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paranormed spaces of double sequences

Serkan Demiriz1 and Osman Duyar2
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Abstract

In this paper, we investigate some double paranormed sequence spaces which are domain of
the double generalized Cesàro matrix Rq in some double sequence spaces. We also determined
of α−dual of Ru(t) which is the space of double sequences whose Rq−transforms are bounded
and examined some linear and topological properties of these sequence spaces.
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1 Introduction

We denote the sets of all real or complex valued double sequences by Ω. Consider a sequence
x = (xmn) ∈ Ω. If for every ε > 0 there exists n0 = n0(ε) ∈ N and l ∈ C such that |xmn− l| < ε for
all m,n > n0 then we call that the double sequence x is convergent in the Pringsheim’s sense to
the limit l and write p− limxmn = l. By Cp, we denote the space of all convergent double sequences
in the Pringsheim’s sense. A sequence in the space Cp is said to be regularly convergent if it is a
single convergent sequence with respect to each index and denote the set of all such sequences by
Cr.

Throughout the paper t = (tmn) will denote a double sequence of strictly positive numbers.
The following paranormed sequence space were examined by Gökhan and Çolak [3, 4, 5]

Mu(t) :=

{
(xmn) ∈ Ω : sup

m,n∈N
|xmn|tmn <∞

}
,

Cp(t) :=

{
(xmn) ∈ Ω : ∃l ∈ C 3 p− lim

m,n→∞
|xmn − l|tmn = 0

}
,

C0p(t) :=

{
(xmn) ∈ Ω : p− lim

m,n→∞
|xmn|tmn = 0

}
,

Cbp(t) := Cp(t) ∩Mu(t) and C0bp(t) := C0p(t) ∩Mu(t).

When all terms are of t = (tmn) are constant and all equal to positive number t we have the
spacesMu, Cp, C0p, Cbp and C0bp of double sequences of are bounded, convergent in the Pringsheim’s
sense, null in the Pringsheim’s sense, both bounded and convergent in the Pringsheim’s sense and
both bounded and null in the Pringsheim’s sense, respectively. Móricz [1] proved that Cbp, Cbp0, Cr
and Cr0 are Banach spaces with the norm ‖.‖∞ = supm,n∈N |xmn|.
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Let A denote a four dimensional summability method that maps the complex double sequences
x into the double sequence Ax where the mn-th term to Ax as follows:

(Ax)m,n =

∞∑
k=0

∞∑
l=0

amnklxkl.

The v−summability domain λ
(v)
A of a four dimensional infinite matrix A = (amnkl) in a space λ

of a double sequences is defined by

λ
(v)
A =

{
x = (xkl) ∈ Ω : Ax =

(
v −

∑
k,l

amnklxkl

)
m,n∈N

exists and is in λ

}
. (1)

Now, we can mention certain studies related to the double sequence spaces. In her PhD thesis,
Zeltser [2] has essentially studied both the theory of topological double sequence spaces and the
theory of summability of double sequences. Mursaleen and Edely [6] have introduced the statistical
convergence and statistical Cauchy for double sequences, and gave the relation between statistically
convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [7] and Mursaleen
and Edely [8] have defined the almost strong regularity of matrices for double sequences and applied
these matrices to establish a core theorem and introduced the M−core for double sequences and
determined those four dimensional matrices transforming every bounded double sequence x = (xjk)
into one whose core is a subset of the M−core of x. Altay and Başar [9] have defined the spaces
BS,BS(t), CSbp, CSr and BV of double series whose sequence of partial sums are in the spaces
Mu,Mu(t), Cp, Cbp, Cr and Lu, respectively, and also examined some properties of those sequence
spaces and determined the alpha-duals of the spaces BS,BV, CSbp and the β(v)−duals of the spaces
CSbp and CSr of double series. More recently, Başar and Sever [10] have introduced the Banach
space Lq of double sequences corresponding to the well-known space `q of absolutely q−summable
single sequences and examine some properties of the space Lq. Demiriz and Duyar [12] have defined
the spacesMu(∆), Cp(∆), C0p(∆), Cr(∆) and Lq(∆) of double sequences whose difference transforms
are bounded , convergent in the Pringsheim’s sense, null in the Pringsheim’s sense, both conver-
gent in the Pringsheim’s sense and bounded, regularly convergent and absolutely q−summable,
respectivel. Also they have examined some inclusion relations related to these sequence spaces
and determined the alpha-dual of the space Mu(∆) and the β(v)−dual of the space Cη(∆) and
characterized the some matrix classes.

Let (qk), (sl) be sequences of non-negative numbers which are not all zero and

Qm =

m∑
k=0

qk; q0 > 0 and Sn =

n∑
l=0

sl; s0 > 0. (2)

Then the four-dimensional generalized Cesàro or Riesz matrix Rq = (rqmnkl) is defined by

rqmnkl :=


qksl
QmSn

, 0 ≤ k ≤ m, 0 ≤ l ≤ n,

0 , otherwise
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for all m,n, k, l ∈ N [15]. In the present paper, we assume that the terms of the double sequences
x = (xmn) and y = (ymn) are connected with the relation

ymn = (Rqx)mn =
1

QmSn

m∑
k=0

n∑
l=0

qkslxkl (3)

for all m,n ∈ N which is called the Riesz transform of x = (xmn). If we take qk = tl = 1 for all
k ∈ {0, 1, ...m} and l ∈ {0, 1, ...n} then we obtain the four-dimensional Cesàro matrix C = (cmnkl)
of order one is defined by

cmnkl :=


1

(m+ 1)(n+ 1)
, 0 ≤ k ≤ m, 0 ≤ l ≤ n,

0 , otherwise

for all m,n, k, l ∈ N. The Cesàro transform of a double sequence x = (xmn) is defined by

(Cx)mn =
1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij (4)

for all m,n ∈ N.
Mursaleen and Başar [11] have defined the spaces M̃u, C̃p, C̃0p, C̃bp, C̃r and L̃q of double

sequences whose Cesàro mean transforms are bounded , convergent in the Pringsheim’s sense,
null in the Pringsheim’s sense, both convergent in the Pringsheim’s sense and bounded, regularly
convergent and Cesàro absolutely q−summable, respectively, that is,

M̃u :=

{
(xij) ∈ Ω : sup

m,n∈N

1

(m+ 1)(n+ 1)

∣∣∣∣ m∑
i=0

n∑
j=0

xij

∣∣∣∣ <∞},
C̃p :=

{
(xij) ∈ Ω : ∃ l ∈ C 3 p− lim

m,n→∞

1

(m+ 1)(n+ 1)

∣∣∣∣ m∑
i=0

n∑
j=0

xij − l
∣∣∣∣ = 0

}
,

C̃0p :=

{
(xij) ∈ Ω : p− lim

m,n→∞

1

(m+ 1)(n+ 1)

∣∣∣∣ m∑
i=0

n∑
j=0

xij

∣∣∣∣ = 0

}
,

L̃u :=

{
(xij) ∈ Ω :

∑
m,n

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣ <∞}.
Furthermore, they have studied some topological properties of these spaces and characterized

some matrix classes.
Recently, Demiriz and Duyar [13] have defined and studied the double paranormed Cesàro
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sequence spaces M̃u(t), C̃p(t), C̃0p(t) and L̃u(t), that is,

M̃u(t) :=

{
(xmn) ∈ Ω : sup

m,n∈N

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

<∞
}
,

C̃p(t) :=

{
(xmn) ∈ Ω : ∃ l ∈ C 3 p− lim

m,n→∞

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij − l
∣∣∣∣tmn

= 0

}
,

C̃0p(t) :=

{
(xmn) ∈ Ω : p− lim

m,n→∞

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

= 0

}
,

L̃u(t) :=

{
(xij) ∈ Ω :

∑
m,n

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

<∞
}
.

and the spaces C̃bp(t) and C̃r(t) the sets of all the paranormed Cesàro convergent and bounded,
and the paranormed Cesàro regularly convergent double sequences. When all terms of (tmn) are

constant and all are equal to t > 0, then we obtain M̃u(t) = M̃u, L̃u(t) = L̃q and when all terms
of (tmn), excluding the first finite number of m and n, are constant and all are equal to t > 0, then

we obtain C̃p(t) = C̃p and C̃0p(t) = C̃0p, see [11]. One can easily see that the spaces M̃u(t), C̃p(t),
C̃0p(t), C̃r(t), C̃bp(t) and L̃u(t) are the domain of the double Cesàro matrix C in the spaces Mu(t),
Cp(t), C0p(t), Cr(t), Cbp(t) and Lu(t), respectively.

2 Some new paranormed spaces of double sequences

In the present section, we introduce the new double paranormed Riesz sequence spaces Ru(t),
Rp(t), R0p(t), RL(t) and we give some topological and algebraical properties of these spaces. We
define the new double paranormed Riesz sequence spaces Ru(t), Rp(t), R0p(t), RL(t) as following,

Ru(t) :=

{
(xmn) ∈ Ω : sup

m,n∈N

∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslxkl

∣∣∣∣tmn

<∞
}
,

Rp(t) :=

{
(xmn) ∈ Ω : ∃ l ∈ C 3 p− lim

m,n→∞

∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslxkl − l
∣∣∣∣tmn

= 0

}
,

R0p(t) :=

{
(xmn) ∈ Ω : p− lim

m,n→∞

∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslxkl

∣∣∣∣tmn

= 0

}
,

RL(t) :=

{
(xmn) ∈ Ω :

∑
m,n

∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslxkl

∣∣∣∣tmn

<∞
}
.

Also, by Rbp(t) and Rr(t), we denote the sets of all the paranormed Riesz convergent and bounded,
and the paranormed Riesz regularly convergent double sequences. Actually we can redefine the new
sequence spaces Ru(t), Rp(t), R0p(t), RL(t), Rbp(t) and Rr(t) are the domain of the double Riesz
matrix Rq in the spacesMu(t), Cp(t), C0p(t), Lu(t), Cbp(t) and Cr(t), respectively. In addition, when
all terms of (tmn) are constant and all are equal to t > 0, then we obtainRu(t) = Rqt(Mu),RL(t) =
Rqt(Ls) and when all terms of (tmn), excluding the first finite number of m and n, are constant
and all are equal to t > 0, then we obtain Rp(t) = Rqt(Cp) and R0p(t) = Rqt(C0p), see [14].
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Theorem 2.1. The space Ru(t) is a linear space if and only if H = supm,n tmn <∞.

Proof. First we deal with the sufficiency. Take x, y ∈ Ru(t) firstly, and suppose that H < ∞
and M = max{1, H}. Then, there exist some Kx and Ky such that∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslxkl

∣∣∣∣tmn

≤ KM
x and

∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslykl

∣∣∣∣tmn

≤ KM
y

for all m,n ∈ N. Since tmn/M < 1 for all m,n ∈ N, one can see that∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qksl(xkl + ykl)

∣∣∣∣tmn/M

≤
∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslxkl

∣∣∣∣tmn/M

+

∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslykl

∣∣∣∣tmn/M

≤ Kx +Ky.

Hence we have that x+ y ∈ Ru(t).
Secondly, take x ∈ Ru(t) and λ ∈ C. Then since the inequality

|λ|tmn ≤ max{1, |λ|M}

holds for all m,n ∈ N, it is easily obtain that∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslλxkl

∣∣∣∣tmn

= |λ|tmn

∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslxkl

∣∣∣∣tmn

≤ max{1, |λ|M}
∣∣∣∣ 1

QmSn

m∑
k=0

n∑
l=0

qkslxkl

∣∣∣∣tmn

which is show that λx ∈ Ru(t).
Now consider the necessity. Suppose that Ru(t) be a linear space but H = supm,n tmn = ∞.

Then, there exist the sequences (m(i)) and (n(j)), one of them is strictly increasing and the other
one is non-decreasing, such that

tm(i),n(j) > i+ j (5)

for all positive integers i, j. Now, we consider the sequence

x =

∞∑
i=0

∞∑
j=0

1

2
bm(i)n(j)

where bmn = (bmnij )ij defined by
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bmnij =



QmSn
qmsn

, i = m, j = n,

− QmSn
qm+1sn

, i = m+ 1, j = n,

− QmSn
qmsn+1

, i = m, j = n+ 1,

QmSn
qm+1sn+1

, i = m+ 1, j = n+ 1,

0, otherwise

(6)

for all m,n ∈ N. Then, we have the sequence y = (ymn) where

ymn =
1

QmSn

m∑
i=0

n∑
j=0

qisjxij =


1

2
, m = m(i), n = n(j),

0, otherwise

for all m,n ∈ N. Therefore, it follows by (5) that

sup
m,n∈N

|ymn|tmn = sup
i,j∈N

|ym(i),n(j)|tm(i),n(j)

= sup
i,j∈N

2−tm(i),n(j)

≤ sup
i,j∈N

2−i−j ≤ 1

2
.

Hence, x ∈ Ru(t) but it is clearly that 4x /∈ Ru(t) which contradicts the fact that Ru(t) is a linear
space. Therefore, we have that H <∞.

Theorem 2.2. Rbp(t) and RL(t) are linear spaces if and only if H = supm,n tmn <∞.

Proof. The proof of this Theorem is similar to Theorem 2.1. So, we omit the detail.

Theorem 2.3. The space Rp(t) is a linear space if and only if T = limN→∞ supm,n≥N tmn <∞.

Proof. Take x, y ∈ Rp(t) and suppose that T <∞. Then there exists some complex numbers
L1, L2 such that

p− lim
m,n→∞

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij − L1

∣∣∣∣tmn

= 0

and

p− lim
m,n→∞

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjyij − L2

∣∣∣∣tmn

= 0
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also there exists a τ > 0 such that tmn < τ for all sufficiently large m,n. Then, consider the
following inequality∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisj(xij + yij)− (L1 + L2)

∣∣∣∣tmn/τ

≤
∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij − L1

∣∣∣∣tmn/τ

+

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjyij − L2

∣∣∣∣tmn/τ

we have that x+ y ∈ Rp(t). Furthermore, let γ ∈ C and x ∈ Rp(t). Then, by the inequality∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjγxij − γL1

∣∣∣∣tmn

≤ max{1, |γ|τ}
∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij − L1

∣∣∣∣tmn

we obtain γx ∈ Rp(t).
Conversely, let Rp(t) be a linear space and suppose that T = ∞. Then, there exists a strictly

increasing sequence (N(i, j)) of positive integers such that tm(i),n(j) > i + j for all i, j ∈ N ,
where m(i), n(j) ≥ N(i, j) > 1. So, we consider the sequence

x =

∞∑
i=0

∞∑
j=0

1

2
bm(i)n(j).

Then, it is clear that x = (xmn) ∈ Rp(t) but since

|ym(i),n(j)| =
∣∣∣∣ 1

Qm(i)+1Sn(j)+1

m(i)∑
i=0

n(j)∑
j=0

4qisjxij

∣∣∣∣tm(i),n(j)

= 2tm(i),n(j) > 2i+j

4x /∈ Rp(t). Hence T must be finite.

Theorem 2.4. The space R0p(t) is a linear space if and only if T = limN→∞ supm,n≥N tmn <∞.

Proof. The proof of this Theorem is similar to Theorem 2.3. So, we omit the detail.

Theorem 2.5. Let H = supm,n tmn and M = max{1, H}. Then, the space Ru(t) is a complete
paranormed space with g defined by

g(x) = sup
m,n∈N

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn/M

if and only if h = infm,n tmn > 0.

Proof. Suppose that Ru(t) be a paranormed space with the paranorm g but h = 0. Consider
the sequence (xl) = (xij) ⊂ Ru(t) (l ∈ N) defined by xij = 1 for all i, j ∈ N and the sequence
γ = (γl) = (1/(1 + l)) of scalars such that

γl → 0 as l→∞ and
1

QmSn

m∑
i=0

n∑
j=0

qisjxij = 1
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for all m,n ∈ N. Since

g(γlx
l) = sup

m,n∈N

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjγlx
l
ij

∣∣∣∣tmn/M

= sup |γl|tmn/M = 1,

we obtain a contradiction with g(γlx
l)→ 0 as l→∞. Therefore, h > 0.

Conversely, let h > 0. It is trivial that g(θ) = 0 and g(−x) = g(x) for all x ∈ Ru(t). Also, it is
clear that g(x+ y) ≤ g(x) + g(y) for all x, y ∈ Ru(t).

Moreover, let (xl) be any sequence in Ru(t) such that g(xl − x)→ 0 (l →∞) and (γl) also be
any sequence of scalars such that γl → γ (l → ∞). Then, there exists a positive real number K
such that |γl| ≤ K for all l ∈ N. Thus, we have

g(γlx
l − γx) = sup

m,n∈N

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisj(γlx
l
ij − γxij)

∣∣∣∣tmn/M

≤ sup
m,n∈N

(
|γl|
∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjx
l
ij −

1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣)tmn/M

+ sup
m,n∈N

(
|γl − γ|

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisj

∣∣∣∣)tmn/M

≤ Kg(xl − x) + |γl − γ|tmn/Mg(x).

Therefore, we obtain that g(γlx
l−γx)→ 0 as l→∞. So, we show that (Ru(t), g) is a paranormed

space.
For the proof of completeness of the space (Ru(t), g) suppose that (xr) be any Cauchy sequence

in the space Ru(t). Then, for a given ε > 0, there exists a positive integer N = N(ε) such that

g(xr − xs) = sup
m,n∈N

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisj(x
r
ij − xsij)

∣∣∣∣tmn/M

< ε

for all r, s > N . So, we have that

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjx
r
ij −

1

QmSn

m∑
i=0

n∑
j=0

qisjx
s
ij

∣∣∣∣tmn/M

≤ sup

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjx
r
ij −

1

QmSn

m∑
i=0

n∑
j=0

qisjx
s
ij

∣∣∣∣tmn/M

< ε,

which shows that (
1

QmSn

m∑
i=0

n∑
j=0

qisjx
r
ij

)
r∈N

is a Cauchy sequence of complex numbers. Then, this sequence converges from completeness of C,
say ∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjx
r
ij −

1

QmSn

m∑
i=0

n∑
j=0

qisjx
s
ij

∣∣∣∣tmn/M

→ 0 as r →∞.
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We now show that x ∈ Ru(t). Since (xr) is a Cauchy sequence in the space M̃u(t), there exists a
positive numbers K such that g(xr) < K. Also, if we consider the following inequality

g(x) = sup
m,n∈N

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn/M

≤ g(xr) + sup
m,n∈N

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij −
1

QmSn

m∑
i=0

n∑
j=0

qisjx
r
ij

∣∣∣∣tmn/M

then we have that by passing to limit as r →∞,

g(x) ≤ K + ε

which leads us to the fact that x ∈ Ru(t).

Theorem 2.6. Let N1 = min{n0 : supm,n≥n0
|ymn|tmn <∞}, N2 = min{n0 : supm,n≥n0

tmn <∞}
and N = max{N1, N2}. Then, the spaces Rp(t) and R0p(t) is a complete paranormed spaces with
the paranorm g defined by

g(x) = lim
N→∞

sup
m,n≥N

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn/M

if and only if µ > 0, where µ = limN→∞ infm,n≥N tmn and M = max{1, supm,n≥N tmn}.
Proof. The proof of this Theorem is similar to the proof of Theorem 2.5. So, we omit the

detail.

Theorem 2.7. The space RL(t) is a complete paranormed space with the paranorm g defined by

g(x) =

[ ∞∑
m,n=1

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn
]1/M

where M = max{1, H} and H = supm,n tmn <∞.

Proof. It is clear that g(θ) = 0, g(−x) = g(x). Let x, y ∈ RL(t), then we have that

g(x) ≤
[ ∞∑
m,n=1

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn
]1/M

+

[ ∞∑
m,n=1

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjyij

∣∣∣∣tmn
]1/M

≤ g(x) + g(y).

Furthermore, for any λ ∈ C, we have g(λx) ≤ max{1, |λ|}g(x). Hence, (λ, x) → λx is continuous
at λ = 0, x = θ, and that the function x→ λx is continuous at x = θ whenever λ is a fixed scalar.
If x ∈ RL(t) is fixed, and ε > 0, we can choose M,N > 1 such that

R(x) =

M∑
m=1

∞∑
n=N+1

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn

+

∞∑
m=M+1

N∑
n=1

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn

+

∞∑
m=M+1

∞∑
n=N+1

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn

< ε/2.
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Therefore, R(λx) < ε/2 since |λ| < 1 and δ > 0, so that |λ| < δ gives

M,N∑
m,n=1

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjλxij

∣∣∣∣tmn

< ε/2.

Thus, |λ| < min{1, δ} implies that g(λx) < ε. Hence, the function λ → λx is continuous at
λ = 0. So, RL(t) is a paranormed space.

Now, we show that the space (RL(t), g) is complete. Let (xr) be any Cauchy sequence in the
space RL(t). Then, for a given ε > 0, there exists a positive integer N = N(ε) such that

g(xr − xs) =

[ ∞∑
m,n=1

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisj(x
r
ij − xsij)

∣∣∣∣tmn
]1/M

(7)

=

[ ∞∑
m,n=1

|yrmn − ysmn|tmn

]1/M
< ε

for all r, s > N . Thus, we have that

|yrmn − ysmn| ≤ g(xr − xs) < ε

which show that

yr = (yrmn)r∈N =

(
1

QmSn

m∑
i=0

n∑
j=0

qisjx
r
ij

)
r∈N

is a Cauchy sequence of complex numbers for every fixed m,n ∈ N. Then, this sequence converges
from completeness of C, say (yrmn) is convergent to ymn, namely,

lim
r→∞

yrmn = ymn (8)

for all m,n ∈ N. So we can define the sequence y = (ymn). Furthermore, one can see by (7) that

∞∑
m=0

∞∑
n=0

|yrmn − ysmn|tmn < εM

for r, s > N . If we pass to the limit as s→∞, then we have that

∞∑
m=0

∞∑
n=0

|yrmn − ymn|tmn < εM

for r > N by (8). Thus, the last inequality lead us to the fact that g(xr − x) ≤ ε for r > N , which
gives the required result.

Theorem 2.8. The double sequence spaces Ru(t), Rp(t),, R0p(t), RL(t), Rbp(t) and Rr(t) are
linearly isomorphic to the spaces Mu(t), Cp(t), C0p(t), Lu(t), Cbp(t) and Cr(t), respectively, where
0 < tmn ≤ H.
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Proof. Let consider the space Ru(t). We can define a transformation T : Ru(t) →Mu(t) by
the equality (3). It is clear that T is linear. Further, it is obvious that T is injective since x = θ
whenever Tx = θ .

Now, suppose that y = (ymn) ∈Mu(t) and define the sequence x = (xmn) by

xmn =
1

qmsn

{
QmSnymn −Qm−1Snym−1,n −QmSn−1ym,n−1 +Qm−1Sn−1ym−1,n−1

}
for all m,n ∈ N. Then, we have that

g(x) = sup
m,n∈N

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn/M

= sup
m,n∈N

|ymn|tmn/M <∞.

Hence, the last inequality show that x ∈ Ru(t) and so T is surjective and is paranorm preserving.
Thus, the spaces Ru(t) and Mu(t) are are linearly isomorphic.

Theorem 2.9. The α−dual of the space Ru(t) for every t = (tmn) is the set M∞2 (t) which is
defined by

M∞2 (t) =
⋂
N>1

{
a = (amn) ∈ Ω :

∑
k,l

|amn|N1/tmn <∞
}
.

Proof. Suppose that a = (amn) ∈M∞2 (t) and x = (xmn) ∈ Ru(t). Then, there exists a positive
integer N such that

|ymn|tmn =

∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn

≤ max
{

1, sup
m,n∈N

|ymn|tmn
}
< N

for all m,n ∈ N. Thus we have the following inequality∑
m,n

|amnxmn| =
∑
m,n

∣∣∣∣amn 1

qmsn

m∑
k=m−1

n∑
l=n−1

(−1)m+n−(k+l)QkSlykl

∣∣∣∣
≤

∑
m,n

|amn|
1

qmsn
N1/tmn

∣∣∣∣ m∑
k=m−1

n∑
l=n−1

(−1)m+n−(k+l)QkSl

∣∣∣∣
=

∑
m,n

|amn|N1/tmn.

Hence we have that a ∈ {Ru(t)}α, i.e., M∞2 (t) ⊂ {Ru(t)}α.
Otherwise, a ∈ {Ru(t)}α but suppose that a /∈ M∞2 (t). Then, there exists a positive integer

N > 1 such that
∑
m,n |amn|N1/tmn =∞. Now we consider the x = (xmn) defined by

xmn = N1/tmnsgnamn

for all m,n ∈ N. Then, one can easily show that x ∈ Ru(t), but we have a /∈ {Ru(t)}α since∑
m,n

|amnxmn| =
∑
m,n

|amn|N1/tmn =∞.

This contradicts show that a ∈M∞2 (t), i.e, {Ru(t)}α ⊂M∞2 (t).
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Theorem 2.10. (i) Ru(t) ⊂ Rqt(Mu) if and only if h = inf tmn > 0.
(ii) Rqt(Mu) ⊂ Ru(t) if and only if H = sup tmn <∞.
(iii) Ru(t) = Rqt(Mu) if and only if 0 < h ≤ H <∞.

Proof. (i) Let Ru(t) ⊂ Rqt(Mu) but h = 0. Then, there exist the sequences (m(i)) and (n(j)),
one of them is strictly increasing and the other one is non-decreasing, such that

tm(i),n(j) <
1

i+ 1
(9)

for all positive integers i, j. Let us define the sequence

x =

∞∑
i=0

∞∑
j=0

ibminj .

Then, we have the sequence y = (ymn) where

ymn =
1

QmSn

m∑
i=0

n∑
j=0

qisjxij =

 i, m = m(i), n = n(j),

0, otherwise

for all m,n ∈ N. Hence, we obtain

sup
m,n∈N

|ymn|tmn = sup
i,j∈N

|ym(i),n(j)|tm(i),n(j)

= sup
i,j∈N

itm(i),n(j)

≤ sup
i,j∈N

i
1

1+i ≤ 2.

Therefore x ∈ Ru(t) but it is clearly that x /∈ Rqt(Mu) which is a contradiction. Hence, h > 0.
Conversely, let x ∈ Ru(t) and h > 0. Then, there exists a positive real number Kx such that∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣tmn

≤ Kx,

for all m,n ∈ N. So, we have that∣∣∣∣ 1

QmSn

m∑
i=0

n∑
j=0

qisjxij

∣∣∣∣ ≤ K1/tmn
x ≤ max{1,K1/t

x },

which leads us to the consequence that x ∈ Rqt(Mu).
(ii) Suppose that Rqt(Mu) ⊂ Ru(t) but H = ∞. Then there exist the sequences (m(i)) and

(n(j)), one of them is strictly increasing and the other one is nondecreasing, such that

tm(i),n(j) > i+ j
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for all i, j ∈ N. In this case if we consider the sequence x =
∑∞
i=0

∑∞
j=0 2bminj for which

ymn =
1

QmSn

m∑
i=0

n∑
j=0

qisjxij =

 2, m = m(i), n = n(j),

0, otherwise

for all m,n ∈ N. Then, we obtain that x ∈ Rqt(Mu) but x /∈ Ru(t) since |ymn|tmn = 2tm(i),n(j) >
2i+j , which is a contradiction, i.e., H < 0 .

Conversely, let x ∈ Rqt(Mu) and H < 0. Then, there exists a positive real number Kx such
that |ymn| ≤ Kx for all m,n ∈ N. Hence we have that

|ymn|tmn ≤ Ktmn
x ≤ max{1,KH

x }.

Therefore, x ∈ Ru(t).
(iii) Follows from (i) and (ii).
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