109) follows.
Conversely, suppose that ¢ € Ny, (A) and

iy ens oo [ = 1505 A0, A, A)ibll)| < +o0.

< [l()]-

This means that there exists a sequence of numbers {\, }72, A, € II§ , converging
to 0o, and such that there exists a finite limit

Tim {0 [0l — (8O 2lla}
In particular, this means that

SUp {[ Al {1911 = [I5CAn) ][]} < 0.

By Corollary 3.26 with 1, = 1, n € N, we get 1) € D(P(Ao; A4, g)) O
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3.10. A connection of the operator ¢, and the operator-valued function
§(A). Our aim here will be to prove the following theorem.

Theorem 3.32. Theorem 5.31 remains valid, if one removes the condition D(A) =
H.

Proof. In the case TA) = H the theorem is already proved. Suppose now that
D(A) # H. For the extension A there correspond an operator B, = B (A, A/)
and operator-valued functions B, = B,(4, 4) and F\) = F\; Ao, A, A) (see
(3.49), (3.47), (3.48), (3.54)). Recall that for the operator B, there corresponds
an admissible with respect to A isometric operator ®,, = P, (Ag; A4, ﬁ) with
the domain D(®,,) € Ny, (A) and the range R(Po) € Ny (A) (see a text be-
low (3.55)). Observe that in the case D(A) = H the operator @, was intensively
used in the previous subsection.

As before, the space H decompose as in (3.20), where H, = H o H. The
operator A may be identified with an operator A := A& A., Ac = og,. Thus,
the operator Ais a self-adjoint extension of A. By the generalized Neumann
formulas for the self-adjoint extension A of A there corresponds an admissi-
ble with respect to A isometric operator T with the domain D(T) = N,,(A)
and the range R(T) = N5 (A), having the block representation (3.24), where
Tu = Py T P4y, Tre = Enpo (TP (a0), Tor = P TEny (), T2 =

PNE( 40T PMO( 4.)- Moreover, we have A= Ar. Notice that the operator 8 =

B(Ao; A, T'), defined in (3.38), coincides with B,,. By Theorem 3.20 we have:
B(Mo; A, T) = Ap(rg;ar)- Since the Neumann formulas define a one-to-one cor-
respondence, then

(Ao A, T) = Boo (Mo; A, A).
Consider an arbitrary closed symmetric operator A; in a Hilbert space Hy,
D(A;) = Hy, which has the same defect numbers as A. Consider arbitrary

isometric operators U and W, mapping respectively N, (A4;) on N),(A), and
N5;(Ar) on N5-(A). Then the following operator

Vo= W71T11U W71T12
T T21U T22

w1t 0 Ty Tis U 0
:( 0 E)(T21 T22><0 E)

maps isometrically all the subspace Ny, (A1) & N,,(A.) on the whole subspace
N5:(Ar) @ N5 (Ae). By the first assertion of Theorem 3.14, the operator Th is
admissible with respect to A.. By the second assertion of Theorem 3.14 we get
that V' is admissible with respect to A; := A; & A, acting in a Hilbert space
H, = H, & H,. By the generalized Neumann formulas for the operator V' there
corresponds a self-adjoint operator Al D A; in a Hilbert space H,: 1, A1 (A1)v.

Let us consider the operator-valued functions B’ = B ,\(Al,Al) and §'(\) =

F(\; Ao, A1, Ay). By (3.75) we may write:
TN Ao, Aty Ar) = Vi + Vis(B, (4 — Ce(MN)Va2) 'Ce(MVar, A €0,
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where C.(A) = C(A; Ao, Ac) is the characteristic function of the operator A, in
H,. Then

(N = WHTHU + W Ta(Ex, (a,) — Ce(MN)To2) " Ce(N) T U = WV,

A elly,, (3.112)

what follows from (3.75).

Consider the following operators B’ = B (A, A;) and &/ = o (Ao; A1, Ay).
Also consider the operator B’ = B(\; A1, V), defined in (3.38). It coincides with
the operator B’ . By Theorem 3.20 we get B’ = Ag(ry;4,,1). Since the Neumann
formulas define a one-to-one correspondence then

O = DNy A, T) = D_.
By Remark 3.15 and formula (3.28) we may write:
'Y = Vi) + Via( X (Ae) — Vao) 'Varbl, o) € D(®), (3.113)
and

Prpy = Tiyhy + Tio(Xo(A) — Tog) 1 To19y, Yy € D(®).

By the definition of the operator ®, D(®) consists of elements of ¢; € N, (A)
such that there exists 1o € D(X),(4.)):

Ty + Taothy = Xy (Ae)o,
and D(®') consists of elements ¢ € N, (A1) such that there is 05 € D(X,,(A.)):
Vorhy + Vaguhy = Ton U + Togthy = Xy, (Ae)thy.
Therefore
D(®) = UD(®"). (3.114)
By (3.113) we get
') = WITHUY, + W T (XL (Ae) — Tao) T Uy = WQUYS,

Yy € D(P).
Therefore

' =W eu. (3.115)

By Theorem 3.31 for the operator A; in a Hilbert space H; and its self-adjoint
extension A; in H; we get

D(®h) = {v/ € No(A1) : Timene ssoe [N 1, = IO/ 1)) < +00 )

o= lim  FAY, e D(P).

AETIE ,A—00
0

By relations (3.114), (3.115) and (3.112) we obtain the required relations (3.109)
and (3.110). O
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3.11. Shtraus’s formula for the generalized resolvents of a symmetric
operator. Consider a closed symmetric operator A in a Hilbert space H. Choose
and fix an arbitrary point Ao € R,. A function F(X) € S(ITx,; Ny, (A4), N5 (A)) is
said to be A\g-admissible (admissible) with respect to the operator A, if the validity
of

Aengljf%ooF (N = X ¢, (3.116)
limyerre oo AN = 1E (A [la)] < +o0, (3.117)

for some e: 0 <& < 7, implies ¢ = 0.
A set of all operator-valued functions F(A) € S(IIy,; Ny, (A), N5;(A)), which
are A\g-admissible with respect to the operator A, we shall denote by

Sa;/\o (HAO ; NAO (A)v NE(A)) = Sa(HAo ; NAO <A> ) NE(A))

In the case D(A) = H, we have D(X),,) = {0}. Therefore in this case an
arbitrary function from S(ITy,; Ny, (A), N5-(A)) is admissible with respect to A.

Thus, Zf D(A) = H, then Sa;)\o (H)\O;N)\()(A),NE(A)) = S(H,\O;N)\O(A),NE(A)).

Proposition 3.33. Let A be a closed symmetric operator in a Hilbert space H,
and Xo € R, be an arbitrary number. If F(X) € S(IIx,; Nxo(A), N55(A)) is Ao-
admissible with respect to A, then F(C) is a \g-admissible operator with respect
to A, for all ¢ from I1,,.

Proof. Choose an arbitrary point ¢ from II,,. Suppose that for an element ¢ €
D(X,,(A)) we have the equality:

F(Qv = X5 (A).

Since the forbidden operator is isometric, we get

1E Q)| = [l

On the other hand, since the operator F'()) is non-expanding, we may write:

IFEN Y[ < [[9lla, A€,

By the maximum principle for analytic vector-valued functions we get
FNY =X (A)y,  Aelly,.

Therefore | F(A)Y||g = ||¥||g, A € 11, and relations (3.116),(3.117) hold. Since
F(X) is admissible with respect to A, then ¢y = 0. Thus, the operator F(({) is
admissible with respect to A. O

Theorem 3.34. Let A be a closed symmetric operator in a Hilbert space H, and
Mo € R¢ be an arbitrary point. An arbitrary generalized resolvent R\ of the
operator A has the following form:

(Apoy — AEx) ™, A elly,

Rs;)\ = -1 - s
(Apey = ABi) , XeIL,

(3.118)
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where F(X) is a function from San,(Ixg; Nag, N5o)-

Conversely, an arbitrary function F(X) € Sun,(Ix; Ny, N5;) defines by rela-
tion (3.118) a generalized resolvent R of the operator A. Moreover, for dif-
ferent functions from Sa;AO(H/\o;NAoaNE) there correspond different generalized
resolvents of the operator A.

Proof. Let A be a closed symmetric operator in a Hilbert space H, and \g € R,
be a fixed number. Consider an arbitrary generalized resolvent R\ (A) of A.
It is generated by a self-adjoint extension A of A in a Hilbert space H D H.
Consider the function B,(A, A) (see (3.47),(3.48)) and the function F(A; Ao, 4, A)
(see (3.54)). From relations (3.51) and (3.56) it follows (3.118), where F'(\) =
F(A) is a function from S(ITy,; Ny, N5;), which values are admissible with respect
to A operators. Let us show that the function F(\) is admissible with respect
to A. Suppose that for an element ¢ € D(X),(A)) C N, (A4) hold (3.116)
and (3.117). By Theorem 3.32 we get ¢ € D(®oo(Ao; 4, A)), and

Since ®, is admissible with respect to A, then v = 0. Therefore the function
F(X) is admissible with respect to A.
Conversely, let () be an arbitrary function from Sg;x, (ITxy; Ny, N5;). Con-

sider an arbitrary closed symmetric operator A; in a Hilbert space Hy, D(A;) =
Hy, which has the same defect numbers as A. Consider arbitrary isometric op-
erators U and W, which map respectively Ny, (A1) on Ny, (A), and N5-(A;) on
NE(A) Set

FLA) =WTTFNU,  Xelly,. (3.119)

The function F1(\) belongs to S(ITx,; Ny, (A1), N5(A1)). Since in the case of
the densely defined operators the theorem was proved, we can assert that Fj(\)
generates a generalized resolvent Ry (A1) of the operator A; in Hj:

1

(A)roy —ABr) A elly,

R,(A4)) = -1 _
A1) (mnw®—A@Q . N el

(3.120)

The generalized resolvent Ry (A;) is generated by a self-adjoint extension gl in
a Hilbert space H; O H;. Set

He = f’jl ) Hl.

The operator A; may be considered as an operator A; := A; @ A, in a Hilbert
space f[l = H, & H,, where A, = oy, .

By the generalized Neumann formulas for the self-adjoint extension Ay of Ay
there correspond an admissible with respect to A; isometric operator T with
the domain D(T) = N),(A1) and the range R(T) = N5-(A;), having the block
representation (3.24), where T}; = PN%(Al)TPNAO(Am Ty, = PNE(AI)TPN)\O(AE)7

T21 = PNE(AG)TPN/\O(AI)7 ng = PN%(AC)TPN)\O(AC)' Moreover, we have Al =
(Ai)r.
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Notice that the operator 8 = B(\g; A1, T), defined by (3.38), coincides with
the operator B, (A, A;). By Theorem 3.20 we get: B(Ao; A1, T) = As(rgsa,,7)-
Since the Neumann formulas establish a one-to-one correspondence, then

P = (P()\O;ADT) = q)oo()‘O;Alagl)'

For the extension A; there correspond functions B = B,(A;, A1) and F(\) =

S(A; X, A1, A1). By (3.75) we obtain the following equality:

3’()\) =T+ Tl?(E./\/}\U(Ae) — Ce()\)ng)_loe()\)Tgl, A€ HAO, (3121)
where C.(\) = C(X; N, Ae) is the characteristic function of the operator A, in
H..

Since T is admissible with respect to A;, by Theorem 3.14 the operator Ty is
admissible with respect to A.. By Remark 3.15 the operator & = ®(A\g; A1, 7T)
admits the following representation:

'Yy = Tih| + Tia( X (Ae) — Too) ' Tontty, ) € D(®'). (3.122)

By Theorem 3.32 we get

D(@) = {4 € Ny (A1) = Timyen s (AN 1, — 3O 1) < +o0}
(3.123)
oY = lim  FA, ¢ e D@, (3.124)

/\Eﬂio ,A—00

where 0 < e < 7.
Comparing relations (3.120) and (3.51), taking into account (3.55) we see that

FN)=F0), el (3.125)

Consider the following operator

V= Vin. Vi \ WUt WTy,
o\ Vo Ve ) ToU™? T

. W 0 T Tio U=t o0

N 0 F Ty The 0 FE )’
which maps isometrically all the subspace Ny, (A4) & Ny, (Ae) on the whole sub-
space N5-(A) © N5 (Ae).

Consider an operator A = A @ A, in a Hilbert space H := H & H.. As
it was already noticed, the operator Th, is admissible with respect to A.. By
Remark 3.15 we obtain that the operator ® = ®(\g;.A, V) admits the following
representation:

Dy = Vgt + Via(Xog (Ae) — Vaz) ™' Varty, U € D(®).

By the definition of the operator ®, D(®) consists of elements ¢, € N, (A)

such that there exists 1o € D(X),(4.)):
Vo111 + Vagthy = X5, (Ae) e,
and D(®’) consists of elements ¢y € N, (A1) such that there is ¢, € D(X,,(Ac)):

Tt + Tog)ly = VarUthy + Toothy = Xx, (Ae) s,
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It follows that
D(®) =UD(9).
From (3.122) it follows that
'Y = Ty + Tia( Xy (Ae) — Toa) ™' Tor )
= W71V11U?/J1 + W71V12(X>\0(Ae) - V22)71V21U¢’1
— WUy, vl e D).
Therefore
o' =W 1oU.
From (3.123),(3.124) it follows that

D®) = {¥ € N(4) : limyens s (Il = [P ])] < 00}
(3.126)
Py = lim  FA\, e D(®), (3.127)

AETTS,  A—o00
0

where 0 < € < %

Let us check that the operator @ is admissible with respect to A. Consider an
arbitrary element ¢» € D(®) N D(X,,(A)) such that

Drp = X\, (A)¢.

Using (3.127) we get
i FO) = Xy (A)0.

AETTS,  A—o0
0

From (3.126) it follows that
limyere Ao (A1 = [EN)$]m)] < oo

Since the function F'(\) is Ag-admissible with respect to A, then ¢ = 0. Therefore
® is admissible with respect to A. Moreover, Voo = T5, is admissible with respect
to A.. By Theorem 3.16 the operator V' is admissible with respect to A = A& A..
By the generalized Neumann formulas for the operator V' there corresponds a self-
adjoint extension A := Ay of the operator A. Denote by

R, = PH(A-XE;)™", A€R,

the generalized resolvent of A, which corresponds to the self-adjoint extension A.
From (3.119),(3.121) and (3.125) it follows that

FA) = WFRAU ™ =W (T + Tiz(En,(a) — Ce(N)Ta2) ' Ce(N)Tn)U ™
= Vi + VlQ(ENAO(Ae) - Ce()\)vm)_lce()\)vzl, A e Ily,.
By (3.75) we conclude that
FOO) =3\ Ao, A A),  Aelly,.

From (3.51) and (3.56) it follows (3.118) for the constructed generalized resolvent
R, and for the given function F'(\).
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Let us check the last assertion of the theorem. Suppose that two functions
Fi(A), F1(X) € Sapng(Iag; Ny, N5;) generate by (3.118) the same generalized re-
solvent of A. Then

AFl()\) = AFQ()\), A E HA0~
By the generalized Neumann formulas we obtain that
Fi(\) = Fx(\), A e lly,.

O

4. GENERALIZED RESOLVENTS OF ISOMETRIC AND SYMMETRIC OPERATORS
WITH GAPS IN THEIR SPECTRUM.

4.1. Spectral functions of an isometric operator having a constant value
on an arc of the circle. In investigations of interpolation problems one uses
spectral functions of the operator related to a problem. There appear problems
with spectral functions, which are constant on the prescribed arcs of the unit
circle. Such spectral functions and the corresponding generalized resolvents will
be studied in this subsection.

Proposition 4.1. Let V' be a closed isometric operator in a Hilbert space H,
and F(§), § € B(T), be its spectral measure. The following two conditions are
equivalent:
(i) F(A) =0, for an open arc A of the unit circle T;
(ii) The generalized resolvent R,(V'), corresponding to the spectral measure
F(5), admits an analytic continuation on the set DUD, U A, where A =
{z € C: ze A}, for an open arc A of T.

Proof. (i)=-(ii). In this case relation (2.1) takes the following form:

(Rehgh = [

ma 1 —2C

d(F()hag)H7 Vhag € H.

1

is continuous and
1—20C

Choose an arbitrary number z, € A. Since the function
bounded on T\ A, then there exists an integral

L) = [ A E R

Then
[(R.P, h)g — Lo (h, h)| = |2 — 2

¢
/T\A (1-20)(1— Zog)d(F(')ha h)u

<] d(F()h,h)y, =€ T..

A 11— 2|1 — z(]
There exists a neighborhood U(zy) of zy such that |z — | > M; > 0, V¢ € T\A,

Vz € U(zp). Thus, the integral in the last relation is bounded in the neighborhood
U(zy). Therefore we get

(R.h,h)g — L,(h,h), z€T. z— 2, VheH.

< |z — 2]
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Using the properties of sesquilinear forms we get
(R.h,9)u — L,(h,g), z€T. z— 2z, Vh,g€ H.

Set
R; =w.— lim R, VzZeA,

2€Te, 2—2
where the limit is understood in a sense of the weak operator topology. We may
write

1 B ¢ |
<%ﬁ$&_R“”0H‘Ama—amf%oﬂﬂmﬂﬁv
z€U(z), he H.

The function under the integral sign is bounded in U(zp), and it tends to m

By the Lebesgue theorem on a limit we obtain that

. 1 B ¢ . ,

and therefore

. 1 _ < .
tin (S R Rag) = [ G ®Om b

for h,g € H. Thus, there exists the derivative of the function R, at z = 2.
(ii)=(i). Choose an arbitrary element h € H, and consider the following function
on(t) == (Fih,h)g, t € [0,27), where F; is a left-continuous spectral function of
V', corresponding to a spectral measure F(9). Consider the following function:

fh(z):%/o 1+61Zdah(t):/0 L dah(t)—%/o don(t)

1 —eitz 1 —eily

2
1 1 1
= —doy(t) — = ||hll% = (R.h, h) g — =||R|)%.
| Tt ® = 51 = Rao ) = 50
Choose arbitrary numbers tq,t5, 0 < t; <ty < 27, such that
=1t t) ={z=¢€": t; <t <t} CA. (4.1)

We assume that t; and t, are points of the continuity of the function F;. By the
inversion formula we may write:

to ]
O'h(tg) — O’h(tl) = 11{1’10/ Re {fh(T‘G_ZT)} dr.
r—1-0 J,
Observe that
—iT 1
Re {fu(re™)} = Re{(Rye-irh, h) i} — §HhH12q

1 1
(R + R b)) — LAl <7<l (42)
By (4.1) we obtain that e~ belongs to A, for t; < 7 < t,. Therefore
lim (Rye-ir + Ry —ir )b, h)g = ((Re=ir + RE_ir )R, h) . (4.3)

r—1-0
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By Theorem 2.1 the generalized resolvents of an isometric operator have the
following property:

R =Ey —R:, zeT.. (4.4)
Passing to a limit in (4.4) as z tends to e™", we get
R:,if = EH - Re—i‘r, tl S T S tg. (45)

By (4.2),(4.3) and (4.5) we get
lim Re{fh )}:O, t <71 <ts.

r—1—0

Consider the following sector:
L(ty,ty) ={z=re™: t; <t <ty 0<r <1}

The generalized resolvent is analytic in each point of the closed sector L(ty,ts).
Consequently, the function Re(R..h, h) is continuous and bounded in L(ty,t2). By
the Lebesgue theorem on a limit we conclude that oy, (t1) = oy (t2). If 1 ¢ A the
required result follows easily. In the case 1 € A, we may write A = AjU{1}UA,,
where the open arcs A; and A, do not contain 1. Therefore op(t) is constant
in intervals, corresponding to A; and As. Suppose that there exists a non-zero
jump of oy (t) at t = 0. By (2.1) we may write:

2T 1 27 1 R 1
(th,h)H:/ . dah(t):/ G0 () + ——a, a>0,
0 0

1— etz 1 — etz 1—2

where 0y,(t) = on(t) + on(4+0) — 0,(0), t € [0,27]. In a neighborhood of 1 the
left-hand side and the first summand in the right-hand side are bounded. We
obtained a contradiction. 0J

Theorem 4.2. Let V' be a closed isometric operator in a Hilbert space H, and
R.(V) be an arbitrary generalized resolvent of the operator V.. Let {\¢}32, be a
sequence of numbers from D such that A\, — )\ as k — oo; = Suppose that
for a number zy € D\{0}, the function C(X; zo), correspondmg to R, (V) in Inin’s
formula, satisfies the following relation:

Ju. — klim C (A 20) =: C(X: 20). (4.6)

Then for an arbitrary zj, € D\{0}, the function C();z), corresponding to the
generalized resolvent R, (V') by Inin’s formula (2.22) satisfies the following rela-
tion:
Ju. — klim C(Ak; ) = C(N: 20). (4.7)
—00

Moreover, C’(X zp) is a linear non-expanding operator, which maps the whole N,
mto N1 , and the corresponding orthogonal extension Vi, C et )it does not depend

on the chozce of the point z, € D\{0}.

Proof. Suppose that relation (4.6) holds for a point zy € D\{0}. Choose an
arbitrary point z; € D\{0}. Comparing the Inin formula for z, and for z{, we see
that

VC(A 20); VC()\ 24520 A e D. (4.8)
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By (2.20) we may write

1 E

1 -1
Veueono = - B + (Bu+ 20V o) +  AED.

20

Substituting in (4.8) similar relations for zy and z{, and multiplying by zyz; we
get

—1
2 Em + (|20 — 1) (EH + 20V, Azo)>

—1
= 2By + ZO(|Z6|2 - 1) (EH + Zé)v'z?;C’(A;zé)) '
Then

-1
+Z[/)(|Zo|2 — 1) (EH + Zovo C AZO)) )

- Z(/)Z_O 20 — 2’6 -1
T 1) (EH Tz ’—‘/ZKC(A;zo) (EH + 20V )\zo)> , AeD. (4.9)

Lemma 4.3. Let 2,2, € D. Then

20 — 2

—| <1 4.10

1— 2% (4.10)
Proof. Consider a linear fractional transformation: w = w(u) = {225 If |u[ = 1,
then |1 — Zgu| = |u(u — Zy)| = |u — 20|. Moreover, we have w(zg) = 0. Therefore
w maps D on D. O

Using (4.9) and (4.10) we may write:
1y
En+20Vcoim)

1 - |Zo|2

C1-27%

!
<0

-1
(E + Zo‘/;orc )\ZO)> (EH + FV;OF,C(A;,ZO)> , AeD. (4.11)
Using (2.18) we write:

V> (zo) = Voo ®C (N 20), A €D.

20;C

By the statement of the theorem we easily obtain that C' (X, 2p) is a non-expanding
operator and

Ju. — hm 748

20;C'(Ak;20)

_ 3. _ 1+
=V @O0\ 20) = VZo;C(X;Zo)' (4.12)

We may write
— 2 - 20 — 2§ -
R0 T R0 v+ _ A0 T R0 o+
(EH + 1 — /—‘/2070()\1@720)) (EH + 1-— Z(’)z_ovrzo;c(X;Zo))

-1
20— 20 1,4
(EH + 1 — Z(/)Z—OVZ();C(/\MZO))
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—1
207 ||y N vas — 2 1+
1= Z% ‘ VeoiOwiz) = Voo Gz EH + 1 = Vzmc@zo) (4.13)
Since /
20 — 2 +
1— 2z ‘ VZO?C(/\k%ZO) <0<l
then

/
0 T 20 v+
1— 262—0 20;C' (Ak;20)

Z/
(it 2 ) 1] 200

> (1 =9)[|R];
2! -1
0
<EH + 1 — /—ijzc()\k;zo))

Passing to a limit in (4.13) we get

-1 ’ -1
- — 20 14 0 1+
u.— Jim (EH + FVZO,CW())) (EH + 1_—ZOZOVZO,C<X, 0>) - (414)

By (4.14),(4.12),(4.11) we obtain that there exists a limit

1

< —.
—1-4

u. — kh_g)lo ‘/Z—;C(/\k;zé) =u. — kh_g)lo Vi @ C(A; ) =2V, (4.15)
such that
Eg + 2V’
M (E 2V, ) (EH T T T >_1 . (416)
1— 20) 1— 2z 20;C(Aiz0)

Relation (4.15) shows that V'[ar, = V.;. Set
0
Ch2p) = V|, -
0

By (4.15) we obtain that C' (/):, 2() is a linear non-expanding operator, which maps
N, in N1 . Thus, we get

0

V=V @ Cz) =V (4.17)

From (4.15),(4.17) it easily follows that
u. — lim C(\; 2) = C(\; 20),

k—o0

and relation (4.7) is proved.
By (4.16),(4.17) we get

1
+
(EH 2V o, z0>>

ZO,

1 — 20z — 2z -1
A (e A0 R0 <E v > :
1 —|2|? Bt 1 — 2070 VZoyC(A, 0) ot ZOVZo;C(A;Z()) '

-1
(1 — ’26‘2) <EH + ZOV+ ))
izg
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— — /== — d + N : ;

Subtracting Ey from the both sides of the last relation and d1v1d1ng by —z({ we
get:

1 12> — 1 -1
Bt S (B AV csy)
26 H + ZO +Zov/ .C )\Zl)

1
== (@~ %) Bn + (20— WV g5y~ B+ 2oV )

2 20;C' (A;20)
. -1
* <EH + ZOVZo;C(X;ZO))

-1
_ (= - -
- (ZOEH + VZo;C(X;Zo)) (EH + zov;o;C(X;ZOJ '
From (2.19) and (2.20) we get

VC(X;Z(’));Z(’) =V

/
C(Niz0);20° v'ZO cD.

O

Theorem 4.4. Let V' be a closed isometric operator in a Hilbert space H, and

2o € D\{0} be a fized point. Let R, = R, (V') be an arbitrary generalized resolvent

of the operator V, and C(X\;z9) € S(N.,; N1) corresponds to R,(V') by Inin’s
0

formula (2.22). The generalized resolvent R, (V') admits an analytic continuation
on a set DUD, UA, where A is an open arc of T, if and only if the following
conditions hold:

1) The function C(X;z0) admits a continuation on a set D U A, which is
continuous in the uniform operator topology;
2) The continued function C(X; zg) maps isometrically N, on the whole N 1,

for all points A € A; b
3) The operator (Eg — AVo(rzo)z) " exists and it is defined on the whole H,
for all points \ € A.

Proof. Necessity. Choose an arbitrary point A € A. Let z € D\{0} be an
arbitrary point, and C'(\; z) € S(IV,; N1) correspond to the generalized resolvent

R.(V) by the Inin formula. Using the Inin formula we may write:

z
By — 2Voney: = X(EH - )\VC(A;z);z) + <1 — X) Ey

Z. A _
=R+ (1) Ba =5 {EHJF (;—1> RA} R;!, VA € D\{0}.

Therefore the following operator

A A

has a bounded inverse, defined on the whole H:

A g
{EH + (5 - 1) RA} = YRy (B = 2Vooss:) ™' A € D\{0}.
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Then

-1

z

Choose an arbitrary 6: 0 < § < 1. Assume that z € D\{0} satisfies the following
additional condition:

A
21| |Ry < 6. (4.19)

Let us check that such points exist. If ||[Rg|| = 0, then it is obvious. In the
opposite case we seek z in the following form: z = e, 0 < ¢ < 1. Then
condition (4.19) will take the following form:
1 )

L |
3 ' IR

1

or € > —t5—.
Sl oN|

~ -1
In this case, there exists an inverse [EH + (% — 1> RX} , which is bounded and

defined on the whole H. Moreover, by the continuity the following inequality
holds:

A
‘_ - 1' IRA| < 6, (4.20)
z
in an open neighborhood U (X) of \. Therefore there exists the inverse
A - ~
[EH ¥ <- - 1) RA] el
z
which is bounded and defined on the whole H. We may write

(5 () e

> (1=9)nrll, heH.

e ()]

Choose an arbitrary sequence {\;}32; of points from D such that A\, — /):, as

-~

k — oo. There exists a number ky € N such that A, € UA) ND, k > ky. We
write
A ! h\ B
[EH + (—k - 1) RM] — |Ey+ (— - 1) R;]
z z
A “HH /A hy
[EH+(—'“—1)RA,€] ‘(-’“-1)}@—(——1 R;
z z z

Therefore

1 ~
< — . .
<15 AEUR (4.21)

<
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~ -1
A

Eyg+ (— — 1) Rxl
z

The first factor on the right in the last equality is uniformly bounded by (4.21).

Thus, we get
. ~ -1
. A A
u.— lim {E’H + (— — 1) R,\} = |Ey+ <— - 1) RX] . (4.22)
AED, A=A z z
3 -1
By <__1>RX] |
z

From relations (4.18),(4.22) it follows that

1 1—z?

w. — lim Vzc ) = Ue — lim (__EH + 2] (Eg — ZVC(A;z);Z)_l)
€D, A= AED, A=A z A

~ —1
A

Ey + (- - 1) RX] =V (4.23)
Z

where we used (2.21). Observe that V;;“C(A;z) =V, ®C(X;2). Set C(X; z) =V!|n..

By (4.23) we conclude that C (X, z) is a linear non-expanding operator which maps
N, into N1. Moreover, we have V/|;;, =V, and therefore

*

o~

. _ A
u. — hm A(EH — ZvC(A;Z);Z) 1 = —Rf)\\
AED, A—X z

Thus, there exists the following limit:

1 1— |2+~
= —;EH + 5 )\RX

r_ 3. +

Using (4.23) we easily obtain that
u.— lim C(\z2) = C’(/)\\; z).

AED, A—A

By 4.2 we conclude that the last relation holds for 2y, where C' (X, 2p) is a linear

non-expanding operator which maps N, into N1 1 , and V, Cumo)izo = V Rzt
Comparing relation (4.23) for V] = VJr %i2) and relatlon (2.21) we get

~ ~ -1

A A -1

Ry [Bu+ (Z-1)Ry| = (B = Vo) (4.24)

for the prescribed choice of z.

Thus, we continued by the continuity the function C'(X; zp) on a set DUA. Let
us check that this continuation is continuous in the uniform operator topology.
It remains to check that for an arbitrary A € A it holds

w.— lim C(\2) = C’(;\\; 20)- (4.25)

AEDUA, A—X
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Choose a number z € D\{0}, which satisfies (4.19) and construct a neighborhood
U()) as it was done before. For an arbitrary A € U(\) we may write:

v ()] o (2-1)n]
s ()] \(éﬂ)%—e—um

IN

Using (4.21) we get

hY -1
A=A z

By (4.24) we get

Ey + @ - 1> RX] _ . (4.26)

A A - _ ~

;R)\ [EH + (; — 1) RA} = (Ey — 2Vepus):) Lovae ()N D)\{0},
N (4.27)

for the prescribed choice of 2. In fact, for an arbitrary A € ANU(A), there exists

a neighborhood U(X) C U(\), where inequality (4.20) is satisfied for the same

choice of z. Repeating the arguments below (4.20) with X instead of )\ we obtain

that (4.27) holds for X. For points inside I we can apply (4.18).
From (4.26),(4.27) it follows that

. ~1 -1
u. — lim N (EH — zVC(A;z);z) = (EH — ZVC(X;z);z) .
AEDUA, A=A

Since it was proved that V5. . does not depend on the choice of z € D\{0}

(and for z € D this follows from the Inin formula), then the last relation holds
for all z € D\{0}.
Using relation (2.21) we get

u. — hm V+ . :V+ ~ VZED O ;
AEDUA, A= 5C(X2) zC (A;z) \{0}

and therefore relation (4.25) holds. Thus, condition 1) from the statement of the

theorem is satisfied.
From (4.24) it is seen that
h)
z

. -1
R; = i (EH - ZVC@;Z);Z)
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for the above prescribed choice of 2. Therefore the operator R; has a bounded
inverse, defined on the whole space H. Then

A )

z -1

B L
EH — ZVC(X;Z) oy )\ EH -+ (; - 1) RX] R,X
— IR+ < i) Ey.
A A
From the latter relation we get
~ —1
Rs — (i~ \WVogay) - (4.28)

Since VC(X;z);z does not depend on the choice of z, then the last relation holds
for all z € D\{0}. Consequently, condition 3) from the statement of the theorem
holds.
Using property (4.4), and passing to the limit as z — /):, we get
= Ey — Ry
On the other hand, from (4.28) we get:

-1
Ry = (En — Wos.) - (4.29)

From (4.28)-(4.29) it is seen that
= -1 -1
By = (EH - Avc’:@z);z) + (EH Wi ) . VzeD\{0).  (4.30)

Multiplying the both sides of the last relation by (Ey — iV* <

C(A;Z);Z) from the left

and by (Ey — XV o );2) from the right we get
(En AVC*(A B = NVoi) = Br = W + Bn = ANV,

After the multiplication in the left-hand side and 51mphfy1ng the expression we
obtain that
% CGez) VC( D = Ey, vz € D\{0}.

On the other hand, by (4.30) we may write:

—1 ~ —1
(B W) = e (B W)

~

~ —1
1 .ot
Vo = =5 <EH AVC(A D) (B = W)

N -1
Since the operator (EH — )\VC(X;Z);» is defined on the whole H and it is

bounded, then we conclude that R(V,s..,..) = H. Thus, the operator V...
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is unitary in H. Therefore the corresponding operator V* oG = =V.eC (X, z) is

unitary, as well. In particular, this means that the operator C' ()\; z) is isometric
and it maps IV, on the whole N1. Since z is an arbitrary point from D\{0}, we
obtain that condition 2) from the statement of the theorem is satisfied.

Sufficiency.  Let conditions 1)-3) be satisfied. Choose an arbitrary pomt
Xe A, and an arbitrary sequence {\}72; points from D U A such that A\, — )\
as k — oo. Using (2.20) we write:

1 |Zo|2 —1 _
By — )‘kVC(Ak;ZO);Zo = (1 - Z_O) En — Z—O(EH + ZOVO iC (ks zo)) !

— 2o — Ak _

1— Nz =

EH - AVC(/A\;zO);zO =

o= - + + -1
= (1 — )\Zo) Ey —|— )\_ 20:CCezo) (EH + ZOV;O;C(X;zOQ . (431)
Using (4.31) write
E A 1788 __1 (g )\V E vt
. Az 200 1 35 ( e > ( R za;c@za)) '

Since the operator V, is closed, by condition 3) it follows that there exists

C(X\20);20
the inverse (Fy — )\VC( S70):70 )*1 Which is defined on the whole H and bounded.

Therefore there exists [Fy + r—— Ayt oG )] !, which is bounded and defined on
Z0 20, Z0

the whole H. By (4.31) we get

<EH YA ZO>1

+
=T BT o)

For points A\, which belong to A, we can apply the same argument. For points A\
from I we may apply Lemma 4.3. We shall obtain an analogous representation:
-1
(EH - AkVC()\k;zo);zo)
- & Ep+ 20" M ye T 1
By condition 1) we get

~ —1
_)\ n
EH+ A_vzo e )] . (4.32)

vV -Vt

20;C (Ak320) 20;C(Niz0) - SUup

heH, |hl|=1

(COw; 20) — C (N zo))PNZOhH

< [[eusz) - cGizo)| >0, k= o0

; + S Vs
.= kh_{go ‘/Zmo()\k%ZO) o szo;C(X;zo)' (434)
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Let us check that there exists an open neighborhood U, (X) of A, and a number
K > 0 such that

—1
20 — Ak + . 5\
{Eﬁ*“fjjg%vgcummi <K, YA A€ i(A). (4.35)

The last condition is equivalent to the following condition:

20 — Ak +
1— \Zo 20;C(Ak;20

1 ~
Ex [ = glall voem v we v @3

Suppose to the contrary that condition (4. 36) is not satisfied. Choose an arbitrary
sequence of open discs U "()\) with centers at A and radu ~;and set K,, =n,n € N,

Then for each n € N, there exists an element g, € H, and Ak, € U”(/\), k, € N,

such that:
Z0 — >\kn +
|:EH + 1— N\ 2_0‘/20;0(/\kn§20):| Gn

It is clear that g, are all non-zero. Denote g, = ”ggﬁ, n € N. Then

1
< _”gnH
n

1

)\k’n + ~
H [EH + —1 — >\k Z_O‘/;;O C()\k; Zo):| gn -

Since |\, — A| < L then lim, o Asy, = X. We may write

+ o~
V»Zo;C(X;Zo)] In

-~

Zo—)\

Ey + =
1 -2z

~

~

ZO_)\kn + ZO_)\ +

1 — Aan_O ZO;C()\kn§ZO) - 1 — /):Z_O 20; C()\ 20)

ZO_/\k _Zo—)\v+ -
1— Xk, 20 20;C(Akn i20) 1— /):2—0 20;C(As20)

n

>L—

. L>0, (4.37)

for sufficiently large n, since the operator [Ep + == A;\o Vg it ] has a bounded
inverse, defined on the whole H, and the norm in the right- hand side tends to
zero. Passing to the limit in (4.37) as n — oo, we obtain a contradiction.

Thus, there exists an open neighborhood U, (/):) of /):, and a number K > 0 such

that inequality (4.35) holds. We may write:

~ -1
20— A e
1— )\— 203 C()\ 20)

Y —1

1—A[‘m0
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o~

20— A 20 — Ak
1 — /):Z—O Zo;C(X;Zo) - 1— )\kZ_O 20;C (Ak;320)

—~ —1
_ )\ N
En+ 1 )\_‘/20 OO\ Zo)]

Using (4.35) we conclude that

-1
20 — )\k + _
u. — h_)rilo |:EH + 1_—)%2—0‘/;0;0()%;20)] B

By (4.32),(4.33),(4.34),(4.38) we conclude that

—1
u. — lim (EH - )\kVC (Ak;20); 20) (EH - )\V C(Nizo0); o) )

k—oo

and therefore

-1
o= lim (B NVopee) = (Br = Wegas) - (439)

AEDUA, A\

By the Inin formula for A € D we have: (EH — )\VC(A;ZO);ZOY1 = R,. Thus,
relation (4.39) shows that the function Ry, A € D, admits a continuation on a
set DU A, and this continuation is continuous in the uniform operator topology.
Choose an arbitrary element h € H and consider the following analytic func-
tion:
fA) = fa(N) = (Ryh, h), A € D. (4.40)
The function f(\) admits a continuous continuation on I U A, which has the
following form:

FON) = ((EH — AVetayso) h) . AeDUA.
Let us check that
_ — -1
(Brr — NWeouym) = B — (Br = NWimm)  « VAEA. (4.41)
Choose an arbitrary number A € A. By condition 2) we conclude that Vi(x;z0);z
is unitary. Then
(EH - ng’(k,z),z)(EH - )\VC(/\§Z);Z) = Ep — )\VC()\§Z);Z + Ep — XVYC:k()\;,z);z‘ (442)
To verify the last relation, it is enough to perform the multiplication in the left-
hand side and simplify the obtained expression. Multiplying relation (4.42) from

the left by (EH - XVC*(A;ZO);ZO)l and from the right by (EH — AVC(A;zO);zOYl we
easily get (4.41).
We may write:
— -1 -1
fA) = (h, (Br — A\Vozo)z) h) ((EH — MVnm)im) h,h)
= (h7 h) - ((EH - )\VC()\;Z());ZO)_ h‘a h) = (h7 h) - f()\)7

Ref(\) = %(h, B, AeA.
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Denote g(A) = if(A) — i(h,h), A € DUA. Then Img(A) = 0. Thus, by the
Schwarc principle, g(A) has an analytic continuation g(A) = gn(A) on a set D U
A UD,.. Moreover, the following relation holds:

), A € D.. (4.43)

Then the following function

FO) = Ruh) i= 5300 + 5 (), A€DUAUD,

]

is an analytic continuation of f(\). Using (4.43) we get

F) = —f(%) +(hh), AeD..

By (4.4) we may write

>l

) = —(Rl h, h)H + (h R = — (hy (Ey — ROR) + (b, h) g

= (Rah,h)y, A €D (4.44)
Set
(Fisa) = Tag ) + isig(N) = iuig(N))
h,ge HA AeDUAUD,.

Notice that Ry(h, ¢) is an analytic function of A in DUAUD,. From (4.40),(4.44)
we conclude that

Bx(h,g) = (Rah, g)u, h,g € H, AeDUD..
From (4.39) it is seen that

R5(h,g) = lim (Ryh,g)u
AED, A=A

N

Rk(hmg) =

= dim ((Ba = MWVeoem)  hig)

AED, A—A

~ -1 ~
_ ((EH _ AVC(X;ZO);ZO) h, g) C hgeH, AeA.

H
Therefore the following operator-valued function
R‘)\? A S D U De
T/\ = -1 )
(Er = AVeizozo) AEA

is a continuation of R,, and it is analytic with respect to the weak operator
topology, and therefore with respect to the uniform operator topology, as well. [

Corollary 4.5. Theorem 4./ remains valid for the choice zo = 0.
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Proof. Let V' be a closed isometric operator in a Hilbert space H, and R, (V)
be an arbitrary generalized resolvent of V. Let F(\) = C(\;0) € S(No; Noo)
correspond to R (V') by Inin’s formula (2.22) for zy = 0, which in this case
becomes the Chumakin formula (2.14). Consider an arbitrary open arc A of T.

Choose an arbitrary point zg € D\{0}. Consider the following isometric oper-
ator:

V =(V+%En)(Ey+ V)", D(V)=(Eyg+2V)DV).
Then
V =(V-%Ey)(Ey — V) ' =V,
Recall that the generalized resolvents V and V, are related by (2.24) and this

correspondence is one-to-one. Let R,(V) be the generalized resolvent which
by (2.24) corresponds to the generalized resolvent R,(V,,) = R, (V).

From (2.24) we see that R{V,,) has a limit as ¢t — ¢, € A, if and only if
R3(V) has a limit as © — uy € Ay, where

ot ~
Aj=<u: u= +ZO~,t€A )
1+ 7t

Thus, RV ,,) admits a continuation by the continuity on T, U A, if and only if
R;(V) admits a continuation by the continuity on T, U A;. The limit values are
connected by (2.24), as well. By (2.24) we see that the continuation RV ,,) is
analytic if and only if when the continuation Rz(V) is analytic. Thus, R{(V) =
R;(V.,) admits an analytic continuation on T, U A, if and only if R3(V) admits
an analytic continuation on T, U A;.
By Theorem 4.4, Ryz(V) admits an analytic continuation on T. U A; if and
only if
1) C(A; 29) has a continuation on a set D U Ay, which is continuous in the
uniform operator topology:;
2) The continued function C'(\; z9) maps isometrically V,, on the whole N1 ,

for all points A\ € Ay; "
3) The operator (Exy — AV (rz0)z) - exists and it is defined on the whole
H, for all points \ € Ay,

where C(A; z9) € S(N,,; N1 ) corresponds to R.(V) by Inin’s formula. Recall
ZO ~

that C(A; zo) is connected with F(¢) in the following way:

C@%:F(ﬂ_%>, ueT,.

1 —Zou

Using this relation we easily obtain that condition 1) is equivalent to the following
condition:

1) F(t) has a continuation on a set DU A, which is continuous in the uniform
operator topology;

and condition 2) is equivalent to the following condition:

2’) The continued function F(t) maps isometrically Ny on the whole N, for
all T € A,
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From (4.31) it follows that the operator (Eg — AV (az0)2) " exists and it is
defined on the whole H, for all A € Ay, if and only if the operator
-1

A— 2z ~ ~vq—1
By — < Azi (Vo ®C(N;20))| = [Eg—t(V, @ F®)]
— AZo
exists and it is defined on the whole H, for all £ € A. O

4.2. Some decompositions of a Hilbert space in a direct sum of sub-
spaces. In the sequel we shall use some decompositions of a Hilbert space related
to a given isometric operator.

Theorem 4.6. Let V' be a closed isometric operator in a Hilbert space H. Let
C €T, and ¢! is a point of the reqular type of V.. Then

D(V) + N(V) = H;
R(V)+ N(V) = H.
Proof. At first, assume that ( = 1. Check that
Vi+glla=1f+glla,  feDV), geN. (4.45)
In fact, we may write:
VS +glli=VEVDE+ Vg + 9.V )u+(9,9)u
=[£Iz + (V. 9)m + (9. VF)u + gl
Since 0 = ((E - V)f7 g)H = <f7 g)H - (Vf7 g)H? we get
Vf.g)=(f9)., feDV), ge N, (4.46)
and therefore
V49l = 1l + (f:9)m + (g P + gl z = 1 f + gll7-
Consider the following operator:
Ulf+9)=Vf+g.  feDV) geN.

Let us check that this operator is well-defined on D(U) = D(V') + N;. Suppose
that an element h € D(U) admits two representations:

h=fitg=rfrtg,  fi,fo€DV), 91,92 € Ni.
By (4.45) we may write:

WVhHi+a—Vi+ae)li=IV(i-rf)+@—g)ly=Ifi—f+ga—gli=0.

Thus, U is well-defined. Moreover, it is easily seen that U is linear. Using (4.46)
we write:

U(f+9),Uf+9) =V +gVF+3) =VLEVH+VEG+ (9. VF)+(9.9)

= LD+ D+ 9.) + (9.9 =(f +9.] +7).
for arbitrary f, f € D(V), g,g € N;. Therefore U is isometric.
Suppose that there exists an element h € H, h # 0, h € D(V) N N;y. Then

0=U0=U(h+ (=h)) =Vh—h=(V— Eg)h,



GENERALIZED RESOLVENTS 267

what contradicts to the fact that the point 1 is a point of the regular type of V.
Therefore
D(V)n N, ={0}. (4.47)
Observe that we a priori do not know, if D(U) is a closed manifold. Consider
the following operator:
W ="U|s,
where the manifold S is given by the following equality:

Thus, W is an isometric operator with the domain D(W) = D(U) N M;. Choose
an arbitrary element g € D(U). Let g = g, + 9wy, 90, € M1, gy, € Ny C D(U).
Then gy, = P g € D(U), gar, L Nyi. Therefore gy, € D(W);

P D(U) € D(W).

On the other hand, choose an arbitrary element h € D(W). Then h € D(U)NM;,
and therefore h = Pﬁlh € PAI}ID(U ). Consequently, we get

D(W) = Py, D(U) = Py, (D(V) + Ni) = Py, D(V) € M.

Choose an arbitrary element f € D(V). Let f = far, + fny, far, € Ma, fn, € Ny
Then f — fy, € D(U), and f — fn, L Ny, ie. f— fn, € D(W). We may write

W —=Ep)(f —fx) =U=En)(f = fv) =U(f = fn) = f+ i =VI-f;
(W — Eg)D(W) 2 (V = Ey)D(V) = M. (4.48)

On the other hand, choose an arbitrary element w € D(W), w = wp) + wn,,
wpwy € D(V), wy, € Ny. Since w L Ny, then

w = Pijw = Pij wpu. (4.49)

1

We may write
(W — Eg)w = Uw —w = Vwpw) +wn, —wpw) —wn, = (V — Eg)wpy;
(W — Eg)D(W) C(V — Eg)D(V) = M.
From the latter relation and relation (4.48) it follows that
(W —Eyg)D(W) =(V — Ey)D(V) = M. (4.50)
Moreover, if (W — Eg)w = 0, then (V — Eg)wpyvy = 0; and therefore wpyy = 0.
By (4.49) it implies w = 0. Consequently, there exists the inverse (W — Ey)~'.
Using (4.50) we get
D(W) = (W — Ey) ' M.
Since D(W') C My, then by (4.5
Ww= (W — Eg)w+ w € M;;

D(W)C M,, WD(W)C M,. (4.51)
Consider the closure W of W with the domain D(W). By (4.51) we see that

D(W)C My, WD(W)C M.

0) we may write:

Then o o
(W — Ep)D(W) € M.
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On the other hand, by (4.50) we get

(W — Ex)D(W) 2 (W — Eq)D(W) = (W — Ex)D(W) = M,.

We conclude that
(W — Eg)D(W) = M. (4.52)

Let us check that there exists the inverse (W — Ep)~!. Suppose to the contrary
that there exists an element h € D(W), h # 0, such that (W — Ey)h = 0. By the
definition of the closure there exists a sequence of elements h,, € D(W), n € N,
tending to h, and Wh,, — Wh, as n — co. Then (W — Ey)h, — Wh —h =0,
as n — oo. Let h, = hy, + hoy,, where hy,, € D(V), hoy, € Ny, n € N.
Then (W — Eg)h, = Uhy, — hy, = Vhyy + hoy — b1y — hoyy = (V — Eg )by,
Therefore (V — Eg)hy,, — 0, as n — oo. Since (V — Ey) has a bounded inverse,
then hy, — 0, as n — oo. Then h, = Pﬁlhn = Pﬁlhlm — 0, as n — oo.
Consequently, we get h = 0, what contradicts to our assumption.

Thus, there exists the inverse (W — Ex)~! D (W — Eg)~!. By (4.52),(4.50),
we get

(W —Ey)™' = (W - Ey)",
and therefore
W =Ww.

Thus, W may be considered as a closed isometric operator in a Hilbert space
M. The operator (W — Ey)~' is closed and it is defined on the whole M;.
Therefore (W — Ey)~' is bounded. This means that the point 1 is a regular
point of W. Therefore W is a unitary operator in M;. In particular, this implies
that D(W) = R(W') = M.

By the definition of W we get D(W) = M; C D(U), and Uy, = W. On the
other hand, we have U|y, = Ey,. Therefore D(U) = H and

U=W & Ey,.
So, U is a unitary operator. Therefore D(U) = R(U) = H, what implies
D(V)+ N =H, R(V)+N,=H. (4.53)

The first sum is direct by (4.47). Suppose that h € R(V) N Ny. Then h = V f,
f € D(V), and we may write:

0=Vf+(=h)=U(f+(—h)).

Since U is unitary, we get f = h =V f, (V — Ey)f = 0, and therefore f = 0,
and h = 0. Thus, the second sum in (4.53) is direct, as well. So, we proved the
theorem in the case ¢ = 1.

R In the general case we can apply the proved part of the theorem to the operator
Vi:=(V. O

Corollary 4.7. In the conditions of Theorem /.6 the following decompositions
hold:

(HeD(V))+ M, = H;
(HeR(V))+ M, =H.

Proof. The proof is based on the following lemma.
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Lemma 4.8. Let My and My be two subspaces of a Hilbert space H such that
M1 N M2 = {0}, and
M, + M, =H.

Then

(He M)+ (He M,) =H.

Proof. Suppose that an element h € H is such that h € ((H© M,) N (H © M,)).
Then h 1. My, h L Ms, and therefore h L (M; + M), h L. H, h = 0.

Suppose that an element g € H satisfies the following condition: g 1L ((H &
M) 4+ (H © M3)). Then g € My, g € My, and therefore g = 0. O

Applying the last lemma with M, = D(V), My = N, and M; = R(V),
M, = N¢, we complete the proof of the corollary. O

4.3. Isometric operators with gaps in a spectrum. Let V be a closed iso-
metric operator in a Hilbert space H. An open arc A of T is said to be a gap
in the spectrum of the isometric operator V. if all points of A are points
of the regular type of V. Above we considered conditions when for a prescribed
open arc A C T and a spectral measure F(0) there holds: F(A) = 0. We shall
see later that a necessary condition of the existence at least one such spectral
function is that A is a gap in the spectrum of V.

Theorem 4.4 provides conditions, extracting parameters C'(A; zo) in the Inin for-
mula, which generate generalized resolvents (and therefore the corresponding
spectral functions), which have an analytic continuation on DUD, U A (we can
apply this theorem with A instead of A). By Proposition 4.1 for these generalized
resolvents there correspond spectral functions F(d) such that: F(A) = 0. More-
over, the extracted class of parameters C'(\; z9) by condition 3) of Theorem 4.4,
depends on the operator V. Our aim here will be to find instead of condition 3)
other conditions, which will not use V.

Lemma 4.9. Let V' be a closed isometric operator in a Hilbert space H, and
(eT. Then

VPionf =C P oS Vfe N(V), (4.54)
and therefore

[Pty f Nl = | Patacn FIl 9 € Ne(V); (4.55)

PR [Nl = 1PN I 9 € Ne(v). (4.56)

Proof. Choose an arbitrary element f € N,. For an arbitrary element u €&
D(V) = M, we may write:

(¢ = VPR fiVu) = CHE V) u — (Phany fou)

= (f,¢Vu)y — (f,u)u = (f,(CV — Ex)u)y = 0.

Therefore ((~'f — V Py} f) L M. Applying Py to this element we get (4.54).
Relation (4.55) is obvious, since V' is isometric. Then it easily follows (4.56). O
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Lemma 4.10. Let V' be a closed isometric operator in a Hilbert space H, and C
be a linear bounded operator in H, D(C) = No(V), R(C) € Nyo(V). Let ( € T
be such number that (! be an eigenvalue of the operator VO’;LC =Vael. IffeH,
f #0, is an eigenvector of VE)TC, corresponding to (™1, then f € N¢(V), and

Proof. Let f be an eigenvalue of VO’;LC, corresponding to the eigenvalue ¢! € T:

Vel f=VPLf+CPLf=C" (P _f+P{_f).

By the orthogonality of summands, the last relation is equivalent to the following
two conditions:

VP f =P S (4.58)
CPlf=¢"P{f, (4.59)

and (4.57) follows. Relation (4.58) implies Py} (¢™'f — VP{{ f) = 0; (CT'f —
V Pyl f) L M. For an arbitrary element u € D(V) we may write:

0= (C'f=VPipf.Vu)y = Vua — (P, fou)

Therefore f € N,. O

For an arbitrary number ¢ € T, define an operator W in the following way:
WePGf=CPa f, feNN, (4.60)

with the domain D(W,) = Pyl N¢. Let us check that this definition is correct.
If an element g € D(W,) admits two representations: g = P{ fi = P fs,
f1, f € N¢, then P (fi — f2) = 0. By (4.56) this implies P{_(fi — f2) =0, and
therefore the definition is correct.

Observe that W, is linear and

IWePR |y = PRl = 13 S

Thus, the operator W is isometric. Notice that R(W;) = Px._N¢.
Set

S:Pf\v}{]h\f@ Q:PJI\}{)O'N(.
In what follows, we shall assume that (=1 is a point of the reqular type of V. Let
us check that in this case the operators S and () are invertible. Suppose to the
contrary that there exists an element f € N¢, f # 0: Sf = Pf\};f = 0. Then
f = Pii.f # 0. By Theorem 4.6 we get f € My N N, = {0}. We come to a
contradiction.
In a similar manner, suppose that there exists an element g € N¢, g # 0: Qf =
P f=0. Then g = Pj] g # 0. By Theorem 4.6 we obtain that g € M, NN, =
{0}. We come to a contradiction, as well.
By Theorem 4.6 we get

P Ne = No;  P{l_N¢ = Ne.
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Thus, the operators S~ and Q! are closed and they are defined on subspaces
Ny and N, respectively. Therefore S~! and Q! are bounded. From (4.60) we
see that D(W,) = Ny, R(W;) = N, and
We=¢1'Qs™. (4.61)
Theorem 4.11. Let V be a closed isometric operator in a Hilbert space H, and C
be a linear bounded operator in H, D(C) = No(V'), R(C) C Noo(V). Let ( € T,
and (! be a point of the regqular type of V. The point (! is an eigenvalue of
VOJ;FC =V & C, if and only if the following condition holds:
(C=Wg=0, geN(V), g#0. (4.62)

Proof. Necessity. Since (! is an eigenvalue of VOTC =V @& C, then by 4.10 we
obtain that there exists f € N¢, f # 0, such that

CP{f=("PY S (4.63)

Comparing the last relation with the definition of W, we see that C’P]{,{J f =
WCP]{fof. Set g = P]{%f = Sf. Since S is invertible, then g # 0.

Sufficiency. From (4.62) we get (4.63) with f := S~'g. By Lemma 4.9 we see

that relations (4.58),(4.59) hold. This is equivalent, as we have seen before (4.58),
that (7! is an eigenvalue of VoJ;rc =V & C, corresponding to eigenvector f. OJ

Theorem 4.12. Let V be a closed isometric operator in a Hilbert space H, and C
be a linear bounded operator in H, D(C) = No(V'), R(C) C No(V). Let ( € T,
and ¢! is a point of the reqular type of V.. The following relation

R (Ve —C'Ey) = H, (4.64)

holds if and only if the following relations hold:
(C = We) No(V) = Nao(V); (4.65)
Pyl M (V) = My (V). (4.66)

Proof. Necessity. Choose an arbitrary element h € N,,. By (4.64) there exists
an element x € H such that

(Voo =¢C'Ex)z= (Ve Clz— (¢ 'z =h. (4.67)
For an arbitrary v € D(V) we may write:
(. (Ey — (V)u)g = (z, (V7 = CEn)Vu)g = (2, (Voio)” — CEm)Vu)n

= (Vote = C'Ex)z, Vu)g = (h,Vu)g =0,
and therefore © € N¢. Set g = Sz € Ny. Using (4.61) write:

(C —We)g=CSz —WeSz = CSz — (' Q.
Since h € N, we apply P]{,{w to equality (4.67) and get

CP{lz—('P a=h
CSr —('Qx = h.

Therefore
(C—=We)g=h,
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and relation (4.65) holds.
Choose an arbitrary element h € M,,. By (4.64) there exists ¥ € H such that

(Vi —¢T'Eq)T=(VaC)z - 'a=h

The last equality is equivalent to the following two equalities, obtained by an
application of projectors P{f and Py :

VPE T — (P T =] (4.68)

CPiz—('Pi z=0. (4.69)
By Theorem 4.6 we may write:

T =2xpw) + TN, rpw) € D(V), zn, € Ne.
Substituting this decomposition in (4.69) we get
CPJan, — P _an, — P _xpoy = 0;
(C = Wo)Pian, = 'PYL_zpe.
On the other hand, substituting the decomposition in (4.68) we obtain that
Vapw) + VP en, = P apw) — P an, = I

?‘)

Vapw) — C Py _zpey =
where we used Lemma 4.9. Then

Py (V= '"Ex)zpyy = h,
and relation (4.66) follows directly.

Sufficiency.  Choose an arbitrary element h € H, h = hy + ha, hy € My,
hy € Ny. By (4.65) there exists an element g € Ny such that

(C—=We)g=Cg—Weg = hs.
Set . = S7'g € N;. Then

)

CSz —('Qx = ho;
Pl (Ve O)Pila— (P _x = h;
PJI\}' ( Cm—(’ a:) = ha.
By Lemma 4.9 we may write:
Pl (Voler —¢'a) = VP o — P 2 =0.
Therefore
(Vole = ¢ 'Ex) x = hs. (4.70)
By (4.66) there exists an element w € M, such that
Pﬁmw = hy.
Let
w=(V—("Eg)Tpw), Zpw) € DV).
Then
VZpw) — C'Pi_Tpery = hi. (4.71)
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By (4.65) there exists r € Ny such that
(C = We)r = (T Py, Tpw).
Set Ty, := S~'r € N¢. Then
(C = W) PyTn, = ¢ Py Tpvy;

CP{an, — P 2y, — TP _Zpoy = 0. (4.72)
Set T = Zp(v) + Tn,. By (4.72) we get

Using relation (4.71) and Lemma 4.9 we write:

hy = VZpw) — P _Tpw)+ VP In, — (P 2w,

=VPyT— (P T (4.74)
Adding relations (4.73) and (4.74) we get
Vel)r—-'t= (Ve —C'En) T =h. (4.75)

Adding relations (4.70) and (4.75) we conclude that relation (4.64) holds. O

Theorem 4.13. Let V' be a closed isometric operator in a Hilbert space H, and
A be an open arc of T such that (7' is a point of the reqular type of V, V¢ € A.
Suppose that the following condition holds:

Pl oyMc(V) = Mo (V), V¢ eA. (4.76)

Let R, = R,(V) be an arbitrary generalized resolvent of V', and C(X\;0) €
S(D; No, Ny ) corresponds to R, (V') by Inin’s formula (2.22). The operator-valued
function R,(V') has an analytic continuation on a set DUD, U A if and only if
the following conditions hold:

1) C(X\;0) admits a continuation on a set DU A and this continuation is
continuous in the unform operator topology;

2) The continued function C(X;0) maps isometrically No(V') on the whole
N (V), for all X € A;

3) The operator C(\;0) — W,y is invertible for all A € A, and

(C(A0) — WONo(V) = Nu(V), YA€ A. (4.77)

Proof. Necessity. Suppose that R,(V) has an analytic continuation on a set
DUD,UA. By Corollary 4.5 we conclude that conditions 1) and 2) hold, and
the operator (Ey — AVeopo) F = —5((V @ C(X;0)) — $Ey) ! exists and it is
defined on the whole H, for all A € A. By Theorem 4.11 we obtain that the
operator C(A;0) — W, is invertible for all A € A. By Theorem 4.12 we obtain
that relation (4.77) holds.

Sufficiency. Suppose that conditions 1)-3) hold. By Theorem 4.12 we obtain
that R((V&C(X;0)) —+Ex) = R(Eg — AVe(noy0) = H. By Theorem 4.11 we see
that the operator (V & C(A;0)) — +Ey is invertible. By Corollary 4.5 we obtain
that R,(V) admits an analytic continuation on a set D U D, U A. O
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Remark 4.14. By Corollary 4.5, if R,(V) has an analytic continuation on a set
DUD, UA, then ((V & C(X;0)) — Eu) " exists and it is bounded. Therefore
the point A™', A € A, are points of the regular type of V.

On the other hand, by Theorem 4.12, in this case condition (4.76) holds. Thus,
by Proposition 4.1 condition (4.76) and a condition that points A7, A\ € A,
are points of the regular type of V', are necessary for the existence of a spectral

function F of V' such that F(A) = 0. Consequently, these conditions do not imply
on the generality of Theorem 4.13.

Now we shall obtain an analogous result but the corresponding conditions will
be put on the parameter C'()\; zp) of Inin’s formula for an arbitrary zo € D. Before
to do that, we shall prove the following simple proposition:

Proposition 4.15. Let V' be a closed isometric operator in a Hilbert space H,
and zy € D be a fixed number. For an arbitrary ¢ € T the following two conditions
are equivalent:

(i) ¢7H e pe(V);

(i) =2 € (V).

¢—20
Proof. (i) = (ii). We may write:
V., — L= CZ_UEH = (V—%FEn)(Ex—2V)™' - L= CZ_O(EH — 2 V) (Ex — zV) ™
g — 20 C — %0
. 2
BB L )

The operator in the right-hand side has a bounded inverse, defined on (V —
('Er)D(V).
(17) = (i). We write:

1 1
V - EEH = (‘/ZU + Z_OEH)(EH _I_ 2‘/0‘/2:0)_1 - Z(EH + ZO‘/;J())(EH + ZO‘/Z())_l
¢ — 2o 1 —(z _
= C ‘/ZO - C_ZO EH (EH+ZO‘/Z()> 17
andﬁtherefore the operator on the right has a bounded inverse, defined on (V,, —
T2 En)D(Vz). O

Theorem 4.16. Let V' be a closed isometric operator in a Hilbert space H, and
A be an open arc of T such that (7! is a point of the reqular type of V, V¢ € A.
Let zg € D be an arbitrary fized point, and suppose that the following condition
holds:

Py (V)M%(V) =M1 (V), V(¢ € A. (4.78)
% THE &
Let R, = R,(V) be an arbitrary generalized resolvent of V', and C(\;z) €
S(D; N.,, N1) corresponds to R,(V) by the Inin formula (2.22). The operator-
0

valued function R,(V') has an analytic continuation on a set DUD, U A if and
only if the following conditions hold:
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1) C(X; 20) admits a continuation on a set DUA, which is continuous in the
uniform operator topology;

2) The continued function C(X; zo) maps isometrically N,,(V') on the whole
N (V), for all X € A;

3) The operator C(X; z9) — Wy, is invertible for all X € A, and
(C(N;20) = Wiy )N (V) = N (V), VA e A
20

Here the opemtor—valued function W, is defined by the following equality:
Z())\

Wiz PA- Ny (V f_ V)f feN(V), NeT.

l
Proof. At first, we notice that in the case zy = 0 this theorem coincides with
Theorem 4.13. Thus, we can now assume that zy € D\{0}.

Suppose that R, (V') admits an analytic continuation on a set DUD,UA. Recall
that the generalized resolvent R, (V) is connected with the generalized resolvent
R.(V,,) of V, by (2.24) and this correspondence is one-to-one. Therefore R, (V)
admits an analytic continuation on a set T, U Ay, where

AIZ{?: oA AEA}.

]_—Zo>\

By Proposition 4.15, points t !, ¢ € A, are points of the regular type of the
operator V,. Moreover, relation (4.76), written for V,, with ¢ € Ay, coincides
with relation (4.78). We can apply Theorem 4.13 to V,, and an open arc A;.
Then if we rewrite conditions 1)-3) of that theorem in terms of C'(X;2y), using
the one-to-one correspondence between C(A; zp) for V, and C'(X;0) for V,,, we
easily obtain conditions 1)-3) of the theorem.

On the other hand, let conditions 1)-3) be satisfied. Then conditions of Theo-
rem 4.13 for V., hold. Therefore the following function R, (V) admits an analytic
continuation on T, U A;. Consequently, the function R, (V') admits an analytic
continuation on DU D, U A. O

4.4. Spectral functions of a symmetric operator having a constant value
on an open real interval. Now we shall consider symmetric (not necessarily
densely defined) operators in a Hilbert space and obtain similar results for them
as for the isometric operators above. The next proposition is an analogue of
Proposition 4.1.

Proposition 4.17. Let A be a closed symmetric operator in a Hilbert space H,
and E(9), 6 € B(R), be its spectral measure. The following two conditions are
equivalent:
(i) E(A) =0, for an open (finite or infinite) interval A C R;
(ii) The generalized resolvent R,(A), corresponding to the spectral measure
E(6), admits an analytic continuation on a set R.UA, for an open (finite
or infinite) real interval A C R.

Proof. At first, suppose that the interval A is finite.
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(i)=-(ii). In this case relation (2.29) has the following form:

1 1
T Y

Choose an arbitrary number z; € A. Since the function —— is continuous and

t—zo
bounded on R\A, then there exists an integral

Lohg)= [ O o)

Then

((Rzh, h)u — Ly (h, h)| = |2 = =

1
/R\A (t—2)(t— Zo)d(E(-)h, h) i

1
ma |t — 2|t — 2o
There exists a neighborhood U(zg) of the point zy such that |z —¢| > M; > 0,

vVt € R\A, Vz € U(zy). Therefore the integral in the latter relation is bounded in
the neighborhood U(zy). We obtain that

(Roh,h)gr — Ly(h,h), z€R., z— 2z, VheH.

< |z — z| d(E()h,h)y, z€R..

Using the properties of sesquilinear forms we conclude that
(R,h,9)uw — Ly(h,g9), z€R., z— 2z, Vh,g€H.

Set
R; =w.— lim R, VzeA.

2€ERe, z2—Z

We may write

(z _1 ~(R. - RZO)h,h>H = /R\A = z)tt - 20>d(E(-)h, ),

z€Ul(z), he H.

The function under the integral sign is bounded in U(z), and it tends to ﬁ
By the Lebesgue theorem we get

1 1
I R.—R. ) = [ — dE(h )
Zggo(z_z[)( ) )H /R\A(t_w (E(-)h, )

and therefore

1 1
li R, - R, )h, = ———d(E(-)h, ,
i (2o Rng) = [ g

for h, g € H. Consequently, there exists the derivative of R, at z = 2.

(ii)=-(i). Choose an arbitrary element h € H, and consider the following function
on(t) := (Eth,h)y, t € R, where E; is a left-continuous spectral function of
A, corresponding to the spectral measure E(J). Consider an arbitrary interval
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[t1,t2] C A. Assume that t; and ty are points of the continuity of the function
E;. By the Stieltjes-Perron inversion formula we may write:

to
mu(t2) = onlt) = Jim [ T {(Roi )} do
1

If {z,}22,, 2z, € R, is an arbitrary sequence, tending to some real point x €
[t1, 2], then

Zn — T =1, n — OQ.
By the analyticity of the generalized resolvent in a neighborhood of z, we may
write:

R., — R;, R, — R, k — oo.
By property (2.30) we get
Rjk:R%ﬁRw, k — oo.

Therefore

R; = Rx, x € [tl,tg].
Using the last equality we write:

Im {(Rytiyh, )} = Im {(Ryh,h)p} =0, y— +0, x € [t,ta]..

Since the generalized resolvent is analytic in [t1, t5], the function Im {(Ry+iyh, h)p}
is continuous and bounded on [t,t5]. By the Lebesgue theorem we get

Uh(tl) = Uh(tg).

Since points were arbitrary it follows that the function o,(t) = (Eih,h)y is
constant on A. Since h was arbitrary,using properties of sesquilinear forms we
obtain that E; is constant.

Consider the case of an infinite A. In this case we can represent A as a
countable union (not necessarily disjunct) finite open real intervals. Applying
the proved part of the proposition for the finite intervals we easily obtain the
required statements. We shall also need to use the o-additivity of the orthogonal
spectral measures. O

The following auxiliary proposition is an analog of Proposition 4.15.

Proposition 4.18. Let A be a closed symmetric operator in a Hilbert space H,
and \g € R, be a fixred number. For an arbitrary A € R the following two condi-
tions are equivalent:

(ii) f\‘:—f\‘g € pr(Ux,(A)), where Uy,(A) is Cayley’s transformation of the oper-
ator A.
Proof. (i) = (4i). We may write:
A =X
A—Xo

A =X
A= Xo

Uy, (A) — By =Ey+ (Mo — Xo)(A—XEy)" — Ey

=
A—Xo

(A= AEg)(A— XEg)™.
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The operator on the right-hand side has the bounded inverse:
A — )\0 A — )\0

“Xo— Ao o — o

defined on M, (A).
(77) = (i). The following relation holds:

A= AEg = MEy+ (Mo — M) (Ur,(A) — Eg) ™t — AEy

A—Xo
= (Ao = A)(0x(4) - § )\0 Ep)(Uno(A) — Ex)~".
— Ao
The operator on the right has the bounded inverse:
1 A=Xo,,
m(U/\O(A) = Bi)(Un(A) = 1— )\EEH) g

defined on (Uy, (A) — 2220 Ey) D(Uy, (A)).

A—Xo

0 (A= NEg)(A—\Ey) ' = — (Bu + (A= Xo)(A = \Ex)™Y),

O

We shall need one more auxiliary proposition which is an addition to Theo-

rem 2.9

Proposition 4.19. Let A be a closed symmetric operator in a Hilbert space H,
and z € R, be a fized point. Let A C R be a (finite or infinite) open interval,
and Rs\(A) be a generalized resolvent of A. The following two conditions are

equivalent:

(i) The generalized resolvent R \(A) admits an analytic continuation on a

set R, UA;

(ii) The generalized resolvent Ry.(U.(A)), corresponding to the generalized
resolvent Rg\(A) by the one-to-one correspondence (2.34) from Theo-

rem 2.9, has an analytic continuation on T, U A, where
~ A\ —
A:{CE’JI‘: (=2"Z% AGA}.
A—7Z
If condition (i) is satisfied, the the following statements are true:
the interval A consists of points of the reqular type of A,
PAI—{[?(A)M)\(A) — ME(A), V)\ S A7
Moreover, condition (4.80) is equivalent to the following condition:
the interval A consists of points ¢ such that (7' is a point

of the regular type of U,(A);

and condition (4.81) is equivalent to the following condition:

Pit 0. anMc(Uo(A)) = Mo (Uo(A)),  VCeA.

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)
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Proof. (i)=(ii). Notice that the linear fractional transformation ¢ = 2=% maps

A—Z
the real line on the unit circle. Relation (2.34) in terms of ¢ reads
1 ¢

R (U:) = 1TCEH + (2 —7%) 1=y

Choose an arbitrary point Z € A. Set A = % € A. Consider an arbitrary

sequence {(x}72 4, ¢ € T.\{0}, tending to C. The sequence {152, Ak = % €
R.\{z,7z}, tends to A. Writing relation (4.84) for elements of this sequence and
passing to the limit we conclude that the generalized resolvent R, (U,) can be
continued by the continuity on A. For the limit values relation (4.84) holds. From
the analyticity of the right-hand side of this relation it follows the analyticity of
the continued generalized resolvent R.,.(U.).

(ii)=-(i). Let us express from (2.34) the generalized resolvent of A:

Rua(d) = 73 _ZEK_ 3 <Ru;;;;(Uz) - 2:

R,.x(4),  CeTA0}) (484)

zEH) : A e RN\{zZ}.
(4.85)

Proceeding in a similar manner as in the proof of the previous assertion we show
that R (A) admits a continuation by the continuity on A, and this continuation
is analytic.

Let condition (i) be satisfied. By the proved part condition (ii) holds, as
well. As it was noticed in Remark 4.14, in this case there hold conditions (4.82)
and (4.83). It is enough to check the equivalence of relations (4.80) and (4.82),
and also of relations (4.81) and (4.83). The first equivalence follows from the
definition of A and by Proposition 4.18. The second equivalence follows from
relation:

My (U.(A)) = Mz(4), M(U.(A)) = M:=<(4), (€A

1-¢

0J

Proposition 4.20. Let A be a closed symmetric operator in a Hilbert space H,
and z € R, be an arbitrary fized point. Let A C R be a (finite or infinite)
open interval, and conditions (4.80) and (4.81) hold. Consider an arbitrary
generalized resolvent Ry \(A) of A. Let Ry (U,(A)) be generalized resolvent,
corresponding to R\ (A) by relation (2.54) from Theorem 2.9, and C(X;0) €
S(D; No(U,(A)), Noo(U,(A))) corresponds to Ry, (U,(A)) by Inin’s formula (2.22).

The generalized resolvent R\ (A) admits an analytic continuation on R, U A
if and only if the following conditions hold:

1) C(X;0) admits a continuation on DUA and this continuation is continuous
in the uniform operator topology;

2) The continued function C(X;0) maps isometrically No(U,(A)) on the whole
Noo(U,(A)), for all X € A;

3) The operator C(X;0) — Wy is invertible for all A € A, and

(C(X0) = WO)NG(U.(A)) = Nu(U.(A)),  VA€A,
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where the operator-valued function Wy is defined for U.(A) by (4.60).
Here A is from (4.79).

Proof. By Proposition 4.19 a possibility of an analytic continuation of R, (A) on
R.UA is equivalent to a possibility of an analytic continuation of R, (U,(A)) on

T.UA. Using the equivalence of conditions (4.80),(4.81) and conditions (4.82),(4.83)

we can apply Theorem 4.13 for U,(A) and A, and the required result follows. [

Consider an arbitrary symmetric operator A in a Hilbert space H. Fix an
arbitrary number z € R.. Consider an arbitrary generalized resolvent R, (A)
of A and the corresponding to it by (4.85) the generalized resolvent R,..(U,) of
U.(A). The linear fractional transformation { = :\\:g maps II, onD. Restrict
relation (4.85) on II,:

Roal4) = _Zz)_(f_ 3 (RU;AZ(UZ) A —fEH) . AeIL\{z).

A== Z2—7

For the generalized resolvent R, Az (U,) we can use the Chumakin formula, and

for the generalized resolvent R (A) we can apply the Shtraus formula:

(Apey.. — AER) ™

z2—Z A—2z o -z
—(A—z)(A—z)<[EH_A—2(UZ@¢“)} _Z—zEH>’
A e T\ {z}.

where F()) is a function from S, (IL; N;(A),N3(A)), P, is a function from
S(D; No(U-(A)), No(U-(A))) = S(D; N (A), Nz(A)). Observe that ¢ = C((;0),
where C'((;0) is a parameter from the Inin formula, corresponding to R, e (U.).

After some transformations of the right-hand side we get
(Arey.: = ABH)

_ % (CAT R {EH - %(UZ - @;:;)} T oem
(4.86)

If for some h € H, h # 0, we had ((Uz & @%) — EH> h = 0, then we we would

1

set g = [EH - =2(U, @ CID%)} h # 0, and from (4.86) we would get

(Apn),: — >\EH)_1 g=70,

-1
what is impossible. Therefore there exists the inverse ((UZ SR %) — EH> .
Then

Apoy,: — ABg
A =7) By - AR e b (U.o@rs)~ Ea) . NI\
- H N_% z % z % H 3 z .
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After elementary transformations we get
—1
Ap = 2B + (2 = %) (U 0 @) — By) . A€ TL\{z}.

Recalling the definition of the quasi-self-adjoint extension Ap(y) . we write:
-1
(U= 0 FO) = Bn) ™" = (0. © @) = Bu)

U.0 F() =U.®®x.,  A€IL\{z}.

Therefore

A—2z
F(A)=¢§T:C(A_z;0), A€ IL, (4.87)

z

where the equality for A = z follows from the continuity of F'(\) and ®.

Theorem 4.21. Let A be a closed symmetric operator in a Hilbert space H, and
z € R, be an arbitrary fived point. Let A C R be a (finite or infinite) open
interval, and conditions (4.80) and (4.81) hold. Consider an arbitrary general-
ized resolvent Rg\(A) of A. Let F(A\) € Sa.(IL;; NL(A),Nz(A)) corresponds to
R\ (A) by the Shtraus formula (5.118). The generalized resolvent Ry \(A) ad-

mits an analytic continuation on R, U A if and only if the following conditions
hold:

1) F(\) admits a continuation onR,UA and this continuation is continuous
i the uniform operator topology;

2) The continued function F(\) maps isometrically N, (A) on the whole Nz(A),
for all A € A;

3) The operator F'(X) — Wi is invertible for all A € A, and

(F(X) = WHNL(A) = Nz(4), VA e A,
where Wy = Wiz, A € A, and W¢ is defined for U,(A) by (4.60).

Proof. For the generalized resolvent R, (A) by (4.85) it corresponds a generalized
resolvent of the Cayley transformation R, (U.(A)).

Let C(¢;0) € S(D; No(U,(A)), Noo(U.(A))) be a parameter from Inin’s formula,
corresponding to R.,¢(U.(A)). Consider an arc A from (4.79).

Necessity. Let the generalized resolvent R, (A) admits an analytic continuation
on R, UA. By 4.20 for the parameter C'(¢;0) it holds:

(a) C(¢;0) admits a continuation on DUA and this continuation is continuous
in the uniform operator topology;

(b) The continued function C(¢;0) maps isometrically No(U,(A)) = N,(A)
on the whole Noo(U,(A)) = Nx(A), for all ¢ € A;

(c) The operator C((;0) — W, is invertible for all ¢ € A, and

(C(G:0) = WO No(U(A)) = Nwo(Ux(A)), ¢ € A,
where W¢ is defined for U,(A) by (4.60).
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Define a function F, (\) in the following way:

)\_
F+()\):C()\_;O>, Aell UA.

By (4.87) this function is an extension of the parameter F'(\), corresponding to
the generalized resolvent by the Shtraus formula. From condition (a) it follows
that this continuation is continuous in the uniform operator topology. From
condition (b) it follows that F (\) maps isometrically NV, (A) on the whole Nz(A),
for all A € A. Consider a function W, = Wi:, A€ A. From condition (c) it

follows that F. (A;0) — W, is invertible for all A € A, and
(Fr(A) = WhN(A) = Nz(A), VA €A,

Sufficiency. Suppose that for the parameter F'(\), corresponding to the gener-
alized resolvent R (A) by the Shtraus formula, conditions 1)-3) hold. Define a
function C'(¢;0) in the following way:

o z—2C

By (4.87) this function is a continuation of the parameter C({;0). From con-
dition 1) it follows that this continuation is continuous in the uniform oper-
ator topology. From condition 2) it follows that C.,((;0) maps isometrically

No(U-(A)) = N.(A) on the whole Ny (U.(A)) = Nx(A), for all { € A. Finally,
condition 3) means that C;(¢;0) — W, is invertible for all {( € A, and
(CL(C;0) = WONo(Ux(A)) = No(U=(4)), V¢ €A

By Proposition 4.20 we conclude that the generalized resolvent R\ (A) admits
an analytic continuation on R, U A. O

), (eDUA.

Notice that by (4.60) the function W, from the formulation of the last theorem
has the following form:

A—7Z
WAPJ\IZ(A)f = Epﬁz(,q)f, feN(A), e A.

Moreover, we emphasize that conditions (4.80) and (4.81) are necessary for the
existence at least one generalized resolvent of A, which admits an analytic contin-
uation on R.UA. Consequently, these conditions does not imply on the generality
of a description such generalized resolvents in Theorem 4.21.

5. FORMAL CREDITS.

Section 2. §2.1. Results of this subsection, except for Propositions, belong

to Chumakin, see [1, 6]. Propositions 2.4-2.6 belong to Shtraus, see [38, footnote
on page 83|, [11, Lemma 1.1, Lemma 1.2].

§2.2. Chumakin’s formula appeared in papers of Chumakin [1] and [0].

§2.3. Inin’s formula was obtained in the paper [16, Theorem]. Our proof differs

from the original proof and it is based directly on the use of Chumakin’s formula
for the generalized resolvents and a method which is similar to the method of
Chumakin in the paper [5].
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§2.4. The definition of the generalized resolvent of a symmetric, not necessarily
densely defined operator in a Hilbert space belongs to Shtraus and he established
its basic properties, see [38, 12]. A connection between the generalized resolvents
of a symmetric operator and the generalized resolvent its Cayley transformation
(Theorem 2.9) in a somewhat less general form was established by Chumakin
in [5].

§2.5. The Shtraus formula was obtained in [38]. Our proof differs from the
original one and we follow the idea of Chumakin, proposed in [5].

Section 3. This section is based on results of Shtraus from papers [38, 39, 10,

, 12], see also references in these papers.

Section 4.  §4.1. Proposition 4.1 is an analog of Theorem 3.1 (A),(B) in
a paper of McKelvey [30], see also [15, Lemma 1.1]. Theorem 4.2 is an analog
of Theorem 2.1 (A) in a paper of McKelvey [30]. Theorem 4.4 is an analog of
Theorem 2.1 (B) in a paper of McKelvey [30].

§4.2. Theorem 4.6 appeared in [30, Lemma 1]. However her proof was based
on a lemma of Shmulyan [37, Lemma 3]|. As far as we know, no correct proof
of this lemma was published. An attempt to prove the lemma of Shmulyan was
performed by L.A. Shtraus in [13, Lemmal]. Unfortunately, the proof was not
complete. We used the idea of L.A. Shtraus for the proof of a weaker result:
Theorem 4.6.

§4.3. Results of this subsection mostly belong to Ryabtseva, in some cases with
our filling of gaps in proofs, corrections and a generalization. For Lemmas 4.9,
4.10 see Lemma 2 and its corollary, and also Lemma 3 in [36]. Theorem 4.11 was
obtained in [30, Theorem 1]. Theorem 4.12 is a corrected version of Theorem 2
in [36]. Theorem 4.13 is a little corrected version of Theorem 4 in [36]. For
Proposition 4.15 see [16, p. 34].

§4.4. Proposition 4.17 is contained in Theorem 3.1 (A),(B) in a paper of McK-
elvey [30], see also [15, Lemma 1.1]. Theorem 4.21 is close to results of Varlamova-
Luks, see [17, Theorem], [16, Theorem 2], [15, Theorem 3.1].

Some results from Section 4 were appeared in [53].
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