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ABSTRACT. This paper mainly divided into two parts. The first part gives
same facts about topological properties of certain linear topological spaces,
inclusion relations and matrix mappings. The second part establishes some
identities or estimates for the matrix operator norms and the Hausdorff mea-
sures of noncompactness of certain matrix operators, characterize some classes
of compact operators on these spaces.

1. INTRODUCTION

In the literature, by using the matrix domain over the paranormed spaces, many
authors have defined new sequence spaces. Some of them as follows: Choudhary
and Mishra [5] have studied sequence space ¢(p), where ¢(p) consists of the se-
quences whose S—trasforms are in ¢(p), Bagar and Altay [14] have defined the
spaces A(u,v;p) = {A(p)}te for A € {lw,co,c}. The same authors also have
defined the spaces [1] ri (p) = {loo(p)}re,70(p) = {co(p)}re relp) = {c(p)}re-
Recently, Karakaya et all. have introduced and studied the spaces [33] v(\;p) =
{v(p)}a for v € {ls,co,c}. R, G, A and S denote Riesz, generalized difference,
lambda and summation matrix, respectively. Also, the information on matrix
domain of sequence spaces can be found (see [0, 7, 17, 19, 28]).

The main purpose of the present paper is to introduce the sequence spaces
w(u, v, p; B) of non-absolute type and derive some related results. We also es-
tablish some inclusion relations. Furthermore, we determine the a—, f— and
~v—duals of those spaces and construct their basis. Also, we characterize some
classes of infinite matrices concerning the spaces p(u, v, p; B), where pu € {{«, co, c}.
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ON GENERALIZED WEIGHTED MEANS 9

Finally, we establish some identities or estimates for the operator norms and the
Hausdorff measures of noncompactness of certain matrix operators on the spaces
co(u,v,p; B), lo(u, v, p; B) and by using the Hausdorff measure of noncompact-
ness, we characterize some classes of compact operators on these spaces.

2. NOTATIONS AND AUXILIARY FACTS

By w, we shall denote the space of all real or complex valued sequences. Any
vector subspace of w is called sequence space. We shall write ¢, ¢ and ¢y for
the spaces of all bounded, convergent and null sequence respectively. Also by /;
and ¢, (1 < p < oo) we denote the spaces of all absolutely and p— absolutely
convergent series, respectively. Further, we shall write bs, cs for the spaces of all
sequences associated with bounded and convergent series.

Let 1 and v be two sequence spaces and A = (a,x) be an infinite matrix of real
or complex numbers a,, where n, k € N. Then, we say that A defines a matrix
mapping from p into 7, and we denote it by writing A : u — ~, if for every
sequence x = (xy) € u the sequence Az = {(Az),}, the A—transform of z is in
~; where

(Ax), = Zankxk (n € N). (2.1)

The notation (x : 7) denotes the class of all matrices A such that A : p — 7.
Thus, A € (u : ) if and only if the series on the right hand side of (2.1) converges
for each n € N. The matrix domain p4 of an infinite matrix A in a sequence
space p is defined by

pa ={x = () €Ew: Az € u}. (2.2)

A linear topological space X over the real field R is said to be a paranormed
space if there exists subadditive function h : X — R such that h(f) = 0,
h(—z) = h(z) and scalar multiplication is continuous, i.e., |, — | — 0 and
h(z, —x) — 0 imply h(a,z, —ax) — 0 for all &’s in R and all 2’s in X, where
6 is the zero vector in the linear space X.

Assume here and after that p = (pg) be a bounded sequence of strictly pos-
itive real numbers with supp, = H and M = max{l, H}. Then, the linear
spaces l(p), co(p) and ¢(p) were defined by Maddox [32](see also Simons [27]
and Nakano [15] )

lo(p) = {x = (xx) € w:sup |z |PF < oo} ,
keN

) = {r=(u)cw: Jim fr =0},
k—o0

c(p) = {x = (x) € w: 3l € R such that klim |z, — Pk = O}
—00
which are the complete paranormed by

h(z) = sup a, [/,
kEN
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Throughout the article, by F and N, respectively, we denote the collection
of all subsets of N and the set of all n € N such that n > k. Also we write
e=(1,1,1,...) and e™ is the sequence whose only non-zero term is 1 in the n
place for each n € N, where N = {0,1,2,...}.

Let U denotes the set of all sequences u = (uy) such that uy # 0 for all k € N
and u,v € U, and define the matrix G(u,v) = (gnx) by

upvk, (k<n),
gnk = UnUn, (k - TL),
0, (k>n)
for all k¥ € N, where u,, depends only on n and vy only on k. The matrix G(u,v)
which is called as generalized weighted mean or factorable matrix.

Let r and s be non-zero real numbers and define the generalized difference
matrix B(r,s) = {bu(r,s)} by

r, k =n,
buk(r,s) =4 s, k=n—1, (2.3)
0, otherwise

for all n, k € N. We note that the matrix B(r, s) can be reduced to the difference
matrix /A in case r = 1 and s = —1. So, the results related to the domain of the
matrix B(r, s) are more general and more comprehensive than the consequences
of the domain of the matrix A and include them.

3. CERTAIN MAIN RESULTS

3.1. Basic Topological Properties. This part is devoted to examination of the
basic topological properties of the sets p(u,v,p; B), where u € {{y,co,c}. For
ueUand ; = ().

Now, we introduce the new sequence spaces (o (u, v, p; B), co(u,v,p; B) and
c(u,v,p; B) as follows:

n Pn
goo(“vv7p; B) = T = (I’k) Cw:sup unka(rxk + Sxk—l) <0,
neN —0
n Pn
co(u,v,p; B) = {x = (zg) €Ew: lim |u, » vp(reg + szr_1)| = 0} 7
n Pn
c(u,v,p; B) = {x = (zx) € w: 3l € R such that le Up, ka(rxk +sTE_1)| = l} )
k=0

By the notation of (2.2), we can redefine the spaces u(u, v, p; B) as follows:
/1’<U7 U7p; B) = [ILL<U7 U;p)]B7

where B denotes the generalized difference matrix B(r,s) = {bux(r,s)} defined
by (2.3). On the other hand, we define the triangle matrix

~

G(u,v, B) = G(u,v)B(r,s) = (Gnk)
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un<rvk + S'Uk:+1>7 k< n,

Gnk = T'Up U, k=n,
0, k>n
for all n, k € N. Then, we have following special cases.
(i) If r = 1 and s = —1, then u(u,v,p; B) = p(u,v,p;A), where p €

{lso, Co, ¢} (see [3]).

(ii) Let A = (\g) is a strictly increasing sequence of positive reals tending to
oo. If v = (Ag — Ap—1) and w = (1/X,) with p = e, then ¢q(u,v,p; B) =
cy(B) and c(u,v,p; B) = cMB) (see[l]).

(iii) If v = (A — A\p—1) and w = (1/),) with p = e and r = 1,5 = —1, then
co(u,v,p; ) = cy(A) and c(u, v, p; B) = A(A) (see [24]).

(iv) If v = (1 +7*¥) and u = (1/n + 1) with p = e and r = 1,5 = —1, then
co(u,v,p; B) = ap(A) and c(u, v, p; B) = aL(A) (see [9]).

(v) If v = (gx) and v = (1/>°7_oqx), then lo(u,v,p; B) = ri (p, B) and
co(u, v, p; B) = r§(p, B) as well as c(u,v,p; B) = ri(p, B) (see [18]).

Define the sequence y = (yx), which will be frequently used, as the G—transform
of a sequence = = (zy), i.e.

k
Yk = Zukvi(r-ﬂ + swi1) (3.1)

i=0
and every x = (x)) € w which leads us together with (2.2) to the fact that

pu(u, v, p; B) = [u(p)]a-
Also we derive that equality of (3.1)
k—1
Yo = Tupvg and yp = ug (Z(”’i + svi1)T; + rukvkxk> forall kK > 1.
i=0
Theorem 3.1. We have the following

(a): pu(u,v,p; B) is the complete linear metric space paranormed by g, de-
fined by

Pn
M

n—1
Z U,n(T’Uk + S’l)k;+1>$k + UpUn Ty,
k=0
where M = max{1l,supp,} and 0 < p, < H < oo for alln € N.
(b): Then, p(u,v,p; B) = pg is a BK—space with the norm || || yuwvpn) =

|G ||os. That is,

g(x) = sup

n

[l s(vs) = 5P [(G ). (3.2)
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Proof. (a) We prove the theorem only for the space cy(u, v, p; B). The linearity of
co(u, v, p; B) with respect to the coordinatewise addition and scalar multiplication
follows from the following inequalities which are satisfied for z,x € co(u, v, p; B)
25, p.30]

<F

sup U (10 + U1 ) (ke + 21) + UnU (T0 + 22)

<F

< sup un(rvk + Svk—i—l)xk + UpUn Ty
n

bn

M

+ sup Z Un (TVg + SVK41) 2k + UnUp 2 (3.3)

™ k=0

For any a € R (see[32]), we get
laPt < max{1, ||} (3.4)

It is clear that g(f) = 0 and g(z) = g(—=x) for all z € ¢(u, v, p; B). The inequal-
ities (3.3) and (3.4) again yield the subadditivity of g and

g(oz) < max{1,[a["}g(z). (3.5)

Let {2"} be any sequence of points in ¢q(u, v, p; B) such that g(z™ —x) — 0 and
(av,) also be any sequence of scalars that «,, — a. Then, we obtain

glama" — ax) < gl(om — a)(@" —2)] + gla(z" —2)] + g[z(a” — )] (3.6)

It follows from «a,, — « as n — oo that |a,, — | < 1 for all sufficient large n.
Therefore,

Tim gf(a, —a)(@” — )] < lim g[(a” — )] = 0. (3.7)
By (3.5), we have
tin glaa” — )] < max{Llal"} i g [@" =0 =0 (35)

Furthermore, we get
lim g [z(a" — a)] < lim |, — alg(z) = 0. (3.9)

n—o0 n—oo

Then, we obtain from (3.6)-(3.9) that g(a,2™ — axr) — 0 as n — oo. This
shows that g is a paranorm on cy(u, v, p; B).

It remains to prove the completeness of the space co(u,v,p; B). Let {7} be
any Cauchy sequence in the space co(u, v, p; B), where x* = (x{, z%, %, ...). Then
for a given e there exists a positive integer ng(¢) such that

gla? —2') < ¢

for all 4, j > no(e). Using definition of g, we obtain for each fixed n € N that

bn

M

(ax])n — (éxz)n < sup (@xj)n — (@xz)n Mo

% (3.10)
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for every i,7 > no(e), which lead us to fact that {(Gz®), (Gz')e, (Gz2)i, ...} is
a Cauchy sequence of real numbers for every fixed n € N. Since R is complete, it
converges, say (Ga?), — (Gz);, as j — co. Using these infinitely many limits,
we may write the sequence {(Gx)o, (Gz)1, (Gx)s,...}. Using (3.10) as i —» oo
and for all 7 > ng(e), we have

\(éﬁ)n —(G)| < g (3.11)

for every fixed n € N. Since 27 = (x,ij)) € co(u,v,p; B) for each j € N, there
exists ng(e) such that |(Ga?),| % < s for every j > ng(e). We obtain by (3.11)

N o pn
‘(GSL‘])H M M

+|(Ga?), |5 < e

< ’(@xj)n — (Gx),

for every j > ng(e). Thus, we get x € co(u,v,p; B). Since (27) was an arbitrary
Cauchy sequence, the space co(u, v, p; B) is complete.

(b) Since the sequence space p endowed with the norm ||.|| is BK-space
(see[26, Example 7.3.2(b),(c)]) and the matrix G is a triangle, Theorem 4.3.2 of
Wilansky [2, p.61] gives the fact that the spaces u(u, v, p; B) are BK-space with
the norm in (3.2). O

One can easily check that the absolute property does not hold on the space
p(w, v, p; B), that is ||z uwepB) 7Z ||| xuwpp) for at least one sequence in the
space p(u,v,p; B) and this tells us that u(u,v,p; B) none-absolute type, where

|z = ().

Theorem 3.2. The sequence spaces loo(u, v, p; B), co(u,v,p; B) and c¢(u, v, p; B)
of none-absolute type is linearly isomorphic to the spaces lo(p), co(p) and c(p),
respectively, where 0 < pp < H < 00.

Proof. To prove the fact that ¢o(u, v, p; B) = ¢o(p) we should show the existence
of a linear bijection between the spaces co(u,v,p; B) and cy(p). Consider the
transformation T defined with the notation of (2.2) from cy(u, v, p; B) to co(p) by
r—y="Tr = Gz. The linearity of 7' is clear. Further, it is clear that z = 6
whenever Tx = 6 and hence T is injective.

Let y = (yx) € co(p) and define the sequence x = (zy) by

-\ 1 1
Tk = Z (_) {— + } —y; + yr for each k € N. (3.12)

r TUj  SUji1] Uy TURV

J=0

Then, we have

bn

n—1 M

E Un (T + SUK41) Tk + TURUR T,
k=0

g(x) = sup

n

Pn
= sup |y,| ™ = h(y).

Therefore, we have x € co(u, v, p; B). As a result, T is surjective. This implies
T is linear bijection. So, the space cy(u, v, p; B) and ¢o(p) are linearly isomorphic
as desired. This completes the proof. O



14 A. KARAISA

Now, we define the Schauder basis of a paranormed sequence space and then
give the basis of the sequence spaces c(u, v, p; B) and co(u, v, p; B). If a sequence
space «y paranormed by g; contains a sequence (b;) with the property that for
every x € v, there is a unique of scalars («y) such that

lim g, (:c -y akbk> =0,
k=0

then (by) is called a Schauder basis (or briefly basis) for 7. The series ) axby
which has the sum z is called the expansion of x with respect to (by), and written
as v = Y agby. It is known from Theorem 2.3 of Jarrah and Malkowsky [22] that
the domain vr of an infinite matrix 7" in a sequence space v has a basis if and
only if v has a basis, if T is a triangle. As a direct consequence of this fact, we
have:

Corollary 3.3. Let o = (éx)k forallk e N and |l = limk%m(@x)k. Define the
sequence b*¥) = {b%k)} for every fized n € N by

(=)"" [L X ;] L k<,

r TV SVE11 | ug’
b(k) 1 *
n

TURVn ~ k =n,

0, k>n

Then, the following statements hold.

(a) The sequence (b%k)) is a basis for the space cy(u,v,p; B) and every x €
co(u, v, p; B) has a unique representation of the form z =Y, caxb®.

(b) The sequence space {b,b 6" ..} is a basis for the space c(u,v,p; B) and
any x € c(u,v,p; B) has a unique representation of the for x = 1b+ ), [oy, — by,

where
k-1 k—j &
Z —S 1 1 1 1
=0 r Trv; SUVj41] Uy TURVE o

3.2. Inclusion Relations. In this part, we give some inclusion relations con-
cerning the spaces u(u, v, p; B).

Theorem 3.4. The inclusions co(u, v, p; B) C c(u, v, p; B) C lo(u, v, p; B) strictly
hold.

Proof. Let x = (zx) € co(u,v,p; B). This implies Gr € co(p). Then, since
the inclusion ¢y(p) C ¢(p) holds, Gz € ¢(p) which means that z € ¢(u, v, p; B).
Further consider the sequence as follows:

k—1 k—j
1 -5 1 1 1 1 2n+5
= _ — — — , Dn = f; hneN.
S [Z < r ) lrvj M ] Uj * Tukvk] P n+1 orcacin

SUj+1

Then, we have

1
e (3.13)
2
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From (3.13), we get z is in ¢(u, v, p; B) but not in ¢y(u, v, p; B). Since the inclusion
c(p) C lo(p) is strict, one can find at least a sequence Gz € f(p) \ ¢(p) which
shows that (o (u,v,p; B) \ ¢(u, v, p; B)) is not empty, as desired. O

Theorem 3.5. Following statements are hold.
(1): If pp, > 1 for all n € N, then the inclusion p(u,v, B) C p(u,v,p; B)
holds
(ii): If p, < 1 for all n € N, then the inclusion u(u,v,p; B) C u(u,v, B)
holds

where (1 € {{oo, Co, C}.

Proof. (1) If p, = p for all n € N, then we can write cy(u,v, B) instead of
co(u,v,p; B). Let x € ¢o(u,v, B). It is clear that Gr € ¢o. We can find m € N
such that |@x| < 1 for all n > m. By our assumption (i), we have |@x|p” < |Gz|
for all n > m. Therefore, we get = € ¢o(u, v, p; B).

(ii) Let = € co(u,v,p; B). Then Ga € co(p) and there exists m € N such that
|@x|p" < 1 for all n > m. Now, consider following inequality:

G| = (|GafPr)M /P < |Galrr
for all n > m. So we have = € ¢o(u, v, B). This completes the proof. 0J

3.3. Duals. In this part, we state and prove certain theorems to determine the
a—, f— and ~y duals of the spaces p(u,v,p; B) for p € {l,co,c}. We start with
the definition of the alpha, beta and gamma duals. If x and y are sequences and
X and Y are subsets of w, then we write = -y = (x3yk)i2g, @ 'Y ={a € w:
a-z €Y} and

MX,Y)=()a"'*«Y ={a:a-z €Y forall v € X}
zeX

for the multiplier space of X and Y. One can easily observe for a sequence
space Z with Y C Z and Z C X that inclusions M(X,Y) € M(X,Z) and
M(X,Y) C M(Z,Y) hold respectively. The a—, f—and y—duals of a sequence
space, which are respectively denoted by X, X# and X7 are defined by

X*=M(X,t), XP = M(X,cs) and X7 = M(X,bs).
It is obvious that X® C X# C X7. Also, it can easily be seen that the inclusions
X*CcY* X cYPand X” C Y hold whenever Y C X.

Theorem 3.6. Define the matrix D = (d,x) by

—s\" k| 1 1 1
( r ) [Tvk + svk+1i| uka"’ k< n,
Aoy =< 1 _
nk TUnUn, an; k - n:

0, k>n
for all n,k € N. Then,

p(u,v,p; B) ={a = (ar) € w: D € (u(p) : 1)}
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Proof. Let a = (a,) € w. Then by using (3.12), we immediately derive for every
n € N that

I (=s\" "1 1 11 1
Unn = = kzzo (7) {— + ] — Yk + ——Ynan = (Dy),. (3.14)

rUp  SUga1 | Uk TURVUp,

Thus, we observe by (3.14) that ax = (a,x,) € ¢; whenever z = (x) €
w(u, v, p; B) if and only if D, (y) € ¢, whenever y = (yx) € u(p) which implies
a = (ax) € {u(u,v,p; B)}* if and only if D € (u(p) : ¢1). O

Theorem 3.6 corresponds in the special case g, = 1 for all n € N to Part (1-3)
of Theorem 5.1 of [16].
As a direct consequence of Theorem 3.6, we have following.

Corollary 3.7. Let K* = KN{n e N:n—1<k <n} for K CF and M € N,.
Define the sets t1(p),ta(p), ts(p) as follows:
- oo} |

ti(p) = ﬂ {a = (ag) € w : sup Z

M>1 Ker =)

Z dnle/pk

keK*

to(p) = U {a:(ak)Ew:Z Zdnk <oo},
M>1 n k
ts(p) = U {a = (ag) Ew: [s(Lé;}Z Z dop M~YPE| < oo} )

Then, (2 (u,v,p; B) = t1(p), c§(u,v,p; B) = t3(p) and c*(u,v,p; B) = ta2(p) N
t3(p).-

Theorem 3.8. Let u,v € U and r,s be non-zero real numbers. Define the matriz

C = (cux) by
ag(n), 0<k<n-—1,
Cnk = man; k= n, (315)
0, k>n

for all n, k € N, where

1| as 1 1 "5\
a = — |24 (— — : k< n.
ar(n) " [rvk + <7’Uk + svk+1> Z ( " ) aJ] for n

j=k+1

1’ (u,v,p; B) = {a=(ar) €w: C € (u(p) : )},

W (u,v,p;B) ={a=(ag) €w:C € (up) : £o)}-
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Proof. Let us consider following equation

n n k—1 k—j
—5 1 1 1 1
2 = Z{Z(T) o ) y}

SU
k=0 k=0 { j=0 j+1
n—1 n k_‘
1| ag 1 1 —s\" an,
- Zu— roe | \rop | s T ) YT
=0 k k k k+1 =kt 1 n'Un

Uy Uy,
= (C’y)n for all n €N, (3.16)

where C' = (cpy) defined by (3.15). We deduce from (3.16) that ax = (a,z,) € cs
or bs whenever z = (z3) € pu(u,v,p; B) if and only if C'y € ¢ or ¢, whenever
y = (yr) € p(p). This means that a = (ay) € {u(u,v,p; B)}® or a = (a;) €
{p(u,v,p; B)}7 if and only if C' € (u(p) : ¢) or C € (u(p) : lo). This completes
the proof. O

As a direct consequence of Theorem 3.8, we have following.

Corollary 3.9. Define the sets di(p),ds(p),ds(p),ds(p) and ds(p) as follows:

di(p) = m {a = (ag) Ew: Z [@x(n)| BYP* convergent uniformly in n} ,

B>1 k

1
da(p) = {a: (ar) Ew: (ru ” ClkBl/p’“) € Co};

ds(p) = ﬂ{a— ai) € w: Z|ak ]Bl/p’“<oo}

ds(p) = U{a— ag) € w: Z|ak )| B~ 1/1”‘“<oo}
ds(p) = () {a=( @k)€W1{ak(”)}Bl/pk € lo)

{éoo(u,v,p; B)}ﬂ = dl(p) N dg(p), {co(u,v,p, )}ﬁ {CO(U v, P; )}’y = d4< )
{c(u,v,p; B)}? = dy(p) Nes, {c(u,v,p; B)}Y = dy(p) Nbs and {loo(u,v,p; B)}¥ =
d3(p) N ds(p).

3.4. Certain Matrix Mappings. In this part, we characterize the matrix map-
pings from the sequence space u(u, v, p; B) into any given sequence space, where
i€ {co, ¢, ls}. For an infinite matrix A = (anx), we write for brevity that

1 |a 1 1 g\
Gp(m) = — L’“+<—+ ) > (—) anj| (k<m)
Uk | TUE TV SVg+1 k1 r
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1 |a, 1 1 < -5\
i G 5, ()
U | TUE TUk SVkg+1 okt T

for all k,n,m € N provided the convergence of the series. Now, we give the
characterization of the classes (u(u,v,p;B) : v) and (v : p(u,v,p; B)), where v
any given sequence space.

and

, (3.17)

Theorem 3.10. A = (anx) € (u(u,v,p; B) : v) if and only if D = (d,i) € (u(p) :
v) and

E® € (u(p) : ¢ (3.13)
for every fized n € N, where dy; = Gni and E™ = (ei,?,)g) with

Ani(m), 0<k<m-1,
1
Cmk — TUmUm Gk k= m,

0, k>m
for all k,n,m € N.

Proof. Assume that v is any given sequence space and keep in mind that the
spaces p(u,v,p; B) and p(p) are paranorm isomorphic.

Let A = (ank) € (W(u,v,p; B) : v) and x € u(u,v,p; B). Then we obtain the
equality

j— anm = n
D ke = Gn(m)ys + Yn =) il (3.19)
k=0

U, U,

for all m,n € N. Since Az exists, E™ must belong to the class (u(p) : c).
Letting m — oo in the equality (3.19) we have that Ax = Dy. Since Az € v,
then Dy € v. That is D = (d,.) € (u(p) : v).

Conversely, let D € (u(p) : v) and (3.18) holds, and take any x € u(u, v, p; B).
Then, we have (dn,)ren € p°(p) which gives together with (3.18) that (aux)ren €
[11(u, v, p; B)]? for each n € N. Thus, Az exists and we obtain from equality (3.19)
as m — oo that Dy = Ax and which means that A = (a,) € (u(u,v,p; B) : v).
This completes the proof. O

Theorem 3.11. Suppose that the entries of the infinite matrices A = (ank) and
B = (buk) are connected with the relation

n—1

bk = g (rvj + SVj41) @ik + TUpUR ARk
Jj=0

for all k,n € N and v be any given sequence space. Then, A € (v : u(u,v,p; B))
if and only if B € (v : u(p)).
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Proof. Let © = (zx) € v and consider the equality

m m n—1
E bupry = E E (ij + Svj—f—l)ajk + TURVp Apk
k=0

k=0 \j=0
n—1

m m
= E (rv; + svji1) E AR T + TUR Uy E ATl

k=0

§=0 k=0

for all k,m,n € N which yields as m — oo that Bz

)m

~

G(Ax).
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Therefore,

Az € u(u,v,p; B) whenever = € v if and only if Bz € pu(p) whenever z € v. This

step completes the proof.

O

The necessary and sufficient conditions characterizing the matrix mapping be-
tween the sequence spaces lo(p), co(p) and ¢(p) of Maddox are determined by
Grosse-Erdmann [16]. Let N and K denote subsets of N, L and M also denote
the natural numbers and define the sets K; and Ky by K; = {k € N: p, < 1},
K, = {k € N: p, > 1}. Before giving the theorems, let us suppose that (g,) is
non-decreasing sequence of positive real numbers and consider following condi-

tion:
dn
M, supz Zankal/p’“
K70 lkek
dn
Z Zank < 00, (Qn 2 1)a
n k
an
VM, Supz ZankM_l/p’“
K0 ke
lim |a,,|™ =0 for all £,
n—oo
VL, sup sup |ankL1/q"‘pk < 00,
neN keK,

VL, AM, sup Z }ankLl/q"M_l}p;“ < 00,

neK; keKs

VL, 3M, sup LYY Jan M7 < o0,

neN k

§ Ank
k

qn

=0

lim
n—oo

an
; 1/pk _
VM, nlggo (%:|ank|M > 0,

sup sup |a,x|"*,
neN kek,

<00 (g, >1),

<oo (gn>1),

(3.20)

(3.21)

(3.22)

(3.23)
(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



20 A. KARAISA

M, sup Z | M P < 00, (3.30)
keN keKo
(), lim |ae —ag|™ =0 for all k, (3.31)
n—oo
J(ew), VL, sup sup (|ans — axLY9")™ < oo, (3.32)
neN keK
A(ag), YL, IM, sup (|ank — ak|L1/q"M_1)p;“ < 00, (3.33)
neN
M, sup Z ’ank]\4_1|p’c < 00, (3.34)
RN ek,
aM, supz ]ank|M_1/p’“ < 00, (3.35)
neN L
Jda, nh_)rglo ;ank — | < 00, (3.36)
VM, supz |G| M YPE < 00, (3.37)
neN L
o), 3M, lim <Z|ank — ak|M_1/p"> =0, (3.38)
k
L, sup sup ‘ankL_l/q"‘pk < 00, (3.39)
neN kek,
JL, sup Z ‘ankL_l/q”‘pk < 00, (3.40)
neN kEKs
an
dM, sup (Z |ank|M_1/p’“) < 00, (3.41)
neN \kek
an
sup k| < 00, (3.42)
neN &
an
VM, sup (Z |ank|M1/”k> < 0. (3.43)
neN &

Corollary 3.12. (i) A = (au) € (co(u,v,p; B) : £(q)) if and only if (3.20) holds
with Gy instead of an, and (3.18) also holds with u = co.

(ii) A = (an) € (co(u,v,p; B) : ¢(q)) if and only if (3.51), (3.34) and (3.35) hold
with Gpy instead of an, and (3.18) also holds with u = co.

(173) A = (an) € (co(u,v,p; B) : £(q)) if and only if (3.41) holds with Gy, instead
of an and (3.18) also holds with u = co.

Corollary 3.13. (i) A = (ank) € (c(u,v,p; B) : £(q)) if and only if (5.20) and
(3.21) hold with @y, instead of any, and (3.18) also holds with p = c.

(17) A = (ank) € (c(u,v,p; B) : c(q)) if and only if (3.31), (3.54)-(5.36) hold with
Qi instead of ang and (3.18) also holds with = c.
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(11) A = (ank) € (c(u,v,p; B) : £(q)) if and only if (5.41) and (3.42) hold with
Qi instead of any, and (3.18) also holds with p = c.

Corollary 3.14. (i) A = (au) € (boo(u,v,p; B) : £(q)) if and only if (3.22) holds
with Gpy instead of any and (3.18) also holds with p = {w.

(17) A = (ank) € (boo(u,v,p; B) : ¢(q)) if and only if (3.28) hold with Gy, instead
of an and (3.18) also holds with p = lw.

(171) A = (ank) € (loo(u,v,p; B) : £(q)) if and only if (3.37) and (3.38) hold with
Qi instead of any and (3.18) also holds with = {«.

(iv) A = (ank) € (boo(u,v,p; B) = Loo(q)) if and only if (3.43) holds with Gy
instead of anx and (5.18) also holds with p = {o.

Corollary 3.15. (i) A = (an) € (co(p) : c(u,v,p; B)) if and only if (3.31),
(3.34) and (3.35) hold with by, instead of an .

(17) A = (ank) € (co(p) : boo(u,v,p; B)) if and only if (3.41) holds with by, instead
of any .

Corollary 3.16. (i) A = (au) € (c(p) : c(u,v,p; B)) if and only if (3.31),
(5.3/)-(3.36) hold with by, instead of ay .

(17) A = (ank) € (c(p) : loo(u,v,p; B)) if and only if (3.41) and (3.42) hold with
bni instead of apy .

Corollary 3.17. (i) A = (anr) € (boo(p) = co(u,v,p; B)) if and only if (3.28)
holds with b, instead of an.

(17) A = (ank) € (loo(p) : loo(u,v,p; B)) if and only if (3.43) holds with by, in-
stead of any .

(171) A = (ank) € (loo(p) : c(u,v,p; B)) if and only if (3.37) and (3.38) hold and
bux instead of any.

Corollary 3.18. (i) A = (ank) € (U(p) : co(u,v,p; B)) if and only if (3.23) and
(5.25) hold with by, instead of .

(i1) A = (ank) € (U(p) : c(u,v,p; B)) if and only if (3.29) and (3.33) hold with
bni instead of apy .

(131) A = (ank) € (U(p) : loo(u,v,p; B)) if and only if (3.59) and (3.40) hold and
bnk instead of ap.

4. COMPACTNESS OF MATRIX OPERATORS

In the section, we establish some identities or estimates for the operator norms
and the Hausdorff measures of noncompactness of certain matrix operators on
the spaces c¢o(u,v; B) and l(u, v, ; B). Further, by using the Hausdorff measure
of noncompactness, we characterize certain some classes of compact operators
on these spaces. It is quite natural to find condition for a matrix map between
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BK —space to define a compact operator since a matrix transformation between
BK —spaces are continuous. This can be achieved by applying the Hausdorff
measure of noncompactness. Recently, several authors characterized classes of
compact operators given by infinite matrices on some sequence spaces by using
this method. For example, in [20, 21], Mursaleen and Noman, Malkowsky and
Rakocevi¢ [10], Djolovi¢ and Malkowsky [30], and Karaisa [8] established some
identities or estimate for the operator norms and Hausdorff measure of noncom-
pactness of the linear operator given by infinite matrices that map an arbitrary
BK —space or the matrix domain of triangles in arbitrary BK —space. Further,
They characterized some classes of compact operators on these spaces by using
the Hausdorff measure of noncompactness.

4.1. Notations and Auxiliary Facts. Now, we give some related definitions,
notations and preliminary result.

Let X and Y be Banach space. Then, we write B(X,Y') for the set of all
bounded linear operators L : X — Y, which is a Banach space with the operator
norm given by ||L|| = sup,cg, [[L(z)||y for all L € B(X,Y), where Sx denotes
the unit sphere in X, the sequence (L(z,)) has a subsequence which converges
in Y. By C(X,Y), we denote the class of all compact operator in B(X,Y). An
operator L € B(X,Y) is said to be of finite rank if dimR(L) < oo, where R(L)
denotes range of L. An operator of finite rank is clearly compact.

If (]|.]|, X) is a normed sequence space then we write

lally = sup > laxzy| (4.1)
r€Sx k=0

for a € w provided the expression on the right-hand side exists and is finite which
the case whenever X is a BK —space and a € X? [11]. Let S and M be subsets
of metric space (X,d) and € > 0. Then S is called an e—net of M in X if every
x € M there exists s € S such that d(z,s) < e. Further the set S is finite, then
the e—net S of M is called a finite e—net of M, and we say that M has a finite
e—net in X. A subset of a metric space is said to be totally bounded if it has
a finite e—net for every ¢ > 0. By Mx, we denote the collection of all bounded
subsets of a metric space (X,d). If Q@ € My, then the Hausdorff measure of
noncompactness of the set @, denotes by x(Q), is defined by

x(Q) = inf{e > 0 : @ has a finite e-net in X}.

The function y : My — [0,00) is called the Hausdorff measure of noncompact-
ness [11, p. 387].

The basic properties of the Hausdorff measure of noncompactness can be found
in [12, Lemma 2]; for example if @, Q1 and Q2 are bounded subsets of a metric
space (X, d), then

x(Q) =0 if and only if @ is totally bounded,
Q1 C Q2 implies x(Q1) < x(Q2)-



ON GENERALIZED WEIGHTED MEANS 23

Further, if X is a normed space, then the function y has some additional prop-
erties connected with the linear structure, that is

X(Q1 + Q2) < x(Q1) + x(Q2),
x(aQ) = |a|x(Q) for all a € C.

We shall need the following known results for our investigation.

Lemma 4.1. [12, Lemma 15(a)] Let ¢ D X and Y be a BK —space. Then, we
have (X,Y) C B(X,Y), that is, every matric A € (X,Y) defines an operator
LaeB(X,Y) by La(x) = Az for allz € X.

Lemma 4.2. [13, Theorem 3.8)] Let T' be a triangle. Then, we have

(a) For arbitrary subsets X andY of w, A € (X,Yr) if and only if B=TA €
(X,Y).

(b) Further, if X and Y are BK spaces and A € (X,Yr), then ||Lal| = ||Lg||.
Lemma 4.3. [31, Lemma 5.2] Let ¢ D X be a BK space and Y be any of the
spaces co, ¢ or bs. If A € (X,Y), then we have

[Lall = [All(x.e0) = suP [An[x < o0
Lemma 4.4. [13, Theorem 1.29] Let X be any of the spaces ¢, ¢y or lo. Then,
we have XP = {1 and ||a|% = ||lall¢, for all a € ¢;.

Lemma 4.5. Let X be denote any of the spaces co(u,v; B) and lo(u,v; B). If
a = (ay) € XP, then we a = (a;) € {1 and equality

k=0 k=0

holds for every x = (zx) € X, where y = @(x) is the associated sequence defined
by (3.1) and

o0 k—j
- 1 |a 1 1 Z —5
UL | TUE TV SVUg+1 okt T

Theorem 4.6. Let X be denote any of the spaces co(u,v; B) and ls(u,v; B).
Then, we have

o
lallx = llalle, = lar| < oo
k=0

for all a = (ax) € XP, where a = (ay) is as in Lemma /.5.

Proof. Let Y be the respective one of the space ¢y or ¢, and take any a = (ay) €
XP#. Then, we have by Lemma 4.5 that @ = (a;,) € ¢; and the equality (4.2) holds
for all sequences x = (z) € X and y = (yx) € Y which are connected by the
relation (3.1). Further, it follows by (3.2) that © € Sx if and only if y € Sy .
Therefore, we derive from (4.1) and (4.2) that

o oo
lallx = sup Y apwy| = sup | > apyi| = |lally.
TESX k=0 yESy k=0
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Since a € {1, we obtain from Lemma 4.4 that
lallx = llally = llall7, < oo.
O

Lemma 4.7. Let X be any of the space co(u,v; B) orlo(u,v; B), Y the respective
one of the spaces co or L, Z a sequence space and A = (ani) an infinite matriz.
IfAe (X,Z), then A € (Y,Z) such that Ax = Ay for all sequences x € X and
y € Y which are connected by the relation (5.1), where A = (@) is the associated
matriz defined by (3.17).

Proof. Tt can be similarly proved by the same technique in [21, Lemma 2.3]. O

Lemma 4.8. Let X be any of the space co(u,v; B) or le(u,v; B), A = (an)
an infinite matriz and A = (nx) is the associated matriz. If A is in any of the
classes (X, o), (X,c) or (X, ly), then

[Lall = [[Allx,6) = sup (Z |ank|> < 0. (4.3)

n
n

Proof. This is immediate by combining Lemmas 4.3 and 4.6. OJ

The following results shows how to compute the Hausdorff measure of noncom-
pactness in the space cg.

Lemma 4.9. [29, Theorem 3.3] Let Q € M., and p, : ¢c¢ — ¢y (r € N) be
operator defined by p.(x) = (xg,21,...,2,,0,0,...) for all x = (x) € co. Then
we have

\(Q) = Jim (sup 7 = p)@le ).

where I is the identity operator on cy.

Further, we know by [13, Theorem 1.10] that every z = (zx) € ¢ has a unique
representation z = ze + (2, — Z)e™, where Z = lim, o0 2,. Thus, we define
the projectors p, : ¢ — ¢ (r € N) by

pr=Ze+ Z(Z” —%)e™; (r €N)
n=0

for all z = (z) € ¢ with Z = lim,_,00 2. In this situation, the following result
gives an estimate for the Hausdorff measure of noncompactness in the space c.

Lemma 4.10. [12, Theorem 5(b)] Let Q € M, and p, : ¢ — ¢ (r € N) be the

projector onto the linear span of (e, e, ... e™). Then, we have
1. .
Lim (sup (7 = p)@)les ) < 6(@) < tim (sup (7 = )@l ), (44)
2 —00 ZEEQ T—00 fEEQ

where I 1s the identity operator on c.

The next lemma is related to the Hausdorff measure of noncompactness of a
bounded linear operator.
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Lemma 4.11. [I3, Theorem 2.25] Let X and Y be Banach spaces and L €
B(X,Y). Then, we have

[Lallx = x(L(Sx)) (4.5)
and
LeC(X,Y) if and only if ||Lal, =0. (4.6)

4.2. Compact Operators on the Spaces ¢y(u,v; B) and /. (u,v; B). In this
part, we establish some identities or estimates for the Hausdorff measures of non-
compactness of certain matrix operators on the spaces cy(u, v; B) and {(u, v; B).
Further, we apply our results to characterize some classes of compact operators on
those spaces. We begin with the following lemmas which will be used in proving
our results.

Lemma 4.12. [20, Lemma 3.1] Let X be any of the space ¢y or l,. If A € (X, ¢)

ar = lim a,; exists for every k € N,
n—oo

a=(ag) €l
sup (Z |ank — ozk|) < 00,
" k

lim A, = Zakxk for all x = (z1) € X.
k

n—o0

3, Theorem 3.7] Let X D ¢ be a BK—space. Then we have

Lemma 4.13. [2:
), then

(a) If A € (X, co

[ £ally = limsup [[An ][
n— 00

(b) If A € (X, lw), then

0 < | Lally < limsup A, 5.
n—oo
Theorem 4.14. Let X denote any of the spaces co(u,v; B) and loo(u,v; B). Then

we have
(a) If A € (X, ), then

n—0o0

| Lally = limsup (Z |ank|) (4.7)
k=0

and

La compact if and only if nh_)rrgo (% |6nk|) = 0. (4.8)
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(b) If A€ (X, ls), then

0 < || Lally < limsup (Z m)

n—oo k=0

and
Ly compact if and only if lim (Z |Enk|> =0.

Proof. Let A € (X, cp). Since A, € X? for all n € N, we have from Lemma 4.6
that

[Anllx = [FAnlley = D | < oo (4.9)
k=0

Thus, we get (4.7) from (4.9), (4.3) and Lemma 4.13(a). We derived (4.8) from
(4.6). Part (b) can be proved similarly by using Lemma 4.13(b). O

Theorem 4.15. Let X denote any of the spaces co(u,v; B) and loo(u,v; B). If
A € (X, c¢), then we have

1 - . — .
s (Y-l ) < el < s (o)

and
L compact if and only if lim <Z |@pr — ak|) =0, (4.11)

where lim,,_yoo Qpp = Q.

Proof. By combining Lemma 4.7 and Lemma 4.12, we deduce that the expression
in (4.7) exists. We write S = Sy, for short. Then, we obtain by (4.5) and Lemma
4.1 that

[Lallx = Xx(AS) (4.12)

which means AS € M., where is the class of all bounded subsets of ¢. Then,
we are going to apply Lemma 4.10 to get an estimate for the value of x(AS) in
(4.12). For this, let p, : ¢ — ¢ be the projectors defined by (4.4). Then, we have
for every r € N that (I —p,)(z) = >~ (2, — 2z)e" and hence,

(I = pr)(2)lles = sup |z —Z] (4.13)

n>r

for all z € ¢. Thus, from (4.12) and Lemma 4.10 that

1 .. .
5 Jim (Sup\l(f—pr)(Aw)Hem) < [[Lally < lim (SupH(f—pr)(Ax)Hzm) (4.14)
z€S =0 \ zeS

r—00

Now, for every given z € X and y € Y be associated sequence defined by (3.1),
where Y be the respective one of the space ¢y or £. Since A € (X, ¢), we have
by Lemma 4.7 that A € (Y,¢) and Az = Ay. Further, it follows from Lemma
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4.12 that the limits @ = limy, o0 Gpx exists for all k, @ = (ay) € {; = Y? and
limy, oo (AY)n = Y g @Yk Thus, we derive from (4.13) that

11 = po)(A2)lle. = [I(1 = pr)(AY)]e..

= sup |A,(y) = > Wi
k=0

n>r

o0

= sup Z(Enk — Q) Yk

n>r k=0

for r € N. Furthermore, since x € S = Sx if and only if y € Sy, we obtain by

(4

1) and Lemma 4.1
sup (7= )40 = sup (s [S (@~ wwh)
Xes n>r \YESy

= sup||4, —ally
n>r

= sup |4, —all,
n>r

for all » € N. Thus, we get (4.10) and (4.11) from (4.14) and (4.6), respectively
and this concludes the proof. 0

or

10.

11.
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