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Abstract

The main purpose of this paper is to study the existence of solutions for the nonlinear frac-

tional partial integrodi�erential equations with Dirichlet boundary condition. Under suitable

assumption the results are established by using the Leray-Schauder �xed point theorem and

Arzela-Ascoli theorem. An example is provided to illustrate the main result.
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1 Introduction

Fractional calculus is the �eld of mathematical analysis which deals with the investigation and
applications of integrals and derivatives of arbitrary order. Now fractional calculus is undergoing
rapid developments with more applications in the real world. Numerous applications of fractional
calculus can be found in �uid dynamics, stochastic dynamical systems, plasma physics, nonlinear
control theory, image processing, nonlinear biological systems and quantum mechanics, For more
details on history and applications of fractional calculus see [22], [27] and [13] references therein.

Fractional derivatives provide more accurate models of real world problems than integer order
derivatives. They also give an excellent instrument for the description of memory and proper-
ties of various materials and processes. This is the main advantage of fractional derivatives in
comparison with classical integer order models. The solvability of di�erent types of fractional dif-
ferential equations have been established by Lakshmikantham et al. in [14]. Wang and Xie [31]
established the existence and uniqueness of solution for fractional di�erential equations involving
Riemann-Liouville di�erential operators with integral boundary conditions by employing the mono-
tone iterative method. Agarwal et al. [1] discussed the initial value problem for a class of fractional
neutral functional di�erential equations and obtained the existence criteria from Krasnoselskii's
�xed point theorem. Momani and Odibat [20] compared the solutions of the fractional order dif-
ferential equations by homotopy perturbation method and variational iteration method. Ahmed
et al. [2] introduced a new concept of the coupling of nonlocal integral conditions and proved the
existence and uniqueness of solutions for a coupled system of fractional di�erential equations. They
also veri�ed the existence results by means of Leray-Schauder alternative and Schaufer's �xed point
theorem, while uniqueness result was derived from Banach's contraction principle.

To model the process with delay, it is not su�cient to employ an ordinary or partial di�eren-
tial equation. An approach to resolve this problem is to use integrodi�erential equations. Many
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mathematical formulations of physical phenomena lead to integrodi�erential equations. There are
few articles available in the literature for the study of fractional integrodi�erential equations. For
example, Balachandran et al. [4, 5] studied the existence results for several kinds of fractional in-
tegrodi�erential equations in a Banach space using �xed point technique. In [32], Zhang et al.
investigated the existence of nonnegative solutions for nonlinear fractional di�erential equations
with nonlocal fractional integrodi�erential boundary conditions on an unbounded domain by using
the Leray-Schauder nonlinear alternative theorem. The di�erential transform method was applied
to fractional integrodi�erential equations in [3] to solve those equations analytically. The solutions
of system of fractional partial di�erential equations has been found by Parthiban and Balachan-
dran [25] by using Adomain decomposition method.

Another interesting area of research is the investigation of fractional partial di�erential equa-
tions. Because of their immense applications in scienti�c �elds, fractional partial di�erential equa-
tions are found to be an e�ective tool to describe certain physical phenomena, such as di�usion
processes [10] and viscoelasticity theories [12]. In recent years, increasing number of papers by many
authors from various �elds of science and engineering deal with dynamical systems described by
fractional partial di�erential equations. Some partial di�erential equations of fractional order type
like one-dimensional time-fractional di�usion-wave equation were used for modeling relevant phys-
ical processes (see [26]). Regarding fractional partial di�erential equations, Luchko [18] used the
Fourier transform method of the variable separation to construct a formal solution and under certain
condition he showed that the formal solution is the generalized solution of the initial-boundary value
problem. To prove the uniqueness he used the maximum principle for generalized time fractional
di�usion equation [17]. By applying the energy inequality, Oussaeif and Bouziani [24] proved the
existence and uniqueness of solution for parabolic fractional di�erential equations in a functional
weighted Sobolev space with integral conditions. Joice Nirmala and Balachandran [28] determined
the solution of time fractional telegraph equation by means of Adomain decomposition method and
analysed the e�ciency of this method. Using measure of noncompactness and Monch's �xed point
theorem, the existence of solutions is studied by Guo and Zhang [9] for a class of impulsive partial
hyperbolic di�erential equations. In this paper, we extend the results of [23] to fractional order
partial integrodi�erential equation.

2 Preliminaries

In this section, we introduce some notations and basic facts of fractional calculus. Let Ω ⊂ R and
C(J,R) is the Banach space of all continuous functions from J = [0, T ] into R. Let Γ(·) denote the
gamma function. For any positive integer 0 < α < 1, the Riemann Liouville derivative and Caputo
derivative are de�ned as follows:

De�nition 2.1. [13] The partial Riemann-Liouville fractional integral operator of order α > 0
with respect to t of a function f(x, t) is de�ned by

Iαf(x, t) =
1

Γ(α)

t∫
0

(t− s)α−1f(x, s) ds.

De�nition 2.2. [13] The partial Riemann-Liouville fractional derivative of order α > 0 of a
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function f(x, t) with respect to t of the form

Dαf(x, t) =
1

Γ(1− α)

∂

∂t

t∫
0

f(x, s)

(t− s)α
ds.

De�nition 2.3. [13] The Caputo partial fractional derivative of order α > 0 with respect to t of
a function f(x, t) is de�ned as

CDαf(x, t) =
1

Γ(1− α)

t∫
0

1

(t− s)α
∂f(x, s)

∂s
ds.

To know more properties above fractional operators and historical aspects of they refer the
books [19] and [28]. For more details on the geometric and physical interpretation for fractional
derivatives of Caputo types see [6]. There has been a signi�cant development in ordinary and
partial di�erential equations involving both Riemann-Liouville and Caputo fractional derivatives
in the past few years, for instance, see the papers of Gejji and Jafari [8], Furati and Tatar [7]. The
Riemann Liouville and Caputo fractional derivatives are linked by the following relationship.

cDαf(x, t) = Dαf(x, t)− f(x, 0)

Γ(1− α)tα
.

About the called Caputo derivative we must remark here that Liouville in [15] and [16] was the
�rst that introduced formally the called fractional Caputo derivative of order 1

2 with the objective
to solve certain integral equation connected with the known Tautochrone problem.

In this paper, we consider the fractional partial integrodi�erential equation of the form

cDαu(x, t) = a(t)∆u(x, t) + f

(
t, u(x, t),

t∫
0

g(t, s, u(x, s)) ds

)
, t ∈ J, (2.1)

where 0 < α < 1 and the nonlinear functions g : J ×J ×R→ R and f : J ×R×R→ R. The initial
and boundary conditions are

u(x, 0) = ϕ(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× J.

where ϕ(x) ∈ L1(R). In order to establish our result assume the following conditions.

(H1) f(t, u1, u2) is continuous with respect to u1, u2, Lebesgue measurable with respect to t and
satis�es ∫

Ω

Φ(x)f(t, u1, u2) dx∫
Ω

Φ(x) dx
≤ f

(
t,

∫
Ω

Φ(x)u1(x, t) dx∫
Ω

Φ(x) dx
,

∫
Ω

Φ(x)u2(x, t) dx∫
Ω

Φ(x) dx

)
,

where Φ(x) is an eigenfunction.
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(H2) There exists an integrable function m1(t) : J → [0,∞) such that

‖ f(t, u1, u2) ‖≤ m1(t)

2∑
i=1

‖ui‖,

where m1(t) ≥ 0 and
( t∫

0

(m1(s))
1
β ds

)β
≤ l1, for some β ∈ (0, α).

(H3) g(t, s, u) is continuous with respect to u, Lebesgue measurable with respect to t and also
satis�es the inequality∫

Ω

Φ(x)g(t, s, u) dx∫
Ω

Φ(x) dx
≤ g

(
t, s,

∫
Ω

Φ(x)u(x, t) dx∫
Ω

Φ(x) dx

)
.

(H4) There exists an integrable function m2(t, s) : J × J → [0,∞) such that

‖ g(t, s, u) ‖≤ m2(t, s)‖u‖.

(H5) a(t) is continuous on J and for β as in (H2),
( t∫

0

(a(s))
1
β ds

)β
≤ l2.

(H6) There exists an integrable functionm(t, s) = m1(t)m2(t, s) such that
( t∫

0

(m(s, τ))
1
β ds

)β
≤ l3,

0 < β < α.

It is easy to show that the initial value problem (2.1) is equivalent to the following equation

u(x, t) = ϕ(x) +
1

Γ(α)

t∫
0

(t− s)α−1[a(s)∆u(x, s) + f(s, u(x, s), v(x, s))] ds, (2.2)

where v(x, s) =
s∫
0

g(s, τ, u(x, τ)) dτ , for t ∈ J .

3 Existence Results

Consider the following eigenvalue problem

∆u+ λu = 0, (x, t) ∈ Ω× J,
u = 0, (x, t) ∈ ∂Ω× J,

}
(3.1)

where λ is a constant not depending on the variables x and t. The theory of eigenvalue problems
is well known by [30]. Thus, for x ∈ Ω the smallest eigenvalue λ1 of the problem (3.1) is positive
and the corresponding eigenfunction Φ(x) ≥ 0. Now we de�ne the function U(t) as

U(t) =

∫
Ω

u(x, t)Φ(x) dx∫
Ω

Φ(x) dx
. (3.2)
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Theorem 3.1. Assume that there exists a β ∈ (0, α) for some α > 0 such that (H1)-(H6) holds.
For any constant b > 0, suppose that

r = min

T,
[

Γ(α)b

(‖U(0)‖+ b)(λ1l1 + l2 + l3)

(
α− β
1− β

)1−β
] 1
α−β

 . (3.3)

Then there exists at least one solution for the initial value problem (2.1) on Ω× [0, r].

Proof. First we have to prove the initial value problem (2.1) has a solution if and only if the equation

U(t) = U(0)− λ1

Γ(α)

t∫
0

(t− s)α−1U(s) ds +
1

Γ(α)

t∫
0

(t− s)α−1f(s, U(s), V (s)) ds, (3.4)

where V (t) =
t∫

0

g(t, s, U(t)), has a solution.

Step 1. The proof of su�ciency is similar to that of Lemma 3.1 [23]. To prove the necessary part,
let u(x, t) be a solution of (2.1). This implies u(x, t) is a solution of (2.2). Now multiplying both
sides of equation (2.2) by Φ(x) and integrating with respect to x ∈ Ω, we get∫

Ω

Φ(x)u(x, t) dx =

∫
Ω

Φ(x)ϕ(x) dx +
1

Γ(α)

∫
Ω

Φ(x)

∫ t

0

(t− s)α−1a(s)∆u(x, s) ds dx

+
1

Γ(α)

∫
Ω

Φ(x)

∫ t

0

(t− s)α−1f(s, u(x, s), v(x, s)) ds dx

Using Green's formula and assumption (H1), we get

U(t) ≤ U(0)− λ1

Γ(α)

t∫
0

(t− s)α−1a(s)U(s) ds +
1

Γ(α)

t∫
0

(t− s)α−1f(s, U(s), V (s)) ds. (3.5)

Let K = {U : U ∈ C(J, R), ‖ U(t)− U(0) ‖≤ b}. De�ne an operator F : C(J,R)→ C(J,R) as

FU(t) = U(0)− λ1

Γ(α)

t∫
0

(t− s)α−1a(s)U(s) ds +
1

Γ(α)

t∫
0

(t− s)α−1f(s, U(s), V (s)) ds. (3.6)

Clearly U(0) ∈ K. This means that K is nonempty. From our construction of K, we can say that
K is closed and bounded. Now for any U1, U2 ∈ K and for any a1, a2 ≥ 0 such that a1 + a2 = 1,

‖ a1U1 + a2U2 − U(0) ‖ ≤ a1 ‖ U1 − U(0) ‖ +a2 ‖ U2 − U(0) ‖
≤ a1b+ a2b = b.
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Thus a1U1 + a2U2 ∈ K. Therefore K is nonempty closed convex set. Next we have to prove the
operator F maps K into itself.

‖ FU(t)− FU(0) ‖=
∥∥∥∥ λ1

Γ(α)

t∫
0

(t− s)α−1a(s)U(s) ds +
1

Γ(α)

t∫
0

(t− s)α−1f(s, U(s), V (s)) ds

∥∥∥∥
≤ λ1

Γ(α)
(‖U(0)‖+ b)

t∫
0

(t− s)α−1‖a(s)‖ ds+
1

Γ(α)

t∫
0

(t− s)α−1‖f(s, U(s), V (s))‖ ds.

Then by using Holder inequality and (H6), we arrive

‖ FU(t)− FU(0) ‖ ≤ λ1

Γ(α)
(‖U(0)‖+ b)

 t∫
0

(
(t− s)α−1

) 1
1−β ds

1−β t∫
0

‖a(s)‖
1
β ds

β

+
1

Γ(α)

t∫
0

m1(s)(t− s)α−1 (‖U(s)‖+ ‖V (s)‖) ds

≤ λ1

Γ(α)
(‖U(0)‖+ b)

 t∫
0

(
(t− s)α−1

) 1
1−β ds

1−β t∫
0

‖a(s)‖
1
β ds

β

+
1

Γ(α)
(‖U(0)‖+ b)

 t∫
0

(
(t− s)α−1

) 1
1−β ds

1−β t∫
0

(m1(s))
1
β ds

β

+
1

Γ(α)
(‖U(0)‖+ b)

 t∫
0

(
(t− s)α−1

) 1
1−β ds

1−β t∫
0

(m(s, τ))
1
β ds

β

≤ (‖U(0)‖+ b)λ1l1
Γ(α)

(
1− β
α− β

)1−β

rα−β +
(‖U(0)‖+ b) l2

Γ(α)

(
1− β
α− β

)1−β

rα−β

(‖U(0)‖+ b) l3
Γ(α)

(
1− β
α− β

)1−β

rα−β

=
(‖U(0)‖+ b) (λ1l1 + l2 + l3)

Γ(α)

(
1− β
α− β

)1−β

rα−β

≤ b.

Therefore F maps K into itself. Now de�ne a sequence {Uk(t)} in K such that

U0(t) = U(0) and Uk+1(t) = Uk(t), k = 0, 1, 2, . . .

Since K is closed, there exists a subsequence {Uki(t)} of Uk(t) and Ũ(t) ∈ K such that

lim
ki→∞

Uki(t) = Ũ(t).
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Then Lebesgue's dominated convergence theorem yields that

Ũ(t) = Ũ(0)− λ1

Γ(α)

t∫
0

(t− s)α−1a(s)Ũ(s) ds+
1

Γ(α)

t∫
0

(t− s)α−1f(s, Ũ(s), Ṽ (s)) ds,

where Ṽ (t) =
t∫

0

g(t, s, Ũ(t)). Next we claim that F is completely continuous.

Step 2. For that �rst we prove T : K → K is continuous. Let {Um(t)} be a converging sequence
in K to U(t). Then for any ε > 0, let

‖Um(t)− U(t)‖ ≤ Γ(α)ε

2λ1l1

(
α− β
1− β

)1−β

rα−β .

By assumption (H1),

f

(
t, Um(t),

∫ s

0

g(t, s, Um(τ)) ds

)
−→ f

(
t, U(t),

∫ s

0

g(t, s, , U(t)) ds

)
,

for each t ∈ [0, r] and since∥∥∥∥f(t, Um(t),

∫ s

0

g(t, s, Um(t)) ds

)
− f

(
t, U(t),

∫ s

0

g(t, s, U(t)) ds

)∥∥∥∥ ≤ Γ(α)ε

2rα

(
α− β
1− β

)1−β

,

we have

‖FUm(t)− FU(t)‖ ≤ λ1l1
Γ(α)

(
1− β
α− β

)1−β

‖Um(t)− U(t)‖+
1

Γ(α)

(
1− β
α− β

)1−β

∥∥∥∥f (t, Um(s),

∫ τ

0

g(s, τ, Um(τ)) dτ

)
− f

(
t, U(s),

∫ τ

0

g(s, τ, U(τ)) dτ

)∥∥∥∥
≤ ε.

Taking limit m → ∞, the right hand side of the above inequality tends to zero. Therefore F is
continuous.

Step 3. Moreover, for U ∈ K,

‖ FU(t) ‖ ≤ ‖U(0)‖+
λ1l1 + l2 + l3

Γ(α)
(‖U(0)‖+ b)

(
1− β
α− β

)1−β

rα−β

≤ ‖U(0)‖+ b.

Hence FK is uniformly bounded. Now it remains to show that F maps K into an equicontinuous
family.

Step 4. Now let U ∈ K and t1, t2 ∈ J . Then if 0 < t1 < t2 ≤ r, by the assumptions (H1)− (H6)
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we obtain

‖ FU(t1)− FU(t2) ‖ ≤ λ1

Γ(α)
(‖U(0)‖+ b)

t1∫
0

(
(t2 − s)α−1 − (t1 − s)α−1

)
‖a(s)‖ ds

+
λ1

Γ(α)
(‖U(0)‖+ b)

t2∫
t1

(t2 − s)α−1‖a(s)‖ ds

+
1

Γ(α)

∥∥∥∥
t1∫

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
f(s, U(s), V (s)) ds

∥∥∥∥
+

1

Γ(α)

∥∥∥∥
t2∫
t1

(t2 − s)α−1f(s, U(s), V (s)) ds

∥∥∥∥
≤ λ1l1

Γ(α)

( t1∫
0

((t2 − s)α−1 − (t1 − s)α−1)
1

1−β ds

)1−β

+
λ1l1
Γ(α)

(‖U(0)‖+ b)

 t2∫
t1

((t2 − s)α−1)
1

1−β ds

1−β

+
l2

Γ(α)
(‖U(0)‖+ b)

 t1∫
0

(
(t2 − s)α−1 − (t1 − s)α−1

) 1
1−β ds

1−β

+
l2

Γ(α)
(‖U(0)‖+ b)

 t2∫
t1

((t2 − s)α−1)
1

1−β ds

1−β

+
l3

Γ(α)
(‖U(0)‖+ b)

 t1∫
0

(
(t2 − s)α−1 − (t1 − s)α−1

) 1
1−β ds

1−β

+
l3

Γ(α)
(‖U(0)‖+ b)

 t2∫
t1

((t2 − s)α−1)
1

1−β ds

1−β

.

The right hand side is independent of U ∈ K. Since 0 < β < α < 1, the right hand side of the above
inequality goes to zero as t1 → t2. Thus, F maps K into an equicontinuous family of functions.
In the view of Ascoli-Arzela theorem, F is completely continuous. Then applying Leray-Schauder
�xed point theorem, we deduce that F has a �xed point in K, which is a solution of (2.1). q.e.d.
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Example

Consider the partial fractional intgrodi�erential equation

CD
1
2u(x, t) = t2∆u(x, t) + t+ u(x, t) +

1

1 + t2

t∫
0

su(x, s) ds, (x, t) ∈ Ω× J (3.7)

with the initial condition
u(x, 0) = u0, x ∈ Ω

and the boundary condition
u(x, t) = 0, (x, t) ∈ ∂Ω× J,

where J = [0, 1] and Ω = [0, π/2]. Here a(t) = t2,

t∫
0

g(t, s, u(x, s)) ds =
1

1 + t2

t∫
0

su(x, s) ds and

f(t, u(x, t),

∫ t

0

g(t, s, u(x, s)) ds) = t+ u(x, t) +
1

1 + t2

t∫
0

su(x, s) ds. (3.8)

Since the eigenfunctions of the Laplacian operator are sinmx and cosmx where λ = m2, we note
that the assumptions (H1)-(H6) of Theorem 3.3 are satis�ed for some β ∈ (0, 1/2). Hence the
problem (3.7) has a solution.
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