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Abstract

The aim of this paper is to determine Hyers-Ulam-Rassias Stability results concerning the
quadratic functional equation f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 4f(x)− 2f(y)
in intuitionistic fuzzy Banach spaces.
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1 Introduction

The study of stability problems for functional equations started with a well-known question raised
by Ulam [15] in 1940 regarding the stability of group homomorphisms . In the next year Hyers [3]
gave the first affirmative answer to the question of Ulam , for Cauchy functional equation under the
assumption that the groups are Banach spaces and this result was generalized by T . Aoki [17] for
additive mappings and by Th . M . Rassias [18] for linear mappings by considering an unbounded
Cauchy difference . Gavruta [11] generalized Rassias’ theorem by replacing the unbounded Cauchy
difference by a general control function . F . Skof [4] generalized the Hyers-Ulam stability theorem
for the function f : X → Y , where X is a normed space and Y is a Banach space and then P . W .
Cholewa [12] and S . Czerwik [14] extended the result of Skof . Thereafter , several stability problems
of various functional equations have been studied and recently fuzzy version is also discussed .

Atanassov [8] introduced the idea of intuitionistic fuzzy sets as a generalization of fuzzy sets .
A few notions of intuitionistic fuzzy metric spaces and intuitionistic fuzzy normed spaces were
introduced by J . H . Park [7] , Saadati and Park [13] and Samanta et.al.[19] .

The stability results of many functional equations have been proved by many researchers [1,
2, 9, 10, 16, 20, 21] in fuzzy Banach spaces and intuitionistic fuzzy Banach spaces . Our interest
is to established some stability results concerning the quadratic functional equation f(2x + y) +
f(2x − y) = 2f(x + y) + 2f(x − y) + 4f(x) − 2f(y) in intuitionistic fuzzy Banach spaces .

2 Preliminaries

In this section we recall some lemmas , definitions and examples which will be used in this paper .

Lemma 2.1. [6] Consider the set L ∗ and the order relation ≤L ∗ defined by

L ∗ = {(x 1 , x 2) : (x 1 , x 2) ∈ [0 , 1] 2 and x 1 + x 2 ≤ 1 } ,
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(x 1 , x 2) ≤L ∗ (y 1 , y 2) ⇔ x 1 ≤ y 1 , x 2 ≥ y 2 , ∀(x 1 , x 2) , (y 1 , y 2) ∈ L ∗ .

Then (L ∗ , ≤L ∗) is a complete lattice . We denote its units by 0L ∗ = (0 , 1) and 1L ∗ = (1 , 0) .

Definition 2.2. [8] An intuitionistic fuzzy set A ζ, η in a universal set U is an object A ζ, η =
{(ζA(u), ηA(u)) : u ∈ U}, where ζA(u) ∈ [0, 1] and ηA(u) ∈ [0, 1] for all u ∈ U are called the
membership degree and the non-membership degree respectively, of u in A ζ, η and furthermore,
satisfy ζA(u) + ηA(u) ≤ 1 .

Definition 2.3. [5] A triangular norm ( t-norm ) on L ∗ is a mapping τ : (L ∗) 2 → L ∗ satisfying
the following conditions :
(a) (∀x ∈ L ∗)(τ(x, 1L ∗) = x) ( boundary condition );
(b) (∀ (x, y) ∈ (L ∗) 2 )(τ(x, y) = τ(y, x)) ( commutativity );
(c) (∀ (x, y, z) ∈ (L ∗) 3 )(τ(x, τ(y, z)) = τ(τ(x, y), z)) ( associativity );
(d) (∀ (x, x′, y, y′) ∈ (L ∗) 4 )(x ≤L ∗ x

′ and y ≤L ∗ y
′ ⇒ τ(x, y) ≤L ∗ τ(x′, y′)) (monotonic-

ity).

A t-norm τ on L ∗ is said to be continuous if for any x, y ∈ L ∗ and any sequences {xn} and
{yn} which converge to x and y respectively,

lim
n→∞

τ(xn, yn) = τ(x, y).

For example, let a = (a 1, a 2), b = (b 1, b 2) ∈ L ∗, consider
τ(a, b) = (a 1b 1, min{a2 + b 2, 1}) and M(a, b) = (min{a 1, b 1}, max{a2, b 2}).
Then τ(a, b) and M(a, b) are continuous t-norm.

Now, we define a sequence τ n recursively by τ 1 = τ and

τ n
(
x (1), · · · , x (n+1)

)
= τ

(
τ n− 1

(
x (1), · · · , x (n)

)
, x (n+1)

)
for all n ≥ 2 and x (i) ∈ L ∗.

Definition 2.4. [5] A continuous t-norm τ on L ∗ is said to be continuous t-representable if
there exists a continuous t-norm ∗ and a continuous t-conorm � on [0, 1] such that, for all
x = (x 1, x 2), y = (y 1, y 2) ∈ L ∗,

τ(x, y) = (x 1 ∗ y 1, x 2 � y 2).

Definition 2.5. [5] A negator on L ∗ is any decreasing mapping N : L ∗ → L ∗ satisfying
N(0L ∗) = 1L ∗ and N(1L ∗) = 0L ∗ . If N(N(x)) = x for all x ∈ L ∗, then N is called an
involutive negator. A negator on [0, 1] is a decreasing mapping N : [0, 1] → [0, 1] satisfying
N(0) = 1 and N(1) = 0. N s denotes the standard negator on [0, 1] defined by N s(x) = 1 − x
for all x ∈ [0, 1].

Definition 2.6. [16] (1) Let L = (L ∗, ≤L ∗). The triple (X, P, τ) is said to be an L-fuzzy
normed space if X is a vector space, τ is a continuous t-norm on L ∗ and P is an L-fuzzy set on
X × (0, +∞) satisfying the following conditions for all x, y ∈ X and t, s > 0,
(a) P (x, t) > 0L ∗ ;
(b) P (x, t) = 1L ∗ if and only if x = 0;
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(c) P (αx, t) = P
(
x, t
|α|

)
for all α 6= 0;

(d) P (x + y, t + s) ≥L ∗ τ(P (x, t), P (y, s));
(e) P (x, .) : (0, ∞) → L ∗ is continuous;
(f) lim

t→ 0
P (x, t) = 0L ∗ and lim

t→∞
P (x, t) = 1L ∗ .

In this case P is called an L-fuzzy norm ( briefly, L ∗-fuzzy norm ).
(2) If P = Pµ, ν is an intuitionistic fuzzy set, then the triple (X, Pµ, ν , τ) is said to be an
intuitionistic fuzzy normed space ( briefly, IFN-space ). In this case P = Pµ, ν is called an
intuitionistic fuzzy norm on X.
Note that, if P is an L ∗-fuzzy norm on X, then the following are satisfied :
(i) P (x, t) is nondecreasing with respect to t for all x ∈ X.
(ii)P (x − y, t) = P (y − x, t) for all x, y ∈ X and t > 0.

Example 2.7. Let (X, ‖.‖) be a normed space.
Let τ(a, b) = (a 1b 1, min{a2 + b 2, 1}) for all a = (a 1, a 2), b = (b 1, b 2) ∈ L ∗ and µ, ν be
membership and non-membership degree of an intuitionistic fuzzy set defined by

Pµ, ν(x, t) = (µ x(t), ν x(t)) =

(
t

t + m‖x‖
,
‖x‖

t + ‖x‖

)
for all t ∈ R+ in which m > 1. Then (X, Pµ, ν , τ) is an IFN-space. Here, µ(x, t) + ν(x, t) = 1
for x = 0 and µ(x, t) + ν(x, t) < 1 for x 6= 0.
Let M(a, b) = (min{a 1, b 1}, max{a2, b 2}) for all
a = (a 1, a 2), b = (b 1, b 2) ∈ L ∗ and µ, ν be membership and non-membership degree of an
intuitionistic fuzzy set defined by

Pµ, ν(x, t) = (µ x(t), ν x(t)) =
(
e−

‖x‖
t , e−

‖x‖
t

(
e
‖x‖
t − 1

))
for all t ∈ R+. Then (X, Pµ, ν , M) is an IFN-space.

Definition 2.8. (1) A sequence {xn} in an IFN-space (X, Pµ, ν , τ) is said to be convergent to a
point x ∈ X ( denoted by xn → x) if Pµ, ν(xn − x, t) → 1L ∗ as n → ∞ for every t > 0.
(2) A sequence {xn} in an IFN-space (X, Pµ, ν , τ) is said to be a Cauchy sequence if, for any
0 < ε < 1 and t > 0, there exists n 0 ∈ N such that

Pµ, ν(xn − xm , t) >L ∗ (N s(ε), ε)

for all n, m ≥ n 0, where N s is the standard negator.
(3) An IFN-space (X, Pµ, ν , τ) is said to be complete if every Cauchy sequence in (X, Pµ, ν , τ) is
convergent in (X, Pµ, ν , τ). A complete intuitionistic fuzzy normed space is called an intuitionistic
fuzzy Banach space.

3 Stability of The Functional Equation

Throughout this section, we assume that X, Y, Z are real vector spaces.

Theorem 3.1. Let ψ : X 2 → Z be a mapping such that

P
′

µ , ν(ψ(2x , 2y) , t) ≥L∗ P
′

µ , ν(αψ(x , y) , t) (3.1)
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for some α satisfying 0 < α < 4 and for all x , y ∈ X , t > 0, where (Z ,P
′

µ , ν , τ ) is an
IFN-space. Let (Y , Pµ , ν , τ ) be a complete IFN-space and f : X → Y be a mapping such that

Pµ , ν( f(2x + y) + f(2x − y) − 2f(x + y) − 2f(x − y) − 4f(x) + 2f(y) , t ) (3.2)

≥L∗ P
′

µ , ν(ψ(x , y) , t)

for all x , y ∈ X and t > 0. Then there exists a unique quadratic mapping
Q : X → Y such that

Pµ , ν( f(x) − Q(x) , t ) ≥L∗ P
′

µ , ν(ψ(x , 0) , 2(4 − α)t ) (3.3)

and
f(2n x)

4n
→ Q(x), as n→∞ (3.4)

for all x ∈ X, t > 0.

Proof. Putting x = y = 0 in f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 4f(x) − 2f(y) ,
we obtain f(0) = 0. Again, putting y = 0 in (3.2) , we get for all x ∈ X, t > 0 ,

Pµ , ν( f(x) − 4−1f(2x) , t ) ≥L∗ P
′

µ , ν(ψ(x , 0) , 8t ). (3.5)

Replacing x by 2n x in (3.5) and using (3.1) , we have for all x ∈ X, t > 0 , n ∈ N ,

Pµ , ν

(
f(2n x)

4n
− f(2n+1 x)

4n+1
, t

)
≥L∗ P

′

µ , ν

(
ψ(x , 0) , 8

(
4

α

)n

t

)
. (3.6)

Now, for all x ∈ X, t > 0 , n ∈ N we get

Pµ , ν

(
f(x) − f(2nx)

4n
,
t

8

n− 1∑
i=0

( α
4

) i)

≥L∗ τ
n− 1

(
Pµ , ν

(
f(x) − f(2x)

4
,
t

8

)
, Pµ , ν

(
f(2x)

4
− f(2 2 x)

4 2
,
t

8

α

4

)
,

· · · , Pµ , ν
(
f(2n− 1 x)

4n− 1
− f(2n x)

4n
,
t

8

( α
4

)n− 1
))

≥L∗ P
′

µ , ν(ψ(x , 0) , t) [ by (3.5) , (3.6) ] .

It implies that for all x ∈ X, t > 0 and n ∈ N ,

Pµ , ν

(
f(x) − f(2n x)

4n
, t

)
≥L∗ P

′

µ , ν

ψ(x , 0) ,
8 t

n− 1∑
i=0

(
α
4

) i
 . (3.7)
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Replacing x by 2 p x in (3.7) and using (3.1) , we get for all x ∈ X, t > 0 and n, p ∈ N ,

Pµ , ν

(
f(2 p x)

4 p
− f(2n+ p x)

4n+ p
, t

)
≥L∗ P

′

µ , ν

ψ(x , 0) ,
8 t(

α
4

) p n− 1∑
i=0

(
α
4

) i
 . (3.8)

Taking limit as p → ∞ , we get for all x ∈ X , n ∈ N and t > 0 ,

Pµ , ν

(
f(2 p x)

4 p
− f(2n+ p x)

4n+ p
, t

)
→ 1L ∗ as p → ∞.

Therefore the sequence
{
f(2n x)

4n

}
is a Cauchy sequence in (Y , Pµ , ν , τ ) . Since (Y , Pµ , ν , τ ) is

a complete IFN-space , there exists some function Q : X → Y such that (3.4) holds . Let δ > 0.
Now, for all x ∈ X, t > 0 and n ∈ N ,

Pµ , ν(f(x) − Q(x) , t + δ )

≥L∗ τ

P ′µ , ν
ψ(x , 0) ,

8 t
n− 1∑
i=0

(
α
4

) i
 , Pµ , ν

(
f(2n x)

4n
− Q(x) , δ

) [ by (3.7) ] .

Taking limit as n → ∞ , we get for all x ∈ X, t > 0 ,

Pµ , ν(f(x) − Q(x) , t + δ ) ≥L∗ τ

P ′µ , ν
ψ(x , 0) ,

8 t
∞∑
i=0

(
α
4

) i
 , 1L ∗

 [ by (3.4) ] .

Letting δ → 0 , we get (3.3). From definition of Q we get for all x ∈ X and n ∈ N ,

Q(2n x) = 4nQ(x) . (3.9)

We replace x and y by 2n x and 2n y respectively in (3.2) to get for all x , y ∈ X , t > 0 and
n ∈ N ,

Pµ , ν

(
f(2n(2x + y))

4n
+
f(2n(2x − y))

4n
− 2f(2n(x + y))

4n

− 2f(2n(x − y))

4n
− 4f(2n x)

4n
+

2f(2n y)

4n
, t

)
≥L∗ P

′

µ , ν (ψ(2n x , 2n y) , 4n t)

≥L∗ P
′

µ , ν

(
ψ(x , y) ,

(
4

α

)n

t

)
[ by (3.1) ] .
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Taking limit n → ∞ , we get for all x , y ∈ X, t > 0 ,

Pµ , ν(Q(2x + y) + Q(2x − y) − 2Q(x + y) − 2Q(x − y) − 4Q(x) + 2Q(y) , t ) = 1L ∗ .

It implies that for all x , y ∈ X ,

Q(2x + y) + Q(2x − y) − 2Q(x + y) − 2Q(x − y) − 4Q(x) + 2Q(y) = 0.

This shows that Q is quadratic. To prove the uniqueness we assume that
Q′ : X → Y is a quadratic function satisfying (3.3) and (3.4). Now, using (3.9) , (3.3) and (3.1) ,
we get for all x ∈ X , t > 0 and n ∈ N ,

Pµ , ν(Q(x) − Q′(x) , t)

≥L∗ τ

(
Pµ , ν

(
f(2n x) − Q(2n x) ,

4n t

2

)
, Pµ , ν

(
f(2n x) − Q′(2n x) ,

4n t

2

))
≥L∗ τ

(
P
′

µ , ν

(
ψ(x , 0) ,

4n (4 − α)t

αn

)
, P

′

µ , ν

(
ψ(x , 0) ,

4n (4 − α)t

αn

))
.

Taking limit as n → ∞ , we get for all x ∈ X, t > 0 ,

Pµ , ν(Q(x) − Q′(x) , t) = 1L ∗ .

It implies that Q(x) = Q′(x) for all x ∈ X. This proves that Q is unique.
This completes the proof. q.e.d.

Corollary 3.2. Let (Y , Pµ , ν , τ ) be a complete IFN-space and (Z ,P
′

µ , ν , τ ) be an IFN-space.
Let p, q be two non-negative real numbers less than 1 and z 0 ∈ Z. Let f : X → Y be a
mapping such that

Pµ , ν( f(2x + y) + f(2x − y) − 2f(x + y) − 2f(x − y) − 4f(x) + 2f(y) , t )

≥L∗ P
′

µ , ν((‖x‖ p + ‖y‖ q)z 0 , t)

for all x , y ∈ X and t > 0. Then there exists a unique quadratic mapping
Q : X → Y such that

Pµ , ν( f(x) − Q(x) , t ) ≥L∗ P
′

µ , ν( ‖x‖ pz 0 , 2(4 − 4 p)t)

and
f(2n x)

4n
→ Q(x), as n→∞

for all x ∈ X, t > 0.

Proof. Define ψ(x , y) = (‖x‖ p + ‖y‖ q)z 0 and take α = 4 p. Clearly, (3.1) is satisfied and
0 < α < 4. Thus the theorem (3.1) completes the proof . q.e.d.
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Corollary 3.3. Let (Y , Pµ , ν , τ ) be a complete IFN-space and (Z ,P
′

µ 1 , ν 1
, τ ) be an IFN-space.

Let z 0 ∈ Z, ε ≥ 0 and f : X → Y be a mapping such that

Pµ , ν( f(2x + y) + f(2x − y) − 2f(x + y) − 2f(x − y) − 4f(x) + 2f(y) , t )

≥L∗ P
′

µ , ν(ε z 0 , t)

for all x , y ∈ X and t > 0. Then there exists a unique quadratic mapping
Q : X → Y such that

Pµ , ν( f(x) − Q(x) , t ) ≥L∗ P
′

µ , ν( ε z 0 , t)

and
f(2n x)

4n
→ Q(x), as n→∞

for all x ∈ X, t > 0.

Proof. Define ψ(x , y) = ε z 0 and take α = 3.5. Clearly, (3.1) is satisfied. Thus the theorem (3.1)
completes the proof . q.e.d.

Theorem 3.4. Let ψ : X 2 → Z be a mapping such that

P
′

µ , ν

(
ψ
(x

2
,
y

2

)
, t
)
≥L∗ P

′

µ , ν

(
1

α
ψ(x , y) , t

)
for some α > 4 and for all x , y ∈ X , t > 0, where (Z ,P

′

µ , ν , τ ) is an IFN-space. Let
(Y , Pµ , ν , τ ) be a complete IFN-space and f : X → Y be a mapping such that

Pµ , ν( f(2x + y) + f(2x − y) − 2f(x + y) − 2f(x − y) − 4f(x) + 2f(y) , t )

≥L∗ P
′

µ , ν(ψ(x , y) , t)

for all x , y ∈ X and t > 0. Then there exists a unique quadratic mapping
Q : X → Y such that

Pµ , ν( f(x) − Q(x) , t ) ≥L∗ P
′

µ , ν(ψ(x , 0) , 2(α − 4) t)

and
4nf

( x

2n

)
→ Q(x), as n→∞

for all x ∈ X, t > 0.
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