
Ann. Funct. Anal. 4 (2013), no. 2, 183–194
A nnals of Functional A nalysis

ISSN: 2008-8752 (electronic)

URL:www.emis.de/journals/AFA/

CONVEXITY, SUBADDITIVITY AND GENERALIZED
JENSEN’S INEQUALITY

SHOSHANA ABRAMOVICH

Communicated by C. P. Niculescu

Abstract. In this paper we extend some theorems published lately on the
relationship between convexity/concavity, and subadditivity/superadditivity.
We also generalize inequalities of compound functions that refine Minkowski
inequality.

1. Introduction

In recent publications the relationships between convexity/concavity and sub-
additivity/superadditivity are discussed.

In this paper we use results that appeared in [1, 2, 3, 7, 8] to extend some the-
orems published about this subject in [4, 5, 6]. We also use the classical Jensen’s
inequality to generalize [9].

We start with some definitions needed in the sequel.

Definition 1.1. A convex cone is a subset C of a linear space X that satisfies
(i) x, y ∈ C =⇒ x+ y ∈ C,
(ii) x ∈ C, α > 0 =⇒ αx ∈ C.

Let C be a convex cone in a linear space. A functional a : C → R is called
subadditive (superadditive, resp.) on C if a (x) + a (y) ≥ (≤, resp.) a (x+ y) for
any x, y ∈ C.

Definition 1.2. Let fi : Ii → R+, Ii ⊆ (0,∞) , i = 1, · · · ,m− 1.
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Denote for r, s ∈ {1, · · · ,m− 1} with r ≤ s,

Gr,s (xr, xr+1, · · · , xs+1)

= xrfr

(
xr+1

xr
fr+1

(
xr+2

xr+1

, · · · , fs−1
(

xs
xs−1

fs

(
xs+1

xs

))))
, (1.1)

Gs+1,s (x) = x,

where
1

xi
Gi+1,m−1 (xi+1, · · · , xm) ∈ Ii, .i = 1, · · · ,m− 1.

In particular

G1,m−1 (x) = G1,m−1 (x1, x2, · · · , xm) = x1f1

(
x2
x1
f2

(
x3
x2
· · · fm−1

(
xm
xm−1

)))
.

(1.2)

Definition 1.3. We say that a set of convex and concave functions fi, i =
1, · · · ,m − 1 satisfies the Monotonicity Condition (MC) if all the pairs of
functions (fk, fk+1) , k = 1, · · · ,m− 2 satisfy the following:

(i) when both functions fk and fk+1 are either convex or concave, then fk
is increasing.

(ii) when either fk is convex and fk+1 is concave or fk is concave and fk+1

is convex, then fk is decreasing.

In [8, theorems 3 and 4] the following assertions are proved:
If f : Rk

+ → R+ is bounded in the neighbourhood of 0, f (0) = 0, and f
satisfies af (x) + bf (y) ≥ f (ax+ by) , x, y ∈ Rk

+, where a and b are positive real

numbers, then, for each i = 1, · · · , k, hi : Rk−1
+ → R+ defined by

hi (x1, · · · , xi−1, xi+1, · · · , xk) = f (x1, · · · , xi−1, 1, xi+1, · · · , xk)
is convex, and

f (x1, · · · , xk) = hi

(
x1
xi
, · · · , xi−1

xi
,
xi+1

xi
, · · · , xk

xi

)
xi, xi > 0 .

Conversely, if h : Rk−1
+ → R+ is convex, then for each i = 1, · · · , k the func-

tion f : Rk
+ → R+ given by f (x1, · · · , xk) = h

(
x1
xi
, · · · , xi−1

xi
, xi+1

xi
, · · · , xk

xi

)
xi,

xi > 0 satisfies af (x) + bf (y) ≥ f (ax+ by) , x, y ∈ Rk
+, where a and b are

positive real numbers.
From these results and also independently for somewhat different conditions in

[2], the following theorem is obtained which is crucial for our ivestigation:

Theorem 1.4. [2, Theorem 1] Let fi : Ii → R+, Ii ⊆ (0,∞) , i = 1, · · · ,m − 1
be a set of functions with the MC property.

a) Let p and q be positive real numbers. If fr is a concave function, then for
x = (xr, · · · , xs+1) and y = (yr, · · · , ys+1) we have for any s, s ∈ {r, · · · ,m− 1}

pGr,s (x) + qGr,s (y) ≤ Gr,s (px + qy) .

If fr is a convex function then the reversed inequality holds.
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b) If fr is a concave function, then Gr,s is a superadditive and concave
function. If fr is a convex function, then Gr,s is a subadditive and convex.

Remark 1.5. Theorem 1.4 still holds when f1 : I1 → R instead of f1 : I1 → R+

as explained in [3, Remark 1].

The main results of this paper are presented and proved in Section 2. There
we start with the proof of Lemma 2.1 which deals with inequalities related to
compound monotone functions.

The results of Theorem 2.4 in which we get inequalities involving convex/concave
functions and subadditive/superadditive functionals that extend results of [1, 4, 5]
and [6], are obtained by using Lemma 2.1 and Theorem 1.4.

In Section 3 some examples of Theorem 2.4 and Lemma 2.1 are demonstrated.

2. Main Results

In the following Theorem 2.4 we present and prove inequalities related to
F (G1,m−1 (a)) , a = (a1, · · · , am) . These inequalities involve monotone convex
and concave functions fi, i = 1, · · · ,m − 1 that compose G1,m−1 as defined in
(1.2), subadditive and superadditive functionals ai, i = 1, · · · ,m that replace the
xi-th in (1.2), in addition to a subadditive/superadditive monotone function F.
These inequalities are associated with generalized Jensen and Hölder inequalities
presented in [1, 7, 2, 3].

To prove Theorem 2.4 below we first prove the following lemma

Lemma 2.1. Let functions fi : Ii → R+, Ii ⊆ (0,∞) , i = 1, · · · ,m − 1 be such
that

a) the functions fkj , j = 1, · · · , l, 0 ≤ kl ≤ m−1 are decreasing on Ikj and
fi, i = 1, · · · ,m− 1, i 6= kj, j = 1, · · · , l are increasing on Ii.

b) for Ai denoted as

Ai = Gi+1,m−1 (xi+1, · · · , xm) , i = 1, · · · ,m− 2

the

range

(
1

xi
Ai

)
⊆ Ii, i = 1, · · · ,m− 2

is satisfied.
c) (−1)di gi (x) is increasing when Ai

x
⊆ Ii for fixed integers di where

gi (x) = xfi

(
Ai
x

)
, i = 1, · · · ,m− 1. (2.1)

If

(−1)di+j (zi − yi) ≥ 0, i = kj + 1, · · · , kj+1, j = 0, · · · , l,
k0 = 0, kl+1 = m− 1, (−1)l (zm − ym) ≥ 0,

then
G1,m−1 (z1, · · · , zm) ≥ G1,m−1 (y1, · · · , ym) . (2.2)

In particular, when m = 2 and f is increasing (decreasing) (−1)d g is increasing,

if (−1)d (z1 − y1) ≥ 0, z2 − y2 ≥ (≤) 0,
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then

z1f

(
z2
z1

)
≥ y1f

(
y2
y1

)
.

Proof. Let us replace in G1,m−1 (z1, .., zr, .., zm) a specific term zr with yr, 1 ≤ r ≤
m − 1, for which there is a specific j0 such that kj0 + 1 ≤ r ≤ kj0+1where kj0 is
the j0-th decreasing fi.

According to (1.1), (1.2) and (2.1)

G1,m−1 (z1, · · · , zr, · · · , zm) = G1,r−1 (z1, z2, · · · , zr−1, Gr,m−1 (zr, · · · , zm))

= G1,r−1

(
z1, · · · , zr−1, zrfr

(
Ar
zr

))
= G1,r−1 (z1, · · · , zr−1, gr (zr)) .

Therefore, if the compound function f1 ◦ f2 ◦ · · · ◦ fr−1 ◦ gr is increasing and
zr − yr ≥ 0 we get that

G1,m−1 (z1, · · · , zr, · · · , zm) ≥ G1,m−1 (z1, · · · , yr, · · · , zm) . (2.3)

If the compound function f1 ◦ f2 ◦ · · · ◦ fr−1 ◦ gr is decreasing and zr − yr ≤ 0
then inequality (2.3) holds too.

Both these possibilities are combined in the condition (−1)dr+j0 (zr − yr) ≥ 0,
when kj0 + 1 ≤ r ≤ kj0+1, where fkj0 , is the j0-th decreasing fi . For r = m, a

similar reasoning leads to inequality (2.3) when (−1)l (zm − ym) ≥ 0.
Going over all r = 1, · · · ,m we get inequality (2.2). �

Remark 2.2. From Remark 1.5 it is obvious that Lemma 2.1 holds if we relax the
condition on the range of the function f1, so that f1 : I1 → R, I1 ⊆ (0,∞) .

Corollary 2.3. Let a (x), b (x) and F (x) be positive concave functions, F (x)
and xF

(
1
x

)
be increasing functions on (0,∞) , and let y (x) , z (x) , u (x) , v (x)

be positive functions. Then∫
y (x) a

(
z (x)

y (x)

)
F

u (x) b
(
v(x)
u(x)

)
y (x) a

(
z(x)
y(x)

)
 dx

≤
(∫

y (x) dx

)
a

(∫
z (x) dx∫
y (x) dx

)
F

(∫ u (x) dx
)
b
( ∫

v(x)dx∫
u(x)dx

)
(∫

y (x) dx
)
a
( ∫

z(x)dx∫
y(x)dx

)
 . (2.4)

Indeed, from the concavity of F we get by Jensen’s inequality that∫
y (x) a

(
z (x)

y (x)

)
F

u (x) b
(
v(x)
u(x)

)
y (x) a

(
z(x)
y(x)

)
 dx

≤
(∫

y (x) a

(
z (x)

y (x)

)
dx

)
F

∫ u (x) b
(
v(x)
u(x)

)
dx∫

y (x) a
(
z(x)
y(x)

)
dx

 . (2.5)
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By choosing

y1 =

∫
y (x) a

(
z (x)

y (x)

)
dx, y2 =

∫
u (x) b

(
v (x)

u (x)

)
dx

and

z1 =

(∫
y (x) dx

)
a

(∫
z (x) dx∫
y (x) dx

)
, z2 =

(∫
u (x) dx

)
b

(∫
v (x) dx∫
u (x) dx

)
,

we get that

y1 =

∫
y (x) a

(
z (x)

y (x)

)
dx ≤

(∫
y (x) dx

)
a

(∫
z (x) dx∫
y (x) dx

)
= z1

and

y2 =

∫
u (x) b

(
v (x)

u (x)

)
dx ≤

(∫
u (x) dx

)
b

(∫
v (x) dx∫
u (x) dx

)
= z2

hold.
Now, applying Lemma 2.1(∫
y (x) a

(
z (x)

y (x)

)
dx

)
F

∫ u (x) b
(
v(x)
u(x)

)
dx∫

y (x) a
(
z(x)
y(x)

)
dx


≤

(∫
y (x) dx

)
a

(∫
z (x) dx∫
y (x) dx

)
F

(∫ u (x) dx
)
b
( ∫

v(x)dx∫
u(x)dx

)
(∫

y (x) dx
)
a
( ∫

z(x)dx∫
y(x)dx

)
 (2.6)

holds. Hence from (2.5) and (2.6) we get (2.4).

A special case of (2.4) was proved in [9] which will be discussed in Section 3.

Now we are ready to prove the following theorem by using Theorem 1.4 and
Lemma 2.1.

Theorem 2.4. Let fi : Ii → R+, Ii ⊆ (0,∞) , i = 1, · · · ,m − 1, be a set of
functions with the MC property where conditions a), b), and c) of Lemma 2.1 are
satisfied.

Let ai : Ci → R+, where Ci are convex cones in the linear spaces Xi, and let ai,
i = 1, · · · ,m be either subadditive functionals on Ci or superadditive functionals
on Ci satisfying

range

{
1

ai
Gi+1,m−1 (ai+1, · · · , am)

}
⊆ Ii.

Let F : I0 → R, I0 ⊆ R+ be monotone and either subadditive on I0 or superaddi-
tive on I0 and range {Gi,m−1 (a1, · · · , am)} ⊆ I0.

A) If F is increasing and subadditive (superadditive), f1 is convex (con-

cave), (−1)di+j ai are subadditive (superadditive) for i = kj + 1, · · · , kj+1, j =

0, · · · , l, k0 = 0, kl+1 = m − 1 and (−1)l am is subadditive (superadditive), then
the compound functional

H = F ◦G1,m−1 : C1 ×C2 × · · · ×Cm → R
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is subadditive (superadditive). That is

F (G1,m−1 (a1 (t1) , · · · , am (tm))) + F (G1,m−1 (a1 (s1) , · · · , am (sm)))

≥ (≤)F (G1,m−1 (a1 (t1 + s1) , · · · , am (tm + sm))) . (2.7)

B) If F is decreasing and subadditive (superadditive) and f1 concave (con-

vex) (−1)di+j ai are superadditive (subadditive), i = kj + 1, · · · , kj+1, j = 0, · · · , l
and (−1)l am is superadditive (subadditive). Then the compound functional

H = F ◦G1,m−1 : C1 ×C2 × · · · ×Cm → R
is subadditive (superadditive) that is (2.7) holds.

Proof. We will prove here case B) of the theorem where F is decreasing and
subadditive. The other cases follow similarly.

From case b in Theorem 1.4 it follows that when f1 is concave and fi, i =
1, · · · ,m− 1 satisfy the MC condition,

G1,m−1 (a1 (t1) , · · · , am (tm)) +G1,m−1 (a1 (s1) , · · · , am (sm))

≤ G1,m−1 (a1 (t1) + a1 (s1) , · · · , am (tm) + am (sm)) (2.8)

holds. In our case it is given that (−1)di+j ai, i = kj + 1, · · · , kj+1, j = 0, · · · , l,
are superadditive, which means that

(−1)di+j (ai (ti + si)− (ai (ti) + ai (si))) ≥ 0,

i = kj + 1, · · · , kj+1, j = 0, · · · , l,
and

(−1)l (am (tm + sm)− (am (tm) + am (sm))) ≥ 0.

Using Lemma 2.1 for

ai (ti + si) = zi, ai (ti) + ai (si) = yi,

we get from (2.2) that

G1,m−1 (a1 (t1) + a1 (s1) , · · · , am (tm) + am (sm))

≤ G1,m−1 (a1 (t1 + s1) , · · · , am (tm + sm)) . (2.9)

Inequalities (2.8) and (2.9) lead to

G1,m−1 (a1 (t1) , · · · , am (tm)) +G1,m−1 (a1 (s1) , · · · , am (sm))

≤ G1,m−1 (a1 (t1 + s1) , · · · , am (tm + sm)) . (2.10)

Now as F is subadditive we get that

F (G1,m−1 (a1 (t1) , · · · , am (tm))) + F (G1,m−1 (a1 (s1) , · · · , am (sm)))

≥ F (G1,m−1 (a1 (t1) , · · · , am (tm)) +G1,m−1 (a1 (s1) , · · · , am (sm))) . (2.11)

Because F is decreasing, inequalities (2.10) and (2.11) yield

F (G1,m−1 (a1 (t1) , · · · , am (tm))) + F (G1,m−1 (a1 (s1) , · · · , am (sm)))

≥ F (G1,m−1 (a1 (t1 + s1) , · · · , am (tm + sm))) ,

hence H = F ◦G1,m−1 : C1 ×C2 × · · · ×Cm → R is subadditive.
This completes the proof of the theorem. �
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All the notations in the following Corollary 2.5 are as in Theorem 1.4, Theorem
2.4 and Lemma 2.1.

Corollary 2.5. Let Ci, be convex cones in linear spaces Xi, i = 1, 2.
(i) If ai : Ci → (0,∞) , are superadditive (subadditive) functionals on Ci,

i = 1, 2, f : [0,∞) → R, g : [0,∞) → R are concave (convex) and monotonic

nondecreasing, where g (x) = xf
(
1
x

)
, then H : C1×C2 → R, H = a1 (t) f

(
a2(s)
a1(t)

)
is a supereadditive (subadditive) functional.

(ii) If a1 : C1 → (0,∞) is a subadditive (superadditive) functional on C1,
a2 : C2 → (0,∞) is a superadditive (subadditive) functional on C2, f : [0,∞)→
R is convex (concave) and monotonic nonincreasing, and g (x) is nondecreasing,

then H = a1 (t) f
(
a2(s)
a1(t)

)
is a subadditive (superadditive) functional on C.

In particular the same results on H are obtained also when a1 is additive and
in this case the conditions on g are redundant. This special case was proved in [5,
Theorem 5]. To see Corollary 2.5(i) take in Theorem 2.4 F (x) = x, m = 2, l = 0,
d = 0, and to see Corollary 2.5(ii), take m = 2, l = 1, d = 1 in Theorem 2.4,

Corollary 2.6. Let Ci be convex cones in linear spaces Xi , i = 1, · · · ,m
a) If fi and gi, i = 1, · · · ,m− 1 are non-negative concave increasing func-

tions on (0,∞) where gi (x) = xfi
(
1
x

)
and ai : Ci → R+, i = 1, · · · ,m are

superadditive then G1,m−1 (a1 (t1) , · · · , am (tm)) is superadditive in (t1, · · · , tm) .
In particular this case holds when fi, i = 1, · · · , n− 1 are differentiable nonneg-
ative concave increasing functions on [0,∞) satisfying fi (0) = lim

z→0+
zf ′i (z) = 0

because then gi are nonnegative increasing too. For example let fi (x) = xαi ,
x ≥ 0, 0 < αi < 1, i = 1, · · · ,m− 1.

b) If fi are non-negative convex increasing functions on (0,∞) , gi are non-
negative decreasing on (0,∞) , i = 1, · · · ,m− 1, ai : Ci → R+, i = 1, · · · ,m− 1
are superadditive and am is subadditive, then G1,m−1 (a1 (t1) , · · · , am (tm)) is sub-
additive in (t1, · · · , tm) . In particular this case holds when fi, i = 1, · · · , n − 1
are differentiable nonnegative convex increasing functions on [0,∞) satisfying
fi (0) = lim

z→0+
zf ′i (z) = 0 because then gi are decreasing.

For example let fi (x) = xαi , x ≥ 0, αi > 1, i = 1, · · · ,m− 1.

3. Examples and Comments

Example 3.1. A special case of Corollary 2.3 was proved in [9] by choosing

for x > 0, p, s, t > 1, 0 < s−p
s−t ≤ 1, F (x) = x

s−p
s−t , a (x) =

(
1 + x

1
s

)s
, b (x) =(

1 + x
1
t

)t
, y (x) = f s (x) , z (x) = gs (x) , u (x) = f t (x) , v (x) = gt (x) , where

f (x) , g (x) ≥ 0.
From this choice of the concave increasing functions F (x) , a (x) , b (x) , and

xF
(
1
x

)
we get inequality 3 in [9], that refines Minkowski’s inequality:∫

(f (x) + g (x))p dx (3.1)
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=

∫
f s (x)

(
1 +

(
gs (x)

f s (x)

) 1
s

)s


f t (x)

(
1 +

(
gt(x)
f t(x)

) 1
t

)t
f s (x)

(
1 +

(
gs(x)

fs (x)

) 1
s

)s


s−p
s−t

dx

≤
∫
f s (x) dx

(
1 +

(∫
gs (x) dx∫
f s (x) dx

) 1
s

)s


∫
f t (x) dx

(
1 +

( ∫
gt(x)dx∫
f t(x)dx

) 1
t

)t
∫
f s (x) dx

(
1 +

( ∫
gs(x)dx∫
fs (x)dx

) 1
s

)s


s−p
s−t

=

((∫
f s (x) dx

) 1
s

+

(∫
gs (x) dx

) 1
s

)s( p−t
s−t )

×

((∫
f t (x) dx

) 1
t

+

(∫
gt (x) dx

) 1
t

)t( s−p
s−t )

.

From Corollary 2.3 we get the reverse of inequality (3.1) when s−p
s−t > 1, s > 1,

0 < t < 1 and also when s−p
s−t < 0, 0 < s < 1, t > 1.

The four examples below can be derived from Theorem 2.4 as special cases.

Example 3.2. [6, Theorem 6] Let C be a convex cone in a linear space X. If
a1 : C → (0,∞) is a subadditive functional on C and a2 : C → (0,∞) is a
superadditive functional then

H (x) =
a21 (x)

a2 (x)

is a subadditive functional on C.
This follows from Theorem 2.4 and from Corollary 2.5 by observing that

a21(x)

a2(x)
=

a1 (x)
(
a2(x)
a1(x)

)−1
, m = 2, F (x) = x, f1 (x) = x−1, is a convex decreasing function

on (0,∞) , and xf
(
1
x

)
= x2 is increasing on (0,∞) .

All other results quoted below from [4, 5] deal only with additive a1.
The following example appears in [4, Theorem 2.1, Corollary 2.2]:

Example 3.3. Let C be a convex cone in a linear space X and a1 : C→ (0,∞)
be an additive functional on C. If h : C→ [0,∞) is a superadditive (subadditive)

functional on C and p, q ≥ 1 (0 < p, q < 1) , then Hp,q (x) = a
q(1− 1

p)
1 (x)hq (x) is

a superadditive (subadditive) functional on C.

Take F (x) = xq and f (x) = x
1
p , a2 (x) = hp (x) and observe that if p > 1,

(0 < p < 1) and h is superadditive (subadditive) then a2 (x) is also superadditive

(subadditive). Also observe that f (x) = x
1
p , p ≥ 1, (0 < p < 1) is concave

(convex) and increasing, and F (x) = xq, q ≥ 1 is superadditive (subadditive)
and increasing.
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From these observations, we conclude that:

Hp,q (x) = a
q(1− 1

p)
1 (x)hq (x) =

(
a1 (x)

(
a2 (x)

a1 (x)

) 1
p

)q

, a2 (x) = hp (x) .

is superadditive (subadditive) on C.

Theorem 2.5 and Corollary 2.6 in [4] are also special cases of Theorem 2.4. It
says:

Example 3.4. Let X, C and a1 be as in Example 3.3. If h : C → (0,∞) is a
superadditive functional on C and 0 < p, q < 1 then the functional H : C →
(0,∞) , H (x) = 1

a
q( 1

p−1)
1 (x)hq(x)

is subadditive on C.

This follows from Theorem 2.4 by observing that

1

a
q( 1

p
−1)

1 (x)hq (x)

=

(
a1 (x)

(
h−p (x)

a1 (x)

) 1
p

)q

,

and by observing also that when h is superadditive, a2 = h−p is subadditive for

p > 0, and that f (x) = x
1
p , x > 0 is convex increasing and that F (x) = xq is

subadditive increasing.

More special cases of Theorem 2.4 are the following (demonstrated in [5, Propo-
sition 1]):

Example 3.5. Let C be a convex cone in a linear space X and a1 : C→ (0,∞)
be an additive functional on C.

(i) If a2 : C → (0,∞) is a superadditive functional on C and r > 0 then

H (x) := (a1(x))
1+r

(a2(x))
r is subadditive on C. In particular

a21(x)

a22(x)
is subadditive.

(ii) If a2 : C → (0,∞) is a superadditive functional on C q ∈ (0, 1) then

H := a1−q1 (x) aq2 is superadditive on C. In particular
√
a1 (x) a2 (x) is superaddi-

tive.
(iii) If a2 : C → (0,∞) is a subadditive functional on C and p ≥ 1, then

H (x) := (a2(x))
p

(a1(x))
p−1 is subadditive on C. In particular

a22(x)

a1(x)
is subadditive.

We see that these three cases hold as special cases of Theorem 2.4 and Corollary
2.5 by rewriting

(a1(x))
1+r

(a1(x))
r = a1 (x)

(
a2(x)
a1(x)

)−r
, f1 (x) = x−r, x > 0

a1−q1 · aq2 = a1 (x)
(
a2(x)
a1(x)

)q
, f1 (x) = xq, x > 0

(a2(x))
p

(a1(x))
p−1 = a1 (x)

(
a2(x)
a1(x)

)p
, f1 (x) = xp, x > 0,

and taking in Theorem 2.4 F (x) = x, m = 2.
Theorem 6 in [5] deals with log-convex (log-concave) functions that means a

function f for which log f is convex (concave). The results there follow from



192 S. ABRAMOVICH

Theorem 2.4 for F (x) = x, m = 2 and the convex (concave) function f1 (x) =
logf .

In the next comments we deal with subadditive/superadditive functionals re-
lated to the Minkowski and Hölder inequalities. Although the results may be
obtained by a direct and simple way it is interesting to see how they are special
cases of Theorem 2.4.

In [2] the functions

G1,m−1 (x1, · · · , xm) =

(
x

1
p

1 + · · ·+ x
1
p
m

)p
and

G1,m−1 (x1, · · · , xm) =

(
w1x

1
p

1 + · · ·+ wmx
1
p
m

)p
,

xi, wi > 0, i = 1, · · · ,m,
m∑
i=1

wi = 1

are dealt with. Here we add conditions on ai, i = 1, · · · ,m, and get comments
(i) and (ii):

Comment (i). Let p > 1 be a real number and f be the real function
defined by

f (x) =
(

1 + x
1
p

)p
, x > 0.

Let f1 = · · · = fm−1 = f. Let C be a convex cone in a linear space X, and
ai (t) : C→ R+ be superadditive on C, i = 1, · · · ,m.

Then

G1,m−1 (a1 (t) , · · · , am (t)) =

(
a

1
p

1 (t) + · · ·+ a
1
p
m (t)

)p
is superadditive in t.

This result follows from Corollary 2.6a because fi are concave and fi and
gi (x) = xfi

(
1
x

)
= fi (x) , i = 1, · · · ,m− 1 are increasing.

Comment (ii). Given functions fi as

fi(x) =

(
1 +

wi+1

wi
xr
)1/r

, x > 0, i = 2, . . . ,m− 1,

f1(x) = (w1 + w2x
r)1/r, x > 0,

where wi > 0, i = 1, · · · ,m,
∑m

i=1wi = 1, r ≤ 1, r 6= 0.
As shown in ([2]) the functionG1,m−1 for these special functions fi, i = 1, · · · ,m

have the form

G1,m−1(x1, . . . , xm) = (w1x
r
1 + . . .+ wmx

r
m)1/r,

which is exactly the power mean of order r of a sequence x = (x1, . . . , xm) with
weights w = (w1, . . . , wm).
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Let C be a convex cone of a linear space X, ai : C → R+, i = 1, . . . ,m be
superadditive functionals and the functions fi, and gi (x) = xf

(
A
x

)
, A > 0,

i = 1, . . . ,m− 1, be increasing and concave. Therefore Corollary 2.6a holds, that
is, G1,m−1(a1 (t) , . . . , am (t)) = (w1a

r
1 (t) + . . .+ wma

r
m (t))1/r is superadditive.

Comment (iii). Let C be a convex cone in a linear space X, and ai (t) :
C → R+, i = 1, · · · ,m be superadditive functional on C. Let also pi > 0, i =

1, · · · ,m,
∑m

i=1
1
pi

= 1. Then H =
m

Π
i=1
a

1
p

i (t) is superadditive on C.

Comment (iv). Let C be a convex cone in a linear space X, ai (t) : C→
R+, i = 1, · · · ,m− 1 be superadditive functionals on C and am (t) : C→ R+ be
subadditive. Let pi < 0, i = 1, · · · ,m− 1, pm > 1,

∑m
i=1

1
pi

= 1.

Then H =
m

Π
i=1
a

1
p

i (t) is subadditive on C.

As in [1, 2, 3] it can be verified that

m

Π
i=1
a

1
p

i = a1

a2
a1

(
a3
a2
· · ·
(

am
am−1

) 1
qm−1

) 1
q2


1
q1

,

where
1
q1

= 1− 1
p1
, 1

qi
= 1− q1···qi−1

pi
, i = 2, · · · ,m− 1,

q1q2 · · · qm−1 = pm
1

q1q2···qi = 1−
∑i

j=1
1
pj
, i = 1, · · · ,m− 1.

It is easy to see that when pi > 0, i = 1, · · · ,m,
∑m

i=1
1
pi

= 1, qi > 1, fi (x) = x
1
qi ,

x > 0, i = 1, · · · ,m−1 are concave increasing and so are gi (x) = xfi
(
A
x

)
, A > 0,

and Corollary 2.6a) holds, and therefore Comment (iii) holds too.

In Comment (iv) it is easy to see that 1
qi
> 1, fi (x) = x

1
qi , x > 0, are convex

increasing and gi, i = 1, · · · ,m− 1 are decreasing and Corollary 2.6b) holds and
therefore Comment (iv) holds too.
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