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BANACH ALGEBRA TECHNIQUES TO COMPUTE SPECTRA,
PSEUDOSPECTRA AND CONDITION SPECTRA OF SOME

BLOCK OPERATORS WITH CONTINUOUS SYMBOLS

G. KRISHNA KUMAR AND S. H. KULKARNI

Communicated by M. S. Moslehian

Abstract. In this paper we use Banach algebra techniques to study the spec-
trum, pseudospectrum and condition spectrum of a block Laurent operator
with continuous symbol and a lower triangular block Toeplitz operator with
continuous symbol.
(1) Let L be a block Laurent operator with a continuous symbol f . Regarding

f as an element of the Banach algebra of all continuous matrix valued
functions defined on the unit circle Γ , we show that the spectrum σ(L)
of L coincides with the spectrum σ(f) of f . It is also shown that the
spectrum σ(f) can be expressed as a union of the spectra of matrices
f(x). Thus

σ(L) = σ(f) =
⋃
x∈Γ

σ(f(x)).

Similar results are proved about pseudospectrum

Λε(L) = Λε(f) =
⋃
x∈Γ

Λε(f(x))

for ε > 0 and condition spectrum σε(L) = σε(f) for 0 < ε < 1.
(2) Let T be an upper or lower triangular block Toeplitz operator with con-

tinuous symbol f . Then f is a continuous matrix valued function defined
on the closed unit disc ∆ and f is analytic in the open unit disc. It
is proved that a similar description can be given about the spectrum
σ(T ), pseudospectrum Λε(T ) for ε > 0 and condition spectrum σε(T ) for
0 < ε < 1.

These results are illustrated with examples and pictures using Matlab.
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1. Introduction

Let A be a complex unital Banach algebra with unit 1. For λ ∈ C, we shall
identify λ.1 with λ. We recall that the spectrum of an element a ∈ A denoted by
σ(a, A) and is defined as

σ(a, A) =
{
λ ∈ C : λ− a /∈ A−1

}
,

where A−1 denotes the set of all invertible elements of A. There are several
generalizations of the concept of the spectrum in literature. The following are
two important generalizations of spectrum.

Definition 1.1. (ε-pseudospectrum) Let A be a complex unital Banach algebra
with unit 1 and ε > 0. The ε-pseudospectrum of an element a ∈ A is denoted by
Λε(a, A) and is defined as,

Λε(a, A) :=

{
λ ∈ C : ‖(λ− a)−1‖ ≥ 1

ε

}
,

with the convention that ‖(λ− a)−1‖ = ∞ if λ− a is not invertible.

Note that because of the above convention, σ(a, A) ⊆ Λε(a, A) for every ε > 0.
Pseudospectra provide an analytical and graphical alternative for investigating
non-normal matrices and operators. For more information on ε-pseudospectrum
one may refer to [17].

Definition 1.2. (ε-condition spectrum) Let A be a complex unital Banach alge-
bra with unit 1 and 0 < ε < 1. The ε-condition spectrum of an element a ∈ A is
denoted by σε(a, A) and is defined as,

σε(a, A) :=

{
λ ∈ C : ‖λ− a‖‖(λ− a)−1‖ ≥ 1

ε

}
,

with the convention that ‖λ− a‖‖(λ− a)−1‖ = ∞, if λ− a is not invertible.

Here also because of the above convention σ(a, A) ⊆ σε(a, A) for 0 < ε < 1.
One may refer to [11] for examples and elementary properties of the ε-condition
spectrum.

Definition 1.3. (inverse-closed subalgebra) Let A be a complex unital Banach
algebra with unit 1 and B a unital subalgebra of A. We say that B is inverse-
closed in A if every element of B, which is invertible in A, is also invertible in B,
that is, B ∩ A−1 ⊆ B−1.

For more information on inverse-closed subalgebras one may refer to [14].

Theorem 1.4. Let A be a complex unital Banach algebra with unit 1, B an
inverse-closed subalgebra of A. Then for all b ∈ B, σ(b, B) = σ(b, A). Also for
all ε > 0, Λε(b, B) = Λε(b, A) and for all 0 < ε < 1, σε(b, B) = σε(b, A).

Proof. Clearly, for each a ∈ B, σ(a, A) ⊆ σ(a, B). Next let b ∈ B, λ ∈ C and
λ /∈ σ(b, A). Then λ − b is invertible in A and hence also invertible in B. Thus
λ /∈ σ(b, B). Hence σ(b, B) ⊆ σ(b, A). This shows that σ(b, A) = σ(b, B).
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Since the norms in B and A are the same, it follows from the definition of pseu-
dospectrum and condition spectrum that Λε(b, B) = Λε(b, A) for all ε > 0 and
σε(b, B) = σε(b, A) for all 0 < ε < 1. �

If the algebra under discussion is obvious we shall simplify the notation σ(a, A)
to σ(a), Λε(a, A) to Λε(a) and σε(a, A) to σε(a).

1.1. Block Laurent operator. Consider the standard n-dimensional vector
space Cm with the Euclidean norm. If,

x = (x1, · · · , xm)

is a vector in Cm, then

‖x‖2 =

(
m∑

i=1

|xi|2
)1/2

.

Let `2(Z, Cm) =

{
x : Z → Cm :

∑
n∈Z

‖xn‖2
2 < ∞

}
. A bounded linear operator L :

`2(Z, Cm) → `2(Z, Cm) may be represented by a doubly infinite matrix,

L = [Aij]
∞
i,j=−∞,

where each entry is an operator on Cm. Let y = (yi)
∞
i=−∞, x = (xi)

∞
i=−∞ ∈

`2(Z, Cm). Then y = Lx means

yi =
∑
j∈Z

Aijxj, i ∈ Z.

We call L a block Laurent operator if its matrix elements Aij depend only on
the difference i − j. The word block refers to the fact that the matrix entries
are operators and not scalars. The doubly infinite matrix of the block Laurent
operator L has the following form.

L =


. . . . · · · . .
. A1 A0 A−1 · · · . .
. . A1 [A0] A−1 . .
. . . A1 A0 A−1 .
. . · · · · · · . . .


[A0] denotes the (0, 0) entry which acts on the 0-th coordinate space. Since
`2(Z, Cm) is a direct sum of m copies of `2(Z), an operator L on `2(Z, Cm) may
also be represented as an m × m matrix whose entries are operators acting on
`2(Z). Thus

L =


L11 . . · · · L1m

. . . · · · .

. . . · · · .
Lm1 . . · · · Lmm

 : `2(Z, Cm) → `2(Z, Cm).

L = [Lij]
m
i,j=1 is a block Laurent operator on `2(Z, Cm) if and only if each Lij is

a Laurent operator on `2(Z). Let L be a block Laurent operator on `2(Z, Cm)
represented by the above two forms, then Lrs = [Ars

i−j]
∞
i,j=−∞, where Ars

n is the
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(r, s)-th entry of the matrix An with respect to the standard basis of Cm. A brief
discussion on block Laurent operators can be found in [8].
Let Γ := {z ∈ C : |z| = 1} denote the unit circle in the complex plane and C(Γ)
denote the set of all complex valued continuous functions on Γ. We shall use
the symbol C(Γ, Cm×m) to denote the set of all continuous matrix valued (i.e,
Cm×m valued) functions on Γ(see Section 2 below). Note that f ∈ C(Γ, Cm×m)
can also be viewed as a matrix f = [fij]m×m whose entries fij belong to C(Γ).
For f ∈ C(Γ), the n-th Fourier coefficient of f is denoted by fn and is defined as
[7],

fn =
1√
2π

∫ π

−π

f(t)e−intdt.

Let Φ ∈ C(Γ, Cm×m), then

Φ(t) =


Φ11(t) . · · · Φ1m(t)

. . · · · .

. . · · · .
Φm1(t) . · · · Φmm(t)


m×m

where each Φrs is in C(Γ). If the n-th Fourier coefficient of Φrs is equal to Ars
n ,

the rsth entry of the matrix An, then

Φrs(t) =
∞∑

n=−∞

eintArs
n .

If L = [Ai]
∞
i=−∞ is the block Laurent operator obtained from the continuous m×m

matrix function Φ, then Φ is called the continuous defining function or continuous
symbol of the block Laurent operator L (see [7], [8]).

1.2. Block Toeplitz operator. Let `2(N, Cm) =

{
x : N → Cm :

∞∑
n=1

‖xn‖2
2 < ∞

}
.

A bounded linear operator T : `2(N, Cm) → `2(N, Cm) may be represented by an
infinite matrix,

T = [Aij]
∞
i,j=1

whose entries are operators acting on Cm. We call T a block Toeplitz operator
if its matrix elements Aij depend only on the difference i − j. Thus the infinite
matrix of the block Toeplitz operator T has the following form.

T =


A0 A−1 A−2 ..
A1 A0 A−1 ..
A2 A1 A0 ..
.. .. .. ..


We call T a lower triangular block Toeplitz operator if Ai = [0]m×m for all i < 0.
Since `2(N, Cm) is a direct sum of m copies of `2, an operator T on `2(N, Cm)
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may also be represented as an m×m matrix whose entries are operators acting
on `2. Thus

T =


T11 . . · · · T1m

. . . · · · .

. . . · · · .
Tm1 . . · · · Tmm

 : `2(N, Cm) → `2(N, Cm).

T = [Tij]
m
i,j=1 is a block Toeplitz operator on `2(N, Cm), if and only if each Tij is

a Toeplitz operator on `2 [8]. The same can be said about the lower triangular
block Toeplitz operators.
If [Ti−j]

∞
i,j=0 is a block Toeplitz operator on `2(N, Cm), then [Ti−j]

∞
i,j=−∞ is a well

defined block Laurent operator on `2(Z, Cm) and vice versa. A matrix valued
function Φ on Γ is called the defining function or symbol of the block Toeplitz
operator [Ti−j]

∞
i,j=0 if and only if Φ is the defining function of the block Laurent

operator [Ti−j]
∞
i,j=−∞ [8]. If Φ is a defining function of the lower triangular block

Toeplitz operator, then

Φ(t) =
∞∑

n=0

Ajt
j, |t| = 1.

A brief discussion on block Toeplitz operators is available in [8]. We use Banach
algebra techniques to describe the spectra, pseudospectra and condition spectra
of block Laurent operators with continuous symbols and lower(upper) triangular
block Toeplitz operators with continuous symbols. Now we quote the theorem,
proved in [10], which is essential for the same.

Theorem 1.5. Let A, B be complex unital Banach algebras. Suppose Φ : A → B
is

(1) bijective,
(2) linear,
(3) multiplicative (that is, Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A) or anti-

multiplicative (that is, Φ(ab) = Φ(b)Φ(a) for all a, b ∈ A) and
(4) isometry.

Then

σ(Φ(a)) = σ(a) for all a ∈ A

Λε(Φ(a)) = Λε(a) for all a ∈ A, ε > 0, and

σε(Φ(a)) = σε(a) for all a ∈ A, 0 < ε < 1.

In this paper we attempt to describe the spectra, pseudospectra and condition
spectra of block Laurent operators with continuous symbols and lower(upper)
triangular block Toeplitz operators with continuous symbols in terms of their
symbols using the theory of Banach algebra. In section 2, we introduce Banach
algebra of continuous Banach algebra valued functions and discuss the spectrum,
pseudospectrum and condition spectrum of an element in this algebra. In section
3, we describe the spectra, pseudospectra and condition spectra of block Laurent
operators with continuous symbols. The main result here is that if L is a block
Laurent operator with a continuous symbol f , then the spectrum σ(L) of L
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coincides with the spectrum σ(f) of f (Theorem 3.2). Similarly Λε(L) = Λε(f)
for all ε > 0 and σε(L) = σε(f) for all 0 < ε < 1 (Theorem 3.2). In section 4, we
introduce the Banach algebra of Banach algebra valued analytic functions and
discuss the spectrum, pseudospectrum and condition spectrum of an element in
this algebra. In section 5, we describe the spectra, pseudospectra and condition
spectra of a lower triangular block Toeplitz operators with continuous symbols.
Again here the main result implies that the spectrum σ(T ) of a lower triangular
Toeplitz operator with continuous symbol f , coincides with σ(f) (Theorem 5.2).
Also Λε(T ) = Λε(f) for all ε > 0 and σε(T ) = σε(f) for all 0 < ε < 1 (Theorem
5.2). Main results are illustrated with examples and pictures. Computations are
done using matlab.

Some results on spectra and pseudospectra of Laurent operators with contin-
uous symbols are available in [17]. Spectra of Toeplitz matrices and operators
are discussed in [6]. The singular values of finite sections of block Toeplitz oper-
ators are discussed in [15]. Discrete spectra of some block Toeplitz operators are
studied in [5]. Projection methods for block Toeplitz operators are investigated
in [9].

2. The Banach algebra C(X,E)

Throughout this section, let X denote a compact Hausdorff space, (E, ‖ · ‖) be
a complex unital Banach algebra with unit e and C(X,E) denote the space of all
continuous E valued functions on X. Then C(X, E) is a complex Banach space
under the norm,

‖f‖∞ = sup{‖f(x)‖ : x ∈ X}.
Since clearly,

‖fg‖∞ ≤ ‖f‖∞‖g‖∞ for all f, g ∈ C(X, E),

C(X, E) is a complex unital Banach algebra with multiplication defined point
wise. The unit element of C(X, E) is denoted by 1 and is defined as,

1(x) = e for all x ∈ X.

If E is commutative, then C(X, E) is also commutative.
We consider an element f ∈ C(X,E) and investigate the relationship between

the spectrum σ(f) of f and the spectra σ(f(x)) for x ∈ X.

Theorem 2.1. An element f ∈ C(X, E) is invertible if and only if f(x) is
invertible in E for all x ∈ X and in this case f−1(x) = f(x)−1 for all x ∈ X.
Consequently,

σ(f) =
⋃
x∈X

σ(f(x)) for all f ∈ C(X, E).

Proof. Proof is elementary and depends on the following observation: If for f ∈
C(X, E) f(x) is invertible in E for all x ∈ X, then the function g : X → E
defined by ,

g(x) = f(x)−1 for all x ∈ X.

is continuous. �
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Next we consider the pseudospectrum Λε(f) of f ∈ C(X, E) and pseudospectra
Λε(f(x)) for x ∈ X and show that a similar relation exists among these sets.

Theorem 2.2. Let f ∈ C(X, E) and ε > 0. Then

Λε(f) =
⋃
x∈X

Λε(f(x)) for all f ∈ C(X, E).

Proof. Let λ ∈ Λε(f), if λ ∈ σ(f) then by Theorem 2.1,

λ ∈
⋃
x∈X

σ(f(x)) ⊆
⋃
x∈X

Λε(f(x)).

If λ ∈ Λε(f) r σ(f), then λ− f is invertible and

‖(λ− f)−1‖∞ ≥ 1

ε
.

Since X is compact, there exists x0 ∈ X such that,

‖(λ− f)−1‖∞ = ‖(λ− f)−1x0‖ = ‖(λ− f(x0))
−1‖ ≥ 1

ε
.

So,

λ ∈ Λε(f(x0)) ⊆
⋃
x∈X

Λε(f(x)).

Thus,

Λε(f) ⊆
⋃
x∈X

Λε(f(x)).

To prove the reverse inclusion consider λ ∈
⋃
x∈X

Λε(f(x)). Then λ ∈ Λε(f(x0)) for

some x0 ∈ X. Thus,

‖(λ− f(x0))
−1‖ ≥ 1

ε
.

If λ ∈ σ(f(x)) for some x ∈ X, then λ ∈ σ(f) ⊆ Λε(f) by Theorem 2.1. So
consider the case when λ /∈ σ(f(x)) for all x ∈ X. Then λ /∈ σ(f) and

‖(λ− f)−1‖∞ ≥ ‖(λ− f(x0))
−1‖ ≥ 1

ε
.

Thus λ ∈ Λε(f). Hence ⋃
x∈X

Λε(f(x)) ⊆ Λε(f).

These two inclusions prove the desired result. �

Finally we attempt to obtain a similar relationship between the condition spec-
trum σε(f) of f ∈ C(X, E) and σε(f(x)) for x ∈ X. Here the relations are more
complicated. In the following D(z, r) denotes the closed disk in the complex plane
with center z and radius r > 0.
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Theorem 2.3. Let f ∈ C(X, E) and 0 < ε < 1. Then⋃
x∈X

σε(f(x)) ⊆ σε(f) ⊆
⋃
x∈X

{D (α, ε1) : f(x) = αe}
⋃
x∈X

{
σ ε1

mx
(f(x)) : mx > 0

}
where ε1 =

2ε

1− ε
‖f‖∞ and mx = inf{‖z − f(x)‖ : z ∈ C}.

Proof. Let λ ∈
⋃
x∈X

σε(f(x)). If λ ∈ σ(f(x)) for some x ∈ X, then by Theorem

2.1, λ ∈ σ(f) ⊆ σε(f). So consider the case when λ /∈ σ(f(x)) for all x ∈ X.
Then by Theorem 2.1, λ /∈ σ(f). Since λ ∈ σε(f(x0)) for some x0 ∈ X

‖λ− f‖∞‖(λ− f)−1‖∞ ≥ ‖λ− f(x0)‖‖(λ− f(x0))
−1‖ ≥ 1

ε
.

Hence λ ∈ σε(f). Next let λ ∈ σε(f). If λ ∈ σ(f), then λ ∈ σ(f(x)) and

hence λ ∈
⋃
x∈X

{D (α, ε1) : f(x) = αe}
⋃
x∈X

{
σ ε1

mx
(f(x)) : mx > 0

}
. Suppose λ ∈

σε(f) r σ(f). Then

1

ε
≤ ‖λ− f‖∞‖(λ− f)−1‖∞

≤ ‖(λ− f)−1‖∞(|λ|+ ‖f‖∞)

≤ ‖(λ− f)−1‖∞
2‖f‖∞
1− ε

.

Let ε1 =
2ε

1− ε
‖f‖∞. Then ‖(λ− f)−1‖∞ ≥ 1

ε1

and there exist x ∈ X such that

‖(λ − f)−1‖∞ = ‖(λ − f(x))−1‖. Thus ‖(λ− f(x))−1‖ ≥ 1

ε1

. Now if f(x) = αe

for some α ∈ C, then ‖(λ− f(x))−1‖ =
1

|λ− α|
. Thus |λ − α| ≤ ε1. Otherwise,

let mx = inf{‖z − f(x)‖ : z ∈ C}. Then 0 < mx < ‖λ− f(x)‖. Hence

mx

ε1

≤ ‖λ− f(x)‖‖(λ− f(x))−1‖.

Thus λ ∈ σ ε1
mx

(f(x)). �

Remark 2.4. The first inclusion in the above theorem can be strict. Consider
Example 2.10 in [11], X = [−1, 1], E = C and f(x) = x for x in [−1, 1]. Then

σε(f(x)) = f(x). So
⋃
x∈X

σε(f(x)) = [−1, 1]. On the other hand λ =
1 + ε

1− ε
∈ σε(f),

but λ /∈ σε(f(x)) for any x ∈ X.

3. Block Laurent operators with continuous symbols

In this section, using the theory developed in the last section, we describe the
spectrum, pseudospectrum and condition spectrum of a block Laurent operator
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with continuous symbol. For this purpose, we take X = Γ, the unit circle in C,
and E = (Cm×m, ‖ · ‖2). We have for M ∈ E,

‖M‖2 = sup{‖Mx‖2 : x ∈ Cm and ‖x‖2 ≤ 1}.

For a Banach space E, BL(E) denotes the Banach algebra of all bounded linear
operators on E with usual operations and the operator norm.

Theorem 3.1. Let A be the Banach algebra of all block Laurent operators on
`2(Z, Cm) with continuous symbols. Then A is inverse-closed in BL(`2(Z, Cm)).

Proof. Let S denote the forward shift operator on `2(Z, Cm) and L ∈ BL(`2(Z, Cm)).
A known result says that L is a block Laurent operator if and only if LS = SL [8].
Let L ∈ BL(`2(Z, Cm)) be an invertible block Laurent operator with a continuous
symbol Φ(t), t ∈ Γ. Then LS = SL, hence

L−1S = L−1S(LL−1) = L−1(SL)L−1 = L−1(LS)L−1 = SL−1.

Thus L−1 is a block Laurent operator. Further since L is invertible Φ(t) 6= 0 for
all t ∈ Γ and Φ(t)−1, t ∈ Γ is the symbol of L−1. Since Φ(t) ∈ C(Γ, Cm×m) and
Φ(t) 6= 0 for all t ∈ Γ we have Φ(t)−1 ∈ C(Γ, Cm×m). Hence L−1 ∈ A. �

Theorem 3.2. Let L be a block Laurent operator on `2(Z, Cm) with a continuous
symbol f ∈ C(Γ, Cm×m). Then σ(L) = σ(f). Also for each ε > 0, Λε(L) =
Λε(f) and for 0 < ε < 1, σε(L) = σε(f), where f is regarded as an element of
C(Γ, Cm×m).

Proof. Let A be the Banach algebra of all block Laurent operators on `2(Z, Cm)
with continuous symbols and B = C(Γ, Cm×m). From Theorem 3.1, A is inverse
closed in BL(`2(Z, Cm)). Hence by Theorem 1.4, the spectrum of L as an element
of A is the same as the spectrum of L regarded as an element of BL(`2(Z, Cm)).
The same can be said about the pseudospectrum and condition spectrum. The
map Φ : A → B defined by,

Φ(L) = symbol of L

is linear, bijective, unital, multiplicative (Lemma 4.1, page 575) and isometry
(corollary 2.2, page 567) [8]. Hence the result follows from Theorem 1.5. �

Corollary 3.3. Let L be a block Laurent operator on `2(Z, Cm) with continuous
symbol f = [fkl]

m
k,l=1 ∈ C(Γ, Cm×m). Then

1. σ(L) =
⋃
x∈Γ

σ(f(x)) =
⋃
x∈Γ

σ([fkl(x)]mk,l=1).

2. Λε(L) =
⋃
x∈Γ

Λε(f(x)) =
⋃
x∈Γ

Λε([fkl(x)]mk,l=1).

3. σε(L) ⊇
⋃
x∈Γ

σε(f(x)) =
⋃
x∈Γ

σε([fkl(x)]mk,l=1).

4. σε(L) ⊆
⋃
x∈Γ

{
D (α, ε1) : [fkl(x)]mk,l=1 = αIm

} ⋃
x∈Γ

{
σ ε1

mx
([fkl(x)]mk,l=1) : mx > 0

}
.
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where Im is the m × m identity matrix, ε1 =
2ε

1− ε
‖f‖∞ and for x ∈ Γ, mx =

inf{‖z − f(x)‖ : z ∈ C}.

Proof. (1) From Theorem 3.2 and Theorem 2.1 we have

σ(L) = σ(f) =
⋃
x∈Γ

σ(f(x)).

Since f ∈ C(Γ, Cm×m), f = [fkl]
m
k,l=1 such that each fk,l ∈ C(Γ). Hence⋃

x∈Γ

σ(f(x)) =
⋃
x∈Γ

σ([fk,l(x)]mk,l=1).

(2) From Theorem 3.2 and Theorem 2.2 we have

Λε(L) = Λε(f) =
⋃
x∈Γ

Λε(f(x)) =
⋃
x∈Γ

Λε([fk,l(x)]mk,l=1).

(3) From Theorem 3.2 and Theorem 2.3 we have

σε(L) = σε(f) ⊇
⋃
x∈Γ

σε(f(x)) =
⋃
x∈Γ

σε([fk,l(x)]mk,l=1).

(4) From Theorem 3.2 and Theorem 2.3 we have

σε(L) = σε(f) ⊆
⋃
x∈Γ

{D (α, ε1) : f(x) = αIm}
⋃
x∈Γ

{
σ ε1

mx
(f(x)) : mx > 0

}
where ε1 =

2ε

1− ε
‖f‖∞ and for x ∈ Γ, mx = inf{‖z − f(x)‖ : z ∈ C}. We

note that the right hand side is equal to

⋃
x∈Γ

{
D (α, ε1) : [fk,l(x)]mk,l=1 = αIm

} ⋃
x∈Γ

{
σ ε1

mx
([fk,l(x)]mk,l=1) : mx > 0

}
�

Corollary 3.4. Let L be a Laurent operator on `2(Z) with a continuous symbol
f ∈ C(Γ). Then

1. σ(L) = {f(x) : x ∈ Γ} = f(Γ).

2. Λε(L) =
⋃
{D(f(x), ε) : x ∈ Γ}.

3. σε(L) ⊇ {f(x) : x ∈ Γ}.

4. σε(L) ⊆
⋃{

D

(
f(x),

2ε

1− ε
‖f‖∞

)
: x ∈ Γ

}
.

Proof. (1) From Corollary 3.3

σ(L) = σ(f) =
⋃
x∈Γ

σ(f(x)) =
⋃
x∈Γ

f(x) = f(Γ).
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(2) From Corollary 3.3

Λε(L) = Λε(f) =
⋃
x∈Γ

Λε(f(x)) =
⋃
x∈Γ

D(f(x), ε).

(3) From Corollary 3.3

σε(L) = σε(f) ⊇
⋃
x∈Γ

σε(f(x)) =
⋃
x∈Γ

{f(x)} = f(Γ).

(4) From Corollary 3.3

σε(L) = σε(f) ⊆
⋃
x∈Γ

D

(
f(x),

2ε

1− ε
‖f‖∞

)
.

�

Remark 3.5. Theorem 3.2 and its corollaries are useful in computing spectrum
σ(L), pseudospectrum Λε(L) and condition spectrum σε(L) of a block Laurent
operator L with a continuous symbol f ∈ C(Γ, Cm×m). Since for each x ∈ Γ, f(x)
is a matrix of order m×m, we can compute and plot σ(f(x)), Λε(f(x)), σε(f(x))
for various values of x ∈ Γ. Then the respective unions of these sets are approxi-
mations of σ(L), Λε(L), σε(L).
The situation is very satisfactory when m = 1, that is, L is a Laurent operator
on `2(Z). From Corollary 3.4, σ(L) = f(Γ) is a closed curve in the complex
plane, say γ0. Let γ1 and γ2 be the closed curves lying on either side of γ0

and parallel to γ0 at a distance ε from γ0. Then Λε(L) is the region lying be-
tween γ1 and γ2. σε(L) is also contained in a similar region. From Theorem 3.2,
σε(L) = σε(f). We can consider certain number of uniformly distributed points in

the disc

{
z ∈ C : |z| ≤ 1 + ε

1− ε
‖f‖∞

}
[11], evaluate ‖z−f‖∞‖(z−f)−1‖∞ at each of

these points and include and save those z for which ‖z − f‖∞‖(z − f)−1‖∞ ≥ 1

ε
.

For example, if L is the right shift operator, then f(z) = z, σ(L) = Γ, Λε(L) is
the annulus {λ ∈ C : 1− ε ≤ |λ| ≤ 1 + ε} (see Theorem 3.3 of [10]), σε(L) is the

annulus

{
λ ∈ C :

1− ε

1 + ε
≤ |λ| ≤ 1 + ε

1− ε

}
(see Theorem 3.3 of [10]).

In the following examples the pseudospectra and condition spectra of matrices
are calculated using the basic algorithm explained in [17]. There are many efficient
algorithms to compute the pseudospectra of matrices [17]. Some of these can be
modified to compute the condition spectra also. Since our aim is only to illustrate
the above results, we do not make any claim about the efficiency of this algorithm.
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Example 3.6. Consider the block Laurent operator

L =



. . . . . . · · · .

.

[
0 2
0 1

] [
1 0
2 −1

] [
0 1
1 −1

]
[0] [0] · · · .

.

[
1 0
0 0

] [
0 2
0 1

] [
1 0
2 −1

] [
0 1
1 −1

]
[0] · · · .

. [0]

[
1 0
0 0

] [[
0 2
0 1

]] [
1 0
2 −1

] [
0 1
1 −1

]
· · · .

. [0] [0]

[
1 0
0 0

] [
0 2
0 1

] [
1 0
2 −1

]
· · · .

. . . . . . · · · .


where [0] denotes the 2× 2 zero matrix. Let f denote the symbol of L. Then

f(x) =

[
f11(x) f12(x)
f21(x) f22(x)

]
=

[
x + 1

x
2 + 1

x2
2
x

+ 1
x2 1− 1

x
− 1

x2

]
, x ∈ Γ.

By Corollary 3.3, σ(L) is the union of the eigenvalues of the matrix f(x) for
x ∈ Γ. The ε-pseudospectrum and ε-condition spectrum of L is calculated using
Remark 3.5. The following figures are obtained using matlab. Figure 1.1 shows
σ(L), Figure 1.2 shows Λ0.5(L), Figure 1.3(D1) shows the set defined in (3) of
Corollary 3.3 and Figure 1.4(D2) shows the set defined in (4) of Corollary 3.3 for
ε = 0.01. We have D1 ⊆ σ0.01(L) ⊆ D2, Figure 1.5 shows σ0.01(L).
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Example 3.7. Consider the block Laurent operator

L1 =



. . . . . · · ·

.

[
1 2
0 1

] [
0
]

. . · · ·

.

[
0 −1
3 −2

] [[
1 2
0 1

]] [
0
]

. · · ·

.
[
0
] [

0 −1
3 −2

] [
1 2
0 1

] [
0
]
· · ·

. . . . . · · ·


where [0] denotes the 2× 2 zero matrix. Let f denote the symbol of L1. Then

f(x) =

[
f11(x) f12(x)
f21(x) f22(x)

]
=

[
1 2− x
3x 1− 2x

]
, x ∈ Γ.

Figure 2.1 shows σ(L1), Figure 2.2 shows Λ0.5(L1), Figure 2.3(D1) shows the set
defined in (3) of Corollary 3.3 and Figure 2.4(D2) shows the set defined in (4)
of Corollary 3.3 for ε = 0.01. We have D1 ⊆ σ0.01(L1) ⊆ D2, Figure 1.5 shows
σ0.01(L1).

4. Banach algebra H(∆, E)

Throughout this section let (E, ‖ · ‖) be a complex Banach algebra with unit e,
let ∆ denote the closed unit disk of the complex plane and ∆0 denote the interior
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of ∆. A function f : ∆ → E is said to be differentiable at z0 ∈ ∆0 if

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists (in the norm on E). If f is differentiable at all points of ∆0, we say that f
is analytic in ∆0. Define

H(∆, E) = {f ∈ C(∆, E) : f |∆0 is analytic in ∆0}.
Let f ∈ H(∆, E), then f can be written as

f(z) =
∞∑

n=0

znan an ∈ E, z ∈ ∆.

A brief discussion on Banach space valued analytic functions can be found in [1].

Theorem 4.1. With the above notations H(∆, E) is a complex unital Banach
algebra with point wise addition, point wise multiplication and the norm given by

‖f‖∞ = sup{‖f(z)‖ : z ∈ ∆}.

Proof. In section 2, we observed that C(∆, E) is a complex unital Banach algebra.
Clearly H(∆, E) ⊆ C(∆, E). Let f, g ∈ H(∆, E) and α ∈ C. It is routine to
check that f+g, fg, αf are analytic functions in ∆0. The unit element of H(∆, E)
is denoted by 1 and is defined as,

1(z) = e for all z ∈ ∆.

Thus H(∆, E) is a subalgebra of C(∆, E). Next to show that it is a closed
subalgebra, consider a sequence fn ∈ H(∆, E) and fn → f in C(∆, E). We show
that f ∈ H(∆, E). Let γ be a rectifiable closed path in ∆0. By an analogue
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of Cauchy’s theorem for Banach space valued analytic functions (Theorem 1.70 ,
[1]), we obtain∫

γ

f(z)dz =

∫
γ

lim
n→∞

fn(z)dz = lim
n→∞

∫
γ

fn(z)dz = 0.

Hence by an analogue of Morera’s theorem for Banach space valued functions [1],
f ∈ H(∆, E). Hence H(∆, E) is a unital Banach algebra. �

We call this algebra as the E valued disk algebra. Now we consider an element
f ∈ H(∆, E) and investigate the relationship between the spectrum σ(f) of f
and the spectra σ(f(z)) for z ∈ ∆. We shall undertake similar study of pseu-
dospectrum and condition spectrum. The main result depends on the following
lemma, compare with Theorem 2.1.

Lemma 4.2. Let f ∈ H(∆, E). Then f is invertible in H(∆, E) if and only if
f(z) is invertible in E for all z ∈ ∆. In this case f−1(z) = f(z)−1 for all z ∈ ∆.
In other words, H(∆, E) is inverse-closed in C(∆, E).

Proof. Let f ∈ H(∆, E) be invertible with the inverse g ∈ H(∆, E). Then

f(z)g(z) = e = g(z)f(z).

This implies f(z) is invertible in E for all z ∈ ∆.
Next assume that f(z) is invertible in E for all z ∈ ∆. We claim that f is
invertible in H(∆, E). Define g : ∆ → E by,

g(z) = f(z)−1 for all z ∈ ∆.

Then by Theorem 2.1 g ∈ C(∆, E). Also it is straightforward to show that g is
differentiable at each z0 ∈ ∆0 and

g′(z0) = f(z0)
−1f ′(z0)f(z0)

−1.

Hence by definition g ∈ H(∆, E). �

Theorem 4.3. Let f ∈ H(∆, E). Then

1. σ(f) =
⋃
z∈∆

σ(f(z)).

2. Λε(f) =
⋃
z∈∆

Λε(f(z)) for all ε > 0.

3. σε(f) ⊇
⋃
z∈∆

σε(f(z)) for all 0 < ε < 1.

4. σε(f) ⊆
⋃
z∈∆

{D (α, ε1) : f(z) = αe}
⋃
z∈∆

{
σ ε1

mz
(f(z)) : mz > 0

}
,

where 0 < ε < 1, ε1 =
2ε

1− ε
‖f‖∞ and for z ∈ ∆, mz = inf{‖λ− f(z)‖ : λ ∈ C}.

Proof. Let f ∈ H(∆, E). By Lemma 4.2, H(∆, E) is inverse-closed in C(∆, E). It
follows from Theorem 1.4 that σ(f, H(∆, E)) = σ(f, C(∆, E)), Λε(f, H(∆, E)) =
Λε(f, C(∆, E)) for all ε > 0 and σε(f, H(∆, E)) = σε(f, C(∆, E)) for all 0 < ε < 1.
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Now (1) follows from Theorem 2.1, (2) follows from Theorem 2.2, (3) follows from
Theorem 2.3 and (4) follows from Theorem 2.3. �

5. Lower triangular block Toeplitz operators with continuous
symbols

In this section we describe the spectrum, pseudospectrum and condition spec-
trum of a lower triangular block Toeplitz operator with continuous symbol us-
ing the theory developed in the previous section. For this purpose we take
E = (Cm×m, ‖ · ‖2). If Φ ∈ H(∆, Cm×m), then Φ = [Φij]

m
i,j=1 where each Φij

is a complex valued function that is continuous in ∆ and analytic in ∆0. Note
that if T is a block Toeplitz operator with symbol Φ, then Φ ∈ H(∆, Cm×m) if
and only if T is lower triangular.

Theorem 5.1. Let A be the set of all lower triangular block Toeplitz operators
on `2(N, Cm) with continuous symbols. Then A is an inverse-closed Banach sub-
algebra of BL(`2(N, Cm)).

Proof. Let T be a block Toeplitz operator on `2(N, Cm) with continuous symbol
Φ(t), t ∈ ∆. For U,R ∈ BL(`2(N, Cm)), S = UR is defined as,

Sij =
∞∑

k=1

UikRkj.

Thus the elementary calculation shows that the inverse of a lower triangular
block Toeplitz operator is a lower triangular block Toeplitz operator. Thus T−1

is a lower triangular block Toeplitz operator with symbol Φ(t)−1, t ∈ ∆. Since
Φ(t) ∈ C(Γ, Cm×m) we have Φ(t)−1 ∈ C(Γ, Cm×m). Hence T is invertible in
A. �

Theorem 5.2. Let T be a lower triangular block Toeplitz operator on `2(N, Cm)
with symbol f ∈ H(∆, Cm×m). Then σ(T ) = σ(f). Also for each ε > 0, Λε(T ) =
Λε(f) and for 0 < ε < 1, σε(T ) = σε(f).

Proof. Let A be the Banach algebra of all lower triangular block Toeplitz opera-
tors with continuous symbol on `2(N, Cm) and B = H(∆, Cm×m). First note that
A is inverse closed in BL(`2(N, Cm)). Hence by Theorem 1.4 the spectrum of T
as an element of A is the same as the spectrum of T regarded as an element of
BL(`2(N, Cm)). The same can be said about the pseudospectrum and condition
spectrum. The map Φ : A → B defined by,

Φ(T ) = symbol of T

is linear, bijective, unital, multiplicative(Lemma 4.1, page 575 of [8]) and isome-
try(Corollary 3.2, page 573 of [8]). Hence the result follows from Theorem 1.5. �
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Corollary 5.3. Let T be a lower triangular block Toeplitz operator on `2(N, Cm)
with symbol f = [fkl]

m
k,l=1 ∈ H(∆, Cm×m). Then

1. σ(T ) =
⋃
z∈∆

σ(f(z)) =
⋃
z∈∆

σ([fkl(z)]mk,l=1).

2. Λε(T ) =
⋃
z∈∆

Λε(f(z)) =
⋃
z∈∆

Λε([fkl(z)]mk,l=1) for all ε > 0.

3. σε(T ) ⊇
⋃
z∈∆

σε(f(z)) =
⋃
z∈∆

σε([fkl(z)]mk,l=1) for all 0 < ε < 1.

4. σε(T ) ⊆
⋃
z∈∆

{
D (α, ε1) : [fkl(z)]mk,l=1 = αIm

} ⋃
z∈∆

{
σ ε1

mz
([fkl(z)]mk,l=1) : mz > 0

}
.

where Im denotes the m×m identity matrix, 0 < ε < 1, ε1 =
2ε

1− ε
‖f‖∞ and for

z ∈ ∆, mz = inf{‖λ− f(z)‖ : λ ∈ C}.

Proof. (1) From Theorem 5.2 we have

σ(T ) = σ(f) =
⋃
z∈∆

σ(f(z)).

Since f ∈ H(∆, Cm×m), f = [fkl]
m
k,l=1 and each fkl ∈ H(∆, C) (i.e, each

fkl is a complex analytic function). Hence⋃
z∈∆

σ(f(z)) =
⋃
z∈∆

σ([fk,l(z)]mk,l=1).

(2) Let ε > 0. From Theorem 5.2 we have

Λε(T ) = Λε(f) =
⋃
z∈∆

Λε(f(z)) =
⋃
z∈∆

Λε([fk,l(z)]mk,l=1).

(3) Let 0 < ε < 1. From Theorem 5.2 we have

σε(T ) = σε(f) ⊇
⋃
z∈∆

σε(f(z)) =
⋃
z∈∆

σε([fk,l(z)]mk,l=1).

(4) Let 0 < ε < 1. From Theorem 5.2 we have

σε(T ) = σε(f) ⊆
⋃
z∈∆

{D (α, ε1) : f(z) = αIm}
⋃
z∈∆

{
σ ε1

mz
(f(z)) : mz > 0

}
where ε1 =

2ε

1− ε
‖f‖∞ and for z ∈ ∆, mz = inf{‖λ− f(z)‖ : λ ∈ C}. We

note that the right hand side is equal to

⋃
z∈∆

{
D (α, ε1) : [fk,l(z)]mk,l=1 = αIm

} ⋃
z∈∆

{
σ ε1

mz
([fk,l(z)]mk,l=1) : mz > 0

}
.

�
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Corollary 5.4. Let T be a lower triangular Toeplitz operator on `2 with symbol
f ∈ H(∆). Then

1. σ(T ) = {f(λ) : λ ∈ ∆} = f(∆).

2. Λε(T ) =
⋃
{D(f(λ), ε) : λ ∈ ∆} for all ε > 0.

3. σε(T ) ⊇ {(f(λ) : λ ∈ ∆} for all 0 < ε < 1.

4. σε(T ) ⊆
⋃{

D

(
f(λ),

2ε

1− ε
‖f‖∞

)
: λ ∈ ∆

}
for all 0 < ε < 1.

Where ∆ is the closed unit disk in the complex plane.

Proof. (1) From Corollary 5.3 we have

σ(T ) = σ(f) =
⋃
λ∈∆

σ(f(λ)) =
⋃
λ∈∆

f(λ) = f(∆).

(2) Let ε > 0. From Corollary 5.3 we have

Λε(T ) = Λε(f) =
⋃
λ∈∆

Λε(f(λ)) =
⋃
λ∈∆

D(f(λ), ε).

(3) Let 0 < ε < 1. From Corollary 5.3 we have

σε(T ) = σε(f) ⊇
⋃
λ∈∆

σε(f(λ)) =
⋃
λ∈∆

{f(λ)} = {f(λ) : λ ∈ ∆}.

(4) Let 0 < ε < 1. From Corollary 5.3 we have

σε(T ) = σε(f) ⊆
⋃
λ∈∆

D

(
f(λ),

2ε

1− ε
‖f‖∞

)
.

�

A wealth of information about spectra of Toeplitz operators with symbols of
different kind can be found in [3]. Pseudospectra of Toeplitz operators are dis-
cussed in the article [4].

Remark 5.5. Theorem 5.2 and its corollaries are useful in computing spectrum
σ(T ), pseudospectrum Λε(T ) and condition spectrum σε(T ) of a lower triangular
block Toeplitz operator T with a continuous symbol f ∈ H(∆, Cm×m). Since
for each z ∈ ∆, f(z) is a square matrix of order m, we can compute and plot
σ(f(z)), Λε(f(z)), σε(f(z)) for various values of z ∈ ∆. Then the respective unions
of these sets are approximation of σ(T ), Λε(T ), σε(T ).
The situation is very satisfactory when m = 1, that is T is a lower triangular
Toeplitz operator on `2 with a continuous symbol f . Then from Corollary 5.4,
σ(T ) = f(∆) is a compact set in the complex plane say D. Λε(T ) is the compact
set that contains D and all points in the complex plane at a distance less that or
equal to ε from D. From Theorem 5.2, σε(T ) = σε(f). We can consider certain

number of uniformly distributed points in the disc

{
z ∈ C : |z| ≤ 1 + ε

1− ε
‖f‖∞

}
[11], evaluate ‖z − f‖∞‖(z − f)−1‖∞ at each of these points and include and
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save those z for which ‖z − f‖∞‖(z − f)−1‖∞ ≥ 1

ε
. σε(T ) is also contained in a

similar set as pseudospectra. For example, if L is the right shift operator on `2

then f(z) = z, σ(T ) = ∆, Λε(T ) is the closed disk {λ ∈ C : |λ| ≤ 1 + ε}, σε(T ) is

the closed disk

{
λ ∈ C : |λ| ≤ 1 + ε

1− ε

}
(see Example 2.14 in [11]).

Remark 5.6. We can develop a similar theory in case of upper triangular block
Toeplitz operators with continuous symbols.

Example 5.7. Consider the lower triangular block Toeplitz operator

T =



[
1 2
0 1

] [
0
] [

0
] [

0
]

· · · .[
0 −1
3 −2

] [
1 2
0 1

] [
0
] [

0
]

· · · .[
0
] [

0 −1
3 −2

] [
1 2
0 1

] [
0
]

.. .[
0
] [

0
] [

0 −1
3 −2

] [
1 2
0 1

]
.. .

. . . . · · · .

. . . . · · · .


where [0] denotes the 2× 2 zero matrix. Let f denote the symbol of T . Then

f(x) =

[
f11(x) f12(x)
f21(x) f22(x)

]
=

[
1 2− x
3x 1− 2x

]
, x ∈ ∆.

By Corollary 5.3, σ(T ) is equal to the union of the eigenvalues of the matrix
f(x) for x ∈ ∆. The ε-pseudospectrum and ε-condition spectrum also can be
calculated as explained in Remark 5.5. The following figures are obtained using
matlab. Figure 3.1 shows σ(T ), Figure 3.2 shows Λ0.5(T ), Figure 3.3(D1) shows
the set defined in (3) of Corollary 5.3 and Figure 3.4(D2) shows the set defined in
(4) of Corollary 5.3 for ε = 0.01. We have D1 ⊆ σ0.01(T ) ⊆ D2, Figure 3.5 shows
σ0.01(T ).
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Example 5.8. Consider the lower triangular block Toeplitz operator

T1 =



[
1 2
0 1

] [
0
] [

0
] [

0
]

· · · .[
1 0
0 0

] [
1 2
0 1

] [
0
] [

0
]

· · · .[
0
] [

1 0
0 0

] [
1 2
0 1

] [
0
]

.. .[
0
] [

0
] [

1 0
0 0

] [
1 2
0 1

]
.. .

. . . . · · · .

. . . . · · · .


where [0] denotes the 2× 2 zero matrix. Let f denote the symbol of T1. Then

f(x) =

[
f11(x) f12(x)
f21(x) f22(x)

]
=

[
1 + x 2

0 1

]
, x ∈ ∆.

The following figures are obtained using matlab. Figure 4.1 shows σ(T1), Figure
4.2 shows Λ0.5(T1), Figure 4.3(D1) shows the set defined in (3) of Corollary 5.3
and Figure 4.4(D2) shows the set defined in (4) of Corollary 5.3 for ε = 0.01. We
have D1 ⊆ σ0.01(T1) ⊆ D2, Figure 4.5 shows σ0.01(T1).
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