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Abstract. In this paper, strong convergence of Halpern iteration is shown for
a quasi-strongly nonexpansive sequence of multivalued mappings in complete
CAT(0) spaces.

1. Introduction and preliminaries

Let C be a nonempty subset of a metric space (X, d). We shall write the family
of nonempty closed bounded subsets of C by CB(C) and the family of nonempty
compact subsets of C by K(C). Let H(., .) be the Hausdorff metric on CB(C),
i.e.,

H(A,B) = max{supa∈A dist(a,B), supb∈B dist(A, b)}, A,B ∈ CB(X).

A set-valued mapping T : C → CB(C) is said to be a contraction if there exists
a constant k ∈ (0, 1) such that H(Tx, Ty) ≤ kd(x, y) and if k = 1, then T is
called nonexpansive. A point x ∈ C is called a fixed point of T if x ∈ Tx. We
write F (T ) := {x ∈ C : x ∈ Tx}. The mapping T : C → CB(X) is called
quasi-strongly nonexpansive if T is nonexpansive with F (T ) 6= ∅ and

d(xn, vn)→ 0, ∀vn ∈ Txn,

whenever {xn} is a bounded sequence in C such that d(xn, p)−H(Txn, Tp)→ 0
for some p ∈ F (T ). Also, a sequence of nonexpansive mappings {Tn} from C into
CB(X) is called a quasi-strongly nonexpansive sequence if

⋂
n F (Tn) 6= ∅ and

d(xn, un)→ 0, ∀un ∈ Tnxn,
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whenever {xn} is a bounded sequence in C such that d(xn, p)−H(Tnxn, Tnp)→ 0
for some p ∈

⋂
n F (Tn).

Example 1.1. Let X = [0,∞)× [0,∞) with the metric

d((x1, x2), (y1, y2)) =

{
x1 + y1 + |x2 − y2|, x2 6= y2,

|x1 − y1|, x2 = y2.
.

Then (X, d) is a R-tree (see [2], p. 167 and 168). Define T : X → 2X with
T ((x1, x2)) = [x1

3
, x1

2
] × [x2

3
, x2

2
]. Then the mapping T is a quasi-strongly nonex-

pansive mapping. Also, the sequence (Tn : X → 2X)∞n=1 with{
T1((x1, x2)) = {(0, 0)}, ((x1, x2) ∈ X),

Tn((x1, x2)) = [ x1
n+1

, x1
n

]× [ x2
n+1

, x2
n

], n ≥ 2, ((x1, x2) ∈ X),

is a quasi-strongly nonexpansive sequence.

A geodesic space (X, d) is called a CAT(0) space if satisfies the following in-
equality:
CN − inequality: for every y1, y2, x ∈ X and all y0 ∈ X such that
d(y0, y1) = d(y0, y2) = 1

2
d(y1, y2), one has

d2(x, y0) ≤
1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2).

A complete CAT(0) space is called a Hadamard space. It is known that a CAT(0)
space is an uniquely geodesic space. For all x and y belong to a CAT(0) space
X, we write (1− t)x ⊕ ty for the unique point z in the geodesic segment
joining from x to y such that d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y).
Set [x, y] = {(1−t)x⊕ty : t ∈ [0, 1]}, a subset C of X is called convex if [x, y] ⊆ C
for all x, y ∈ C. For other equivalent definitions and basic properties, we refer
the reader to the standard texts such as [2, 3, 7, 9].
Fixed-point theory in CAT(0) spaces was first studied by Kirk (see [11, 10]). He
showed that every nonexpansive (single-valued) mapping defined on a bounded,
closed and convex subset of a complete CAT(0) space always has a fixed point.
Since then, the fixed-point theory for single-valued and multivalued mappings
in CAT(0) spaces has been rapidly developed, and many papers have appeared.
It is worth mentioning that fixed-point theorems in CAT(0) spaces (specially in
R-trees) can be applied to graph theory, biology, and computer science.
Halpern in [8] proved the strong convergence of the iteration

xn+1 = αnu+ (1− αn)Txn, (1.1)

under the certain condition on the control sequence αn of positive numbers, where
T is a single-valued nonexpansive self-mapping on a closed and convex subset C
of a Hilbert space H and u, x1 ∈ C. Also, he showed that the assumptions
C1 : limn→∞ αn = 0,
C2 :

∑∞
n=1 αn =∞,

are necessary for the convergence of the iteration (1.1) to a fixed point of T . He
also proposed the following open problem:
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Are the conditions (C1) and (C2) sufficient to convergence of the sequence gen-
erated by (1.1) to a fixed point of T?
Many mathematicians have investigated this question (see [4, 12, 14, 17, 18] and
references therein). The Halpern’s iteration in a CAT(0) space X is defined as
follows,

xn+1 = αnu⊕ (1− αn)Txn, (1.2)

where T is a single-valued nonexpansive selfmapping on a closed and convex sub-
set C ofX, u, x1 ∈ C and {αn} is a positive real sequence. Saejung [15] showed the
strong convergence of the sequence {xn} given by (1.2)
to a fixed point of the mapping T , under the conditions C1, C2 and
C3 :

∑∞
n=1 |αn+1 − αn| <∞ or limn→∞

αn

αn+1
= 1. Also, Saejung in [14] answered

the Halpern open problem for the strongly nonexpensive mappings in certain
Banach spaces. Dhompongsa and etal [5] extended the results of Saejung [15]
to a sequence of set-valued nonexpansive mappings. In this paper, it is shown
that C1 and C2 are sufficient for strong convergence of the Halpern iteration
for a quasi-strongly nonexpansive sequence of set-valued mappings in Hadamard
spaces. Our results extend the results of Saejung [14] and improve the results of
Dhompongsa and etal [5].

This paper is organized as follows:
In Section 2, we prove some technical lammas that we need in the sequel. Section
3 is devoted to the main result of the paper. In this section, we prove the strong
convergence of the Halpern iteration for a quasi-strongly nonexpansive sequence
of set-valued mappings in Hadamard spaces. In Section 4, the result of Theorem
3.7 of [5] is proved without using of Banach limit.

2. Some Lemmas

The following technical lemma is well-known in CAT(0) spaces.

Lemma 2.1. [6] Let (X, d) be a CAT(0) space. Then, for all x, y, z, w ∈ X and
all t ∈ [0, 1] :
(1) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y),
(2) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z),
In addition, by using (1), we have

d(tx⊕ (1− t)y, tz ⊕ (1− t)w) ≤ td(x, z) + (1− t)d(y, w).

In the following, we prove some lemmas that we need in the sequel.
Notation: Let (X, d) be a CAT(0) space and a, b, c, d ∈ X. To simplify the

calculations, we set 〈ab, cd〉 = 1
2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)).

The following lemma is easy to verify.

Lemma 2.2. Let (X, d) be a CAT(0) space and a, b, c, d, e ∈ X, then
(i) 〈ab, ab〉 = d2(a, b),
(ii) 〈ab, cd〉 = − < ab, dc >,
(iii)〈ab, cd〉 = 〈ae, cd〉 > +〈eb, cd〉.
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Lemma 2.3. Let (X, d) be a CAT(0) space and a, b, c ∈ X. Then for each
λ ∈ [0, 1],

d2(λa⊕ (1− λ)b, c) ≤ λ2d2(a, c) + (1− λ)2d2(b, c) + 2λ(1− λ)〈ac, bc〉.

Proof. By Lemma 2.1, we get

d2(λa⊕ (1− λ)b, c) ≤ λd2(a, c) + (1− λ)d2(b, c)− λ(1− λ)d2(a, b)

= λ2d2(a, c) + (1− λ)2d2(b, c) + λ(1− λ)(d2(a, c)

+ d2(b, c)− d2(a, b))
= λ2d2(a, c) + (1− λ)2d2(b, c) + 2λ(1− λ)〈ac, bc〉.

�

If C is a closed convex subset of a complete CAT(0) space X, T : C −→ CB(X)
is a nonexpansive mapping and u ∈ C, then for any t ∈ (0, 1), the mapping
St : C → CB(X) by St(x) = tu⊕ (1− t)Tx is a contraction. Banach contraction
principle has been extended to a set-valued contraction by Nadler [13]. Thus, for
any t ∈ (0, 1) there exists a point zt ∈ C such that

zt ∈ Stzt = tu⊕ (1− t)Tzt.

Notice that if F (T ) 6= ∅ and T (p) = {p} for all p ∈ F (T ), then for each t ∈ (0, 1)
and p ∈ F (T ), we have d(zt, p) ≤ d(u, p). Hence, {zt} is bounded. Therefore, we
have the following Lemma.

Lemma 2.4. [5] Let C be a closed convex subset of a complete CAT(0) space
X, T : C −→ K(X) be a nonexpansive non-self mapping with a fixed point
such that T (p) = {p} for all p ∈ F (T ), and u ∈ C. For each t ∈ (0, 1), set
zt = tu⊕ (1− t)Tzt. Then zt converges as t→ 0 to the unique fixed point of T ,
which is the nearest point to u.

Lemma 2.5. Let C be a closed and convex subset of a complete CAT(0) space X
and T : C −→ K(X) be a nonexpansive non-self mapping with a fixed point such
that T (p) = {p} for all p ∈ F (T ). If {xn} is a bounded sequence in C such that
the sequence {d(xn, vn)} converges to zero for all vn ∈ Txn, then for all vn ∈ Txn,
we have

lim sup
n
〈up, vnp〉 ≤ lim sup

n
〈up, xnp〉 ≤ 0,

where u ∈ C and p is the nearest point of F (T ) to u.

Proof. For each t ∈ (0, 1), there exists a point zt ∈ C such that
zt ∈ tu ⊕ (1 − t)T (zt). Let yt ∈ T (zt), such that zt = tu ⊕ (1 − t)yt. By
Lemma 2.4, as t → 0, {zt} converges strongly to the unique fixed point p of T ,
which is the nearest point of F (T ) to u. Moreover, for each n and t, there exists
vn,t ∈ Txn such that d(yt, vn,t) = dist(yt, Txn). The sequence {vn,t} is bounded
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by d(vn,t, p) = dist(vn,t, Tp) ≤ H(Txn, Tp) ≤ d(xn, p). By Lemmas 2.2 and 2.3,
for each t ∈ (0, 1) and all n ∈ N, we have

d2(zt, xn) = d2(tu⊕ (1− t)yt, xn)

≤ t2d2(u, xn) + (1− t)2d2(yt, xn) + 2t(1− t)〈uxn, ytxn〉
= t2d2(u, xn) + (1− t)2d2(yt, xn) + 2t(1− t)〈uyt, ytxn〉

+ 2t(1− t)〈ytxn, ytxn〉
= t2d2(u, xn) + ((1− t)2 + 2t(1− t))d2(yt, xn) + 2t(1− t)〈uyt, ytxn〉
≤ t2d2(u, xn) + (1− t2)(d(yt, vn,t) + d(vn,t, xn))2 + 2t(1− t)〈uyt, ytxn〉
≤ t2d2(u, xn) + (1− t2)dist2(yt, Txn) + (1− t2)d2(vn,t, xn)

+ 2(1− t2)d(vn,t, xn)dist(yt, Txn) + 2t(1− t)〈uyt, ytxn〉
≤ t2d2(u, xn) + (1− t2)H2(Tzt, Txn) + (1− t2)d2(vn,t, xn)

+ 2(1− t2)d(vn,t, xn)dist(yt, Txn) + 2t(1− t)〈uyt, ytxn〉
≤ t2d2(u, xn) + (1− t2)d2(zt, xn) + (1− t2)d2(vn,t, xn)

+ 2(1− t2)d(vn,t, xn)dist(yt, Txn) + 2t(1− t)〈uyt, ytxn〉,

which by part (ii) of Lemma 2.2, for each t ∈ (0, 1) and all n ∈ N, implies

2t(1−t)〈uyt, xnyt〉 ≤ t2d2(u, xn)+(1−t2)d2(vn,t, xn)+2(1−t2)d(vn,t, xn)dist(yt, Txn).

Hence, for each t ∈ (0, 1), we obtain

lim sup
n
〈uyt, xnyt〉 ≤

t

2(1− t)
lim sup

n
d2(u, xn).

On the other hand, since d(yt, p) = dist(yt, Tp) ≤ H(Tzt, Tp) ≤ d(zt, p), sequence
{yt} converges to p, as t→ 0. So, the continuity of d implies

〈uyt, xnyt〉 → 〈up, xnp〉 as t→ 0, uniformly respect to n.

Therefore, for any number ε > 0, there exists δ > 0 such that

〈up, xnp〉 ≤ ε + 〈uyt, xnyt〉,

for all 0 < t < δ and all n ∈ N. This implies that

lim sup
n
〈up, xnp〉 ≤ ε+ lim sup

n
〈uyt, xnyt〉 ≤ ε +

t

2(1− t)
lim sup

n
d2(u, xn).

Letting t→ 0, we get

lim sup
n
〈up, xnp〉 ≤ ε.

Hence, as ε→ 0, we deduce

lim sup
n
〈up, xnp〉 ≤ 0.
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Now, we show that lim supn〈up, vnp〉 ≤ 〈up, xnp〉, for all vn ∈ Txn. For all
vn ∈ Txn, we have

2〈up, vnp〉 = d2(u, p) + d2(vn, p)− d2(u, vn)

≤ d2(u, p) + d2(xn, p)− d2(u, xn) + d2(xn, vn) + 2d(u, vn)d(xn, vn)

= 2〈up, xnp〉+ d2(xn, vn) + 2d(u, vn)d(xn, vn),

which the second inequality is due to

d2(u, xn) ≤ d2(u, vn) + d2(xn, vn) + 2d(u, vn)d(xn, vn).

Hence

lim sup
n
〈up, vnp〉 ≤ lim sup

n
〈up, xnp〉.

�

Lemma 2.6. Suppose (X, d) is a metric space and C ⊂ X. Let
{Tn}∞n=1 : C → K(C) be a sequence of nonexpansive mappings with a common
fixed point such that Tn(p) = {p}, ∀p ∈

⋂∞
n=1 F (Tn) and {xn} be a bounded

sequence. If limn d(xn, un) = 0 for un ∈ Tnxn, then

lim sup
n
〈up, unp〉 ≤ lim sup

n
〈up, xnp〉,

where p ∈
⋂∞
n=1 F (Tn).

Proof. Let p ∈
⋂∞
n=1 F (Tn), we have

2〈up, unp〉 = d2(u, p) + d2(un, p)− d2(u, un)

≤ d2(u, p) + d2(xn, p)− d2(u, xn) + d2(xn, un) + 2d(u, un)d(xn, un)

= 2〈up, xnp〉+ d2(xn, un) + 2d(u, un)d(xn, un),

which the second inequality is due to

d2(u, xn) ≤ d2(u, un) + d2(xn, un) + 2d(u, un)d(xn, un).

Hence

lim supn〈up, unp〉 ≤ lim supn〈up, xnp〉.

�

Finally, the following well-known lemmas are needed to prove the main result.

Lemma 2.7. [1] Let {sn} be a sequence of nonnegative real numbers, {αn} a
sequence of real numbers in [0, 1] with

∑∞
n=1 αn =∞, {un} a sequence of nonneg-

ative real numbers with
∑∞

n=1 un <∞, and {tn} a sequence of real numbers with
limsupntn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αntn + un,

for all n ∈ N. Then limn→∞sn = 0.
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Lemma 2.8. [16] Let {sn} be a sequence of nonnegative real numbers, {αn} be a
sequence of real numbers in (0, 1) with

∑∞
n=1 αn = ∞ and {tn} be a sequence of

real numbers. Suppose that

sn+1 ≤ (1− αn)sn + αntn for all n ≥ 1.

If limsupk→∞tmk
≤ 0 for every subsequence {smk

} of {sn} satisfying
lim infk(smk+1 − smk

) ≥ 0, then limn→∞sn = 0.

3. Strong convergence for a quasi-strongly nonexpansive
sequence

In this section, we prove the convergence theorem for a quasi-strongly nonex-
pansive sequence in Hadamard spaces, which extends Theorem 10 in Saejung [14]
and improves Theorem 3.7 of [5].

Theorem 3.1. Let C be a closed and convex subset of a complete CAT(0)
space X, {Tn}∞n=1 : C → K(C) be a quasi-strongly nonexpansive sequence and
T : C −→ K(C) be a nonexpansive self-mapping such that

H(Tn, T )→ 0, uniformly on bounded subsets of C, (3.1)

F (T ) =
⋂∞
n=1 F (Tn) 6= ∅ and Tn(p) = {p}, ∀p ∈ Fix(T ). Suppose that u, x1 ∈ C

are arbitrary chosen and {xn} is defined by

xn+1 = αnu⊕ (1− αn)un, un ∈ Tnxn,

where {αn} is a sequence in (0, 1) satisfying
C1 : limn→∞ αn = 0,
C2 :

∑∞
n=1 αn =∞.

Then {xn} converges to p ∈
⋂∞
n=1 F (Tn), which is the nearest point of F (T ) to u.

Proof. For each t ∈ (0, 1), there exists a unique point zt ∈ C such that
zt = tu ⊕ (1 − t)yt, where yt ∈ Tzt. By Lemma 2.4, as t → 0, {zt} converges
strongly to the unique point p ∈ F (T ) =

⋂∞
n=1 F (Tn), which is the nearest point

of F (T ) to u.

d(xn+1, p) ≤ αnd(u, p) + (1− αn)d(un, p)

= αnd(u, p) + (1− αn)dist(un, Tnp)

≤ αnd(u, p) + (1− αn)H(Tnxn, Tnp)

≤ αnd(u, p) + (1− αn)d(xn, p)

≤ max{d(u, p), d(xn, p)}
≤ ...

≤ max{d(u, p), d(x1, p)}.
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Thus, {xn} and {un} are bounded.
Moreover, by Lemma 2.3, we have

d2(xn+1, p) = d2(αnu⊕ (1− αn)un, p)

≤ α2
nd

2(u, p) + (1− αn)2d2(un, p) + 2αn(1− αn)〈up, unp〉
≤ α2

nd
2(u, p) + (1− αn)2H2(Tnxn, Tnp) + 2αn(1− αn)〈up, unp〉

≤ (1− αn)d2(xn, p) + αn(αnd
2(u, p) + 2(1− αn)〈up, unp〉).

Thus

d2(xn+1, p) ≤ (1− αn)d2(xn, p) + αn(αnd
2(u, p) + 2(1− αn)〈up, unp〉) (3.2)

Hence, by Lemma 2.8 and C1, it suffices to show that lim supk〈up, umk
p〉 ≤ 0

for every subsequence (d(xmk
, p)) of (d(xn, p)) satisfying

lim infk(d(xmk+1, p) − d(xmk
, p)) ≥ 0. For this, suppose that (d(xmk

, p)) is a
subsequence of (d(xn, p)) such that lim infk(d(xmk+1, p)− d(xmk

, p)) ≥ 0. Then

0 ≤ lim inf
k

(d(xmk+1, p)− d(xmk
, p))

≤ lim inf
k

(αmk
d(u, p) + (1− αmk

)d(umk
, p)− d(xmk

, p))

= lim inf
k

(d(umk
, p)− d(xmk

, p)) + lim sup
k

(αmk
(d(u, p)− d(umk

, p)))

= lim inf
k

(d(umk
, p)− d(xmk

, p))

= lim inf
k

(dist(umk
, Tmk

p)− d(xmk
, p))

≤ lim inf
k

(H(Tmk
xmk

, Tmk
p)− d(xmk

, p))

≤ lim sup
k

(H(Tmk
xmk

, Tmk
p)− d(xmk

, p))

≤ lim sup
k

(d(xmk
, p)− d(xmk

, p)) = 0,

hence

lim
k

(H(Tmk
xmk

, Tmk
p)− d(xmk

, p)) = 0.

Since {xmk
} is bounded and {Tn} is quasi-strongly nonexpansive sequence, we

get

lim
k
d(xmk

, umk
) = 0, for all umk

∈ Tmk
xmk

. (3.3)

On the other hand, for every vmk
∈ Txmk

there exists umk
∈ Tmk

xmk
such

that d(vmk
, umk

) = dist(vmk
, Tmk

xmk
). Thus for every vmk

∈ Txmk
there exists

umk
∈ Tmk

xmk
such that

d(xmk
, vmk

) ≤ d(xmk
, umk

) + d(umk
, vmk

)

= d(xmk
, umk

) + dist(vmk
, Tmk

xmk
)

≤ d(xmk
, umk

) +H(Txmk
, Tmk

xmk
).

Therefore (3.1) and (3.3) imply limk→∞ d(xmk
, vmk

) = 0, for all vmk
∈ Txmk

.
Thus, by Lemma 2.5, lim supk〈up, xmk

p〉 ≤ 0. Hence, by (3.3) and Lemma 2.6,
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we obtain
lim sup

k
〈up, umk

p〉 ≤ 0, for all umk
∈ Tmk

xmk
. (3.4)

Hence Lemma 2.8, C1, C2, (3.4) and (3.2) imply limn→∞ d(xn, p) = 0. That is
the desired result. �

4. Strong convergence for a family of nonexpansive mappings

In the following theorem, we prove the result of Theorem 3.7 of [5] without
using Banach limit. Since the following proof does not use Banach limits, that is
a consequence of Zorn’s lemma, it seems that it is more constructive and useful
from practical point of view.

Theorem 4.1. Let C be a closed and convex subset of complete CAT(0) space X,
{Tn}∞n=1 : C → K(C) be a family of nonexpansive mappings and
T : C −→ K(C) be a nonexpansive self-mapping such that
F (T ) =

⋂∞
n=1 F (Tn) 6= ∅, Tn(p) = T (p) = {p}, ∀p ∈ Fix(T ), and for all bounded

sequence {xn} ⊂ C, we have limn d(vn, un) = 0 for all un ∈ Tnxn and vn ∈ Txn.
Suppose that u, x1 ∈ C are arbitrary chosen and {xn} is defined by

xn+1 = αnu⊕ (1− αn)un, un ∈ Tnxn,
where {αn} is a sequence in (0, 1) satisfying
C1 : limn→∞ αn = 0,
C2 :

∑∞
n=1 αn =∞,

C3 :
∑∞

n=1 |αn − αn+1| <∞ or limn
αn

αn+1
= 1.

If d(un+1, un) ≤ d(xn+1, xn) + en with
∑∞

n=1 en < ∞, then {xn} converges to
p ∈

⋂∞
n=1 F (Tn), which is the nearest point of F (T ) to u.

Proof. We can easily obtain that {xn} and {un} are bounded. From the definition
of xn, we see that

d(xn+1, xn) = d(αnu⊕ (1− αn)un, αn−1u⊕ (1− αn−1)un−1)
≤ d(αnu⊕ (1− αn)un, αnu⊕ (1− αn)un−1)

+ d(αnu⊕ (1− αn)un−1, αn−1u⊕ (1− αn−1)un−1)
≤ (1− αn)d(un, un−1) + |αn − αn−1|d(u, un−1)

≤ (1− αn)d(xn, xn−1) + en−1 + |αn − αn−1|d(u, un−1).

Thus, by assumptions, Lemma 2.7 implies limn d(xn+1, xn) = 0. On the other
hand, d(xn, un) ≤ d(xn, xn+1) + d(xn+1, un) = d(xn, xn+1) + αnd(u, un) which by
C1 implies

d(xn, un)→ 0 (4.1)

This together with the assumptions implies that for all vn ∈ Txn
d(xn, vn) ≤ d(xn, un) + d(un, vn)→ 0.

Thus, by Lemma 2.5, lim supn〈up, xnp〉 ≤ 0. Hence, by (4.1) and Lemma 2.6, we
have

lim sup
n
〈up, unp〉 ≤ 0. (4.2)
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By Lemma 2.3, we have

d2(xn+1, p) = d2(αnu⊕ (1− αn)un, p)

≤ α2
nd

2(u, p) + (1− αn)2d2(un, p) + 2αn(1− αn)〈up, unp〉
≤ α2

nd
2(u, p) + (1− αn)2dist2(un, Tnp) + 2αn(1− αn)〈up, unp〉

≤ α2
nd

2(u, p) + (1− αn)2H2(Tnxn, Tnp) + 2αn(1− αn)〈up, unp〉
≤ (1− αn)d2(xn, p) + αn(αnd

2(u, p) + 2(1− αn)〈up, unp〉),

which by (4.2), C1, C2 and Lemma 2.7 implies limn d
2(xn+1, p) = 0.

Hence, {xn} converges to p ∈ F (T ) =
⋂∞
n=1 F (Tn), which is the nearest point of

F (T ) to u.
�

Remark 4.2. In Theorems 3.1 and 4.1, it suffices to assume that C is a complete
CAT(0) space and it is not necessary that X is a complete CAT(0) space.
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