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Abstract
We study the notion of modified realizability topos over an arbitrary Schonfinkel algebra. In
particular we show that such toposes are induced by subsets of the algebra which we call
right pseudo-ideals, and which generalize the right ideals (or right absorbing sets) previously
considered. We also investigate the notion of compatibility with right pseudo-ideals which
ensures that quasi-surjective (applicative) morphisms of Schonfinkel algebras yield geometric
morphisms between these toposes.
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Introduction

As is by now well known, realizability toposes come in several ‘flavours’: ordinary, relative, modified,
Herbrand .... In each case, what we have is a construction which takes as input a Schonfinkel
algebra (also known as a partial combinatory algebra) — or, in the case of relative realizability, a
pair consisting of a Schonfinkel algebra with a distinguished subalgebra — and produces a topos.
Naturally, it is of interest to know in what sense these constructions are functorial: that is, to
determine what are the appropriate notions of ‘morphism of Schonfinkel algebra’ and to show that
they induce geometric morphisms (or at least functors of some sort) between the corresponding
toposes.

For ordinary realizability, the position is by now well understood. The first investigation of it
was made by John Longley [14], who introduced the notion of an applicative morphism (which we
now call simply a morphism) of Schonfinkel algebras, and showed that such morphisms correspond
exactly to regular functors between ordinary realizability toposes which preserve ——-sheaves. Not
all such functors derive from geometric morphisms; but, thanks to more recent work of Hofstra and
van Oosten [6] and of the present author [10], we now know that geometric morphisms between
ordinary realizability toposes correspond exactly to morphisms in Longley’s sense which satisfy an
additional property known as computational density or quasi-surjectivity.

For Benno van den Berg’s notion of Herbrand realizability [1], we do not have such an exact
characterization; but, thanks to the identification of Herbrand realizability toposes as the Gleason
covers of ordinary realizability toposes [11], we can say that the construction is functorial in the sense
that quasi-surjective morphisms of Schonfinkel algebras induce geometric morphisms of Herbrand
realizability toposes. In contrast, for modified realizability relatively little is known; indeed, even
the question of how to define modified realizability over an arbitrary Schonfinkel algebra (as opposed
to the particular algebra structure on the natural numbers first introduced by Kleene) has not yet
received a unanimous answer. Our purpose in this paper is, therefore, first to study what ‘modified
realizability over an arbitrary algebra’ could (or should) mean, and secondly to investigate how its
functoriality depends on the choices one makes in defining it.
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In the rest of this section, we introduce definitions and notation and recall some results that
we shall need on ordinary realizability. By a Schinfinkel algebra we mean a set A equipped with a
partial binary operation (that is, a partial map A? — A) and two constants K, S satisfying Kzy = x
and Sxyz =xz(yz) for all x,y,z € A. (Here, for possibly-undefined terms s and ¢, s =t denotes ‘if
t is defined, then so is s and they are then equal’.) In this paper, with the exception of Lemma
1.2 below, we shall always assume that A is proper, i.e. that Szy is defined for all x and y; but we
shall not require it to be strict in the sense that Szyz is defined only when xz(yz) is defined. Of
course, we say A is total if xy is defined for all  and y; when we speak of a partial Schinfinkel
algebra, we definitely mean one which is not total. In addition to the primitive combinators K
and S, we shall make use of the combinators |, B, E,D,P; and Py satisfying lz =2, Bayz = z(yz),
Exy =yx, Dxyz = zyx, P1x = 2(Kl) and Pyx = 2K; and we shall often write (x, y) for Dxy (note that
Pi(z,y) =z and Py(z,y) =y, so that D and the P; serve as pairing and unpairing combinators).

We say that A is decisive if it contains an element § (a decider for A) satisfying dzxz =K for all x
and 0xy = Kl whenever x # y. (This property is commonly called ‘decidability’, but ‘decisiveness’
seems more appropriate since it is the algebra itself which does the deciding.) The (first) Kleene
algebra, which consists of the set of natural numbers with nm defined as the output (if any) of the
nth (unary) register machine program given input m, is well known to be decisive, but no total
algebra can be decisive [13].

For the basic notions of tripos theory, we refer the reader to [7] and [17]. We shall be exclusively
concerned with triposes on Set: if T is such a tripos and I is a set, we write T for its Heyting
prealgebra of I-indexed families — normally we shall assume that T is given in the standard form
described in [7], so that these are actual functions from I to a fixed set T (and in particular the
‘generic’ element of T is the identity function T — T). For the ordinary realizability tripos PA
associated with a Schonfinkel algebra A, we take this fixed set to be the power-set of A, and we
preorder PA! by

(f<g) < m(f(z):>g(z)) is inhabited
iel

where, for subsets p, g of A, (p=-¢) denotes

PeA|(Vzep)(Fyeqg(Ar=y)} .

We often say that an element of the above intersection uniformly realizes the inequality f < g (or
the family of implications (f (i) = g(i))).

Given a tripos T, we write Set(T) for the induced topos: its objects are pairs (A,d) where
6: Ax A— T is a ‘T-valued equality predicate’ satisfying axioms which say that it is symmetric
and transitive in the logic of T; and morphisms (4, ) — (B, ¢) are equivalence classes of functions
F': A x B — T which are strict, extensional, single-valued and entire in this logic, two such functions
F, G being equivalent iff F = G in T4* 5.

By a geometric morphism f:S — T of triposes, we mean an indexed adjunction (f*: T — S
f+:S—T) of which the left adjoint f* preserves finite meets. It is well known that such an
adjunction determines a geometric morphism Set(S) — Set(T) (though, in general, not every
geometric morphism Set(S) — Set(T) is induced by a geometric morphism of triposes), and that
the induced morphism of toposes is an inclusion (resp. a surjection) provided the morphism of
triposes is a reflection (resp. a coreflection). (It is thus natural to transfer the terms ‘inclusion’ and
‘surjection’ from morphisms of toposes to the morphisms of triposes which induce them.)
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A morphism of Schionfinkel algebras t: A & 1 is an entire relation (that is, one which relates each
element of A to at least one element of II) for which there exists an element 7 € II (a witness for t)
such that, whenever we have t(z,y), t(2’, y') and zz’ is defined, then 7yy’ is defined and ¢(xa’, Tyy’).
The set of all morphisms A & II is preordered by setting s < t iff there exists p € II such that
s(x,y) implies t(x, py). These definitions make Schonfinkel algebras into the objects of a (locally
ordered) 2-category Schén. A morphism ¢: A & IT induces an indexed functor ¢ : PA — PII given
by composing PA-valued functions with the mapping (p — {y € Il | (3x € p)(¢(x,y)}), which may
be shown to preserve finite meets; and an inequality s < ¢t induces an indexed natural transformation
54 — t4 in an obvious way. We say a morphism ¢ is functional if it is the graph of a function, i.e.
if each element of A is related to exactly one element of II, and surjective if t° is entire, i.e. each
element of II is a relative of at least one element of A. Finally, we say t is a homomorphism if it
is functional and witnessed by | (that is if we have ¢(z)t(z’) =t(zz’) for all z,2’ € A — where, as
we often do for functional morphisms, we are using the standard functional notation y = ¢(z) for
t(z,y)), and in addition ¢ preserves the constants K and S.

In [6] it was shown that ¢, has a right adjoint (i.e., is the inverse image part of a geometric
morphism of triposes) iff ¢ satisfies a condition called computational density, and in [10] it was shown
that this condition is equivalent to a simpler one called quasi-surjectivity: we say t is quasi-surjective
if there exists a function r: II — A and an element p € II such that for all y,y" € II, if t(r(y),y’)
holds then py’ = y. (Note that any surjective functional morphism ¢ is quasi-surjective: we may
take r to be any function whose graph is contained in ¢°, and p to be the | combinator. However,
a quasi-surjective morphism need not be surjective even if it is functional; a counterexample is
provided by the mapping (x — (K, x)) from any A to itself, which is quasi-surjective because it is
isomorphic to the identity.) It follows that the assignment (A — Set(PA)) becomes a pseudofunctor
(contravariant on 1-cells) from the 2-category Schongs obtained by restricting to quasi-surjective
1-cells in Schon, to the 2-category of toposes and geometric morphisms. In addition, it was shown in
[10] that this 2-functor is locally an equivalence, i.e. that all geometric morphisms between ordinary
realizability toposes, and all geometric transformations between them, are (up to isomorphism) of
this form.

1 Right ideals and right pseudo-ideals

The basic idea behind modified realizability is that any proposition should come equipped with two
sets of ‘potential’ and ‘actual’ realizers, of which the second is contained in the first and, in addition,
the first contains all members of some fixed (nonempty) set ©. An actual realizer for an implication
should code a function mapping potential realizers for the first proposition to potential realizers
for the second, and also mapping actual realizers for the first to actual realizers for the second.
The tripos-theoretic formulation of this idea was first investigated by Grayson [5] and subsequently
by Hyland and Ong [8] and van Oosten [15]: it leads to the definition of a tripos which we shall
denote MigA (or simply MA, if we do not need to specify © explicitly), whose I-indexed families
are functions from I to the set

MoA ={(p,a) € PA x PA|aU® C p}

and whose preorder is given by

(f < g)e[ N(fi6)=g1(i) N (f2(i) = g2(i)) | i € I} is inhabited .
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(Here and subsequently, we write f1(7) and fo(4) for the first and second components of f(7).)

In verifying that MgA is indeed a tripos, for suitable choices of ©, it is convenient to compare
it with a simpler tripos P; A, which is simply the case ©® = @ of the above. The fact that this is
a tripos is easy to verify: its meet and join operations, and its quantification, are simply induced
‘componentwise’ by those of PA, and its implication is given by

(f=9)0) = ((f1(D) = 91(9)), (f1(8) = 91(2)) N (f2(i) = g2(2)))) -

The resulting topos Set(P;A) may be identified with the (ordinary) realizability topos over the
Sierpiriski topos [2,Set] induced by the identity mapping (A — A), regarded as an internal
Schonfinkel algebra in [2, Set]; we shall not prove this here, since we shall not need it, but it
follows straightforwardly from the ‘tripos iteration theorem’ of A.M. Pitts (see [17], 2.7.1).

In the previous work of Hyland and Ong [8], the set © of ‘universal’ potential realizers was
assumed to be a right ideal (or right absorbing set) in A, that is a set such that, if § € O, then
fx is defined and belongs to © for all z € A. (We may express this more simply by the inclusion
O C (A=0).) Clearly, @ is always a right ideal in A, as is the whole of A if A is a total algebra;
but we wish to exclude these two degenerate cases, so from now on ‘right ideal’ will always mean
‘nonempty proper right ideal’.

Grayson [5] and van Qosten [15] made a stronger assumption: working with the Kleene algebra,
they assumed a coding of recursive functions such that 0 codes the constant function with value 0
(so that {0} is a right ideal), and also that the coding of pairs is such that (0,0) = 0, so that the
right ideal is closed under pairing. The latter is impossible if pairs are coded by the combinator
D as we have assumed: note that Dzy(K(Kz)) =z for any z, so that no element of the form Dzy
can belong to a (proper) right ideal. However, we note that all elements of the form Ex belong to
(©=0) for any right ideal ©, so our unpairing combinators P; and P2 map © to itself. (Of course,
if © is a singleton and pairing is taken to be a bijection A x A — A, as it can be for the Kleene
algebra, then closure under pairing is equivalent to closure under unpairing.)

The main reason for requiring © to be a right ideal is contained in the following lemma. Recall
that a full subcategory of a cartesian closed category is called an exponential ideal if an exponential
B4 belongs to the subcategory whenever B does so.

Lemma 1.1. MgA is an indexed exponential ideal in P; A iff © is a right ideal in A.

Proof. Clearly, © C (A= 0) iff © C (p= ¢) whenever © C ¢. So this is immediate from the
definition of implication in P1A. O

We shall say that an element A\ of a Schonfinkel algebra is omnivorous if Axixs - - - x,, is defined for
all finite sequences (z1, xa, . .., Z, ), and irreversible if there does not exist a sequence (x1, za, . .., Z,)
for which Azixs---x, =1 (equivalently, if not every element of A can be expressed in the form
Ax1Zo -+ xy,). In a partial algebra, every omnivorous element is irreversible, since if Azy -z, =1
and y1y2 is undefined then Azq - - - z,y1y2 is undefined; on the other hand, in a total algebra every
element is omnivorous, but not all are irreversible. It is clear that every element of a right ideal must
be omnivorous and irreversible; conversely, any element which is both omnivorous and irreversible
generates a right ideal. Thus the right ideals in A are exactly the nonempty upwards-closed subsets
of the set ©; of all omnivorous and irreversible elements, preordered by setting A < p iff there
exists a sequence (z1,...,,) such that Az - - -z, = p. (In particular, if ©; is nonempty then it is
the unique largest right ideal.)
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Any total Schonfinkel algebra contains irreversible elements: for example, the element YK,
where Y is the usual fixed-point combinator, generates a singleton right ideal, since we have YKx =
K(YK)z = YK for all z. More generally, any fixed point of the K combinator generates a singleton
right ideal, even in a partial algebra. And even if K has no fixed points, any proper algebra contains
an element 6 which codes its own constant function, i.e. such that {6} is a right ideal: specifically,
if we set

X = S(S(KS)(S(S(KK)))(S(S(KS)(S(KK)N)(S(KK)N)) (KI)

and then take
0 = XX =S(S(KK)(S(KX)(KX))I ;

then for any x we have
Ox

S(KK)(S(KX)(KX))z(Iz)
= KKz (KXz(KXx)))z
= KXX)z=XX=10 .

I

However, if we do not insist on propriety, there are partial algebras which contain no omnivorous
elements (and therefore no right ideals): the following lemma was stated, but not proved, in [8].

Lemma 1.2. The algebra of strongly normalizing closed A-terms modulo closed [-equivalence has
no omnivorous elements.

Proof. Supppose 7 were an omnivorous element of this algebra. Then any term of the form
TKKK - --K would be strongly normalizing; and it is easy to see that if we reduce this term to
normal form, then the number of A-abstractions in it which are not part of subterms of the form
Az . Ay . x (that is, K) must decrease strictly as the number of applications increases. So if the
number of K’s is sufficiently large we must reduce to a term which is simply a string of K’s (possibly
with some nontrivial bracketing); but from any such term it is easy to get to |, and thence to a
non-strongly-normalizing term, by further applications. (]

For this and other reasons which will emerge below, it seems appropriate to introduce a ‘relax-
ation’ of the notion of right ideal. In addition to the property described in 1.1, the other feature
of right ideals which is of importance in the proof that MA is a tripos is the ability to make an
arbitrary set disjoint from © without destroying its ‘information content’: given p C A, we may
define p* = {{l,z) | = € p}. We note that this set is indeed disjoint from ©, that (p = p™)
and (p™ = p) are uniformly realizable by DI and P, respectively, and that the latter also realizes
(0=0). Abstracting from these properties, we arrive at the definition of a right pseudo-ideal.

Definition 1.3. We define an inhabited proper subset © C A to be a right pseudo-ideal provided
there exist elements a, 8, 8’ and 7 of A satisfying

(a) Blax) =z for all x and B € (©=0);
(b) f'(ax)=ux for all z and B’ € (@=(A=0)); and

(¢) vz(ay) =a(zy) for all x,y and v € (A= (0=0)).
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Given such a set ©, we redefine p™ to be {az | x € p} for any p C A. Tt is clear that (p=p™)
and (pT = p) are uniformly realized by o and 3 respectively; but it may not be obvious that p* is
necessarily disjoint from ©. However, if ax € © for some z, then we have y(Ky)(az) = ay € ©, and
hence B(v(Ky)(ax)) =y € O, for any y; so © is improper. We also remark that the element § in
the definition is redundant; we can construct a suitable § from 8’ and +, namely B(EK)(BS’(vK)).
(Conversely, if © is in fact a right ideal, then any /3 satisfying (a) also satisfies (b).)

Any right ideal is a right pseudo-ideal, with « taken to be DI, 8 = 8’ = Py and

v = B(SP,)(B(B(DI))(B(SP,)(B(EP,)B))) .

Given an arbitrary right pseudo-ideal ©, we define MgA, as before, to be {(p,a) € PA x PA |
a U O C p}, and make it into a Set-indexed preorder MgA by taking its I-indexed families to be
all functions I — MgA, ordered by f < g iff "{(f=-9¢)2(?) | ¢ € I} is inhabited. Now we may state

Lemma 1.4. The inclusion functor MgA — P A has an indexed left adjoint which preserves finite
meets.

Proof. The left adjoint is induced by composition with meg: PIA — MeA, where meg(p,a) = (pT U
©,a™). In practice, we shall omit the subscript © when only one right pseudo-ideal is under
consideration, but we shall need it in 1.10 below. The verification that m is order-preserving uses
the element 7 in the definition: if x realizes f < g, then yx realizes mf < mg, since if applied to
an element ay of AT it yields a(zy), and if applied to an element of © it yields an element of ©.
The unit (p,a) < m(p,a) is realized by «, and the counit m(p,a) < (p,a) is realized, for all (p,a)
with © C p, by 5.

To verify that the left adjoint preserves finite meets, it suffices by [9], A4.3.1 to verify that Mg A
is an exponential ideal ‘up to isomorphism’ in P A, i.e. that m((p,a)=(¢,b)) < ((p,a)=(g,b)) is
uniformly realizable over all quadruples (a, b, p, ¢) with © C ¢. But the element 8’ in the definition
does exactly this; for if applied to ax, where z belongs to (p=-¢) and/or (a=-b), then it yields x,
and if applied to an element of © it yields an element of (A=0) C (p=-q). O

Corollary 1.5. MA is a tripos.

Proof. This is immediate from 1.4: each MA! is a Heyting prealgebra because it is reflective and
an exponential ideal in PyA’, and MA is complete and cocomplete as an indexed category because
it is reflective in Py A. O

It is also clear that the inclusion MA — P1 A and its left adjoint form a geometric morphism of
triposes, and hence induce a geometric morphism (in fact an inclusion) Set(MA) — Set(P;A). To
see where Set(MA) sits amongst the subtoposes of Set(P;A), we need to consider the relationship
between the latter and the ordinary realizability topos Set(PA). Between the triposes PA and Py A,
we have a string of five indexed adjoint functors (f1 4 fo 4 fs 4 fu - f5), induced respectively
by composition with (p = (p,2)), ((p,a) = p), (p = (p,p)), ((p,a) = a) and (p — (A, (A =
p))). (The adjunctions are all easy to verify except for the last: if A € (a = ¢), then B(BA)K €
((p,a) = (A, (A=4q))), and if u € ((p,a)= (A, (A=¢q))), then B(EK)x € (a=¢q).) Although the
leftmost adjoint f; does not preserve the top element, it does preserve binary meets, and hence
composition with it can be shown to induce a (full and faithful) functor Set(PA) — Set(P1A).
Moreover, the image of this functor is easily identified: it consists of those objects (A, ¢) for which
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ea(a, a’) is always empty, or equivalently those which admit morphisms to the nontrivial subterminal
object U = ({*},¢) where £(x,*) = (A, ). Thus it induces an equivalence between Eff(A) and
Set(P;A)/U, which identifies the functor induced by f; with the forgetful functor ¥y, and hence
those induced by f; and f3 are identified with U* and IIy respectively, i.e. they form an open
geometric inclusion u: Set(PA) — Set(P;A). In addition, f3 and f4 induce a connected geometric
morphism Set(P;A) — Set(PA), left adjoint to u in Top; and this morphism has a further left
adjoint v: Set(PA) — Set(P;A) induced by f; and f5, i.e. it is a local morphism in the sense of
[12].

The two subtoposes u and v correspond to local operators (that is, idempotent finite-meet-
preserving indexed monads) j and k on the tripos P;A, which are simply (the indexed functors
induced by) the composites f3fo and f5fs respectively; i.e. the maps (p,a) — (p,p) and (p,a) —
(A, A=-a). Similarly, the inclusion of Set(MA) corresponds to the operator m of 1.4, regarded as
a local operator on P;A. The composite jm sends (p,a) to (p™ U O, pT U O); since O is inhabited,
this is isomorphic to the top element (p,a) — (A, A) of the preorder Lop(P;1A) of local operators
on P;A. Hence the join of j and m is (isomorphic to) the top element; equivalently, Set(MA) is
disjoint from the open subtopos u. On the other hand, the inequality m(p, a) < k(p, a) is uniformly
realized by BKPy; so Set(MA) contains the subtopos v.

Thus we have proved

Proposition 1.6. Let © be a right pseudo-ideal in a Schonfinkel algebra A. Then Set(MgA) is
equivalent to a subtopos of Set(IP; A), disjoint from the open subtopos u but containing v; moreover,
it admits a local geometric morphism to Set(PA).

Proof. Ounly the local morphism to Set(PA) requires further comment. But the factorization of
v through Set(MgA) remains (an inclusion, and) left adjoint to the composite Set(MgA) —
Set(P;A) — Set(PA), so the latter is local. O

Up to this point, we have not used any particular property of the right pseudo-ideal © (other
than nonemptiness). However, the next result does depend on the choice of O:
Lemma 1.7. For a right pseudo-ideal © C A, the following are equivalent:
(i) There exists m € A such that 7\ =K whenever A € A", and 76 = K| whenever 6 € ©;

(ii) The implication ((p A (p*™ U O),p Aa™)=(p,a)) is uniformly realizable.

(iii) j and m are complementary elements of Lop(P1A).

(iv) Set(MgA) is the closed subtopos of Set(P;A) complementary to the open subtopos wu.
Moreover, if A is decisive, then these conditions hold for any right pseudo-ideal.

Proof. (i) = (ii): Given 7 as in (i), we claim that the element S(S(7wP3)(BSP2))P1 realizes the
implication in (ii). For if applied to an element of the form (x,ay) it yields y, and if applied to
(x,0) with 0 € © it yields z.

(ii) = (i): Suppose p uniformly realizes the implication in (ii). By considering p = {Kl},a = @,
we see that we must have p(KIl, ) =KI for any 6 € ©; and by considering p = A,a = {K} we see
that p(z,aK) =K for any x. So if we take

™ = B(p(D(KI))(7(KK))



216 P. Johnstone

then it has the property in (i), since if applied to ax it yields p(KIl, «K), and if applied to 6 € O it
yields p(KI, v(KK)§) — but v(KK)é € ©, since v € (A= (0=0)).
(i) « (iii): (ii) asserts that the meet of the local operators j and m is the bottom element of
Lop(P;1A); but we already know that their join is the top element, so this is equivalent to (iii).
(iii) < (iv) is immediate from the correspondence between local operators and subtoposes.
Finally, suppose A has a decider §. Then we may take 7 to be B(6(aK))(y(KK)), since if applied
to ax it yields §(aK)(aK) =K, and if applied to 6 € © it yields §(aK)(6’) =Kl for some 6’ € ©. O

We say © is decidable if the conditions of 1.7 hold. In the particular case when O is a right
ideal, we may replace (i) by a simpler condition: © is decidable iff we can decide between it and
{I}, i.e. there exists o satisfying ol =K and 06 =Kl for all § € ©. For, if we are given 7 as in 1.7(i),
then o = Bm(E(aK)) satisfies this condition; and given o, we may take m = BoP; (recall that in
this case we have az = (I, x)).

In particular, when A is decisive, every possible choice of © yields the same topos Set{MgA).
In general, an indecisive Schonfinkel algebra may not have any decidable right ideals, but they can
exist in particular cases; the following example is due to J. van QOosten.

Example 1.8. We consider D.S. Scott’s ‘graph model’ of the untyped lambda-calculus: this is a
total (and therefore indecisive) Schonfinkel algebra structure on the set PN of subsets of N, with
application defined by

EG={meN| (3n)(F, CG) and (m,n) € E}

where (—, —) is a suitable pairing function on N and F;, denotes the nth set in a suitable enumeration
of the finite subsets of N. If we choose F,, (as we may do) to be the set of exponents appearing in
the representation of n as a sum of distinct powers of 2, and (m,n) = 2™(2n+1)—1, then (0,0) =0
and Fy = @, so we have {0}G = {0} for all G, i.e. {{0}} is a singleton right ideal. Moreover, the
set which represents the | combinator of this algebra cannot contain 0, since {0} C | would imply
{0} = {0}@ C Il = &; and | # & since it is also easily verified that G = & for all G. So if we set

o={(m,1) | meKI}U{(m,2") |meKnecl}

then it satisfies the condition given after the proof of 1.7. (On the other hand, the right ideal {@}
is not decidable, since @ C | and hence Eg C El for any E — but Kl Z K.)

On the other hand, every Schonfinkel algebra has a decidable right pseudo-ideal:

Example 1.9. Given A, we take © to be {(Kl,z) | z € A}; we set &« = DK in this case, and take
B = S(SP,P2)l, 8/ = S(SP,P2)K and  to be the combinator obtained from the lambda-term

Az Ay Pry(S(K(DK)(E(Pyy))) (Ky)z .

It is straightforward to verify that these elements satisfy the conditions of 1.3. The element 7
required for 1.7(i) is simply the unpairing combinator P;.

When O is not decidable, Set(MgA) lies somewhere strictly between the non-open subtopos v
and its closure (the complement of u). For a given A, there may be many different possibilities,
but we can at least characterize the inclusions between them:
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Lemma 1.10. Let © and ® be right pseudo-ideals in a Schonfinkel algebra A, and write ay, s for
the ‘encoding elements’ associated with ©, ® respectively (and so on). The following conditions are
equivalent:

(i) There exists 7 € A such that 7(a12) = agz for all z, and 7 € (= ).
(ii) The implication (me(p,a)=ma(p,a)) is uniformly realizable.
(iii) Set(MgpA) < Set(MgA) as subtoposes of Set(P;A).

Proof. Clearly, any 7 as in (i) will realize the implication in (ii). The fact that a realizer for (ii)
has to have the properties in (i) may be seen by considering the cases when «a is a singleton, and
when p = @. The equivalence of (ii) and (iii) is immediate from the correspondence between
(isomorphism classes of) local operators on P; A and subtoposes of Set(P1A). O

We write © < @ if the equivalent conditions of 1.10 hold; clearly, this defines a preordering on
the right pseudo-ideals of A. They always hold when © is decidable; this is of course immediate
from condition (iii) of 1.10, but can also be established by observing that if 7 satisfies condition (i)
of 1.7 then S(Sw(a281))(Ky) satisfies condition (i) of 1.10, for any ¢ € ®.

As before, the condition of 1.10(i) may be replaced by a simpler one in the case when ® is
a right ideal; it is equivalent to the existence of an element v satisfying v(ajz) =1 for all  and
v e (©=®). If O is also a right ideal, we may further simplify this to vI=1 and v € (© = ).
Note that this latter condition holds in particular if ©® C @, since we may take v to be . (Thus the
set of all omnivorous and irreversible elements of A is a <-greatest right ideal.) In general, even if
we restrict our attention to right ideals, the preorder < can be quite nontrivial.

Example 1.11. Let A be the free (total) Schonfinkel algebra on a set X of generators. As we
observed earlier, the elements of X are all irreversible, so any nonempty subset S C X generates a
right ideal which we shall denote SA (though this is a slight abuse of notation: the elements of SA
are all multiple products A1z ...\, with z € S, not just those of the form z\). Clearly S C T
implies SA C T'A and hence SA < T'A; we claim that these are the only cases in which the relation
= holds between such ideals. To prove this, it suffices to show that if x ¢ T then {z}A £ TA.
Suppose we had an element v witnessing this inequality; then vl = | and vz is expressible as a word
beginning with a member of 7. But we have a homomorphism f: A — A sending x to | and all
other generators to themselves; so we have

l=f() = fh) = fW)l = f() f(z) = fve),

which is impossible since the right-hand side is a word beginning with a member of 7. Hence the
toposes Set(MgpA), for @ # S C X, are all distinct as subtoposes of Set(P;A).

Similarly, one may show that if x1, zo, x3, ... are distinct generators, then the elements z1, x1x2,
T1x2x3, ... generate a strictly descending sequence of right ideals ©1, 04,03, ... relative to the
preorder <. The intersection of these ideals is clearly empty; and it seems likely that the sequence
has no lower bound relative to = among the right ideals of A. Indeed, if there were such a lower
bound, we could take it to be the right ideal generated by an irreversible element of the subalgebra
Ag of closed terms. For if ® were any lower bound, we should have ‘witnesses’ v, to the inequality
J = I, for each n. Now pick ¢ € &, and suppose the variables occurring in ¢ are contained in
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{z1,...,z,}. Counsider the homomorphism f:A — A sending x,, to | if m < n, and to x;,—n,
otherwise; then f(t) is a closed term, and if it were reversible we could find a sequence of closed
terms ug, ..., ur such that f(t)us---ur = f(tur---ug) =1, and hence f(vy,(tug - ux)) = | for all
m >n. But tug -+ up € D, 80 vpyq(tug -« - ug) is a term beginning with z1xs ... 2,41, S0 its image
under f is a term beginning with z,. Hence f(¢) must be irreversible; but now f(v,,) witnesses the
inequality f(t)A < I, for each m.

Similar arguments apply to the algebra of B-equivalence classes of A-terms with free variables in
X, and to the free extensional Schonfinkel algebra on X (the quotient of the free Schonfinkel algebra
obtained by adding the equations S(S(KK)z)y = x, S(S(S(KS)z)y)z = S(Sz2)(Syz), K(zy) =
S(Kz)(Ky) and S(Kz)l = z, cf. [4]).

2 Functoriality of modified realizability

If, as in [2], we adopt the viewpoint that Set(MA) should always be a closed subtopos of Set(P1A),
then its functoriality is easily established. Given a quasi-surjective morphism ¢: A ¢ II, we know
that ¢ induces a geometric morphism of triposes PII — PA; and, since the formulae defining the
direct and inverse images of this morphism preserve inclusions between subsets, it is trivial to
verify that the same formulae applied componentwise induce a geometric morphism P{IT — Py A.
Moreover, the inverse image of this morphism preserves the nontrivial subterminal object U (at
least up to isomorphism); and so we have pullback squares of geometric morphisms

Set(P1I1) /U —— Set(P1A)/U and Set(MII) —— Set(MA)

Set<P1H> e Set<P1A> Set<P1H> e Set<]P>1A>

Here the top edge of the left-hand square is of course the geometric morphism of ordinary realiz-
ability toposes induced by t; from that of the right hand square, we deduce

Proposition 2.1. The assignment (A — Set(MA)) defines a 2-functor from Schong? to the 2-
category of toposes and geometric morphisms.

Proof. Only the 2-dimensional structure requires further comment. But it is easy to verify that
inequalities between morphisms of Schonfinkel algebras give rise to natural transformations between
inverse image functors Set(P;A) — Set(P11I), and these clearly restrict to inverse image functors
between the appropriate closed subtoposes. O

However, if we work with (not necessarily decidable) right (pseudo-)ideals, then the position
is more complicated — even in the case when ¢ is an identity morphism, as shown by 1.10. Let
us suppose given right pseudo-ideals ©,® of A, II respectively, and a quasi-surjective morphism
t: A ¢ II. We recall that such a morphism is computationally dense as defined in [6]; that is, there
exist a function s: II — A and an element o € II such that, for all y € IT and x € A, if yx’ is defined
whenever t(z, ') holds, then s(y)z is defined and, for all z such that t(s(y)z, z), we have oz =yz’
for some ' satisfying ¢(x, 2"). The right adjoint ¢t~ : PIT — PA of ¢ is then induced by composition
with the map

(g={zeA|(Vyel)(t(r,y)=0y €q)}) .
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In the case when ¢t is functional and surjective, the formula for ¢t~ may be simplified slightly. In
this case we may take o to be S(7t(P1))(7¢(P2)), where 7 is a witness for ¢, and hence set

t7(q) = {x € A| By € ¢)(Pri(x)(P2t(x)) =)} -

(However, we cannot simply take ¢~ (g) to be the set-theoretic inverse image t~1(q); the latter is
not order-preserving.)

As we already observed, both ¢, and ¢t~ preserve inclusions between subsets, and so can be
applied ‘componentwise’ to yield a geometric morphism of triposes P11 — P; A; we need to consider
when this restricts to a geometric morphism Mgll — MgA. A necessary and sufficient condition
for this is that the right adjoint ¢t~ should map MgII into MgA, in the ‘up-to-isomorphism’ sense

that
(me(t™(q),t™(b))=(t"(q),t™ (b))

is uniformly realizable whenever ® C ¢; for if this holds then we obtain a left adjoint for the
restriction of ¢t~ by restricting the composite mgt, to MgA.

Evidently, a sufficient condition for the displayed implication above to be uniformly realizable
is the existence of an element v € A satisfying v(ax) =z for all z (where « is the ‘coding’ element
associated with ©) and v € (©=¢"(®)). (We cannot assert that this condition is necessary as well
as sufficient, since we cannot in general reduce to the case when ¢~ (b) is a singleton.) Let us say
that t is (©, ®)-compatible if such an element v exists; then we have shown

Lemma 2.2. If t: A & ITis (quasi-surjective and) (0, ®)-compatible, then the geometric morphism
P,II — Py A induced by ¢ restricts to a geometric morphism MgIl — MgA. O

It is easy to see that if © is decidable then any quasi-surjective ¢t: A & II is (O, ®) compatible
for any ®: we take the element v to be S(S73)(Ky), where 7 is as in 1.7(i), § is the ‘decoding
element’ for © as in 1.3(a), and ¢ is any element of ¢t~ (®) (note that ¢t~, being a right adjoint,
preserves nonemptiness). Again, if © and ® are right pseudo-ideals in the same algebra A, then
the identity map A — A is (O, ®)-compatible iff the relation © < ® holds: for in this case we may
take (15)~ simply to be the identity map, and so if we have a witness 7 for © < @, as in 1.10(i),
then BA7 will witness the compatibility, where 3 is the ‘decoding element’ for ®. (The converse is
immediate from 2.2 and 1.10(iii).)

Proposition 2.3. The assignment (A,0) — Set(MgA) defines a pseudofunctor, contravariant
on 1-cells, from the 2-category of Schoénfinkel algebras equipped with a right pseudo-ideal, quasi-
surjective morphisms compatible with the chosen right pseudo-ideals and inequalities between them
to the 2-category of toposes and geometric morphisms.

Proof. Once again, only the assertion about 2-cells requires further comment. But it may be
established in exactly the same way as in 2.1 O

Of course, 2.3 should not be the end of the story. Two questions immediately arise: (1) does
every geometric morphism Set(MgIl) — Set(MgA) derive from a morphism of triposes MgIl —
MgA? and (2) does every such morphism of triposes derive from a morphism of Schonfinkel algebras
A 3 TI?7 With regard to the second, we note that if f: MgIl — MgA is a geometric morphism of
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triposes, we may assume it is induced by composition by a pair of functions (fy, f*) between MgII
and MgA; and then by forming the composite

fr T2
A MgA Mgll —— PII

where the first factor sends A to (A, {A}), we obtain an entire relation A & II, which would be the
morphism inducing f if it were indeed induced by a morphism of Schénfinkel algebras. However,
even proving that this relation is a morphism of Schonfinkel algebras seems less than straightforward.
In connection with question (1), we note that the proof of the corresponding result for ordinary
realizability relies on the fact, proved in [10], that the inverse image of any geometric morphism
between ordinary realizability toposes restricts to a functor between categories of assemblies (that
is, =—-separated objects), and this in turn depends on the fact that every object in an ordinary
realizability topos is a quotient of an assembly. Since the corresponding result fails for modified
realizability toposes (see [15]), it seems unlikely that a similar approach will work in this case.

3 ‘Closing Off’ a modified realizability topos

There is a construction due to van Qosten [16] which, given a Schénfinkel algebra A and a partial
function f: A — A, produces a new Schonfinkel algebra A[f] (with the same underlying set, but a
different notion of application which we denote by /) in which f becomes trackable in the sense
that there exists ¢ € A satisfying ¢ -/ x = f(z) for all . Moreover, the identity function on A
is a surjective functional morphism A & A[f], and is universal among quasi-surjective morphisms
for which (the image of) f becomes trackable, in a suitable sense. For the details, see [17], 1.7.5.
(To distinguish the combinators of A[f] from those of A, we shall attach a superscript (—)7 to the
former; for example, K/ may be taken to be 7(BTK), where 7 is a witness for the fact that the
identity is a morphism A ¢ A[f].

As we saw in 1.7, for a right pseudo-ideal © the modified realizability topos Set(MgA) is closed
in Set(P;A) iff the partial function kg sending all of A* to K and all of © to Kl is trackable. It is
therefore of interest, for an arbitrary ©, to consider the effect of adjoining this particular function
to our class of trackable functions. Of course, if we do this, © will not be a right ideal in A[f] even
if it was one in A, since the application in A[f] is different from that in A; but it is still a right
pseudo-ideal:

Lemma 3.1. Let © be a right pseudo-ideal in a Schonfinkel algebra A. Then O is also a right
pseudo-ideal in A[f], for any partial function f: A — A; and the identity function is (©,0)-
compatible as a morphism A — A[f]. Moreover, if the function kg is trackable in A[f], then
Set(MgA[f]) is a closed subtopos of Set(P1A[f]).

Proof. The notion of right pseudo-ideal was defined in terms of the trackability of certain partial
maps A — A. But any partial map which is trackable in A remains trackable in A[f], so the first
assertion is immediate. For the second, we observe that we may again identify (1)~ with the
identity function, so that the decoding element 5 for © (in the sense of A) witnesses the (0, 0)-
compatibility of 14. The third assertion is immediate from the discussion above.

O
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Proposition 3.2. Let © be a right ideal in a Schénfinkel algebra A. Then there is a pullback
square of toposes and geometric inclusions

Set(MgAlko]) —= Set(MgA)

Set(P1Alke]) —— Set(P1A)
in which the left vertical arrow is a closed inclusion.

Proof. The commutativity of the square, and the fact that the left vertical arrow is closed, both
follow from 3.1; and the latter implies that the square is a pullback, since the pullback of Set(MgA)
along the bottom inclusion must be disjoint from the nontrivial open subtopos of Set(P;A[keg]). O

It is not hard to see that, for two right pseudo-ideals ® and ®, kg is trackable in Alkg] iff the
relation © < ® of 1.10 holds. Thus we obtain

Corollary 3.3. The assignments © — Set(P;A[keo]) and © — Set(MgA[keo]) are contravariant
functors from the preordered set of right pseudo-ideals of A to the lattice of subtoposes of Set(P1A).

Proof. If ©® < ®, then the identity morphism A — A[kg] factors through A — Alkg], by the
universal property of the latter, so Set(P1Alks]) < Set(P1Alke]) as subtoposes of Set(P1A). The
second assertion follows from the first and 1.10, together with 3.2. O

It might be tempting to conjecture that Set(IP; A[ke]) is the largest subtopos of Set(IP; A) which
Set(MgA) intersects in a closed subtopos, but this is not the case: it is not clear in general whether
such a largest subtopos exists, but if it did it would contain the whole of the open subtopos Set(PA)
of Set(P;A), whereas Set(P;A[ko]) intersects this in the proper subtopos Set(PA[kg]). It seems
very probable that Set(P;A[ko]) does have some universal property, but I have not been able to
find a precise formulation of it.
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