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Abstract

The notion of pseudocategory is extended from the context of a 2-category to the more general
one of a sesquicategory, which is considered as a category equipped with a 2-cell structure. Some
particular examples of 2-cells arising from internal transformations in internal categories, con-
jugations in groups, derivations in crossed-modules or homotopies in abelian chain complexes
are studied in this context, namely their behaviour as abstract 2-cells in a 2-cell structure.
Issues such as naturality of a 2-cell structure are investigated. This article is intended as a
preliminary starting work towards the study of the geometric aspects of the 2-cell structures
from an algebraic point of view.
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1 Introduction

The purpose of this work is to extend the notion of pseudocategory internal to a 2-category [11]
to the more general context of a pseudocategory internal to a category with a 2-cell structure (or
sesquicategory).

In this article we are using a different notation for the vertical composition of 2-cells: instead
of the usual dot ‘·’ or bullet ‘•’ we use plus ‘+’. To support this change of notation we present an
analogy which compares the geometric vectors in the plane with the 2-cells between morphisms in
a category.
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Two geometric vectors on the plane can be added only if the end point of the second one (u as
in the picture above) is the starting point of the first one (v as in the picture); in that case the
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resulting vector, which is their sum, goes from the starting point of the second one to the end point
of the first one. The same happens for 2-cells in a category:

·

domu

��//

cod v

II·
u

��

v
��

7−→ ·

domu

��

cod v

@@ ·v+u

��

In some sense the analogy can be extended for scalar multiplication

· λ // ·

domu

��

codu

@@ ·
ρ // ·u

��
7−→ ·

ρ dom(u)λ

��

ρ cod(u)λ

@@ ·ρuλ

��
,

and for inverses (in the case they exist, and in a much lesser degree of analogy)

·

domu

��

codu

@@ ·u

��
7−→ ·

codu

��

domu

@@ ·−u

��
.

Concerning horizontal composition, there is still an analogy with some relevance: it is, in some
sense, analogous to the cross product of vectors — in the sense that it raises in dimension (see
the introduction of [3] and its references for further discussion on this). Given 2-cells, u and v,
displayed as,

·

domu

��

codu

@@ ·

dom v

��

cod v

@@ ·u

��
v

��

the horizontal composition, usually denoted by v ◦ u, is expected to be an isomorphic 3-cell, from
the 2-cell

cod (v)u+ v dom (u) (1.1)

to the 2-cell
v cod (u) + dom (v)u. (1.2)

In some cases (1.1) and (1.2) coincide (as it happens in a 2-category) and this is the reason why
we may consider a horizontal composition.

As mentioned at the beginning of the introduction, our purpose is to enlarge the context in
which an internal pseudocategory can be defined to the one of a category with a 2-cell structure.
In this case, (1.1) and (1.2) are not necessarily equal anymore.
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To do this we have to consider the horizontal composition as a relation, written as v ◦ u, saying
that the 2-cell v is natural with respect to the 2-cell u, which is defined by

v ◦ u⇐⇒ (1.1) = (1.2) .

With this regard, the horizontal composition is only defined for those pairs (v, u) that are in
relation v ◦ u, with the composite being given, in that case, by either (1.1) or (1.2).

This is a geometric intuition. An algebraic intuition is provided by Proposition 3.3. It is also
possible to put the geometric analogy into a formal context. It is obtained by taking the category
whose objects are the straight lines passing through the origin while the morphisms are the points
in the plane except the origin. The domain and codomain associate to each non-null vector its
direction; the composition of two vectors with the same direction is the vector which lies on the
shared direction and whose magnitude is obtained as the product of the signed magnitudes of the
two given vectors as real numbers; the identity morphism of a straight line is the vector of unitary
length with that same direction. The geometric vectors in the plane appear in this situation as the
codiscrete 2-cell structure.

This article is organized as follows. In Section 2 we recall the notions of internal (pre)category,
internal (pre)functor and internal (natural) transformation. This section is also used to introduce
some notation. In Section 3 we consider an arbitrary fixed category C and define a 2-cell structure
over it, as to make it a sesquicategory. We give a characterization of that structure as a family of sets,
together with maps and actions, satisfying some conditions (Proposition 3.3). This characterization
generalizes the description of 2-Ab-categories as families of abelian groups, together with group
homomorphisms and composition laws, which may be found in [10] and [12], except that, now, the
(strong) condition

D (x) y = xD (y) (1.3)

is no longer a requirement. A useful consequence of this is the possibility of considering the example
of chain complexes, say of order 2, which is treated in 5.13. Condition (1.3) above is equivalent to
the naturality condition, and since the results obtained in [10] and [12] rely on this assumption, we
have to be careful in removing it. With that regard we introduce and study the concept of a 2-cell
being natural with respect to another 2-cell (Definition 4.2), and the concept of a natural 2-cell
(Definition 4.3), which is natural with respect to all the possible 2-cells whose horizontal composition
with it makes sense. In Section 4 we work towards the definition of pseudocategory internal to an
arbitrary category equipped with a 2-cell structure, which may be found in Section 6. We will need
the notion of cartesian square with respect to a specified 2-cell structure (Definition 4.1), and the
notions of natural and invertible 2-cell structures. We compare the abstract notions of naturality,
which are being introduced, when C is a category Cat (B) of internal categories in some category
B. As expected, when the 2-cell structure consists of the internal transformations (not necessarily
natural) then every natural transformation is a natural 2-cell (Corollary 5.2). Section 5 is entirely
dedicated to examples. In Section 6 we extend the notion of pseudocategory from the context of a
2-category to the more general context of a category with a 2-cell structure (sesquicategory). As an
example we consider the sesquicategory of abelian chain complexes with homotopies as 2-cells and
study pseudocategories in there. We also give some results extracted from [14] concerning (weakly)
Mal’tsev sesquicategories.

All the notions defined in [11]: pseudofunctor, natural and pseudo-natural transformation and
modification, can be extended in this way.
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However, these considerations are to be developed in a future work. This paper is the starting
point for a systematic study of internal categorical structures in a category with a given 2-cell
structure, and also to investigate how these categorical structures are changed when the given 2-
cell structure over the (fixed) base category varies. For example, in a category with the discrete
2-cell structure, a pseudocategory is an internal category, while it is just a precategory if the 2-cell
structure is the codiscrete one.

This work is a revised version of [15].

2 Internal precategories

A usual assumption on a category C, which is frequently asked when working with categories inter-
nal to C, is the existence of pullbacks. Indeed, a minimal requirement is the existence of pullbacks
of split epimorphisms along split epimorphisms. In this work we are interested in the notion of in-
ternal (pre)category without assuming the existence of pullbacks on the ambient category C. This
means that we have to consider an internal (pre)category as a structure where some conditions are
satisfied, including, in particular, the requirement that some squares have the property of being
pullback squares. This approach is useful, for example, in the study of (pre)categories internal to
arbitrary ambient categories. Later on, when considering the notion of pseudocategory internal to
a category with a 2-cell structure, we will also consider pullback squares that share their universal
property with morphisms and 2-cells; they will be called cartesian squares.

There are currently several slightly different notions of precategory in the literature, mainly
with respect to what concerns axiom (PC3) below (with the main reference on this topic being [7]).
Here we consider an alternative notion, which best fits our setting.

Let C be an arbitrary category. A precategory internal to C is a diagram of the shape

A2 m //
π2 //

π1

// A1

d //

c
// A0eoo

satisfying the following conditions:

PC1 de = 1A0 = ce,

PC2 dm = dπ2 and cm = cπ1,

PC3 the square

A2
π2 //

π1

��

A1

c

��
A1

d // A0

is a pullback square.

A precategory A, internal to C, will be represented as a nine-tuple

(A0, A1, A2, d, c, e,m, π1, π2).

In some cases though, and in order to simplify notation, when all pullbacks exist in C or when it
is not important to specify the pullback A2 and its projections, we will refer to a precategory A
simply as a six-tuple

A = (A0, A1, d, c, e,m).
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If A = (A0, A1, d, c, e,m) and B = (B0, B1, d
′, c′, e′,m′) are two internal precategories, then

a morphism between them is called a prefunctor and it consists of a pair (f0, f1) of morphisms,
fi : Ai → Bi, i = 0, 1, such that d′f1 = f0d and c′f1 = f0c. Observe that we do not ask preservation
of e and m (i.e. the equalities f1e = e′f0 and f1m = m′f2, as presented below, do not need to
be satisfied) in order to include the codiscrete 2-cell structure as an example, see the end of this
section.

A transformation between two internal prefunctors f = (f0, f1) and g = (g0, g1), both from a
precategory

A = (A0, A1, A2, d, c, e,m, π1, π2)

to a precategory
B = (B0, B1, B2, d

′, c′, e′,m′, π′
1, π

′
2),

is a morphism
t1 : A0 → B1

such that d′t1 = f0 and c′t1 = g0. We will also consider two morphisms t2, t3 : A1 → B2 such that

π′
1t2 = t1c , π′

2t2 = f1

π′
1t3 = g1 , π′

2t3 = t1d,

which, by the universal property of the pullback B2, are determined as t2 = ⟨t1c, f1⟩ and t3 =
⟨g1, t1d⟩. We will sometimes refer to a natural transformation as a triple t = (t1, t2, t3).

An internal category is a precategory (A0, A1, A2, d, c, e,m, π1, π2) in which the following con-
ditions are satisfied:

PC4 m⟨ec, 1A1⟩ = 1A1 = m⟨1A1 , ed⟩,

PC5 there exists a span

A2 A3
p1oo p2 // A2

such that the square

A3
p2 //

p1

��

A2

π1

��
A2

π2 // A1

is a pullback square,

PC6 m(1A1
×1A0

m) = m(m×1A0
1A1

).

An internal functor is a prefunctor f : A→ B of internal precategories (that are internal cat-
egories) which, in addition to d′f1 = f0d and c′f1 = f0c, satisfies f1e = e′f0 and f1m = m′f2,
with f2 = f1×f0 f1. More specifically, the morphism f2 is induced by the universal property of the
pullbacks of d and c and of d′ and c′ as in the following diagram

A1

f1

��

d // A0

f0

��

A1
coo

f1

��
B1

d′
// B0 B1.

c′oo
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A transformation t = (t1, t2, t3) : f → g is a natural transformation if, in addition to the condi-
tions above, m′t2 = m′t3.

The purpose of this work is to consider a setting which is appropriate to the handling of internal
categories and internal precategories as two extreme cases of the more general notion of pseudo-
category. As it will be clear from the next section, every category can be equipped with several
2-cell structures. Any of them will give a different notion of a pseudocategory. In particular it is
always possible to define two trivial 2-cell structures on the same ambient category: the discrete
and the codiscrete ones. An internal category is a pseudocategory with respect to the discrete 2-cell
structure, while a precategory is a pseudocategory with respect to the codiscrete 2-cell structure.
Our interest will be focused on the notions which may arise as intermediate cases.

3 Categories with 2-cell structures or sesquicategories

As already mentioned in the introduction, this work considers the notion of a category with a
2-cell structure, which is the same thing as a sesquicategory. We prefer to call it a category with
a 2-cell structure in order to emphasise the possibility of specifying different 2-cell structures over
the same base category. The example which motivates this approach is the category of (left and
right) R-modules for some unitary ring R, which also suggests the additive notation that is being
used throughout the text.

Let C be a category. Its hom functor

homC : Cop ×C→ Set

will be simply referred to as hom.
A 2-cell structure on C, or over C, is a category (C0, C1, d, c, e,m) internal to the functor

category SetC
op×C whose object of objects C0 is the functor hom.

Definition 3.1 (2-cell structure). A 2-cell structure on C is a system

H = (H, dom, cod, 0,+)

with
H : Cop ×C→ Set

a functor, dom, cod, 0,+ natural transformations, displayed as,

H ×hom H
+−→ H

dom−−→
0←−
−→
cod

hom

and such that the six-tuple
(hom,H, dom, cod, 0,+)

is an internal category in the functor category SetC
op×C.

A category C equipped with a 2-cell structure H, represented as a pair (C,H), is a sesquicate-
gory (see for example [17, 18, 19]):
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Proposition 3.2. Every category equipped with a 2-cell structure is a sesquicategory. Every
sesquicategory determines a 2-cell structure over its underlying category.

Proof. A sesquicategory is a category C with a functor L : Cop ×C→ Cat into Cat, such that
its restriction π0 to Set (by forgetting the arrows) gives homC and its restriction π1 to Set (by
forgetting the objects) gives H, as illustrated.

Cat

π0

��
π1

��
Cop ×C

L

::ttttttttt

hom
//

H // Set

q.e.d.

The notation introduced in the following proposition will be used throughout the text. It gives
a detailed description of the whole information which is needed to equip a category C with a 2-cell
structure H = (H, dom, cod, 0,+). This notation is borrowed from the motivating example of left
and right modules over a ring.

Proposition 3.3. Giving a 2-cell structure over a category C is to give, for every pair (A,B) of
objects in C, a set H (A,B), together with maps

H (A,B)×hom(A,B) H (A,B)
+−→ H (A,B)

dom−−→
0←−
−→
cod

hom (A,B) , (1.4)

and actions

H (B,C)× hom (A,B) −→ H (A,C)
(x, f) 7−→ xf

hom (B,C)×H (A,B) −→ H (A,C)
(g, y) 7−→ gy

satisfying the following conditions

g′ (gy) = (g′g) y , (xf) f ′ = x (ff ′) (1.5)

g′ (xf) = (g′x) f

1Cx = x = x1B

dom (gy) = g dom (y) , dom (xf) = dom (x) f (1.6)

cod (gy) = g cod (y) , cod (xf) = cod (x) f

g0f = 0gf = 0gf

(x+ x′) f = xf + x′f , g (y + y′) = gy + gy′
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dom (0f ) = f = cod (0f ) (1.7)

dom (x+ x′) = dom(x′) , cod (x+ x′) = cod(x)

0cod x + x = x = x+ 0domx

x+ (x′ + x′′) = (x+ x′) + x′′.

Here, 0f means 0A,B(f) if f ∈ hom(A,B).

Proof. For every f : A′ −→ A, g : B −→ B′ and x ∈ H (A,B), write

H (f, g) (x) = gxf

it is then clear that the set of conditions (1.5) asserts the functoriality of H; the set of conditions
(1.6) asserts the naturality of dom, cod, 0 and +; the set of conditions (1.7) asserts the axioms for
an internal category. q.e.d.

On a category C with a 2-cell structure H, in general there is no horizontal composition (or
pasting) for 2-cells, that being the case only when the pair (C,H) is a 2-category.

Proposition 3.4. A category C with a 2-cell structure

H = (H, dom, cod, 0,+) ,

is a 2-category if and only if the naturality condition

cod (x) y + x dom (y) = xcod (y) + dom (x) y (1.8)

holds for every triple of objects (A,B,C) in C, every x ∈ H (B,C) and every y ∈ H (A,B), as
illustrated in the following diagram

A

dom y

""

cod y

??B

dom x
##

cod x

==Cy

��
x

��
.

Proof. If (C,H) is a 2-category, the naturality condition follows from the horizontal composition
of 2-cells and, conversely, given a 2-cell structure H over C, in order to make it a 2-category one
has to define a horizontal composition which is given by

x ◦ y = cod (x) y + x dom (y)

or
x ◦ y = x cod (y) + dom (x) y,

provided the naturality condition is satisfied for every appropriate x and y. The middle interchange
law follows from the naturality condition. q.e.d.
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4 Morphisms between 2-cell structures, naturally invertible 2-cell
structures and cartesian squares

For a fixed category C, we consider the category Cell(C) of all the possible 2-cell structures over
C. It has an initial object (the discrete 2-cell structure) and a terminal object (the codiscrete
2-cell structure). In many cases (Example 5.7, 5.9, 5.11, 5.13, etc.) a canonical non-trivial 2-cell
structure is also present. One particular case of our interest is C = Cat(B).

4.1 The category of 2-cell structures over a fixed category C

The category Cell(C) has as objects the 2-cell structures over C. If

H = (H, dom, cod, 0,+)

and
H′ = (H ′, dom′, cod′, 0′,+′)

are two 2-cell structures over C, then a morphism φ : H −→ H′ is a natural transformation

φ : H −→ H ′

such that

dom′ φ = dom

cod′ φ = cod

φ0 = 0′

φ+ = +′ (φ× φ) .

The reason for describing Cell(C) is the study of pseudocategories internal to C. As we will see
in Section 6, a pseudocategory internal to C depends on the 2-cell structure which is considered
over C. For example, a pseudocategory in C with the codiscrete 2-cell structure is a precategory,
while for C with the discrete 2-cell structure it is an internal category. It seems to be interesting
to study of the variation of the notion of pseudocategory when the 2-cell structure over C varies.
Another seemingly important aspect of Cell(C) is the following. Every morphism

φ : H −→ H′ (1.9)

in Cell(C) will induce a functor

PsCat (C,H) −→ PsCat (C,H′) (1.10)

from pseudocategories in C, relative to the 2-cell structure H, to pseudocategories in C, relative
to the 2-cell structure H′. We reserve for a future work the study of equivalent 2-cell structures,
by identifying H and H′, via (1.9), whenever (1.10) is an equivalence of categories, relating it with
homotopy theory.

The notion of a pseudocategory, as defined in [11] (see also [10, 12]), rests on the existence of
some induced 2-cells between certain pullbacks. This means that those pullbacks have to share
their universal property with morphisms and with 2-cells, thus the following definition.
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4.2 Cartesian H-squares

We continue to assume that C is an arbitrary category and now consider a functor into Set,
H : Cop ×C→ Set, for which we write H(f, g)(x) as gxf .

Definition 4.1 (cartesian H-square). A commutative square

D
π2 //

π1

��

C

g

��
A

f // B

in C is said to be H-cartesian if for every object Z in C, for every x ∈ H(Z,A) and y ∈ H(Z,C)
with fx = gy, there is a unique element w ∈ H(Z,D) such that π1w = x and π2w = y. In that
case we write w as ⟨x, y⟩.

An immediate observation is that, when H = homC, a square is H-cartesian if and only if it is a
pullback square. It is also not difficult to observe that, when H(D,−) preserves pullbacks for every
object D in C, then every pullback square is H-cartesian. For that reason we will be interested
in considering 2-cell structures for which the functor H (D,−) : C −→ Set preserves pullbacks for
every object D in C. This means that the functor

H : Cop ×C −→ Set,

giving a 2-cell structure to a category C, has the property that

H (D,A×C B)
φ∼= {(x, y) ∈ H (D,A)×H (D,B) | fx = gy}

for every object D in C and pullback square

A×C B
π2 //

π1

��

B

f

��
A

g // C,

with φ a natural isomorphism, that is, for every h : D −→ D′, the following square commutes

H(D,A×C B)
∼=φ //

H(h,1)

��

{(x, y) | fx = gy}

��
H(D′, A×C B)

∼=φ // {(x′, y′) | fx′ = gy′}

or, in other words, that
⟨x, y⟩h = ⟨xh, yh⟩
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as displayed.

D′ h // D
y

!)

<x,y>
G

G
G

G

�'G
G
G

G

x

�$

A×C B //

��

B

g

��
A

f
// C

In particular, for D = A′ ×C′ B′, and appropriate x, y, z as in

A′

x

��

A′ ×C′ B′π′
1oo π′

2 //

x×zy

��

B′

y

��

, C ′

z

��
A A×C B

π1oo π2 // B , C

,

the element x×z y appears as the unique 2-cell in H (A′ ×C′ B′, A×C B) such that

π2 (x×z y) = yπ′
2

π1 (x×z y) = xπ′
1.

These observations will be used in Section 6 to define a pseudocategory internal to a category
with a 2-cell structure.

4.3 Natural and invertible 2-cells on a 2-cell structure

Recall from Proposition 3.4 that a category C with a 2-cell structure

H = (H, dom, cod, 0,+) ,

is a 2-category if and only if the naturality condition (1.8)

cod (x) y + xdom (y) = xcod (y) + dom (x) y

holds for every triple of objects (A,B,C) in C and for every x ∈ H (B,C) , y ∈ H (A,B) as
displayed

A

dom y

""

cod y

??B

domx
##

cod x

==Cy

��
x

��
.

It may happen that the naturality condition does not hold for all the possible x and y, but only
for a few (as it is the case in Examples 5.6, 5.7, 5.8). Thus the following definitions sprung.

Let C be a category and (H, dom, cod, 0,+) a 2-cell structure over it.
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Definition 4.2. A 2-cell y ∈ H (A,B) is said to be natural with respect to a 2-cell z ∈ H (X,A) if

cod (y) z + y dom (z) = y cod (z) + dom (y) z.

This means that the usual horizontal composition (or pasting) y ◦ z is well defined and it is
given by each one of the formulas involved in the naturality condition.

Definition 4.3. A 2-cell x ∈ H (A,B) is natural when

cod (x) y + x dom (y) = x cod (y) + dom (x) y (1.11)

for every object X in C and for every element y ∈ H (X,A).

In other words, a 2-cell x is natural when it is natural with respect to all the possible 2-cells
that are horizontally composable with it.

Definition 4.4. A 2-cell x ∈ H (A,B) is invertible when there is a (necessarily unique) element

−x ∈ H (A,B)

such that dom (x) = cod (−x) , cod (x) = dom (−x) and

x+ (−x) = 0cod(x) , (−x) + x = 0dom(x).

In the case when both the 2-cells are invertible, the notion of a natural 2-cell with respect
to another 2-cell can be conveniently translated to the notion of a binary commutator, which is
borrowed from the usual notion of commutator, in the sense of Group Theory.

Definition 4.5. Let x ∈ H(B,C) and y ∈ H(A,B) be two invertible 2-cells in a 2-cell structure.
The commutator 2-cell of x and y, denoted by [x, y] ∈ H(A,C)

A
��
BBB

��
BBCy

��

x

��

is given by the formula

[x, y] = (c1 + d2 − d1 − c2) (x, y)

= c1 (x, y) + d2 (x, y)− d1 (x, y)− c2 (x, y)

with

c1 (x, y) = cod (x) y , c2 (x, y) = x cod (y)

d1 (x, y) = dom (x) y , d2 (x, y) = xdom (y) .
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The commutator of x and y vanishes,

[x, y] = 0cod(x) cod(y),

if and only if x is natural with respect to y.
We may thus consider the full subcategories of Cell(C) by taking the 2-cell structures where all

the 2-cells are natural, or invertible, or both, denoted, respectively, by NatCell(C), InvCell(C) and
NatInvCell(C).

In the simplest case, whenC=1, considered in Example 5.1, we have that Cell(C) is the category
of monoids, NatCell(C) the category of commutative monoids, InvCell(C) the category of groups,
and NatInvCell(C) the category of abelian groups.

This observation suggests the study of a generalization for the well known reflection

Grp
I−→ Ab,

namely
I : Cell(C)→ NatCell(C)

from the category of 2-cell structures over C into the subcategory of natural 2-cell structures over
C, associating to each 2-cell structure its naturalization. This study is postponed for a future work.
A simple observation may however be given in the case of C being an Ab-category (see [10],[12]
and Example 5.12). In this case the notion of commutator reduces to

[x, y] = D (x) y − xD (y) .

Another interesting particular case where we can see how the notions of naturality are related
with the chosen 2-cell structure is when C is of the form Cat(B) for some category B. This will be
analysed in the Example 5.7. The entire following section is dedicated to examples which will be
used further on.

5 Examples

In order to illustrate the notion of a category C with a 2-cell structure H, we consider some special
examples of categories on which we can define certain kinds of 2-cell structures.

5.1 The terminal category

In this case C = 1 and hom(1, 1) is a singleton, which means that dom and cod are uniquely
determined constant maps. Hence H = H(1, 1) is just a set and H = (H, 0,+) is simply a monoid.
Indeed all the conditions (1.6) are trivial, the conditions (1.5) force the actions to be trivial, while
the last two conditions (1.7) ensure that (H, 0,+) is a monoid.

5.2 A discrete category

In this case hom(A,B) is either empty or a singleton, respectively if A ̸= B or A = B. This means
that a 2-cell structure on C is a collection of monoids HA = (H, 0,+)A, one for each object A in
C.
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5.3 A codiscrete category

If C is a codiscrete category, that is, hom(A,B) is a singleton for each pair of objects, then to give
a 2-cell structure is to specify, for each pair of objects (A,B) in C, a monoid (H(A,B), 0,+) and,
for every four-tuple of objects (A,B,C,D) in C, a homomorphism of monoids

µ(A,B,C,D) : H(B,C)→ H(A,D)

such that, for every A′, A,B,C,D,D′ objects in C,

µ(A′, B,C,D′) = µ(A′, A,D,D′) ◦ µ(A,B,C,D)

and
µ(A,A,B,B) = 1H(A,B).

In other words, we have to specify a functor H : Cop ×C→ Mon into the category Mon of monoids.

5.4 A preorder considered as a category

When C is a preorder, considered as a category, similarly to the previous example, to specify a 2-cell
structure over it is to give, for every two objects A,B in C with A ≤ B, a monoid (H(A,B), 0,+)
and, for every four objects A,B,C,D in C with A ≤ B ≤ C ≤ D, a homomorphism of monoids

µ(A,B,C,D) : H(B,C)→ H(A,D)

such that, for every A′ ≤ A ≤ B ≤ C ≤ D ≤ D′,

µ(A′, B,C,D′) = µ(A′, A,D,D′) ◦ µ(A,B,C,D)

and
µ(A,A,B,B) = 1H(A,B).

In other words it is a functor H : Cop ×C→ Mon.

5.5 A monoid considered as a one object category

When C = (M, 1, ·) is a monoid, considered as a one object category, the description given in
Proposition 3.3, for a 2-cell structure over C, cannot be simplified much further. Nevertheless, we
may consider some special classes of 2-cell structures that may be defined over C.

Every monoid (H, 0,+), on which M acts on the left and on the right, together with a map

D : H ×M →M

such that

D(0, f) = f

D(x′ + x, f) = D(x′, D(x, f))

gD(x, f)h = D(gxf, gfh)

for every x, x′ ∈ H and f, g, h ∈M , induces a 2-cell structure over C. Diagram (1.4) is obtained as

H ×H ×M
m // H ×M

πM //

D
// M⟨0,1⟩oo
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with m(x, y, f) = (x + y, f); in other words m is the morphism + × 1M . The needed action of M
on H×M is given by the action of M on H considered by hypothesis and by the monoid operation
in M .

5.6 A group considered as a one object groupoid

In the same fashion of the previous example, here we have C = (G, 1, ·), which is now a group,
and (H, 0,+), another group, on which G acts on the left and on the right, together with a map
D : H ×G→ G satisfying the three conditions above. This induces, as before, a 2-cell structure
over C. This example is important because here all the 2-cells are invertible (Definition 4.4).

The notion of commutator (Definition 4.5) for appropriate 2-cells, which in this case is always
defined, is given by the formula

[(x, f), (y, g)] = D (x, f) y + xg − fy − xD (y, g) .

The commutator vanishes if and only if the 2-cells x and y can be composed horizontally (or pasted
together).

5.7 A category of the form Cat(B) for some category B

When C is a category of internal categories in some category B, we can always consider the 2-cell
structure given by the internal transformations in the sense of Section 2.

If A = (A0, A1, A2, d, c, e,m, π1, π2) and B = (B0, B1, B2, d
′, c′, e′,m′, π′

1, π
′
2) are two internal

categories in B, then we define

H (A,B) = {(t1, t2, t3) | t1 : A0 → B1, t2, t3 : A1 → B2, π
′
1t2 = t1c, π

′
2t3 = t1d}

and

dom(A,B) (t) = (d′t1, π
′
2t2)

cod(A,B) (t) = (c′t1, π
′
1t3).

If f = (f0, f1) : A
′ → A and g = (g0, g1) : B → B′ are internal functors, we write g2 to abbreviate

g1 ×g0 g1 and then define

H (f, g) (t) = H((f0, f1), (g0, g1)) (t1, t2, t3) = (g1t1f0, g2t2f1, g2t3f1) .

To say what are the identity 2-cells and how the vertical composition is defined, we first consider
the set H(A,B) as the set

L(A,B) = {(t1, h1, k1) | t1 : A0 → B1, h1, k1 : A1 → B1, (h1, d
′t1), (k1, c

′t1) ∈ hom(A,B)},

which is in bijection with H(A,B) as follows:

(t1, t2, t3) 7→ (t1, π
′
2t2, π

′
1t3),

(t1, h1, k1) 7→ (t1, ⟨t1c, h1⟩, ⟨k1, t1d⟩).
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So if h = (h0, h1) : A→ B is an internal functor, given any t, s ∈ H(A,B) ∼= L(A,B) such that
dom(t) = h = cod(s), we define

0h ∼= (e′h0, h, h) (1.12)

t+h s ∼= (m⟨t1, s1⟩, π′
2s2, π

′
1t3). (1.13)

We are now going to see that, in this context, every internal natural transformation is a natural
2-cell (in the sense of Definition 4.3).

Before stating the result we refer to Section 2 observing that, for every internal category A =
(A0, A1, d, c, e,m), there exists an internal category

A→ = (A1, A1, 1, 1, 1, 1) ,

which is in some sense the category of arrows of A, together with two internal functors

d→ = (ed, d) : A→ −→ A

and
c→ = (ec, c) : A→ −→ A,

of which we may think of as the domain and codomain functors.
We are now going to prove that an internal transformation is natural if and only if it is natural

with respect to the arrow transformation, and then, as a consequence, we can show that every
internal natural transformation is a natural 2-cell.

Proposition 5.1. Let B be a category and take C = Cat(B) with its 2-cell structure of internal
transformations. A 2-cell t ∈ H (A,B) is natural if and only if it is natural with respect to the
2-cell

(1A1 , ed, ec) ∈ L (A→, A) ∼= H (A→, A) .

Proof. Let us first observe what it means for t = (t, h1, k1) ∈ L(A,B) ∼= H (A,B) to be natural
with respect to an arbitrary appropriate 2-cell z = (z, f1, g1) ∈ L(X,A) ∼= H (X,A):

... X1
////

g1

��
f1

��

X0

g0

��
f0

��

z

}}||
||
||
||

oo

... A1
////

k1

��
h1

��

A0

k0

��
h0

��

t

}}||
||
||
||

oo

... B1
//// B0

oo

by definition of the relation of horizontal composition (see Definition 4.2), through some calculations
we have

t ◦ z ⇔ (k1z, k1f1, k1g1) + (tf0, h1f1, k1f1) = (tg0, h1g1, k1g1) + (h1z, h1f1, h1g1)

⇔ (m ⟨k1z, tf0⟩ , h1f1, k1g1) = (m ⟨tg0, h1z⟩ , h1f1, k1g1)

⇔ m ⟨k1z, tf0⟩ = m ⟨tg0, h1z⟩ (1.14)
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and, also by definition, t is an internal natural transformation when

m ⟨k1, td⟩ = m ⟨tc, h1⟩ (1.15)

which is equivalent to saying that (t, h1, k1) is natural relative to (1A1 , ed, ec) , as displayed below

... A1

ec

��
ed

��

A1

c

��
d

��

1

~~||
||
||
||

... A1
//// A0

oo

.

q.e.d.

Corollary 5.2. Every internal natural transformation in C = Cat(B) is a natural 2-cell.

Proof. Simply observe that
(1.15) =⇒ (1.14)

since

m ⟨k1, td⟩ z = m ⟨tc, h1⟩ z
m ⟨k1z, tdz⟩ = m ⟨tcz, h1z⟩
m ⟨k1z, tf0⟩ = m ⟨tg0, h1z⟩ .

q.e.d.

In this case there is a simple criterion which detects whether a 2-cell is natural or not without
the need of comparing it with all the possible 2-cells. This seems to be an intrinsic phenomenon
for this particular 2-cell structure in this type of category.

5.8 Abstract 2-cells, and conjugations

This example is motivated by Examples 5.5, 5.6 and 5.9 (see below).
Let C be a category and consider

H : Cop ×C −→ Mon

a functor into Mon, together with a natural transformation

D : UH × homC −→ homC

(with U : Mon −→ Set denoting the usual forgetful functor) satisfying

D (0, f) = f

D (x′ + x, f) = D (x′, D (x, f))

for all f : A −→ B in C and x′, x ∈ H (A,B), where 0 denotes the zero element in the monoid
H (A,B), which is written in additive notation although it is not necessarily commutative.
With these data, we can define a 2-cell structure over C:

UH × UH × homC
+×1 // UH × homC

π2 //

D
// homC⟨0,1⟩oo
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specifically, the 2-cells are displayed as

A

f

""

D(x,f)

??B(x,f)

��
,

with vertical composition given as illustrated

A

f

��
D(x,f) //

D(x′,D(x,f))

GGB

(x,f)

��

(x′,D(x,f))

��

(x′, D (x, f)) + (x, f) = (x′ + x, f) , (1.16)

which is well defined because D (x′ + x, f) = D (x′, D (x, f)). The identity 2-cells are of the form

A

f

""

f

??B(0,f)

��

which are well defined because D (0, f) = f . The left and right actions of the morphisms in the
2-cells,

A′ h // A

f

""

D(x,f)

??B
g // B′(x,f)

��

are given by the formulas

g (x, f)h = (gxh, gfh) = (H (h, g) (x) , gfh) .

If in addition
D (y, g)x+ yf = yD (x, f) + gx, (1.17)

for all x, y, f, g as pictured

A

f

""

D(x,f)

??B

g

##

D(y,g)

==C(x,f)

��
(y,g)

��
,
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then the 2-cell structure is natural and the result is a 2-category. Observe that condition (1.17) is
equivalent to

D(y, g)(x, f) + (y, g)f = (y, g)D(x, f) + g(x, f)

via the definition (1.16) of + and the properties identified in Proposition 3.3.

5.9 The category of groups and group homomorphisms

When C is the category Grp of groups and group homomorphisms, we may consider the canonical
2-cells obtained by considering each group as a one object groupoid and each group homomorphism
as a functor. In that case, as it is well known, for homomorphisms f, g : A→ B, a 2-cell

t : f −→ g

is an element t ∈ B such that

tf (x) = g (x) t , for all x ∈ A.

Since, for given t and f , the homomorphism g is uniquely determined as

g (x) = tf (x) t−1 = tf (x) ,

this particular 2-cell structure over Grp is just an instance of Example 5.8 with Grp instead of Mon.
To see it we consider the functor H that projects the second argument

H : Grpop × Grp −→ Grp

(A,B) 7−→ B

together with

D : B × hom (A,B) −→ hom (A,B) .

(t, f) 7−→ tf

It is a straightforward calculation to check that

D (0, f) = f

D (t+ t′, f) = D (t,D (t′, f)) .

Moreover, since condition (1.17) is satisfied, the 2-cell structure is natural.

5.10 Abstract 2-cells, and derivations

This example is motivated by the example of crossed modules with derivations, as described in
5.11.

Here C has to be a category for which the functor

homC : Cop ×C −→ Set

can be extended into Mon, that is, there is a functor (denoted by map — we are thinking of the
underlying map of a homomorphism)

Cop ×C
map // Mon

U // Set
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with hom ⊆ U map, in the sense that hom (A,B) ⊆ U(map (A,B)), naturally for every A,B ∈ C.
When this is the case, any functor

K : Cop ×C −→ Mon

together with a natural transformation

D : K −→ map,

determines a 2-cell structure over C as follows. The functor H : Cop ×C −→ Set is given by

H (A,B) = {(x, f) ∈ K (A,B)× hom (A,B) | D (x) + f ∈ hom (A,B)}

and
H (h, g) (x, f) = (K(h, g)(x), gfh) = (gxh, gfh) ,

while dom, cod, 0,+, are given as illustrated

A

f

��

D(x)+f

AAB,(x,f)

��

with (x, f) ∈ H (A,B); the formula for the vertical composition is

(x′, D (x) + f) + (x, f) = (x′ + x, f) ;

the identity cells are of the form
(0, f) ;

while the left and right actions are computed as

g (x, f)h = (gxh, gfh) .

We can represent the 2-cell structure via the diagram

L
+ // H

π2 //

D+1
// homC⟨0,1⟩oo

with L(A,B) = {(x′, x, f) ∈ K(A,B)2 × hom(A,B) | D(x′ + x) + f ∈ hom(A,B)}. Observe that
the functor H is well defined because

D(gxh) + gfh = gD(x)h+ gfh = g(D(x) + f)h

is a morphism in C whenever D(x) + f is in hom(A,B), and similarly for L.
If, in addition, the property

D (y)x+ gx+ yf = yD (x) + yf + gx (1.18)

is satisfied, for all (x, f) ∈ H (A,B) and (y, g) ∈ H (A,C), then the resulting structure is a 2-
category (compare with Equation (1.17)).
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5.11 The case of crossed modules

In the case C is the category X-Mod of crossed modules of groups, we have the canonical 2-cell
structure given by derivations, which is an instance of the above construction with Grp instead of
Mon:

The objects in X-Mod are of the form

A =
(
X

d−→ B,φ : B −→ Aut (X)
)

in which d : X −→ B is a group homomorphism, φ is a group action of B on X, denoted by
φ(b)(x) = b · x, and satisfying

d (b · x) = bd (x) b−1

d (x) · x′ = x+ x′ − x.

A morphism f : A −→ A′ in X-Mod is of the form

f = (f1, f0)

with f1 : X −→ X ′ and f0 : B −→ B′ group homomorphisms such that

f0d = d′f1

and
f1 (b · x) = f0 (b) · f1 (x) .

Clearly there are functors
map : Cop ×C −→ Grp

sending (A,A′) to the group of pairs (f1, f0) of maps (not necessarily homomorphisms) f1 : UX −→
UX ′ and f0 : UB −→ UB′ such that

f0d = d′f1,

with the group operation defined componentwise

(f1, f0) + (g1, g0) = (f1 + g1, f0 + g0) .

Moreover, there is a functor
M : Cop ×C −→ Grp

sending (A,A′) to the group M (A,A′) = {t | t : UB −→ UX ′ is a map}, and a natural transfor-
mation

D : M −→ map

defined by
D (A,A′) (t) = (td, dt) .

With this data we define H (A,A′) as

{(t, f) | t ∈M (A,A′) , f = (f1, f0) : A −→ A′ , (td+ f1, dt+ f0) ∈ hom (A,A′)} .
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The condition (td+ f1, dt+ f0) ∈ hom (A,A′) asserts that the pair (td+ f1, dt+ f0) is a morphism
of crossed modules

X
d //

td+f1
��

B

dt+f0
��

X ′ d // B′

(1.19)

and it is equivalent to

• dt+ f0 is a homomorphism of groups

dt (bb′) = d (t (b) + f0 (b) · t (b′))

• td+ f1 is a homomorphism of groups

t (d (x) d (x′)) = t (dx) + f0d (x) · td (x′)

• the square (1.19) commutes, which is trivial because (f1, f0) ∈ hom (A,A′)

• (td+ f1) preserves the action of (dt+ f0)

t
(
bd (x) b−1

)
= t (b) + f0 (b) · t (d (x)) + f0

(
bd (x) b−1

)
· (−t (b)) .

This same condition implies that t is a derivation, which means that

t (bb′) = t (b) + f0 (b) · t (b′) , for all b, b′ ∈ B.

Thus, this is an instance of the example presented in 5.10. This particular example is further
explored in [16] where the description of pseudocategories given in Theorem 6.2 is detailed.

5.12 Abstract 2-cells and homotopies

A particular (but important) case, which is obtained from the more general example presented in
5.10, is when C is an Ab-category. A 2-Ab-category, as defined in [10] and [12], is obtained in this
way. The functor hom coincides with map and moreover it is a functor into the category Ab of
abelian groups.

hom : Cop ×C −→ Ab

This means that giving a 2-cell structure on C is to give a functor

H : Cop ×C −→ Ab,

which is usually required to be an Ab-functor, together with a natural transformation D : H −→
hom. The 2-cell structure thus obtained makes C into a 2-category (in fact a 2-Ab-category)
if and only if the condition D (y)x = yD (x) is satisfied for every appropriate x and y. This
condition is just how the condition (1.18) simplifies in this context, see [10] and [12] for more
details. Furthermore, as proved in [10], every 2-cell structure (if enriched in Ab) is obtained in this
way.

Many of these considerations are still valid for an arbitrary monoidal category V instead of Ab,
but in general not all 2-cell structures are obtained in this way.
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5.13 The case of Abelian Chain Complexes

We now consider an example of a category with a canonical 2-cell structure in which not every
2-cell is a natural 2-cell (see Definition 4.3).

The example of abelian chain complexes (say of order 2 to simplify notation) is self explanatory
(see also [1, 2] and references there). We have objects, morphisms and 2-cells (homotopies) as
displayed

A2
d //

g2

��
f2

��

A1
d //

g1

��
f1

��

t2

~~}}
}}
}}
}}

A0

g0

��
f0

��

t1

~~}}
}}
}}
}}

A′
2

d // A′
1

d // A′
0

(1.20)

with

dt1 = g0 − f0

t1d+ dt2 = g1 − f1

t2d = g2 − f2

or equivalently

g0 = dt1 + f0

g1 = t1d+ dt2 + f1

g2 = t2d+ f2

and hence we have, for C =2-Ch(Ab), the functor

H : Cop ×C −→ Ab

sending the pair of objects (A,A′) to the abelian group of pairs (t2, t1); and the natural transfor-
mation

D : H −→ hom

sending a pair (t2, t1) as above to the triple (t2d, t1d+ dt2, dt1) displayed as follows

A2
d //

t2d

��

A1
d //

t1d+dt2
��

A2

dt1
��

A′
2

d // A′
1

d // A′
0.

This is clearly an instance of the construction used in Examples 5.10 and 5.12; however condition

D(x)y = xD(y)

is not always satisfied, since it becomes, for x = (t2, t1) and y = (s2, s1)

(t2ds2, dt2s1 + t1ds1) = (t2ds2 + t2s1d, t1ds1)
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which holds if t2s1 = 0, but not in general. Note that, as for homotopies, the formula gxh is defined
as follows

(g2, g1, g0)(t2, t1)(h2, h1, h0) = (g2t2f1, g1t1f0).

The commutator (see Definition 4.5) in this case is given by the formula

[x, y] = (−t2s1d, dt2s1) ,

whenever it is defined.

5.14 A slightly more general example

This is still a slight generalization of Example 5.10.
Suppose A is a category admitting a forgetful functor U : A −→ Set, and let us assume the

existence of a functor
map : Cop ×C −→ A

with a natural inclusion
homC (A,B) ⊆ U(map (A,B)) (1.21)

as detailed in 5.10 but with a generic A instead of Mon.
Once having such data we may be interested in considering the 2-cell structures over C that

are loosely enriched in A in the same way as C is. To do that we consider an internal category in

AC
op

×C, say

M ×map M
+−→M

dom−−→
0←−
−→
cod

map, (1.22)

and construct a 2-cell structure on C as follows:

H (A,B) = {x ∈ UM (A,B) | U(domA,B)(x), U(codA,B)(x) ∈ hom (A,B)}

the (left and right) action gxh of the morphism g : B → B′ and the morphism h : A′ → A on the
element x ∈ H(A,B) is defined by the formula UM(h, g)(x). The functor H, which on morphisms
is given by H(h, g)(x) = gxh, is well defined because (1.21) is required to be a natural inclusion.
In other words, the 2-cell structure thus constructed is obtained as a restriction of (1.22), after
applying U , as illustrated in the following diagram

UM ×U map UM
+ // UM

dom //

cod
// U map0oo

L

⊆

OO

// H

⊆

OO

d //

c
// hom

⊆

OO

oo

with L(A,B) = {(x, y) ∈ UM(A,B)2 | U(domA,B)(x) = U(codA,B)(y)}.
It is now interesting to observe that the case A = Mon is precisely the construction of Example

5.10. Another interesting case is when A = Grp. If A = Ab and if we also ask that M has to be an
Ab-functor, then the result is a 2-Ab-category whenever the condition

D (x) y = xD (y) ,
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is satisfied for all appropriate x and y (see also Example 5.12). Here the natural transformation D
is obtained as c ◦ ker(d) with c and d as in the diagram above (this is similar to the procedure that
gives the categorical equivalence between morphisms and internal categories in abelian groups).

When A is a monoidal category and C a category enriched in A then we can always find the
functor map in the conditions above by putting map = hom.

5.15 Topological Abelian Groups

When C = Ab(Top), is the category of topological abelian groups, we can always consider the 2-cell
structure given as follows: for every topological abelian groups X and Y , H (X,Y ) is the quotient
set

{α : I ×X −→ Y | α is continuous, α (0, ) = 0 , α (t, ) is a homomorphism} / ∼
in which I denotes the unit interval and the equivalence ∼ identifies

α ∼ β

if and only if:

1. α (1, ) = β (1, ), which is referred to as h in item 2. just below,

2. there exists Φ : I × I ×X −→ Y , continuous and such that

Φ (0, , ) = α

Φ(1, , ) = β

Φ (s, 0, ) = 0

Φ (s, 1, ) = h

3. and Φ (s, t, ) is a homomorphism.

The natural transformation D : H −→ hom is given by

D ([α]) = α (1, )

with
(g[α]f) (t, x) = g (α (t, f (x))) .

It is clear that the condition
[α]D ([β]) = D ([α]) [β]

holds because
αD (β) ∼ D (α)β ⇔ α (t, β (1, x)) ∼ α (1, β (t, x))

and there exists
Φ (s, t, x) = α

(
t(1−s), β (ts, x)

)
.

This means that we may use the previous information to build on Ab(Top) a 2-cell structure,
as in Example 5.14, knowing that the result is a 2-category.

Finally we observe that the notion of a category with a 2-cell structure, besides giving a simple
characterization of a 2-category as

“2-category”=“sesquicategory”+“naturality condition”,

it also gives a useful tool in generating examples in arbitrary situations.
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6 Pseudocategories

The original notion of internal pseudocategory considered in [11] was only defined internal to a
2-category. Here we extend it to the more general context of a category with a 2-cell structure (or
sesquicategory).

In any category C it is always possible to consider two trivial 2-cell structures (see Definition
3.1), namely the discrete one, which is obtained when H = hom and dom, cod, 0,+ are all identities,
and the codiscrete one, which is obtained when H = hom× hom, dom is the second projection, cod
is the first projection, 0 is the diagonal and + is given by (f, g, h) 7→ (f, h). As already observed,
in the former case a pseudocategory is an internal category to C, while in the later it is simply a
precategory in C.

When C = Cat(Set), and choosing for the 2-cell structure the natural transformations, then a
pseudocategory is a pseudo-double-category in the sense of Grandis and Paré (see [4, 5]), which is
at the same time a generalization of a double-category and a bicategory.

At this level of generality, it seems that there is no particular reason why to prefer a specific
2-cell structure to another. For instance, the category of topological spaces is usually considered
with the 2-cell structure which is obtained from the homotopy classes of homotopies, but there are
perhaps others which could have been considered as well.

We are now going to extend the notion of pseudocategory to its full generality.
Let C be a category with a 2-cell structure (H, dom, cod, 0,+). Recall from Section 2 that an

internal precategory in C is a system

(C0, C1, C2, d, c, e,m, π1, π2)

with C0, C1, C2 objects and d, c, e,m, π1, π2 morphisms in C, displayed as

C2

π2 //

π1

//m // C1

d //

d
// C0eoo ,

such that the conditions (PC1), (PC2) and (PC3) are satisfied. We now need a reformulation of
(PC3), denoted by (PC3*), to be used in the context of a 2-cell structure. We will say that a
commutative square dπ1 = cπ2 such as the leftmost one in the diagram (1.23) below (compare with
(PC3)) satisfies (PC3*) if there are spans

C2 C3
p1oo p2 // C2 , C3 C4

p′
1oo p′

2 // C3

such that all the squares

C2
π2 //

π1

��

C1

c

��
C1

d // C0

C3
p2 //

p1

��

C2

π1

��
C2

π2 // C1

C4

p′
2 //

p′
1

��

C3

p1

��
C3

p2 // C2

(1.23)

are H-cartesian pullback squares (see Definition 4.1). In that case we have induced morphisms
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(indeed every morphism can be identified with its identity 2-cell)

e1 = ⟨1, ed⟩ : C1 −→ C2

e2 = ⟨ec, 1⟩ : C1 −→ C2

m1 = 1×m : C3 −→ C2

m2 = m× 1 : C3 −→ C2

i0 = e1 × e2 : C2 −→ C3

m3 = 1×m× 1: C4 → C3

m4 = m× 1× 1: C4 → C3

m5 = 1× 1×m : C4 → C3,

and for appropriate 2-cells α ∈ H (C3, C1) and λ, ρ ∈ H (C1, C1) we have (see Definition 4.1)
induced 2-cells

(α×01C0
01C1

), (01C1
×01C0

α) ∈ H(C4, C2)

and
(ρ×01C0

01C1
), (01C1

×01C0
λ) ∈ H(C2, C2).

Explicitly (α×01C0
01C1

) is defined via the diagram

C3

α

��

dπ2p2 // C0

01C0

��

C1
coo

01C1

��
C1

d // C0 C1;
coo

indeed C4 can be seen also as the pullback of dπ2p2 and c. The other 2-cells are defined similarly.

Definition 6.1. A pseudocategory internal to a category C, with respect to a 2-cell structure
(H, dom, cod, 0,+), is a system

(C0, C1, C2, d, c, e,m, π1, π2, α, λ, ρ)

in which C0, C1, C2 are objects in C, d, c, e,m, π1, π2 are morphisms in C, which display as

C2

π2 //

π1

//m // C1

d //

c
// C0eoo ,

satisfying the conditions (PC1), (PC2) and (PC3*) (see (1.23) above). Moreover α, λ, ρ are natural
and invertible 2-cells

α ∈ H (C3, C1) and λ, ρ ∈ H (C1, C1)

with

dom (α) = mm1 , cod (α) = mm2

dom (λ) = me2 , dom (ρ) = me1 , cod (λ) = 1C1 = cod (ρ)
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and such that the following conditions hold true

dλ = 0d = dρ

cλ = 0c = cρ

dα = 0dπ2p2 , cα = 0cπ1p1

λe = ρe

αm4 + αm5 = m (α× 01) + αm3 +m (01 × α) (1.24)

m (01 × λ) = m (ρ× 01) + αi0. (1.25)

The 2-cells α, λ, ρ are usually presented as

C3

mm1

$$

mm2

;;C1α

��
, C1

me2
$$

1

;;C1λ

��
, C1

me1
$$

1

;;C1ρ

��
.

Equations (1.24) and (1.25) correspond respectively to the internal versions of the Pentagon and
Middle Triangle in Mac Lane’s Coherence Theorem [9], presented diagrammatically as

•
m(0C1

×C0
α)

//

α(1C1
×C0

1C1
×C0

m)

����
��
��
��
��
��
�

•

α(1C1
×C0

m×C0
1C1

)

��0
00
00
00
00
00
00

•

α(m×C0
1C1

×C0
1C1

)

  B
BB

BB
BB

BB
BB

BB
BB

B •

m(α×C0
0C1

)

~~||
||
||
||
||
||
||
||

•

(1.26)

• αi0 //

m(0C1
×C0

λ) ��@
@@

@@
@@

•

m(ρ×C0
0C1

)����
��
��
�

•

(1.27)

and restated in terms of generalized elements as

f(g(hk))
fαg,h,k //

αf,g,hk

zzuuu
uuu

u
f((gh)k)

αf,gh,k

$$II
III

II

(fg)(hk)

αfg,h,k **TTT
TTTT

TTTT
T (f(gh))k

αf,g,hkttjjjj
jjjj

jjjj

((fg)h)k

(pentagon)
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f(1g)
αf,1,g //

fλg ""D
DD

DD
DD

D
(f1)g

ρfg
||zz
zz
zz
zz

fg

(middle triangle)

with fg = m ⟨f, g⟩ representing the composition of generalized elements which are nothing but two
morphisms f, g : X → C1 such that df = cg; this means that ⟨f, g⟩ is the corresponding induced
morphism into the pullback object C2.

We conclude this exposition with three applications. The first example is an instance of 5.7, the
second one is an application of 5.8, while the third one is from 5.12.

6.1 Pseudocategories internal to Cat(B) with B weakly Mal’tsev

In the setting of Section 2, let B be a weakly Mal’tsev category [13]. This means that B has
pullbacks of split epimorphisms along split epimorphisms, and, for every two split epimorphisms
f : A→ B and g : C → B with sections r and s, respectively, the two induced morphisms ⟨1A, sf⟩
and ⟨rg, 1C⟩ into the pullback of f and g are jointly epimorphic. Consider C =Cat(B) equipped
with the 2-cell structure

H = (H, dom, cod, 0,+)

as in 5.7.
As proved in [14], the pair (C,H) is a weakly Mal’tsev sesquicategory in which every pullback

square is H-cartesian. The following theorem is also proved there (Chapter 9, Theorem 105 and
following).

Theorem 6.2. Let B be a weakly Mal’tsev category and consider C = Cat(B) with the 2-cell
structure (H, dom, cod, 0,+) as in 5.7. A pseudocategory internal to C and relative to the given
2-cell structure, satisfying the additional condition

λe = 0e = ρe (1.28)

is completely determined by a reflexive graph in C

C1

d //

c
// C0eoo , de = 1C0 = ce

together with 2-cells
λ, ρ ∈ H (C1, C1)

satisfying the following conditions,

cod (λ) = 1C1 = cod (ρ)

dλ = 0d = dρ

cλ = 0c = cρ

λe = 0e = ρe
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and furthermore it is equipped with a morphism

m : C2 −→ C1

uniquely determined by
me1 = u , me2 = v,

with v = dom (λ) and u = dom (ρ), together with a 2-cell α ∈ H (C3, C1), uniquely determined by

αi1e1 = −ρu , αi2e1 = −uλ+ λu , αi2e2 = λv.

6.2 Pseudocategories in groups

In this second example we describe pseudocategories internal to groups. It gives a relaxed notion
of a crossed module (X,B, ∂) in which we have the freedom to choose an element δ in the centre
of X.

It is well known that internal categories in the category of groups are equivalent to crossed
modules (see [9] p. 285 for an explicit description of the equivalence). In a similar way a pseudo-
category internal to the category of groups, with the 2-cell structure given as in 5.9, is completely
determined by a group homomorphism

X
∂−→ B,

an action of B on X (denoted by b · x) and a distinguished element δ in X satisfying the following
conditions

∂δ = 0

x = δ + x− δ

∂ (b · x) = b∂ (x) b−1

∂ (x) · x̄ = x+ x̄− x.

In this case it is not difficult to describe the objects and the pseudomorphisms from the internal
pseudocategory, with the respective isomorphisms α, λ and ρ. The objects are elements of B, the
arrows are pairs

(x, b) : b −→ ∂x+ b

and the composition of
(x′, ∂x+ b) : ∂x+ b −→ ∂x′ + ∂x+ b

with
(x, b) : b −→ ∂x+ b

is
(x′ + x− δ + b · δ, b) : b −→ ∂x′ + ∂x+ b.

The isomorphism between (0, ∂x+ b)◦ (x, b) = (x, b)◦ (0, b) and (x, b) is the element (δ, 0) ∈ XoB.
Associativity is satisfied, since

(x′′, ∂x′ + ∂x+ b) ◦ ((x′, ∂x+ b) ◦ (x, b)) = ((x′′, ∂x′ + ∂x+ b) ◦ (x′, ∂x+ b)) ◦ (x, b) .
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6.3 The additive case

In the case when A is an additive category with kernels, equipped with a 2-cell structure which is
given by an Ab-functor

H : Aop ×A −→Ab

and a natural transformation
D : H −→ homA,

as in 5.12, 5.13, 5.14, a pseudocategory internal to it is completely determined by

A
h−→ B

λ, ρ ∈ H (A,A)

η ∈ H (B,A)

hλ = 0

hρ = 0

hη = 0

with α uniquely determined. The pseudocategory thus determined is of the form (see [10])

A⊕A⊕B
m−→ A⊕B

(0 1)−−→
(01)←−−−→
(h 1)

B

m =

(
f g h
0 0 1

)

g = 1−D (λ)

f = 1−D (ρ)

h = −D (η)

α =

(
α1 α2 α3 α0

0 0 0 0

)

α1 = −fρ
α2 = λ+ gρ− ρ− fλ

α3 = gλ− fηδ

α0 = gη − fη

λ =

(
λ η
0 0

)
ρ =

(
ρ η
0 0

)
,



138 N. Martins-Ferreira

with obvious abuse of notation for λ and ρ.
In particular the category of abelian chain complexes is of this form but there we have to

specify that λ and ρ are natural 2-cells in the sense of Definition 4.3. See also the last remark in
the conclusion of this article.

Another example of this form is the category Ab(Top) (see example 5.15). A pseudocategory in
Ab(Top) (with the 2-cell structure as in 5.15) is completely determined by a morphism in Ab(Top)

k : A −→ B,

together with
λ, ρ : I ×A −→ A

in H (A,A) and also
η : I ×B −→ A

in H (B,A) satisfying
kρ (t, ) = 0, kλ (t, ) = 0, kη (t, ) = 0.

The objects in the pseudocategory are the points in B while the pseudomorphisms are pairs (a, b)
with domain b and codomain k (a) + b; the composition of

b
(a,b) // b′

(a′,b′) // b′′

is given by the following formula

(a− ρ (1, a) + a′ − λ (1, a′)− η (1, b) , b) .

In particular, when A is the space of paths in B starting at zero

A = {x : I −→ B | x continuous and x (0) = 0}

with
k (x) = x (1)

and choose representatives of λ, ρ and η as

λ (s, x) (t) =

 x (st)− x (2st) if t 6 1
2

x (st)− x (s) if t > 1
2

ρ (s, x) (t) =

 x (st) if t 6 1
2

x (st)− x (2st− s) if t > 1
2

η = 0

we obtain the usual composition of paths

y + x =

{
x (2t) if t 6 1

2

y (2t− 1) + x (1) if t > 1
2

.
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7 Conclusion

As follows from Definition 4.3, recognising whether a given 2-cell x ∈ H (A,B) is a natural one is
generally a complicated task: we have to analyse equation (1.11) for every possible y. However,
removing naturality conditions for α, λ, ρ, we loose the Coherence Theorem [9] and we have no
longer guaranteed that, for example, the diagrams

1(fg)
α1,f,g //

λfg ""D
DD

DD
DD

D
(1f)g

λfg||zz
zz
zz
zz

fg

(1.29)

f(g1)
αf,g,1 //

fρg ""D
DD

DD
DD

D
(fg)1

ρfg
||zz
zz
zz
zz

fg

(1.30)

are commutative. These diagrams, when internalised, correspond respectively to the following
equations

m (λ× 0C1) + αi2 = λm,

ρm+ αi1 = m (0C1 × ρ)

and since the 2-cells are assumed to be invertible they can be presented as

αi2 = −m (λ× 0C1) + λm,

αi1 = −ρm+m (0C1 × ρ) .

The examples illustrated in the previous section suggest an intermediate notion for an unnatural
pseudocategory, where we do not ask for the 2-cells α, λ, ρ to be natural, but only to be natural
with respect to each other. In fact in all those cases the 2-cell α is completely determined; hence
(at least for a further study of those cases) we may require that only λ and ρ are natural with
respect to each other, which in other words means that the horizontal compositions

λ ◦ λ, λ ◦ ρ, ρ ◦ ρ, ρ ◦ λ (1.31)

are defined, or even that their commutators vanish (Definition 4.5). In order to have some control
on the coherence aspects we observe that at least the conditions

αi2 = −m (λ× 0C1) + λm (1.32)

αi1 = −ρm+m (0C1 × ρ) , (1.33)

should be required.
Clearly when α, λ, ρ are natural 2-cells then these three conditions are redundant and we obtain

Definition 6.1.
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For instance, in Subsection 6.1, as also proved in [14], we have that

(1.32) + (1.33) + (1.31)⇒ (1.34) + (1.35),

with (1.34), (1.35) the pentagon and the middle triangle identities restated as:

m (α× 01) + αm3 +m (01 × α) = αm4 + αm5 (1.34)

αi0 = −m (ρ× 01) +m (01 × λ) . (1.35)

In the example of Subsection 6.3 and using the notation

[x, y] = D (x) y − xD (y)

we have that α is determined by (1.32)+(1.33) but (1.34) is no longer a trivial condition: it becomes
equivalent to

(1−Dρ) [ρ, ρ] = 0

Dλ [ρ, ρ] = Dρ [λ, ρ] + (1−Dρ) [ρ, λ]

(1−Dλ) [λ, ρ] +Dλ [ρ, λ] = Dρ [λ, λ] + (1−Dρ) [ρ, η]h

(1−Dλ) [λ, λ] = (1−Dλ) [λ, η]

(1−Dρ−Dλ) [λ, η] = (1−Dρ−Dλ) [ρ, η]

which, however, is trivial as soon as we introduce (1.31). For further details about this, see the
calculations in [14, Chapter 5].
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