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Abstract. This paper mainly divided into two parts. The first part gives
same facts about topological properties of certain linear topological spaces,
inclusion relations and matrix mappings. The second part establishes some
identities or estimates for the matrix operator norms and the Hausdorff mea-
sures of noncompactness of certain matrix operators, characterize some classes
of compact operators on these spaces.

1. Introduction

In the literature, by using the matrix domain over the paranormed spaces, many
authors have defined new sequence spaces. Some of them as follows: Choudhary
and Mishra [5] have studied sequence space `(p), where `(p) consists of the se-
quences whose S−trasforms are in `(p), Başar and Altay [14] have defined the
spaces λ(u, v; p) = {λ(p)}G for λ ∈ {`∞, c0, c}. The same authors also have
defined the spaces [4] rt∞(p) = {`∞(p)}Rt , rt0(p) = {c0(p)}Rt , rtc(p) = {c(p)}Rt .
Recently, Karakaya et all. have introduced and studied the spaces [33] γ(λ; p) =
{γ(p)}Λ for γ ∈ {`∞, c0, c}. Rt, G, Λ and S denote Riesz, generalized difference,
lambda and summation matrix, respectively. Also, the information on matrix
domain of sequence spaces can be found (see [6, 7, 17, 19, 28]).

The main purpose of the present paper is to introduce the sequence spaces
µ(u, v, p;B) of non-absolute type and derive some related results. We also es-
tablish some inclusion relations. Furthermore, we determine the α−, β− and
γ−duals of those spaces and construct their basis. Also, we characterize some
classes of infinite matrices concerning the spaces µ(u, v, p;B), where µ ∈ {`∞, c0, c}.
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Finally, we establish some identities or estimates for the operator norms and the
Hausdorff measures of noncompactness of certain matrix operators on the spaces
c0(u, v, p;B), `∞(u, v, p;B) and by using the Hausdorff measure of noncompact-
ness, we characterize some classes of compact operators on these spaces.

2. Notations and Auxiliary Facts

By ω, we shall denote the space of all real or complex valued sequences. Any
vector subspace of ω is called sequence space. We shall write `∞, c and c0 for
the spaces of all bounded, convergent and null sequence respectively. Also by `1

and `p (1 < p < ∞) we denote the spaces of all absolutely and p− absolutely
convergent series, respectively. Further, we shall write bs, cs for the spaces of all
sequences associated with bounded and convergent series.

Let µ and γ be two sequence spaces and A = (ank) be an infinite matrix of real
or complex numbers ank, where n, k ∈ N. Then, we say that A defines a matrix
mapping from µ into γ, and we denote it by writing A : µ → γ, if for every
sequence x = (xk) ∈ µ the sequence Ax = {(Ax)n}, the A−transform of x is in
γ; where

(Ax)n =
∑
k

ankxk (n ∈ N). (2.1)

The notation (µ : γ) denotes the class of all matrices A such that A : µ → γ.
Thus, A ∈ (µ : γ) if and only if the series on the right hand side of (2.1) converges
for each n ∈ N. The matrix domain µA of an infinite matrix A in a sequence
space µ is defined by

µA = {x = (xk) ∈ ω : Ax ∈ µ}. (2.2)

A linear topological space X over the real field R is said to be a paranormed
space if there exists subadditive function h : X −→ R such that h(θ) = 0,
h(−x) = h(x) and scalar multiplication is continuous, i.e., |αn − α| −→ 0 and
h(xn−x) −→ 0 imply h(αnxn−αx) −→ 0 for all α’s in R and all x’s in X, where
θ is the zero vector in the linear space X.

Assume here and after that p = (pk) be a bounded sequence of strictly pos-
itive real numbers with sup pk = H and M = max{1, H}. Then, the linear
spaces `∞(p), c0(p) and c(p) were defined by Maddox [32](see also Simons [27]
and Nakano [15] )

`∞(p) =

{
x = (xk) ∈ ω : sup

k∈N
|xk|pk <∞

}
,

c0(p) =
{
x = (xk) ∈ ω : lim

k→∞
|xk|pk = 0

}
,

c(p) =
{
x = (xk) ∈ ω : ∃l ∈ R such that lim

k→∞
|xk − l|pk = 0

}
which are the complete paranormed by

h(x) = sup
k∈N
|xk|pk/M .
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Throughout the article, by F and Nk, respectively, we denote the collection
of all subsets of N and the set of all n ∈ N such that n ≥ k. Also we write
e = (1, 1, 1, . . .) and e(n) is the sequence whose only non-zero term is 1 in the nth

place for each n ∈ N, where N = {0, 1, 2, . . .}.
Let U denotes the set of all sequences u = (uk) such that uk 6= 0 for all k ∈ N

and u, v ∈ U , and define the matrix G(u, v) = (gnk) by

gnk =

 unvk, (k < n),
unvn, (k = n),

0, (k > n)

for all k ∈ N, where un depends only on n and vk only on k. The matrix G(u, v)
which is called as generalized weighted mean or factorable matrix.

Let r and s be non-zero real numbers and define the generalized difference
matrix B(r, s) = {bnk(r, s)} by

bnk(r, s) =

 r, k = n,
s, k = n− 1,
0, otherwise

(2.3)

for all n, k ∈ N. We note that the matrix B(r, s) can be reduced to the difference
matrix 4 in case r = 1 and s = −1. So, the results related to the domain of the
matrix B(r, s) are more general and more comprehensive than the consequences
of the domain of the matrix 4 and include them.

3. Certain Main Results

3.1. Basic Topological Properties. This part is devoted to examination of the
basic topological properties of the sets µ(u, v, p;B), where µ ∈ {`∞, c0, c}. For
u ∈ U and 1

u
= ( 1

uk
).

Now, we introduce the new sequence spaces `∞(u, v, p;B), c0(u, v, p;B) and
c(u, v, p;B) as follows:

`∞(u, v, p;B) =

{
x = (xk) ∈ ω : sup

n∈N

∣∣∣∣∣un
n∑
k=0

vk(rxk + sxk−1)

∣∣∣∣∣
pn

<∞

}
,

c0(u, v, p;B) =

{
x = (xk) ∈ ω : lim

n→∞

∣∣∣∣∣un
n∑
k=0

vk(rxk + sxk−1)

∣∣∣∣∣
pn

= 0

}
,

c(u, v, p;B) =

{
x = (xk) ∈ ω : ∃l ∈ R such that lim

n→∞

∣∣∣∣∣un
n∑

k=0

vk(rxk + sxk−1)

∣∣∣∣∣
pn

= l

}
.

By the notation of (2.2), we can redefine the spaces µ(u, v, p;B) as follows:

µ(u, v, p;B) = [µ(u, v; p)]B,

where B denotes the generalized difference matrix B(r, s) = {bnk(r, s)} defined
by (2.3). On the other hand, we define the triangle matrix

Ĝ(u, v, B) = G(u, v)B(r, s) = (ĝnk)
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ĝnk =

 un(rvk + svk+1), k < n,
runvn, k = n,

0, k > n

for all n, k ∈ N. Then, we have following special cases.

(i) If r = 1 and s = −1, then µ(u, v, p;B) = µ(u, v, p;4), where µ ∈
{`∞, c0, c} (see [3]).

(ii) Let λ = (λk) is a strictly increasing sequence of positive reals tending to
∞. If v = (λk − λk−1) and u = (1/λn) with p = e, then c0(u, v, p;B) =
cλ0(B) and c(u, v, p;B) = cλ(B) (see[1]).

(iii) If v = (λk − λk−1) and u = (1/λn) with p = e and r = 1, s = −1, then
c0(u, v, p;4) = cλ0(∆) and c(u, v, p;B) = cλ(∆) (see [24]).

(iv) If v = (1 + rk) and u = (1/n + 1) with p = e and r = 1, s = −1, then
c0(u, v, p;B) = ar0(4) and c(u, v, p;B) = arc(∆) (see [9]).

(v) If v = (qk) and u = (1/
∑n

k=0 qk), then `∞(u, v, p;B) = rq∞(p,B) and
c0(u, v, p;B) = rq0(p,B) as well as c(u, v, p;B) = rqc(p,B) (see [18]).

Define the sequence y = (yk), which will be frequently used, as the Ĝ−transform
of a sequence x = (xk), i.e.

yk =
k∑
i=0

ukvi(rxi + sxi−1) (3.1)

and every x = (xk) ∈ ω which leads us together with (2.2) to the fact that

µ(u, v, p;B) = [µ(p)]Ĝ.

Also we derive that equality of (3.1)

y0 = ru0v0 and yk = uk

(
k−1∑
i=0

(rvi + svi+1)xi + rukvkxk

)
for all k ≥ 1.

Theorem 3.1. We have the following

(a): µ(u, v, p;B) is the complete linear metric space paranormed by g, de-
fined by

g(x) = sup
n

∣∣∣∣∣
n−1∑
k=0

un(rvk + svk+1)xk + unvnxn

∣∣∣∣∣
pn
M

where M = max{1, sup pn} and 0 < pn ≤ H <∞ for all n ∈ N.
(b): Then, µ(u, v, p;B) = µĜ is a BK−space with the norm ‖x‖µ(u,v,p;B) =

‖Ĝx‖∞. That is,

‖x‖µ(u,v,p;B) = sup
n
|(Ĝx)n|. (3.2)
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Proof. (a) We prove the theorem only for the space c0(u, v, p;B). The linearity of
c0(u, v, p;B) with respect to the coordinatewise addition and scalar multiplication
follows from the following inequalities which are satisfied for z, x ∈ c0(u, v, p;B)
[25, p.30]

sup
n

∣∣∣∣∣
n−1∑
k=0

un(rvk + svk+1)(xk + zk) + unvn(xn + zn)

∣∣∣∣∣
pn
M

≤ sup
n

∣∣∣∣∣
n−1∑
k=0

un(rvk + svk+1)xk + unvnxn

∣∣∣∣∣
pn
M

+ sup
n

∣∣∣∣∣
n−1∑
k=0

un(rvk + svk+1)zk + unvnzn

∣∣∣∣∣
pn
M

. (3.3)

For any α ∈ R (see[32]), we get

|α|pk ≤ max{1, |α|M}. (3.4)

It is clear that g(θ) = 0 and g(x) = g(−x) for all x ∈ c0(u, v, p;B). The inequal-
ities (3.3) and (3.4) again yield the subadditivity of g and

g(αx) ≤ max{1, |α|M}g(x). (3.5)

Let {xn} be any sequence of points in c0(u, v, p;B) such that g(xn−x) −→ 0 and
(αn) also be any sequence of scalars that αn −→ α. Then, we obtain

g(αnx
n − αx) ≤ g [(αn − α)(xn − x)] + g [α(xn − x)] + g [x(αn − α)] . (3.6)

It follows from αn −→ α as n −→ ∞ that |αn − α| < 1 for all sufficient large n.
Therefore,

lim
n→∞

g [(αn − α)(xn − x)] ≤ lim
n→∞

g [(xn − x)] = 0. (3.7)

By (3.5), we have

lim
n→∞

g [α(xn − x)] ≤ max{1, |α|M} lim
n→∞

g [(xn − x)] = 0. (3.8)

Furthermore, we get

lim
n→∞

g [x(αn − α)] ≤ lim
n→∞

|αn − α|g(x) = 0. (3.9)

Then, we obtain from (3.6)-(3.9) that g(αnx
n − αx) −→ 0 as n −→ ∞. This

shows that g is a paranorm on c0(u, v, p;B).
It remains to prove the completeness of the space c0(u, v, p;B). Let {xj} be

any Cauchy sequence in the space c0(u, v, p;B), where xi = (xi0, x
i
2, x

i
2, . . .). Then

for a given ε there exists a positive integer n0(ε) such that

g(xj − xi) < ε

for all i, j ≥ n0(ε). Using definition of g, we obtain for each fixed n ∈ N that∣∣∣(Ĝxj)n − (Ĝxi)n

∣∣∣ pnM ≤ sup
n

∣∣∣(Ĝxj)n − (Ĝxi)n

∣∣∣ pnM <
ε

2
(3.10)
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for every i, j ≥ n0(ε), which lead us to fact that {(Ĝx0)k, (Ĝx
1)k, (Ĝx

2)k, . . .} is
a Cauchy sequence of real numbers for every fixed n ∈ N. Since R is complete, it

converges, say (Ĝxj)k −→ (Ĝx)k as j −→∞. Using these infinitely many limits,

we may write the sequence {(Ĝx)0, (Ĝx)1, (Ĝx)2, . . .}. Using (3.10) as i −→ ∞
and for all j ≥ n0(ε), we have∣∣∣(Ĝxj)n − (Ĝx)n

∣∣∣ < ε

2
(3.11)

for every fixed n ∈ N. Since xj = (x
(j)
k ) ∈ c0(u, v, p;B) for each j ∈ N, there

exists n0(ε) such that |(Ĝxj)n|
pn
M < ε

2
for every j ≥ n0(ε). We obtain by (3.11)

∣∣∣(Ĝxj)n∣∣∣ pnM ≤ ∣∣∣(Ĝxj)n − (Ĝx)n

∣∣∣ pnM + |(Ĝxj)n|
pn
M < ε

for every j ≥ n0(ε). Thus, we get x ∈ c0(u, v, p;B). Since (xj) was an arbitrary
Cauchy sequence, the space c0(u, v, p;B) is complete.

(b) Since the sequence space µ endowed with the norm ‖.‖∞ is BK-space

(see[26, Example 7.3.2(b),(c)]) and the matrix Ĝ is a triangle, Theorem 4.3.2 of
Wilansky [2, p.61] gives the fact that the spaces µ(u, v, p;B) are BK-space with
the norm in (3.2). �

One can easily check that the absolute property does not hold on the space
µ(u, v, p;B), that is ‖x‖µ(u,v,p;B) 6= ‖|x|‖µ(u,v,p;B) for at least one sequence in the
space µ(u, v, p;B) and this tells us that µ(u, v, p;B) none-absolute type, where
|x| = (|xk|).

Theorem 3.2. The sequence spaces `∞(u, v, p;B), c0(u, v, p;B) and c(u, v, p;B)
of none-absolute type is linearly isomorphic to the spaces `∞(p), c0(p) and c(p),
respectively, where 0 < pk ≤ H <∞.

Proof. To prove the fact that c0(u, v, p;B) ∼= c0(p) we should show the existence
of a linear bijection between the spaces c0(u, v, p;B) and c0(p). Consider the
transformation T defined with the notation of (2.2) from c0(u, v, p;B) to c0(p) by

x 7→ y = Tx = Ĝx. The linearity of T is clear. Further, it is clear that x = θ
whenever Tx = θ and hence T is injective.

Let y = (yk) ∈ c0(p) and define the sequence x = (xk) by

xk =
k−1∑
j=0

(
−s
r

)k−j [
1

rvj
+

1

svj+1

]
1

uj
yj +

1

rukvk
yk for each k ∈ N. (3.12)

Then, we have

g(x) = sup
n

∣∣∣∣∣
n−1∑
k=0

un(rvk + svk+1)xk + runvnxn

∣∣∣∣∣
pn
M

= sup
n
|yn|

pn
M = h(y).

Therefore, we have x ∈ c0(u, v, p;B). As a result, T is surjective. This implies
T is linear bijection. So, the space c0(u, v, p;B) and c0(p) are linearly isomorphic
as desired. This completes the proof. �
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Now, we define the Schauder basis of a paranormed sequence space and then
give the basis of the sequence spaces c(u, v, p;B) and c0(u, v, p;B). If a sequence
space γ paranormed by g1 contains a sequence (bk) with the property that for
every x ∈ γ, there is a unique of scalars (αk) such that

lim
n→∞

g1

(
x−

n∑
k=0

αkbk

)
= 0,

then (bk) is called a Schauder basis (or briefly basis) for γ. The series
∑
αkbk

which has the sum x is called the expansion of x with respect to (bk), and written
as x =

∑
αkbk. It is known from Theorem 2.3 of Jarrah and Malkowsky [22] that

the domain νT of an infinite matrix T in a sequence space ν has a basis if and
only if ν has a basis, if T is a triangle. As a direct consequence of this fact, we
have:

Corollary 3.3. Let αk = (Ĝx)k for all k ∈ N and l = limk→∞(Ĝx)k. Define the

sequence b(k) = {b(k)
n } for every fixed n ∈ N by

b(k)
n


(−s
r

)n−k [ 1
rvk

+ 1
svk+1

]
1
uk

, k < n,
1

runvn
, k = n,

0, k > n

Then, the following statements hold.

(a) The sequence (b
(k)
n ) is a basis for the space c0(u, v, p;B) and every x ∈

c0(u, v, p;B) has a unique representation of the form x =
∑

k αkb
(k).

(b) The sequence space {b, b(0), b(1), . . .} is a basis for the space c(u, v, p;B) and
any x ∈ c(u, v, p;B) has a unique representation of the for x = lb+

∑
k[αk− l]bk,

where

b = (bk) =

{
k−1∑
j=0

(
−s
r

)k−j [
1

rvj
+

1

svj+1

]
1

uj
+

1

rukvk

}∞
k=0

.

3.2. Inclusion Relations. In this part, we give some inclusion relations con-
cerning the spaces µ(u, v, p;B).

Theorem 3.4. The inclusions c0(u, v, p;B) ⊂ c(u, v, p;B) ⊂ `∞(u, v, p;B) strictly
hold.

Proof. Let x = (xk) ∈ c0(u, v, p;B). This implies Ĝx ∈ c0(p). Then, since

the inclusion c0(p) ⊂ c(p) holds, Ĝx ∈ c(p) which means that x ∈ c(u, v, p;B).
Further consider the sequence as follows:

xk =
1

2

[
k−1∑
j=0

(
−s
r

)k−j [
1

rvj
+

1

svj+1

]
1

uj
+

1

rukvk

]
, pn =

2n+ 5

n+ 1
for each n ∈ N.

Then, we have

|Ĝn(x)|pn =
1

2
2n+5
n+1

. (3.13)
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From (3.13), we get x is in c(u, v, p;B) but not in c0(u, v, p;B). Since the inclusion

c(p) ⊂ `∞(p) is strict, one can find at least a sequence Ĝx ∈ `∞(p) \ c(p) which
shows that `∞(u, v, p;B) \ c(u, v, p;B)) is not empty, as desired. �

Theorem 3.5. Following statements are hold.

(i): If pn > 1 for all n ∈ N, then the inclusion µ(u, v, B) ⊂ µ(u, v, p;B)
holds

(ii): If pn < 1 for all n ∈ N, then the inclusion µ(u, v, p;B) ⊂ µ(u, v, B)
holds

where µ ∈ {`∞, c0, c}.

Proof. (i) If pn = p for all n ∈ N, then we can write c0(u, v, B) instead of

c0(u, v, p;B). Let x ∈ c0(u, v, B). It is clear that Ĝx ∈ c0. We can find m ∈ N
such that |Ĝx| < 1 for all n ≥ m. By our assumption (i), we have |Ĝx|pn < |Ĝx|
for all n ≥ m. Therefore, we get x ∈ c0(u, v, p;B).

(ii) Let x ∈ c0(u, v, p;B). Then Ĝx ∈ c0(p) and there exists m ∈ N such that

|Ĝx|pn < 1 for all n ≥ m. Now, consider following inequality:

|Ĝx| = (|Ĝx|pn)1/pn < |Ĝx|pn

for all n ≥ m. So we have x ∈ c0(u, v, B). This completes the proof. �

3.3. Duals. In this part, we state and prove certain theorems to determine the
α−, β− and γ duals of the spaces µ(u, v, p;B) for µ ∈ {`∞, c0, c}. We start with
the definition of the alpha, beta and gamma duals. If x and y are sequences and
X and Y are subsets of ω, then we write x · y = (xkyk)

∞
k=0, x−1 ∗ Y = {a ∈ ω :

a · x ∈ Y } and

M(X, Y ) =
⋂
x∈X

x−1 ∗ Y = {a : a · x ∈ Y for all x ∈ X}

for the multiplier space of X and Y . One can easily observe for a sequence
space Z with Y ⊂ Z and Z ⊂ X that inclusions M(X, Y ) ⊂ M(X,Z) and
M(X, Y ) ⊂ M(Z, Y ) hold respectively. The α−, β−and γ−duals of a sequence
space, which are respectively denoted by Xα, Xβ and Xγ are defined by

Xα = M(X, `1), Xβ = M(X, cs) and Xγ = M(X, bs).

It is obvious that Xα ⊂ Xβ ⊂ Xγ. Also, it can easily be seen that the inclusions
Xα ⊂ Y α, Xβ ⊂ Y β and Xγ ⊂ Y γ hold whenever Y ⊂ X.

Theorem 3.6. Define the matrix D = (dnk) by

dnk =


(−s
r

)n−k [ 1
rvk

+ 1
svk+1

]
1
uk
an, k < n,

1
runvn

an, k = n,
0, k > n

for all n, k ∈ N. Then,

µα(u, v, p;B) = {a = (ak) ∈ w : D ∈ (µ(p) : `1)}.
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Proof. Let a = (an) ∈ w. Then by using (3.12), we immediately derive for every
n ∈ N that

anxn =
1

r

n∑
k=0

(
−s
r

)n−k [
1

rvk
+

1

svk+1

]
1

uk
ykan +

1

runvn
ynan = (Dy)n. (3.14)

Thus, we observe by (3.14) that ax = (anxn) ∈ `1 whenever x = (xk) ∈
µ(u, v, p;B) if and only if Dn(y) ∈ `1 whenever y = (yk) ∈ µ(p) which implies
a = (ak) ∈ {µ(u, v, p;B)}α if and only if D ∈ (µ(p) : `1). �

Theorem 3.6 corresponds in the special case qn = 1 for all n ∈ N to Part (1-3)
of Theorem 5.1 of [16].

As a direct consequence of Theorem 3.6, we have following.

Corollary 3.7. Let K∗ = K ∩{n ∈ N : n− 1 ≤ k ≤ n} for K ⊂ F and M ∈ N2.
Define the sets t1(p), t2(p), t3(p) as follows:

t1(p) :=
⋂
M>1

{
a = (ak) ∈ ω : sup

K∈F

∑
n

∣∣∣∣∣∑
k∈K∗

dnkM
1/pk

∣∣∣∣∣ <∞
}
,

t2(p) :=
⋃
M>1

{
a = (ak) ∈ ω :

∑
n

∣∣∣∣∣∑
k

dnk

∣∣∣∣∣ <∞
}
,

t3(p) :=
⋃
M>1

{
a = (ak) ∈ ω : sup

K∈F

∑
n

∣∣∣∣∣∑
k∈K∗

dnkM
−1/pk

∣∣∣∣∣ <∞
}
.

Then, `α∞(u, v, p;B) = t1(p), cα0 (u, v, p;B) = t3(p) and cα(u, v, p;B) = t2(p) ∩
t3(p).

Theorem 3.8. Let u, v ∈ U and r,s be non-zero real numbers. Define the matrix
C = (cnk) by

cnk =


âk(n), 0 ≤ k ≤ n− 1,

1
runvn

an, k = n,
0, k > n

(3.15)

for all n, k ∈ N, where

âk(n) =
1

uk

[
ak
rvk

+

(
1

rvk
+

1

svk+1

) n∑
j=k+1

(
−s
r

)k−j
aj

]
for k < n.

µβ(u, v, p;B) = {a = (ak) ∈ w : C ∈ (µ(p) : c)},

µγ(u, v, p;B) = {a = (ak) ∈ w : C ∈ (µ(p) : `∞)}.
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Proof. Let us consider following equation

n∑
k=0

akxk =
n∑
k=0

{
k−1∑
j=0

(
−s
r

)k−j [
1

rvj
+

1

svj+1

]
1

uj
yj +

1

ukvk
yk

}
ak

=
n−1∑
k=0

1

uk

[
ak
rvk

+

(
1

rvk
+

1

svk+1

) n∑
j=k+1

(
−s
r

)k−j
aj

]
yk +

an
runvn

yn

=
n−1∑
k=0

âk(n)yk +
an

runvn
yn

= (Cy)n for all n ∈ N, (3.16)

where C = (cnk) defined by (3.15). We deduce from (3.16) that ax = (anxn) ∈ cs
or bs whenever x = (xk) ∈ µ(u, v, p;B) if and only if Cy ∈ c or `∞ whenever
y = (yk) ∈ µ(p). This means that a = (ak) ∈ {µ(u, v, p;B)}β or a = (ak) ∈
{µ(u, v, p;B)}γ if and only if C ∈ (µ(p) : c) or C ∈ (µ(p) : `∞). This completes
the proof. �

As a direct consequence of Theorem 3.8, we have following.

Corollary 3.9. Define the sets d1(p), d2(p), d3(p), d4(p) and d5(p) as follows:

d1(p) =
⋂
B>1

{
a = (ak) ∈ ω :

∑
k

|âk(n)|B1/pk convergent uniformly in n

}
,

d2(p) =

{
a = (ak) ∈ ω :

(
1

runvn
akB

1/pk

)
∈ c0

}
,

d3(p) =
⋂
B>1

{
a = (ak) ∈ ω :

∑
k

|âk(n)|B1/pk <∞

}
,

d4(p) =
⋃
B>1

{
a = (ak) ∈ ω :

∑
k

|âk(n)|B−1/pk <∞

}
,

d5(p) =
⋂
B>1

{
a = (ak) ∈ ω : {âk(n)}B1/pk ∈ `∞

}
,

{`∞(u, v, p;B)}β = d1(p) ∩ d2(p), {c0(u, v, p;B)}β = {c0(u, v, p;B)}γ = d4(p),
{c(u, v, p;B)}β = d4(p)∩ cs, {c(u, v, p;B)}γ = d4(p)∩ bs and {`∞(u, v, p;B)}γ =
d3(p) ∩ d5(p).

3.4. Certain Matrix Mappings. In this part, we characterize the matrix map-
pings from the sequence space µ(u, v, p;B) into any given sequence space, where
µ ∈ {c0, c, `∞}. For an infinite matrix A = (ank), we write for brevity that

ank(m) =
1

uk

[
ank
rvk

+

(
1

rvk
+

1

svk+1

) m∑
j=k+1

(
−s
r

)k−j
anj

]
(k < m)



18 A. KARAİSA

and

ank =
1

uk

[
ank
rvk

+

(
1

rvk
+

1

svk+1

) ∞∑
j=k+1

(
−s
r

)k−j
anj

]
, (3.17)

for all k, n,m ∈ N provided the convergence of the series. Now, we give the
characterization of the classes (µ(u, v, p;B) : ν) and (ν : µ(u, v, p;B)), where ν
any given sequence space.

Theorem 3.10. A = (ank) ∈ (µ(u, v, p;B) : ν) if and only if D = (dnk) ∈ (µ(p) :
ν) and

E(n) ∈ (µ(p) : c) (3.18)

for every fixed n ∈ N, where dnk = ank and E(n) = (e
(n)
mk) with

enmk =


ank(m), 0 ≤ k ≤ m− 1,

1
rumvm

amk, k = m,
0, k > m

for all k, n,m ∈ N.

Proof. Assume that ν is any given sequence space and keep in mind that the
spaces µ(u, v, p;B) and µ(p) are paranorm isomorphic.
Let A = (ank) ∈ (µ(u, v, p;B) : ν) and x ∈ µ(u, v, p;B). Then we obtain the
equality

m∑
k=0

ankxk =
m−1∑
k=0

ank(m)yk +
anm
rumvm

ym =
m∑
k=0

enmkyk (3.19)

for all m,n ∈ N. Since Ax exists, E(n) must belong to the class (µ(p) : c).
Letting m −→ ∞ in the equality (3.19) we have that Ax = Dy. Since Ax ∈ ν,
then Dy ∈ ν. That is D = (dnk) ∈ (µ(p) : ν).

Conversely, let D ∈ (µ(p) : ν) and (3.18) holds, and take any x ∈ µ(u, v, p;B).
Then, we have (dnk)k∈N ∈ µβ(p) which gives together with (3.18) that (ank)k∈N ∈
[µ(u, v, p;B)]β for each n ∈ N. Thus, Ax exists and we obtain from equality (3.19)
as m −→∞ that Dy = Ax and which means that A = (ank) ∈ (µ(u, v, p;B) : ν).
This completes the proof. �

Theorem 3.11. Suppose that the entries of the infinite matrices A = (ank) and
B = (bnk) are connected with the relation

bnk =
n−1∑
j=0

(rvj + svj+1)ajk + runvnank

for all k, n ∈ N and ν be any given sequence space. Then, A ∈ (ν : µ(u, v, p;B))
if and only if B ∈ (ν : µ(p)).
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Proof. Let x = (xk) ∈ ν and consider the equality

m∑
k=0

bnkxk =
m∑
k=0

(
n−1∑
j=0

(rvj + svj+1)ajk + runvnank

)
xk

=
n−1∑
j=0

(rvj + svj+1)
m∑
k=0

ajkxk + runvn

m∑
k=0

ankxk

for all k,m, n ∈ N which yields as m → ∞ that Bx = Ĝ(Ax). Therefore,
Ax ∈ µ(u, v, p;B) whenever x ∈ ν if and only if Bx ∈ µ(p) whenever x ∈ ν. This
step completes the proof. �

The necessary and sufficient conditions characterizing the matrix mapping be-
tween the sequence spaces `∞(p), c0(p) and c(p) of Maddox are determined by
Grosse-Erdmann [16]. Let N and K denote subsets of N, L and M also denote
the natural numbers and define the sets K1 and K2 by K1 = {k ∈ N : pk ≤ 1},
K2 = {k ∈ N : pk > 1}. Before giving the theorems, let us suppose that (qn) is
non-decreasing sequence of positive real numbers and consider following condi-
tion:

∃M, sup
K

∑
n

∣∣∣∣∣∑
k∈K

ankM
−1/pk

∣∣∣∣∣
qn

<∞ (qn ≥ 1), (3.20)

∑
n

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

<∞, (qn ≥ 1), (3.21)

∀M, sup
K

∑
n

∣∣∣∣∣∑
k∈K

ankM
−1/pk

∣∣∣∣∣
qn

<∞ (qn ≥ 1), (3.22)

lim
n→∞

|ank|qn = 0 for all k, (3.23)

∀L, sup
n∈N

sup
k∈K1

∣∣ankL1/qn
∣∣pk <∞, (3.24)

∀L, ∃M, sup
n∈K1

∑
k∈K2

∣∣ankL1/qnM−1
∣∣p′k <∞, (3.25)

∀L, ∃M, sup
n∈N

L1/qn
∑
k

|ank|M−1 <∞, (3.26)

lim
n→∞

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

= 0 (3.27)

∀M, lim
n→∞

(∑
k

|ank|M1/pk

)qn

= 0, (3.28)

sup
n∈N

sup
k∈K1

|ank|pk , (3.29)
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∃M, sup
k∈N

∑
k∈K2

∣∣ankM−1
∣∣p′k <∞, (3.30)

∃(αk), lim
n→∞

|ank − αk|qn = 0 for all k, (3.31)

∃(αk), ∀L, sup
n∈N

sup
k∈K1

(
|ank − αk|L1/qn

)pk
<∞, (3.32)

∃(αk), ∀L, ∃M, sup
n∈N

(
|ank − αk|L1/qnM−1

)p′k <∞, (3.33)

∃M, sup
k∈N

∑
k∈K2

∣∣ankM−1
∣∣pk <∞, (3.34)

∃M, sup
n∈N

∑
k

|ank|M−1/pk <∞, (3.35)

∃α, lim
n→∞

∣∣∣∣∣∑
k

ank − αk

∣∣∣∣∣ <∞, (3.36)

∀M, sup
n∈N

∑
k

|ank|M1/pk <∞, (3.37)

∃(αk), ∃M, lim
n→∞

(∑
k

|ank − αk|M−1/pn

)
= 0, (3.38)

∃L, sup
n∈N

sup
k∈K1

∣∣ankL−1/qn
∣∣pk <∞, (3.39)

∃L, sup
n∈N

∑
k∈K2

∣∣ankL−1/qn
∣∣pk <∞, (3.40)

∃M, sup
n∈N

(∑
k∈K

|ank|M−1/pk

)qn

<∞, (3.41)

sup
n∈N

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

<∞, (3.42)

∀M, sup
n∈N

(∑
k

|ank|M1/pk

)qn

<∞. (3.43)

Corollary 3.12. (i) A = (ank) ∈ (c0(u, v, p;B) : `(q)) if and only if (3.20) holds
with ank instead of ank and (3.18) also holds with µ = c0.
(ii) A = (ank) ∈ (c0(u, v, p;B) : c(q)) if and only if (3.31), (3.34) and (3.35) hold
with ank instead of ank and (3.18) also holds with µ = c0.
(iii) A = (ank) ∈ (c0(u, v, p;B) : `(q)) if and only if (3.41) holds with ank instead
of ank and (3.18) also holds with µ = c0.

Corollary 3.13. (i) A = (ank) ∈ (c(u, v, p;B) : `(q)) if and only if (3.20) and
(3.21) hold with ank instead of ank and (3.18) also holds with µ = c.
(ii) A = (ank) ∈ (c(u, v, p;B) : c(q)) if and only if (3.31), (3.34)-(3.36) hold with
ank instead of ank and (3.18) also holds with µ = c.
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(iii) A = (ank) ∈ (c(u, v, p;B) : `(q)) if and only if (3.41) and (3.42) hold with
ank instead of ank and (3.18) also holds with µ = c.

Corollary 3.14. (i) A = (ank) ∈ (`∞(u, v, p;B) : `(q)) if and only if (3.22) holds
with ank instead of ank and (3.18) also holds with µ = `∞.
(ii) A = (ank) ∈ (`∞(u, v, p;B) : c(q)) if and only if (3.28) hold with ank instead
of ank and (3.18) also holds with µ = `∞.
(iii) A = (ank) ∈ (`∞(u, v, p;B) : `(q)) if and only if (3.37) and (3.38) hold with
ank instead of ank and (3.18) also holds with µ = `∞.
(iv) A = (ank) ∈ (`∞(u, v, p;B) : `∞(q)) if and only if (3.43) holds with ank
instead of ank and (3.18) also holds with µ = `∞.

Corollary 3.15. (i) A = (ank) ∈ (c0(p) : c(u, v, p;B)) if and only if (3.31),
(3.34) and (3.35) hold with bnk instead of ank .
(ii) A = (ank) ∈ (c0(p) : `∞(u, v, p;B)) if and only if (3.41) holds with bnk instead
of ank .

Corollary 3.16. (i) A = (ank) ∈ (c(p) : c(u, v, p;B)) if and only if (3.31),
(3.34)-(3.36) hold with bnk instead of ank .
(ii) A = (ank) ∈ (c(p) : `∞(u, v, p;B)) if and only if (3.41) and (3.42) hold with
bnk instead of ank .

Corollary 3.17. (i) A = (ank) ∈ (`∞(p) : c0(u, v, p;B)) if and only if (3.28)
holds with bnk instead of ank.
(ii) A = (ank) ∈ (`∞(p) : `∞(u, v, p;B)) if and only if (3.43) holds with bnk in-
stead of ank .
(iii) A = (ank) ∈ (`∞(p) : c(u, v, p;B)) if and only if (3.37) and (3.38) hold and
bnk instead of ank.

Corollary 3.18. (i) A = (ank) ∈ (`(p) : c0(u, v, p;B)) if and only if (3.23) and
(3.25) hold with bnk instead of ank.
(ii) A = (ank) ∈ (`(p) : c(u, v, p;B)) if and only if (3.29) and (3.33) hold with
bnk instead of ank .
(iii) A = (ank) ∈ (`(p) : `∞(u, v, p;B)) if and only if (3.39) and (3.40) hold and
bnk instead of ank.

4. compactness of matrix operators

In the section, we establish some identities or estimates for the operator norms
and the Hausdorff measures of noncompactness of certain matrix operators on
the spaces c0(u, v;B) and `∞(u, v, ;B). Further, by using the Hausdorff measure
of noncompactness, we characterize certain some classes of compact operators
on these spaces. It is quite natural to find condition for a matrix map between
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BK−space to define a compact operator since a matrix transformation between
BK−spaces are continuous. This can be achieved by applying the Hausdorff
measure of noncompactness. Recently, several authors characterized classes of
compact operators given by infinite matrices on some sequence spaces by using
this method. For example, in [20, 21], Mursaleen and Noman, Malkowsky and
Rakoc̆ević [10], Djolović and Malkowsky [30], and Karaisa [8] established some
identities or estimate for the operator norms and Hausdorff measure of noncom-
pactness of the linear operator given by infinite matrices that map an arbitrary
BK−space or the matrix domain of triangles in arbitrary BK−space. Further,
They characterized some classes of compact operators on these spaces by using
the Hausdorff measure of noncompactness.

4.1. Notations and Auxiliary Facts. Now, we give some related definitions,
notations and preliminary result.

Let X and Y be Banach space. Then, we write B(X, Y ) for the set of all
bounded linear operators L : X −→ Y , which is a Banach space with the operator
norm given by ‖L‖ = supx∈SX

‖L(x)‖Y for all L ∈ B(X, Y ), where SX denotes
the unit sphere in X, the sequence (L(xn)) has a subsequence which converges
in Y . By C(X, Y ), we denote the class of all compact operator in B(X, Y ). An
operator L ∈ B(X, Y ) is said to be of finite rank if dimR(L) < ∞, where R(L)
denotes range of L. An operator of finite rank is clearly compact.

If (‖.‖, X) is a normed sequence space then we write

‖a‖∗X = sup
x∈SX

∞∑
k=0

|akxk| (4.1)

for a ∈ w provided the expression on the right-hand side exists and is finite which
the case whenever X is a BK−space and a ∈ Xβ [11]. Let S and M be subsets
of metric space (X, d) and ε > 0. Then S is called an ε−net of M in X if every
x ∈ M there exists s ∈ S such that d(x, s) < ε. Further the set S is finite, then
the ε−net S of M is called a finite ε−net of M , and we say that M has a finite
ε−net in X. A subset of a metric space is said to be totally bounded if it has
a finite ε−net for every ε > 0. By MX , we denote the collection of all bounded
subsets of a metric space (X, d). If Q ∈ MX , then the Hausdorff measure of
noncompactness of the set Q, denotes by χ(Q), is defined by

χ(Q) = inf{ε > 0 : Q has a finite ε-net in X}.

The function χ :MX −→ [0,∞) is called the Hausdorff measure of noncompact-
ness [11, p. 387].

The basic properties of the Hausdorff measure of noncompactness can be found
in [12, Lemma 2]; for example if Q,Q1 and Q2 are bounded subsets of a metric
space (X, d), then

χ(Q) = 0 if and only if Q is totally bounded,

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2).
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Further, if X is a normed space, then the function χ has some additional prop-
erties connected with the linear structure, that is

χ(Q1 +Q2) ≤ χ(Q1) + χ(Q2),

χ(αQ) = |α|χ(Q) for all α ∈ C.
We shall need the following known results for our investigation.

Lemma 4.1. [12, Lemma 15(a)] Let ϕ ⊃ X and Y be a BK−space. Then, we
have (X, Y ) ⊂ B(X, Y ), that is, every matrix A ∈ (X, Y ) defines an operator
LA ∈ B(X, Y ) by LA(x) = Ax for all x ∈ X.

Lemma 4.2. [13, Theorem 3.8)] Let T be a triangle. Then, we have
(a) For arbitrary subsets X and Y of ω, A ∈ (X, YT ) if and only if B = TA ∈
(X, Y ).
(b) Further, if X and Y are BK spaces and A ∈ (X, YT ), then ‖LA‖ = ‖LB‖.
Lemma 4.3. [31, Lemma 5.2] Let ϕ ⊃ X be a BK space and Y be any of the
spaces c0, c or `∞. If A ∈ (X, Y ), then we have

‖LA‖ = ‖A‖(X,`∞) = sup
n
|An|∗X <∞.

Lemma 4.4. [13, Theorem 1.29] Let X be any of the spaces c, c0 or `∞. Then,
we have Xβ = `1 and ‖a‖∗X = ‖a‖`1 for all a ∈ `1.

Lemma 4.5. Let X be denote any of the spaces c0(u, v;B) and `∞(u, v;B). If
a = (ak) ∈ Xβ, then we ã = (ãk) ∈ `1 and equality

∞∑
k=0

akxk =
∞∑
k=0

ãkyk (4.2)

holds for every x = (xk) ∈ X, where y = Ĝ(x) is the associated sequence defined
by (3.1) and

ãk =
1

uk

[
ak
rvk

+

(
1

rvk
+

1

svk+1

) ∞∑
j=k+1

(
−s
r

)k−j
aj

]
.

Theorem 4.6. Let X be denote any of the spaces c0(u, v;B) and `∞(u, v;B).
Then, we have

‖a‖X = ‖ã‖`1 =
∞∑
k=0

|ãk| <∞.

for all a = (ak) ∈ Xβ, where ã = (ãk) is as in Lemma 4.5.

Proof. Let Y be the respective one of the space c0 or `∞, and take any a = (ak) ∈
Xβ. Then, we have by Lemma 4.5 that ã = (ãk) ∈ `1 and the equality (4.2) holds
for all sequences x = (xk) ∈ X and y = (yk) ∈ Y which are connected by the
relation (3.1). Further, it follows by (3.2) that x ∈ SX if and only if y ∈ SY .
Therefore, we derive from (4.1) and (4.2) that

‖a‖X = sup
x∈SX

∣∣∣∣∣
∞∑
k=0

akxk

∣∣∣∣∣ = sup
y∈SY

∣∣∣∣∣
∞∑
k=0

ãkyk

∣∣∣∣∣ = ‖ã‖Y .
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Since ã ∈ `1, we obtain from Lemma 4.4 that

‖a‖∗X = ‖ã‖∗Y = ‖ã‖∗`1 <∞.
�

Lemma 4.7. Let X be any of the space c0(u, v;B) or `∞(u, v;B), Y the respective
one of the spaces c0 or `∞, Z a sequence space and A = (ank) an infinite matrix.
If A ∈ (X,Z), then A ∈ (Y, Z) such that Ax = Ay for all sequences x ∈ X and
y ∈ Y which are connected by the relation (3.1), where A = (ank) is the associated
matrix defined by (3.17).

Proof. It can be similarly proved by the same technique in [21, Lemma 2.3]. �

Lemma 4.8. Let X be any of the space c0(u, v;B) or `∞(u, v;B), A = (ank)
an infinite matrix and A = (ank) is the associated matrix. If A is in any of the
classes (X, c0), (X, c) or (X, `∞), then

‖LA‖ = ‖A‖(X,`∞) = sup
n

(
∞∑
n

|ank|

)
<∞. (4.3)

Proof. This is immediate by combining Lemmas 4.3 and 4.6. �

The following results shows how to compute the Hausdorff measure of noncom-
pactness in the space c0.

Lemma 4.9. [29, Theorem 3.3] Let Q ∈ Mc0 and pr : c0 −→ c0 (r ∈ N) be
operator defined by pr(x) = (x0, x1, . . . , xr, 0, 0, . . .) for all x = (xk) ∈ c0. Then
we have

χ(Q) = lim
r→∞

(
sup
x∈Q
‖(I − pr)(x)‖`∞

)
,

where I is the identity operator on c0.
Further, we know by [13, Theorem 1.10] that every z = (zk) ∈ c has a unique

representation z = ze +
∑∞

n (zn − z)e(n), where z = limn→∞ zn. Thus, we define
the projectors pr : c −→ c (r ∈ N) by

pr = ze+
r∑

n=0

(zn − z)e(n); (r ∈ N)

for all z = (zk) ∈ c with z = limn→∞ zn. In this situation, the following result
gives an estimate for the Hausdorff measure of noncompactness in the space c.

Lemma 4.10. [12, Theorem 5(b)] Let Q ∈ Mc and pr : c −→ c (r ∈ N) be the
projector onto the linear span of (e(0), e(1), . . . , e(r)). Then, we have

1

2
lim
r→∞

(
sup
x∈Q
‖(I − pr)(x)‖`∞

)
≤ χ(Q) ≤ lim

r→∞

(
sup
x∈Q
‖(I − pr)(x)‖`∞

)
, (4.4)

where I is the identity operator on c.

The next lemma is related to the Hausdorff measure of noncompactness of a
bounded linear operator.
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Lemma 4.11. [13, Theorem 2.25] Let X and Y be Banach spaces and L ∈
B(X, Y ). Then, we have

‖LA‖χ = χ(L(SX)) (4.5)

and

L ∈ C(X, Y ) if and only if ‖LA‖χ = 0. (4.6)

4.2. Compact Operators on the Spaces c0(u, v;B) and `∞(u, v;B). In this
part, we establish some identities or estimates for the Hausdorff measures of non-
compactness of certain matrix operators on the spaces c0(u, v;B) and `∞(u, v;B).
Further, we apply our results to characterize some classes of compact operators on
those spaces. We begin with the following lemmas which will be used in proving
our results.

Lemma 4.12. [20, Lemma 3.1] Let X be any of the space c0 or `∞. If A ∈ (X, c)

αk = lim
n→∞

ank exists for every k ∈ N,

α = (αk) ∈ `1,

sup
n

(
∞∑
k

|ank − αk|

)
<∞,

lim
n→∞

An =
∞∑
k

αkxk for all x = (xk) ∈ X.

Lemma 4.13. [23, Theorem 3.7] Let X ⊃ φ be a BK−space. Then we have
(a) If A ∈ (X, c0), then

‖LA‖χ = lim sup
n→∞

‖An‖∗X .

(b) If A ∈ (X, `∞), then

0 ≤ ‖LA‖χ ≤ lim sup
n→∞

‖An‖∗X .

Theorem 4.14. Let X denote any of the spaces c0(u, v;B) and `∞(u, v;B). Then
we have
(a) If A ∈ (X, c0), then

‖LA‖χ = lim sup
n→∞

(
∞∑
k=0

|ank|

)
(4.7)

and

LA compact if and only if lim
n→∞

(
∞∑
k=0

|ank|

)
= 0. (4.8)
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(b) If A ∈ (X, `∞), then

0 ≤ ‖LA‖χ ≤ lim sup
n→∞

(
∞∑
k=0

|ank|

)
and

LA compact if and only if lim
n→∞

(
∞∑
k=0

|ank|

)
= 0.

Proof. Let A ∈ (X, c0). Since An ∈ Xβ for all n ∈ N, we have from Lemma 4.6
that

‖An‖X = ‖An‖`1 =
∞∑
k=0

|ank| <∞ . (4.9)

Thus, we get (4.7) from (4.9), (4.3) and Lemma 4.13(a). We derived (4.8) from
(4.6). Part (b) can be proved similarly by using Lemma 4.13(b). �

Theorem 4.15. Let X denote any of the spaces c0(u, v;B) and `∞(u, v;B). If
A ∈ (X, c), then we have

1

2
lim sup
n→∞

(
∞∑
k=0

|ank − αk|

)
≤ ‖LA‖χ ≤ lim sup

n→∞

(
∞∑
k=0

|ank − αk|

)
(4.10)

and

LA compact if and only if lim
n→∞

(
∞∑
k=0

|ank − αk|

)
= 0, (4.11)

where limn→∞ ank = αk.

Proof. By combining Lemma 4.7 and Lemma 4.12, we deduce that the expression
in (4.7) exists. We write S = SX , for short. Then, we obtain by (4.5) and Lemma
4.1 that

‖LA‖χ = χ(AS) (4.12)

which means AS ∈ Mc, where is the class of all bounded subsets of c. Then,
we are going to apply Lemma 4.10 to get an estimate for the value of χ(AS) in
(4.12). For this, let pr : c −→ c be the projectors defined by (4.4). Then, we have
for every r ∈ N that (I − pr)(z) =

∑∞
n=r+1(zn − z)en and hence,

‖(I − pr)(z)‖`∞ = sup
n>r
|z − z| (4.13)

for all z ∈ c. Thus, from (4.12) and Lemma 4.10 that

1

2
lim
r→∞

(
sup
x∈S
‖(I − pr)(Ax)‖`∞

)
≤ ‖LA‖χ ≤ lim

r→∞

(
sup
x∈S
‖(I − pr)(Ax)‖`∞

)
.(4.14)

Now, for every given x ∈ X and y ∈ Y be associated sequence defined by (3.1),
where Y be the respective one of the space c0 or `∞. Since A ∈ (X, c), we have
by Lemma 4.7 that A ∈ (Y, c) and Ax = Ay. Further, it follows from Lemma
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4.12 that the limits αk = limn→∞ ank exists for all k, α = (αk) ∈ `1 = Y β and
limn→∞(Ay)n =

∑∞
k=0 αkyk. Thus, we derive from (4.13) that

‖(I − pr)(Ax)‖`∞ = ‖(I − pr)(Ay)‖`∞

= sup
n>r

∣∣∣∣∣An(y)−
∞∑
k=0

αkyk

∣∣∣∣∣
= sup

n>r

∣∣∣∣∣
∞∑
k=0

(ank − αk)yk

∣∣∣∣∣
for r ∈ N. Furthermore, since x ∈ S = SX if and only if y ∈ SY , we obtain by
(4.1) and Lemma 4.1

sup
X∈S
‖(I − pr)(Ax)‖`∞ = sup

n>r

(
sup
Y ∈SY

∣∣∣∑(ank − αk)yk
∣∣∣)

= sup
n>r
‖An − α‖∗Y

= sup
n>r
‖An − α‖`1

for all r ∈ N. Thus, we get (4.10) and (4.11) from (4.14) and (4.6), respectively
and this concludes the proof. �
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sequence spaces wp

0(Λ), vp0(Λ) , cp0(Λ)(1 < p < ∞) and certain BK spaces , Appl. Math.
Comput 147 (2004), no. 2, 377-396 .



28 A. KARAİSA
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31. I. Djolović and E. Malkowsky, Matrix transformations and compact operators on some new
mth-order difference sequences, Appl. Math. Comput. 198, no. 2, (2008) 700-714.

32. I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil.
Soc. 64(1968) 335–340.

33. V. Karakaya, A.K. Noman and H. Polat, On paranormed λ-sequence spaces of non-absolute
type, Math. Comput. Modelling 54 (2011) 1473–480.

Department of Mathematics-Computer Science, Necmettin Erbakan Univer-
sity, Meram Campus, 42090 Meram, Konya, Turkey.

E-mail address: alikaraisa@hotmail.com; akaraisa@konya.edu.tr


	1. Introduction 
	2. Notations and Auxiliary Facts 
	3. Certain Main Results
	3.1. Basic Topological Properties
	3.2. Inclusion Relations
	3.3. Duals
	3.4. Certain Matrix Mappings

	4. compactness of matrix operators 
	4.1. Notations and Auxiliary Facts
	4.2. Compact Operators on the Spaces c0(u,v;B) and (u,v;B)

	References

