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Abstract. In this paper, we give a sufficient and necessary condition for
an analytic function f(z) on the unit disc D with Hadamard gaps, that is, for

f(z) =
∞∑
k=1

akz
nk where nk+1

nk
≥ λ > 1 for all k ∈ N, belongs to the Bloch–Orlicz

space Bϕ. As an application of our results, the compactness of composition
operator are discussed.

1. Introduction

Let D be the unit disc in the complex plane C, and let H(D) be the class of all
holomorphic functions on D. Recall that the Bloch-type space, for example, the
α-Bloch space, for α > 0, denote as Bα, consists of all holomorphic functions f
on D such that

‖f‖α := sup
z∈D

(1− |z|2)α|f ′(z)| <∞.

The α-Bloch space is introduced and studied by numerous authors. For general
theory of α-Bloch functions see [13]. Recently, a different class of Bloch-type
space defined on D is studied by many authors, where the typical weight function,
w(z) = 1 − |z|2(z ∈ D), is replaced by bounded continuous positive function µ
(see [4, 9]). More precisely, a function f ∈ H(D) is called a µ-Bloch function,
denoted as f ∈ Bµ, if

‖f‖µ := sup
z∈D

µ(z)|f ′(z)| <∞.

Clearly, if µ(z) = w(z)α with α > 0, Bµ is just the α-Bloch space. It is readily
seen that Bµ is a Banach space with the norm ‖f‖Bµ := |f(0)|+ ‖f‖µ.
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The weighted Bloch space appears in 1991, when Brown and Shields [3] showed
that an analytic function µ is a multiplier on the Bloch space B if and only if

µ ∈ Blog. The logarithmic Bloch-type space with µ(z) = w(z)α lnβ
e

w(z) , α > 0
and β ≥ 0, is studied by Stević [14].

By using a Young’s functions, the Bloch–Orlicz space is introduced by Ramos–
Fernández (see [11, 12]). More precisely, let ϕ : [0,∞) → [0,∞) be an N -
function, that is, ϕ is a strictly increasing convex function such that ϕ(0) = 0

and lim
t→∞

t
ϕ(t)

= lim
t→0

ϕ(t)
t

= 0. The Bloch–Orlicz space associated with the function

ϕ, denoted as Bϕ, is the class of all analytic functions f in D such that

sup
z∈D

(1− |z|2)ϕ(λ|f ′(z)|) <∞, (1.1)

for some λ > 0 depending on f. We can observe that when ϕ(t) = t with t ≥ 0,
it gets back to the Bloch space B. Furthermore, we can suppose, without loss of
generality, that ϕ−1 is continuously differentiable on (0,∞). In fact, if ϕ−1 is not
differentiable everywhere, we set the function

ψ(t) =

∫ t

0

ϕ(x)

x
dx(t ≥ 0),

then ψ is differentiable, whence ψ−1 is differentiable everywhere on (0,∞). Fur-
thermore, since ϕ is a strictly increasing convex function satisfying ϕ(0) = 0, the

functionϕ(t)
t
, t > 0 is increasing and

ϕ(t) ≥ ψ(t) ≥
∫ t

t/2

ϕ(x)

x
dx ≥ ϕ

(
t

2

)
for all t > 0. Hence, Bϕ = Bψ. By the convexity of ϕ, it is not hard to see that
the Minkowski’s functional

‖f‖ϕ = inf

{
k > 0 : Sϕ

(
f ′

k

)
≤ 1

}
, (1.2)

defines a seminorm for Bϕ, which, in this case, is known as Luxemburg’s semi-
norm, where

Sϕ(f) := sup
z∈D

(1− |z|2)ϕ(|f(z)|).

In fact, it can be shown that Bϕ is a Banach space with the norm

‖f‖Bϕ = |f(0)|+ ‖f‖ϕ.

Let the Green’s function of D be defined as g(z, a) = log 1
|σa(z)| , where σa(z) =

(a − z)/(1 − āz) is the automorphism of D interchanging the points zero and
a ∈ D. Let p > 0, q > −2 and let K : [0,∞) → [0,∞) be right continuous and
nondecreasing function. We say a function f analytic in D, belongs to QK(p, q),
if

‖f‖pQK(p,q) = sup
a∈D

∫
D
|f ′(z)|p(1− |z|2)qK (g(z, a)) dA(z) <∞. (1.3)

Here and elsewhere dA stands for the Euclidean area element.
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The space QK(p, q), equipped with the norm ‖f‖ = |f(0)|+‖f‖QK(p,q) for p ≥ 1,
is a Banach space (see [16]). In fact, the definition of QK(p, q) is strongly moti-
vated by the studying of spaces Qp, F (p, q, s) and QK , where QK and F (p, q, s)
are different natural generalizations of Qp (see [15, 1]). Namely, QK(2, 0) = QK

and QK(p, q) = F (p, q, s) when K(t) = ts (see [6]). In particular, if K(t) = t,
then QK coincides with BMOA, the space of analytic functions in the Hardy
space H1 with boundary values of bounded mean oscillation (see [2]). Moreover,
the spaces QK(p, q) and QK,0(p, q) are subsets of spaces Bα and Bα0 , respectively,
when α = (q + 2)/p.

Let φ be a holomorphic self-mapping of D, the symbol φ induces a linear
composition operator Cφ(f) = f ◦φ from H(D) into itself. The boundedness and
compactness of the operator Cφ : X → Y , where X and Y are some normalized
spaces of analytic functions in the unit disc, have attracted many authors interest
(see [14, 19]).

We say that an analytic function f on the unit disc D has Hadamard gaps if

f(z) =
∞∑
k=1

akz
nk , where nk+1

nk
≥ λ > 1 for all k ∈ N. Results on analytic functions

with Hadamard gaps, see, e.g., [5, 7, 8, 10].

The following result for Hadamard gaps, on α-Bloch space, is obtained by Ya-
mashita (see [18]).

Theorem A: Assume that f is an analytic function on D with Hadamard
gaps. Then for α > 0, the following two propositions hold:

(1) f ∈ Bα if and only if lim
k→∞

sup |ak|n1−α
k <∞.

(2) f ∈ Bα0 if and only if lim
k→∞

sup |ak|n1−α
k = 0.

By applying Theorem A, Xiao in [17] obtains the following result.

Theorem B: Let α ∈ (0,∞). Then there exist two functions f1, f2 ∈ Bα such
that

|f ′1(z)|+ |f ′2(z)| ≥ C

(1− |z|2)α
, z ∈ D.

In view of the fundamental importance of the Hadamard gaps in function space,
we consider the nature posed problem: how it looks like in Bloch–Orlicz space
Bϕ? This is logical since the Bloch–Orlicz space is the most natural generalization
of the Bloch-type space. In this paper, we establish the Bloch–Orlicz extension
of the Hardmard gaps, and the boundedness and compactness of the composition
operator Cφ from Bϕ into QK(p, q).

Throughout this paper, positive constant is denoted by C, and it may have
different value at different place.

The paper is organized as follows. In section 2, we introduce some lemmas
and give the Hadamard gaps in Bloch–Orlicz space Bϕ. Some applications of our
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results are presented in section 3.

2. Hadamard gap series belonging to Bϕ

First, we give the following Lemma.

Lemma 2.1. For any f ∈ Bϕ\{0}, the following relation

Sϕ

(
f ′

‖f‖ϕ

)
≤ 1 (2.1)

holds. The inequality (2.1) allows us to obtain that

|f ′(z)| ≤ ϕ−1

(
1

1− |z|2

)
‖f‖ϕ, (2.2)

for all f ∈ Bϕ and for all z ∈ D.

The inequality (2.2) implies that the evaluation functional defined as Tz(f) :=
F (z), where z ∈ D is fixed and f ∈ Bϕ, is continuous on Bϕ. In fact, for z ∈ D
fixed and any f ∈ Bϕ, we have

|Tz(f)| = |f(z)| ≤ |f(0)|+
∫

[0,z]

|f ′(s)||ds|

≤
(

1 +

∫ 1

0

ϕ−1

(
1

1− |z|2t2

)
dt

)
‖f‖Bϕ .

From the definition of the Luxemburg seminorm and the expression (2.1), we
have that

Sϕ(f ′) ≤ 1⇐⇒ ‖f‖ϕ ≤ 1.

for any f ∈ Bϕ.
Also, as an easy consequence of (2.1), we have that the Bloch–Orlicz space is

isometrically equal to the µ-Bloch space, where

µ(z) =
1

ϕ−1
(

1
1−|z|2

) , (2.3)

with z ∈ D. Thus for any f ∈ Bϕ, we have

‖f‖ϕ = sup
z∈D

µ(z)|f ′(z)|. (2.4)

Furthermore, if ϕ(t) = tp with p > 1 and t ≥ 0, then the Bloch–Orlicz space
coincides with the α-Bloch space when α = 1

p
∈ (0, 1).

Remark 1. Throughout this paper, we use ‖f‖ϕ or ‖f‖µ to evaluate the norm
of function f ∈ Bϕ = Bµ. Where µ is the weight defined in (2.3).

The following result is proved in [11], hence we omit it’s proof.
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Lemma 2.2. Let a ∈ D be fixed. Then exists a holomorphic function fa ∈ H(D)
such that

ϕ(|fa(z)|) =
1− |a|2

|1− āz|2
,

for all z ∈ D.

Remark 2. It is clear that for any a ∈ D, the function

ga(z) =

∫ z

0

fa(s)ds

with z ∈ D and fa is the function found in Lemma 2.2 belongs to the space Bϕ.

We need the following lemma in proving the main results of this paper.

Lemma 2.3. Assume a > 0, α ∈ (0, 1/a), µ is a positive nonincreasing bounded
continuous function, such that

lim
x→∞

x

(
1

µ(1− 1
x)

)′
1

µ(1− 1
x)

= 0 (2.5)

and

lim
x→∞

x

(
1

µ(1− 1
x
)

)
=∞. (2.6)

Then, there is a positive constant C independent of α such that∫ ∞
a

e−αt

µ
(
1− 1

t

)dt ≤ C

αµ(1− α)
. (2.7)

Proof. We have∫ ∞
a

e−αt

µ
(
1− 1

t

)dt =

∫ 1/α

a

e−αt

µ
(
1− 1

t

)dt+

∫ ∞
1/α

e−αt

µ
(
1− 1

t

)dt
≤
∫ 1/α

a

dt

µ
(
1− 1

t

) +
1

µ(1− α)

∫ ∞
1/α

e−αtdt

=

∫ 1/α

a

dt

µ
(
1− 1

t

) +
1

eαµ(1− α)
.

(2.8)

Using the integration by parts we obtain∫ 1/α

a

dt

µ
(
1− 1

t

) = t · 1

µ
(
1− 1

t

)∣∣∣1/α
a
−
∫ 1/α

a

t ·
( 1

µ
(
1− 1

t

))′dt
=

1

αµ(1− α)
− a

µ
(
1− 1

a

) − ∫ 1/α

a

t ·
( 1

µ
(
1− 1

t

))′dt
∼ 1

αµ(1− α)
as α −→ 0.

(2.9)
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Where (2.9) follows the L’Hopital rule and the assumption (2.5) and (2.6) as
follows

lim
x→∞

∫ x
a
t
(

1

µ
(

1− 1
t

))′dt
x
(

1

µ
(

1− 1
x

)) = lim
x→∞

x
(

1

µ
(

1− 1
x

))′
x
(

1

µ
(

1− 1
x

))′ + 1
µ(1− 1

x
)

= 0.

From (2.8) and (2.9) and the continuity of the first integral in (2.9) with α,
inequality (2.7) follows. �

Now we give an estimation for coefficients of a holomorphic function Bϕ.

Theorem 2.4. Assume that f(z) =
∞∑
n=0

anz
n ∈ Bϕ, then limn→∞ nµ

(
1− 1

n

)
|an| <

∞.

Proof. Applying the Cauchy integral formula to the first derivative of f , we have

an =
1

2πin

∫
|ξ|=r

f ′(ξ)

ξn
dξ =

1

2πn

∫ 2π

0

f ′(reiθ)r1−nei(1−n)θdθ.

By the definition of the space Bϕ, combine with (2.2) and (2.3), it follows that

|an| ≤
1

2πn

∫ 2π

0

|f ′(reiθ)|r1−ndθ ≤
r1−nϕ−1

(
1

1−r2
)

n
‖f‖ϕ =

r1−n

nµ(r)
‖f‖ϕ. (2.10)

By choosing r = 1− 1
n
, n ≥ 2 in (2.10), we obtain

|an| ≤
(
1− 1

n

)1−n

nµ
(
1− 1

n

)‖f‖ϕ. (2.11)

Multiplying (2.11) by nµ
(
1− 1

n

)
, and letting n→∞ in such obtained inequality,

the result follows. �

Remark 3. Since
(
1− 1

n

)1−n
=
(
1 + 1

n−1

)n−1
< e, n ≥ 2. By Theorem 2.4, it

follows that limn→∞ supnµ
(
1− 1

n

)
|an| ≤ e‖f‖ϕ, for every f ∈ Bϕ.

Theorem 2.5. Assume that f(z) =
∞∑
k=1

akz
nk ∈ H(D), where nk is a sequence

such that nk+1

nk
≥ λ > 1, k ∈ N. Let ϕ : [0,∞) → [0,∞) be an N -function, the

function µ satisfies all the condition of Lemma 2.3, and

µ(t) =
1

ϕ−1
(

1
1−t2

) , (2.12)

such that

lim
k→∞

inf
µ
(

1− 1
nk

)
µ
(

1− 1
nk+1

) = q > 1 (2.13)
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and

µ
(

1− ln
( 1

|z|
))
∼ Cµ(|z|) as |z| → 0, (2.14)

for a positive constant C. Then the condition

lim
k→∞

supnkµ
(

1− 1

nk

)
|ak| <∞ (2.15)

implies that f ∈ Bϕ.

Proof. Assume lim
k→∞

supnkµ
(

1− 1
nk

)
|ak| <∞, we have

|zf ′(z)| =
∣∣∣ ∞∑
k=1

aknkz
nk

∣∣∣ ≤ C

∞∑
k=1

|z|nk

µ
(

1− 1
nk

) ,
and consequently

|zf ′(z)|
1− |z|

≤ C
∞∑
n=1

∑
nk≤n

1

µ
(

1− 1
nk

)
 |z|n, (2.16)

for some positive constant C.
By (2.13), and µ is nonincreasing for nk ≤ n ≤ nk+1, we have

1

µ
(

1− 1
nl

) < C

µ
(
1− 1

n

) ( 2

1 + q

)k−l
,

for every l = 1, 2, · · · , k, and some C > 0. This along with the fact 2
1+q

< 2,

implies that ∑
nk≤n

1

µ
(

1− 1
nk

) ≤ C

µ
(
1− 1

n

) . (2.17)

Together with (2.16) and (2.17) it follows that

zf ′(z)

1− |z|
≤ C

∞∑
n=1

|z|n

µ
(
1− 1

n

) . (2.18)

Since the function

gx(t) =
xt

µ
(
1− 1

t

) =
e−t ln 1

x

µ
(
1− 1

t

) ,
is decreasing in t, for sufficiently large t and each x ∈ (0, 1), we have

∞∑
n=1

|z|n

µ
(
1− 1

n

) ∼ ∫ ∞
0

e−t ln 1
|z|

µ
(
1− 1

t

)dt. (2.19)

Note that the function µ(t) satisfies condition of Lemma 2.3, we obtain∫ ∞
e

et ln 1
|z|

µ
(
1− 1

t

) ≤ C
1

ln 1
|z|µ

(
1− ln 1

|z|

) , (2.20)
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as |z| → 1. Using the asymptotic relation

ln
1

|z|
∼ 1− |z| as |z| → 1− 0,

and take (2.14) in (2.20), the result easily follows. �

Now we extend Theorem B into Bloch–Orlicz space Bϕ.

Theorem 2.6. There exist two functions f, g ∈ Bϕ, such that for each z ∈ D,

|f ′(z)|+ |g′(z)| ≥ Cϕ−1

(
1

1− |z|2

)
, (2.21)

for some positive constant C.

Proof. Since Bϕ is isometrically equal to Bµ, where µ(z) = 1

ϕ−1
(

1
1−|z|2

) , with z ∈ D,

then (2.21) equals to

|f ′(z)|+ |g′(z| ≥ C

µ(|z|)
. (2.22)

Next, we are going to prove (2.22) holds.

Set f(z) = εz +
∑∞

j=1
zq
j

µ
(

1− 1

qj

)
qj

for z ∈ D, where q is a large natural number

and ε is positive and small sufficiently. Applying Theorem 2.4 with

aj =
(
µ
(
1− 1

qj
)
qj
)−1

, nj = qj,

it is easy to check f ∈ Bϕ. We first show that

|f ′(z)| ≥ C

µ(|z|)

if 1− q−k ≤ |z| ≤ 1− q−(k+1/2) for K ∈ N. For any z ∈ D we have

|f ′(z)| =

∣∣∣∣∣∣ε+
∞∑
j=1

zq
j−1

µ
(

1− 1
qj

)
∣∣∣∣∣∣

≥ |z|qk−1

µ
(

1− 1
qk

) −
ε+

k−1∑
j=1

|z|qj−1

µ
(

1− 1
qj

)
− ∞∑

j=k+1

|z|qj−1

µ
(

1− 1
qj

)
=

1

|z|
(I1 − I2 − I3) ≥ I1 − I2 − I3

if I1 − I2 − I3 > 0. Since (1 − q−k)qk ≤ |z|qK ≤
(

(1− q(−k+1/2))q
k+1/2

)q−1/2

, we

have 1
3
≤ |z|qk ≤

(
1
2

)q−1/2
for q large enough. We have 1

3
≤ |z|qk ≤ (1

2
)q−1/2, and

hence I1 ≥ 1

3µ
(

1− 1

qk

) .



BLOCH–ORLICZ FUNCTIONS WITH HADAMARD GAPS 85

On the other hand, for large enough q, by (2.5) it follows that

I2 ≤ ε
1

µ
(

1− 1
qk

) +
1

µ
(

1− 1
qk

) k−1∑
j=1

µ
(

1− 1
qj+1

)
µ
(

1− 1
qj

) · µ
(

1− 1
qj+2

)
µ
(

1− 1
qj+1

) · · · µ
(

1− 1
qk

)
µ
(

1− 1
qk−1

)
≤ ε

1

µ
(

1− 1
qk

) +
1

µ
(

1− 1
qk

) k−1∑
j=1

1

qk−j
≤ 1

µ
(

1− 1
qk

) [ε+
1

q − 1

]
.

We also have

I3 ≤
|z|qk+1

µ
(

1− 1
qk

) ∞∑
j=k+1

µ
(

1− 1
qk

)
µ
(

1− 1
qj

) |z|qj−qk+1

≤ |z|qk+1

µ
(

1− 1
qk

) ∞∑
j=k+1

µ
(

1− 1
qk

)
µ
(

1− 1
qk+1

) µ
(

1− 1
qk+1

)
µ
(

1− 1
qk+z

) · · · µ
(

1− 1
qj−1

)
µ
(

1− 1
qj

) |z|qj−qk+1

≤ |z|qk+1

µ
(

1− 1
qk

) ∞∑
j=k+1

q(q)(i−(k+1))|z|(qj−qk+1)

≤ |z|qk+1

µ
(

1− 1
qk

) ∞∑
s=0

q
(
q|z|(qk+2−qk+1)

)s
=

(|z|qk)q

µ
(

1− 1
qk

) q

1− q(|z|qk)q2−q

=
1

µ
(

1− 1
qk

) q(|z|qk)q

1− q(|z|qk)q2−q
≤ 1

µ
(

1− 1
qk

) q2−q
1/2

1− q2−(q3/2−q1/2)
.

By the estimates above, then

|f ′(z)| ≥ 1

µ(1− 1
qk

)

(
1

3
− ε− 1

q − 1
− q2−q

1/2

1− q2−q3/2−q1/2

)

≥ C

µ(1− 1
qk

)
,

for q large enough, ε sufficiently small, and k ∈ N. By inequality (2.13), inequality
(2.17) and

1− q−k ≤ |z| ≤ 1− q−(k+1/2) ≤ 1− q−(k+1),

together yield

|f ′(z)| ≥ C

µ
(

1− 1
qk

) ≥ C

Cqµ
(

1− 1
qk+1

) ≥ C

µ(|z|)
.

Similarly, the function

g(z) =
∞∑
j=1

znj

µ
(

1− 1
qj+1/2

) ,
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where nj is the integer closest to qj+1/2, satisfies |g′(z)| ≥ C
µ(|z|) , when 1 −

q−(k+1/2 ≤ |z| ≤ 1− q−(k+1) for any k ∈ N. So (2.22) holds for 1− q−1 ≤ |z| ≤ 1.
Since f ′(0) 6= 0 and the functions f ′ and g′ only have a finite number of zeroes

in the disc |z| ≤ 1 − q−1. The function g can be replaced by gθ(z) = g(eiθz) for
an appropriate θ to prevent f ′ and g′ have common zeroes. Hence we get a pair
of function satisfying (2.22), so (2.21) holds and the proof is completed. �

3. Some applications to composition operators

In this section, some applications of our result are presented. Firstly, we give
the boundedness of the composition operators from Cφ : Bϕ → QK(p, q).

Theorem 3.1. Assume φ is an analytic self-map of D. Let p > 0, q > −2, and
let K be an nonnegative and nondecreasing function in [0,∞). Then Cφ : Bϕ →
QK(p, q) is bounded if and only if

sup
z∈D

∫
D

[
ϕ−1

(
1

1− |φ(z)|2

)]p
|φ′(z)|p(1− |z|2)qg(z, a)dA(z) <∞. (3.1)

Proof. First assume Cφ : Bϕ → QK(p, q) is bounded. Let f and g be the func-
tions constructed in Theorem 2.6. Using these functions and by some simple
calculation, we obtain

∞ > sup
a∈D

∫
D
(|(f ◦ φ)′(z)|p + |(g ◦ φ)′(z)|p)(1− |z|2)qK(g(z, a))dA(z)

= sup
a∈D

∫
D
(|f ′(φ)(z)|p + |g′(φ)(z)|p)(1− |z|2)q|φ′(z)|pK(g(z, a))dA(z)

≥ 2p sup
a∈D

∫
D
(|f ′(φ)(z)|+ |g′(φ)(z)|)p(1− |z|2)q|φ′(z)|pK(g(z, a))dA(z)

≥ C sup
a∈D

∫
D

[
φ−1

(
1

1− |φ(z)|2

)]p
|φ′(z)|p(1− |z|2)qK(g(z, a))dA(z),

from which (3.1) follows.
Now assume that (3.1) holds, then for an f ∈ Bϕ we have

sup
a∈D

∫
D
|(f ◦ φ)′(z)|p|(1− |z|2)qK(g(z, a))dA(z)

= sup
a∈D

∫
D
|(f ′(φ)(z)|p|φ′(z)|p|(1− |z|2)qK(g(z, a))dA(z)

≤ ‖f‖pϕ sup
a∈D

∫
D

[
φ−1
( 1

1− |φ(z)|2
)]p
|φ′(z)|p(1− |z|2)qK(g(z, a))dA(z).

Hence, it follows by (3.1) that Cφ is a bounded operator from Bϕ → QK(p, q). �

Another application of our result is the following theorem regards to the com-
pactness of composition operators Cφ : Bϕ → QK(p, q).

Theorem 3.2. Assume φ is an analytic self-map of D. Let p > 0, q > −2, and
let K be an nonnegative and nondecreasing function in [0,∞). Then Cφ : Bϕ →
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QK(p, q) is compact if and only if φ ∈ QK(p, q), and

lim
r→1

sup
a∈D

∫
Ωr

[
ϕ−1

( 1

1− |φ(z)|2
)p|φ′(z)|p(1− |z|2)qK(g(z, a))

]
dA(z) = 0, (3.2)

where Ωr = {z ∈ D, |φ(z)| > r} for 0 < r < 1.

Proof. We assume φ ∈ QK(p, q) and (3.2) holds. Assume {fn}n∈N be a bounded
sequence in Bϕ such that fn → 0 uniformly on compact subsets of D. For sim-
plicity, assume ‖fn‖ϕ ≤ 1. By (3.2) for any given ε > 0, there exists r ∈ (0, 1)
such that

sup
a∈D

∫
Ωr

[
ϕ−1

(
1

1− |φ(z)|2

)p
|φ′(z)|(1− |z|2)qK(g(z, a))

]
dA(z) < ε.

Since fn → 0 uniformly on compact subsets of D, it implies that f ′n → 0 uniformly
on compact sets of D. For above ε, there exists N ∈ N such that n > N and
|f ′n(z)| < ε for |z| ≤ r. Hence∫

D
|(fn ◦ φ)′(z)|p(1− |z|2)qK(g(z, a))dA(z)

=

{∫
Ωr

+

∫
D\Ωr

}
|f ′n(φ(z))|p|φ′(z)|p(1− |z|2)qK(g(z, a))dA(z)

≤ ‖fn‖pϕ
∫

Ωr

(
ϕ−1

( 1

1− |φ(z)|2
))p
|φ′(z)|p(1− |z|2)qK(g(z, a))dA(z)

+ εp
∫
D
|φ′(z)|p(1− |z|2)qK(g(z, a))dA(z)

≤ ε+ εp‖φ‖pQK(p,q).

Then, it follows that

‖fn ◦ φ‖QK(p,q) → 0 as n→∞.

Thus Cφ : Bϕ → QK(p, q) is compact.
To prove the converse, suppose that there exist an ε0 > 0 such that

sup
a∈D

∫
Ωr

[
ϕ−1

( 1

1− |φ(z)|2
)p|φ′(z)|(1− |z|2)qK(g(z, a))

]
dA(z) ≥ ε0,

for any r ∈ (0, 1). Then given a sequence of real numbers {rn} ⊂ (0, 1) such that
rn → 1 as n→∞, we can find a sequence {zn} ⊂ D such that |φ(zn)| > rn and∫
|ϕ(zn)|>rn

[
ϕ−1

( 1

1− |ωn|2
)p|φ′(zn)|(1− |zn|2)qK(g(zn, a))

]
dA(zn) ≥ 1

2
ε0, (3.3)

where ωn = φ(zn).
By taking a subsequence, if necessary, we may suppose that ωn → ω0 ∈ ∂D.

Now for n ∈ N and z ∈ D, we set

gn(z) =

∫ z

0

fωn(s)ds, (3.4)
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where fωn is the function in Lemma 2.2 with a = ωn. We can see that {gn} is a
bounded sequence in Bϕ. Furthermore since

|g′n(z)| ≤ ϕ−1((1− |z|2))−2(1− |ωn|2), (3.5)

ϕ−1 is an increasing continuous function satisfying ϕ−1(0) = 0 and

|gn(z)| ≤
∫ z

0

|g′n(s)||ds|,

for all z ∈ D. We know that {gn} is a sequence converging to 0 uniformly on
compact subsets of D, and satisfying

‖Cφ(gn)‖Qk(p,q) ≥
∫
|φ(zn)|>rn

|g′n(ωn)|p|φ′(zn)|p(1− |zn|2)qK(g(zn, a))dA(zn)

=

∫
|φ(zn)|>rn

ϕ−1
( 1

1− |ωn|2
)p
|φ′(zn)|p(1− |zn|2)qK(g(zn, a))dA(zn)

≥ 1

2
ε0 > 0.

Where we have used the fact

|g′n(ωn)| = ϕ−1

(
1

1− |ωn|2

)
.

Therefore Cφ : Bϕ → QK(p, q) is not a compact operator. This completes the
proof of the theorem. �

Acknowledgements:
We would like to thank Professor Shengjian Wu for helpful conversations. Part

of the work was done during the first author staying at Peking University, in the
spring of 2014. The work is supported in part by CNSF (Grant No. 11101099,
Grant No. 11171080, and Grant No. 11161007), West Light Foundation of the
Chinese Academy of Sciences, Guizhou Foundation for Science and Technology
(Grant No. [2012] 2273, No. [2014] 2044), Guizhou Technology Foundation for
Selected Overseas Chinese Scholar, and Ph. D. Research Foundation of Guizhou
Normal University.

References

1. R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic
or meromorphic function to be normal Complex analysis and its applications (Hong Kong,
1993), 136–146, Pitman Res. Notes Math. Ser., 305, Longman Sci. Tech., Harlow, 1994.

2. A. II. Baernstein, Analytic functions of bounded mean oscillation, Aspects of contemporary
complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979), pp. 3–36,
Academic Press, London-New York, 1980.

3. L. Brown and A. L. Shields, Multipliers and cyclic vectors in the Bloch space, Michigan
Math. J. 38 (1991), 141–146.

4. H. Chen and P. Gauthier, Composition operators on µ-Bloch spaces, Canad. J. Math. 61
(2009), 50–75.

5. J. Choa, Some properties of analytic functions on the unit ball with hadamard gaps, Complex
Variables Theory Appl. 29 (1996), no. 3, 277–285.

6. H. Essén and M. Wulan, On analytic and meromorphic functions and spaces of QK-type,
Illinois J. Math. 46 (2002), no. 4, 1233–1258.



BLOCH–ORLICZ FUNCTIONS WITH HADAMARD GAPS 89

7. P. Galanopoulos, On Blog to Qlog pullbacks, J. Math. Anal. Appl. 337 (2008), no. 1, 712–
725.
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