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Equation system describing the radiation intensity

and the air motion with the water phase transition
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Abstract. In this paper we consider the equation system describing the motion of
the air and the variation of the radiation intensity and the quantity of water droplets
in the air, including also the process of water phase transition. Under a suitable
condition we prove the existence and uniqueness of the local solution. By eliminating
the approximation by regularization of vapor density and by including the equation of
radiation, this result improves previous ones.
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semilinear terms.

1. Introduction

Many attempts of modeling the atmosphere have been made (most clas-
sic ones are for example [9], [7]), but it seems that the complete description of
atmospheric phenomena remains to be done. In [12] and [13] well-posedness
and stability of the equation system for incompressible fluids with phase
transition and without radiation intensity have been studied, whereas in
[14] the well-posedness of an equation system describing rather completely
the air motion and the water phase transition in the air is shown. But
to obtain this result, the authors have slightly modified the equations, by
replacing the vapor density by its approximation in the equations for the
densities of water vapor, of water droplets and of ice crystals.

In this paper we consider the equation system made up of the equations
considered in [14] and the equation of the radiation intensity. The intro-
duction of the radiation is motivated by the fact that the absorbtion and
diffusion of the radiation by the air can influence the state of atmosphere
as the global warming effect. We prove the existence and the uniqueness of
the local solution to this equation system, without modifying the function
representing the vapor density, but we do not consider the equation for the
density of ice crystals, excluding the phase transition to solid state; in fact,
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the behavior of this equation would be similar to that of the equation for
the density of water droplets.

From the technical point of view, for the part of the equations concerning
the velocity and the temperature we follow the scheme of [14], which is
largely based on the classical techniques of Solonnikov ([15] and others).
For the part of the equations concerning the densities of the air, of water
vapor and of water droplets, we use the techniques developed in [14] and [1]
and, as is mentioned above, improve the proof. For the equation of radiation
intensity, we use partially the techniques developed in [2], but we introduce
also new techniques for the estimation of the solution in the norms of L™
and of L2,

2. Equation system

We will consider our equation system in a bounded domain Q C R3?
with a sufficiently regular boundary 092. We denote by o(t,z) (t > 0, x €
Q) the dry air density, by 7(t,z) the water vapor density, by o(t,m,x)
(m > 0 is the mass of a droplet) the density of liquid water, by T'(¢,z) the
temperature of the air, by v(t,x) = (v1,v2,v3) the velocity of the air, by
u(t,m,x) = (u1,us,us) the velocity of the droplets, and by Ix(x,q1) the
radiation intensity of wavelength A\. Moreover, we denote by 7 and ( the
viscosity coefficients, by s the thermic conductivity, by ¢, the specific heat
at constant volume, and by L, the latent heat relative to the gas-liquid
transition.

We assume that the pressure is given by

p= RO<Q + ”)T,
Ha K

where Ry, pe and p are respectively the universal constant of gases, the
average molar mass of the dry air and the molar mass of H,O. We assume
also that the external force is given by the gradient of a potential ®.

In order to describe the motion of the air, the phase transition of water
vapor, the variation of the density of water vapor, the motion of water
droplets, the variation of the radiation intensity and their interactions, based
on the fundamental equations given in [6] and [8] and their application to the
mentioned phenomena (see [10], [14], [2]), we consider the following system
of equations:



On a system of equations modeling the radiation and the air motion 157

do
5 + V- (ov) =0, (2.1)
on
5 + V- (mv) = —Hy(T, 7, 0(m)), (2.2)
do

e + Vim,z) - (aﬁ4l(u,T, ))

= [hg(T,m;m) + Bi(o;m) — gi(m)[r — Tos(T)] " o

+ go(m)[N* = N(0)]* [ = Fus(T)]* + Ba(o3m), (2.3)

(o+m) (?)t (v- V)v)

=nAv + <C+g>V(V'v) —ROV<<Mi - ;)T)

_ [/OOO o(m)dm + o+ TF] va, (24)

3

oT oT
(0+m)cy (at +;Uj8:pj)

:liAT—R()(Q +>TV U+772 <8'U1 +an_25ijv.v)%

a Mk el Ox; Ox; 3 Ox;

+¢(V-v)2 =V -E+ LyHy, (2.5)

—(q1 - V)I\(t,z,q1) = ba(t,x)In(t, 2, q1) — Ia(t,x, q1, N, T), (2.6)
where

Vimaz) = (Om, Oy s Oy Ouy), Ugi(u, T, 7) = (mhgr, ur, ug, uz), (2.7
E=(&1,86,83), i(t,x) / / I(t,x,q1)q1;dqrdA,

J=1,2,3, (2.8)

and Hgi, hgi, Bi(o;m), Ba(osm), JA(t,2,q1,Ix,T), ba(t, @), g1(m), go(m),

N*, N(o) are the functions (or numbers) which we are going to precise be-
low In (2.4) fo m)dm is the total weight of water droplets per unit
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volume, which is added to the weight of the air per unit volume in the equa-
tion of motion, while in (2.5), to the classical elements of heat balance, we
add, as heat source, the latent heat Ly multiplied by the quantity of phase
transition Hg; as well as the divergence of the total intensity of directional
radiation €. On the other hand, the right-hand side of the equation (2.3)
represents the variation of ¢ due to the phase transition and the coagulation
process; the meaning of each term will be given below.

We consider this equations system for t > 0, x € Q C R3, m > 0 and
q1 € S? = {g€R3:|g| =1}. The function I,(¢,x,q) appearing in (2.6)
and (2.8) depends on ¢, but the role of ¢ is only that of parameter. So in
the sequel we write simply Ix(z,q1).

Concerning Hy; and hg;, which represent the quantity of condensation
(or evaporation) on all droplets and that on droplets of mass m, they can
have some general form. But to fix the idea, we consider H,; and hgy having
the form proposed in the modeling [14], that is

Hy(T,7,0(-) = K /Ooo Slinm)o(m)dm(w — s (T)), (2.9)
hgl = hgl<T,7[',m) =K Sl(m) (W—WUS(T)), (2.10)

m

where K is a positive constant, 7,s(7") is the density of saturated vapor
with respect to the liquid state and S;(m) represents the surface area of the
droplet of mass m; for S;(m) we suppose that

Si(-) € C*(R,), Si(-) >0, (2.11)
Sitm) =0 for 0<m< % (0 < T7a), (2.12)
Si(m) = am?3, for m>ma (My < Mg < 0); (2.13)

m, and m 4 should represent the lower and the upper bounds of the aerosols
mass.
The terms Bi(o;m) and By(o;m) are defined by

Bi(o;m) = —mo(m) /000 B(m,m")o(m’)dm’,
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By(o;m) = % /m Bim —m',m")o(m’)o(m —m')dm/,
B(mi,ma) = B(ma,m1) >0 Vmi,me € Ry

where 5(m, m’) denotes the rate of occurrence of coagulation of two droplets
with mass m and with mass m’. Here we suppose that for some M > my,,

B(m',m")y=0 for m'+m” > M. (2.14)

The appearance of droplets of mass m is represented by go(m)[N* —
N(0)]T[m — sy (T)]*, where N* and N (o) should represent respectively
the total number of aerosols susceptible to the formation of droplets in the
unit volume and the number in the unit volume of aerosols already present
in droplets. The disappearance of droplet of mass m is represented by
g1(m)[m — Tysqy(T)] 0. For the coefficient functions go(m) and g,(m), we
suppose that they are sufficiently regular and

supp go(+) C [Ma,Ma],  suppgi(-) C [0,m4]. (2.15)

The functions by (t,xz) and Jx(t, =, q1,Ix,T) are defined by the relations
ba(t.2) = (a3 +ri)alt @) + (@ + )t @)

+ [T @ m P mote,mz)am, (2.16)

Itz q1, I, T) = Zrﬁl)@( )/52 In(z,¢) P (d; - a1)dd]

1
+r@<am/“Auqnﬂ>< q)dd,
47T S2

1 [
+ 471'/ 7“;3) (m)U(t; m, x)dm /32[/\ (.’B, qi)P)(\?)) (qll ’ Q1)dq1

+ (ao(t, 2) + alP 7 (t, )

+ /0 ¥ (m)a(t,m, z)dm) B\, T(t, )], (2.17)
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(1

where a)

(1

is the absorbtion coefficient, r,” is the diffusion coefficient of

radiation and P( )(ql q1) is the diffusion coefficient of radiation by the
dry air of direction ¢} in the direction g1, while a( ) 5\2) and P§2)(q’1 “q1)
are respectively the absorption coefficient and the dn“fusion coefficient of
radiation and the diffusion coefficient of radiation from the direction ¢ to
the direction ¢; by the water vapor, and af\?’) (m), rf\s)(m) and P)(\g)(q’1 “q1)
are respectively the absorption coefficient and the diffusion coefficient of
radiation and the diffusion coefficient of radiation from the direction ¢ to
the direction g; by liquid water (or solid water); (ag\ )Q( t,z) + af\2)7r(t, x) +
Ja (3) o(m,t,z)dm) B[\, T(z)] is the emission of radiation, where the
functlon B[)\ T1], called Planck’s function, is given by

2rch
BI\T] = %(eCh/k’\T — 1)t (2.18)

(here c is the speed of light, h is the Planck constant and k is the Boltzmann
constant).
For the velocity of water droplets, u(m,t,z), we assume the relation

1
ai(m)

u(t,m,x) = v(t,z) — Vo, (2.19)

where «a;(m) is the friction coefficient between the droplets with mass m and
the air.
3. Position of the problem

Consider the equation system (2.1)-(2.6) in a bounded domain Q C R?
with the initial and boundary conditions

0(0,) = 0o() € Wy (Q),  inf 0o(x) >0, (3.1)
m(0,7) = mo() € Wy (), inf mo() >0, (3.2)
o(0,-,-) = 0oo(,") € Wy(Ry xQ), oo(-,-) >0, (3.3)
vloa =0, 0(0,:) = vo(-) € W2T2/P, wglaq =0, (3.4)

VT -n|y, =0,  T(0,) =To(-) € W7 ~2/4. (3.5)
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For oy we suppose

M’ >m4 >0 such that og(m,:) =0 if m €]0,me] UM ,o0[, (3.6)
Omoo € L=(R,. x ), (3.7)

we define

Qu =10, M[xQ, VM > 0.

To specify the boundary conditions for {1} x>0, it is convenient to trans-
form the equation (2.6) into an integral equation, so that we can rewrite the
equation (2.6) in the form

d
%IA(ﬂJﬂLOMh,(h) = —bx(t,x)\(x+aq,q1)+Ix(t, x+aqi, q1, I, T). (3.8)

For (z,q1) € Q x S? we define
a?x’ql) =inf{a€eR|z+d'q €Q, Vo' €]a,0[}. (3.9)
The equation (3.8) with the condition

I(z + a(()xm)ql, ) =1z + a?qu)ql, q1) (3.10)
can be transformed into the integral equation

_ 0

Iz, q1) = Ig\)(x + a?$7Ql)q17 q)e Ty (@01 1) 1)
P 0

+ 2 Q(t,l'—i-o/ql)

47 0
a(ryqﬂ

< [ PV a) I+ olgrg)e 0 dgi do
S

r§\2) 0

A t !

+ i /ao w(t,x+ o' qr)
(z,q71)

., P)@(Qi g (x4 qu, ¢))e P @ ) gg! do!
S
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1 o0 3 0
+ — rg\ )(m) / ot,m,z +d'q)
(o3

0
(z,q1)

X /2 In(z + a/ql,qi)Pf))(q’l -ql)e_lb(z’o‘,’ql)dqida’dm
s

0
+ (a(;)@(t, r+ad'q)+ a(f)vr(t, T+ d'q)
Y(z,q1)
+ / aE\S) (m)o(t,m,x + o/ql)dm)
0
x B\, T(t, x4 o/ q1)]e @9 o/ (3.11)
where

0
Iy(z, 0, q) = / ba(t, = + o qy)de (3.12)

o

We remark that in (3.11) (z + 0‘?1; 441> q1) should belong to the set

E= J ({2° x 52 (2")), (3.13)
2090
where
S%2(2%) ={q € 5?3 >0, 2° + ag1 € Q, Ya €]0,¢[} (3.14)
(z° € 090).

For the diffusion rate Pii)(q’l -q1) and for the diffusion coefficients r&i)

(1 =1,2,3) we suppose

i 1 i
PO(g - q1) >0 Vg, q1 € 52, 47r/52 P - q)dgy =1 Vg, € S2.
(3.15)

sup / r® (m)og (@, m)dm < 4, / (@ (m) + ) (m))dm) < o,
z€Q JO 0
(3.16)

moreover, we assume that there is a strictly positive constant ¢; such that
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€
sup (’I“g\l)Pil)(C)Qo(.T) + T§\2)P)(\2)(C)7T0(.’E)) < El, (3.17)
z€N,—1<c<L1
1/2
sup <Kb sup P§3)(c)> + o 1, (3.18)
AER, —1<e<1 2
where
Ky= sup (1—e 2h0(@0la)a)) (3.19)
z€Q,q1 €52

with Ty (z, a(()x’ql), ¢1) defined in an analogous way to (3.12) but with
B () =203 + r{7)oo(x) + 2(a5? + Y )mo ()

+ 2/ (ag\s) + rg\?’))ao(m7 x)dm + 9
0

instead of by, where €5 is a strictly positive constant and sufficiently small.

It is not restrictive to suppose that the diameter of the domain €2 is equal
to 1 because we can transform a generic bounded domain into a domain with
diameter equal to 1 by a simple change of variables.

For the function ® we suppose

deC¥Q), V&-n=0 on 0N (3.20)

(n is the unit outward normal vector to 0f2).
The main result of this paper is the following theorem.

Theorem 3.1 Let us assume p > 4, 2q¢ > p > q > 3 and the conditions
(3.1)~(3.5), (3.10), (3.15)—(3.18). Then there exists a number t > 0 such
that the problem (2.1)—(2.6) admits a unique solution (o, 7,o,v,T,I\) with
the following properties:

e CODAEWHQ).  inf oltx) >0, (3:21)

me C°([0,7; W, (), >0, (3.22)
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7€ CUD W (R, x ), >0,

Omo € CO([0,7]; L™ (R4 x Q)), (3.23)
ve W2H[0,7] x ), T e W20, xQ), T >0, (3.24)
Iy € L™®(Q x S?) (3.25)

with
HSOH];VEJ([OJ]XQ) = H‘PH]Z,p(o,t;Wg(Q)) + ||at90Hl£p([o,t]XQ)

4. Equation of radiation intensity

In this section, supposing that g, m, ¢ and T are given, we prove the
existence and uniqueness of the solution to the equation (3.11) with fixed A
and ¢, and give an estimate of the difference of two solutions of (3.11) with
the same A and ¢ but different p, m, 0 and T'.

Lemma 4.1 Let be IY(2°,q1) a non-negative measurable function defined
on Z. We suppose that

( Osu;))e_lg(mo,th) < 0. (4.1)
To,q1)c=

If the functions o(t,-), 7(t,-) and T(t,-) are given in L*°(Q) and o(t,-,-) is
given in L (R4 x Q), then the equation (3.11) admits a unique solution Iy
in L*° (2 x S?) and we have

1
sup  I(z,q1) < —| sup I q1) + sup B[\ T]|,
(@,q1)E€QX S? b L (2%.q1)€E T j2<T<3T" /2
(4.2)
where
ey = ep(t) = inf e_Il’(QC’o‘gsth’ql)7

(w,q1)€Q% 52

Té_) = inf Tp(x), T(()Jr) = sup Tp(x).
€ e
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Proof.  First, supposing that I(x,q;) is a solution to (3.11), we prove the
inequality (4.2), setting

A= sup I)x(xath)a B= sup B[)‘)T]a
(z,q1)€Qx 52 T j2<T<3T (P /2

I= sup I aq).
(z9,q1)€E

From the equation (3.11), we deduce

0
L(z,q) <I+A ba(t, x4+ o'qp e Te@a) go/
Oé?awn)
0
+B bx(t,x + a'ql)e_lb(x’a'm)da’.

0
a
(z,q71)

0
ba(t, x4 o'q)e @)’ <1 — g,

¥z .a1)
(see (2.16)), we obtain
A<T+(1-¢,)(A+B).
From this inequality we deduce (4.2).

To prove the existence and the uniqueness of the solution I, we denote
by G(Iy) the second member of (3.11). So we have

G (@ @) — GU) (@, a1)]

o 1
< swp (R -IY / / <"”§1)9(t,w+a’q1>P§”(qi-m)
(2,q1)€NX 52 T Jal, g1y 75

+ 7’§2)7T(t7 x + O/Lh)PA@)((ﬁ “q1)

o0
+ / 7“;3) (m)o(t,m,z+ o/ql)PA(?’) (¢ - q1)dm> e*Ib(ﬂcva/vfh)dqida/.
0
(4.3)
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Hence, using the properties on P;\i) (see (3.15)), we obtain

1 2
G (@, q1) — GUP) (@, a1))|
0 ’
< ba(t,z + /g )e P Wae sup |10 - P
U a1) (x,q1)EQ % S2

< (1 _ e*Ib(ﬂivag,ql#h)) sup ‘ILH _ I/[\Q} |’ (4_4)
($,Q1)€Q><S2

where I,(z,a/, q1) is defined by (3.12). That is, the operator G(-) is a con-
traction in L>°(Q x S?), so that the equation (3.11) has a unique solution
in L®(Q x S2). O

Now, we are going to prove an estimate for the divergence of £.

Lemma 4.2 Let us assume o(t,-),n(t,-) € LP(Q), o(t,--) €
LP(Q; L®°(Ry)), I € L*°(2 x S§%), B\, T()] € L>=(Q). Then there ex-

ists a positive constant ¢ such that
oo
+ H/ B\, T(x)]dA )
Lo (2xS2) 0 L>(Q)

X (llell o) + I7lle@) + ol rine &, )))- (4.5)

IVl g(H Ja
0

Proof. From the definitions (2.6) and (2.8), we have

IV el < | [ [ st aanar

La(Q)

+ H/ / JA(x7Q1aI/\aT)dQ1d)\
0 S2

La(Q)

As p > g, by elementary calculus (see also the conditions (3.15), (3.16)), we
obtain the inequality (4.5) from the definitions (2.16) and (2.17). O

We prove also some estimates for the difference between two possible
functions representing the radiation intensity Iy.

Let I/[\i] (,q1), i = 1,2, two functions in L (Q x S?) verifying the equa-
tion (3.11) with o = 9;, T =m;, 0 = 04, T =T}, i = 1,2. Then we have
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I,[\l](%ql) *I,[\Q](Jﬂaéh) = Aol + A1y + Asly, (4.6)
where

Aol = —72(56 + O‘?z a4 ql)(e_lbl (@a®a) _ g=Tny (m’aom))

/ / (T(I)P(l) ~q1)(e1 — 02)(z + ' q1)

Y(w,a1)

+ VPP (gh - @) (m — o) (z + o/ gy)
+ / TE\S) (m)Pf\?’)(q’1 ~q1)(o1 — o2)(m,x + o/ql)dm>
0

% e—IbQ(Iva/»QI)I/[\z] (z + O/q1,q1)dqido/

1 0
/ / (T(Al)Px(l)(QQ “q1)o1(z + ' q1)
m a?z,ql) S2

+rI PP (g - q)mi(z + a'qr)

o0
+/ TE\B)(m)Pig)(Qi qu)oi(m, T+ O/ql)dm>
0
x (e~ Tor(@a’sa) _ o=Iv, (’”’O‘I’m))l,[\ﬂ (z +a'q1, q1)dg)da’

0
+/ < ()Ql($+aq1)+ag\)7r1(a:+a’q1)

Y(w,a1)
* @ ,
+/ ay’(m)or(m,z + « q1)>
0
X [(B[A7T1] - B[)\,TQ])eilbl ((E,a/,ql)
(eI @a’a) _ gl (@a’a)y BIA Ty)]do

0
+/0 < N )(Ql —02)(z+dq) —I—a()\)(wl —m)(z+ ' q1)

Y(z,q1)

+ /0 " 4O (m)(o1 = 0a)(myz + a’Ql)dm>

x e~ o2 (®:0500) BIX Ty)do, (4.7)
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Al = / / )P(l) (a1 - q)or(z+ ' q1)
(L q1)

+ 0PI q)mi(a + o a))

x e~ I @ala) (1l — 1) (@ + o1, ¢})da)do, (4.8)
A?“‘/ / / O m) PO, - q1)os (m, x + o/ qy)dm
S22 Jo

xemtu e () — 1) (@ + o1, q3)dg o (4.9)
here Ip,(z,0/,q1) denotes the function Ip(z,a,q1) = fo? ba(t,z + o/ q1)dd’
with o =p;, m=mj, 0 =0, 1 =1,2.

Lemma 4.3 Let us assume (3.16) and (3.17). Then we have

0
5
ATy < 4;/0 /52 \I&l] —I/[\2]](x+a’q1,q’1)dq’1da', (4.10)
1
Ao < K,/ <4/ PV () - )
™ Jg2

0 1/2
X U&”—I£2})2(x+a’q1,q’1)do/dq’1> o (411)

0
Y(x,q1)

where

Ky= sup (1- e (w’a?wm)"“)). (4.12)
z€Q,q1 €S2

Proof. The inequality (4.10) results immediately from (3.17).
On the other hand, using the Cauchy-Schwartz inequality, we have

1 0 o0 2
aont< o [ P0G ( [ ([ e+ aaan)
T Js2 a? 0

(z,q1)

1/2
> 6_21”1 (m,a',ql)da/>
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(/.

0
(=,q1)

1/2
(I = 12 (2 + o', q’l)da'> dqj.

We remark that the condition (3.16) and the definitions of I, (z,a’, ¢1) and

0 00 9 /
</ 1"&3) (m)o1(m,x + a/ql)dm> =20, (0" q1) g/
0

a?"%ql)
0 - |
< (2/ 7“;3) (m)oy(m,z + O/q1)dm> o—2I (@.0.01) g
af 0
(z,q1)

0
S 1— 6_2151 (3310‘(11(71):(11).

So we deduce

K1/2 0 1/2
fany < 50— [ 2P§3><qa-q1>< /. <IL”—I£2]>2<x+a'ql,q;>da') dd,.

(z,q1)

As (1/47) [ P)(\S)(q’1 - q1)dqy = 1, by applying again the Cauchy-Schwartz
inequality to the right-hand side of the last inequality, we obtain (4.11). O

Lemma 4.4 Let o(x) >0 for all z € Q. Then we have

1 0
/ / / oz + d'qr)da’dgrdx < / o(z)dx. (4.13)
Am @J5 a(()z,tn) Q

Proof. From

0
1
/Sz /ao o(x +a'q)dddg, < /Qeo(ﬂ:')|x — x,|2d$'

(z,q1)

we obtain

1 0 / / 1 / 1 /

— < — _

47 /9/32 /a? ) plotalq)dadgde < 4 /Q </QSO($ ) |z — w/\2d$ )dzg
T,q71
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()
([ L),

where po(+) is the Hausdorf measure of dimension 2 and

Y ={zeQ|lz—a| =1}

(12(S%) < Amr?, dist(2',00) <1

we deduce (4.13). O

Lemma 4.5 We assume the condition (3.18). Then there exists a constant
C' such that

o 1 2
/0 1 = 122, 0 gy A

< Cflloz - Ql||2L2(Q) + ||Im2 — 7T1||%2(Q)

+lloz = o1ll7z g0y, )+ IT2 = Tl o)) (4.14)

Proof.  Using (4.10) and the Cauchy-Schwartz inequality, we have

/ AL (I = 1) dgy da
S2

< 47r<// |I[1] I[2| dq d:n)

. 2\ 1/2

X (/dfv/ dq1</ / 10— 1) $+a’q1,q’1)dqida'> ) :
Q S2

| <1, we have

/2

Now, taking into account the condition \a?x a)
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1 /0 / a2 N
——= 11— I (x4 &/ q1, ¢ )dgy do
47T a‘(jw,ql) 52 g g ' '

’ 1/2
< </0 /S ‘I/[\l} _ [/[\2}‘2(;(: + a/quqi)dqida/> .
A an) 2

Changing the order of the integration with respect to ¢; and with respect
to ¢} and applying Lemma 4.4 to ¢(x + o/q1) = \I/[\l] — I£\2]|(x +d'qr,q)) for
each fixed ¢}, we obtain

! ’ [ _ 702 2
(42 IV —T / / /g
(47)2 /de/s2 dth(/ao /52| A U+ o qr, qh)dgi da

- 47r /52 dql/ dx /32/ |I£\1] _I,[\2]|2(x+a'q1,q’1)do/dq1

(z.a1)
< [ agi [ aolrl? = 1PGeah) = 18 = 1P s
We deduce
/Q ; MY = 12)dgrde < e [1TY = 12200060 (4.15)
On the other hand, according to (4.11) we have
/ Aoy (1M = 1) dgy da
QJs?

< Kz}/QHIL” - 1;2} | L2 (x 52)

1 / / @),/
X\ — [ de [ dg [ P (di- @1
<4ﬂ_ O 52 g2 A ( 1 )

0 1/2
X (I/[\l] —I/[\2])2(x+a’q1,qi)da’dqi> )

0
Y(z,q1)

From Lemma 4.4, we obtain
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dw/ dq1/ P @ / (I = 1PN (@ + o g1, ¢})do dg
SQ

Y(z,q1)

< sup P)(\?’) // I[2] (x,qy)dq)dx
S2

—1<e<1

3 1 2
= sup PA()(C)HI;]—I;]H%%stz)-
—1<e<1

Consequently, we have

/ / AoIy (1 = 1P dgy da
QJS2

3 172 1 2
< (Ko swp PO©@) I = Plaaus (416)

—1<e<1
For the term Agly, using the intermediate value theorem, we have

BLNDI-BATBI<  sp  CBATIR -7
T j2<T<3T (P /2

while the other terms of Agly can be estimated, without difficulties, by a
usual way. Thus applying Lemma 4.4, we find the inequality

/ ALy (I = 1) dg da:
QJS2

< Cx(lle2 — e1llz2(e) + llm2 — millL2(q)

+lloz — ollLz gy, ) + 112 — T1||L2(Q))||I)[\1] — I>[\2]||L2(Q><S2)>
where C), is a constant depending on I3, B[\, T3] and (9/0T)B[\,T]. O

5. Linear equations for densities

In this section we study the equations (2.1)—(2.3) for p, w, o with a
given (v,T) = (¥,T). In the following proofs, we will write simply ¢ to
denote a constant if its specific value will not be used in the sequel; of
course, constants ¢ in different inequalities are different in general.

We introduce the functions spaces



On a system of equations modeling the radiation and the air motion 173

0" = {v e W(Qy,)| v satisfies (3.4)}, (5.1)

O = {T € W' (Q,)|T satisfies (3.5)}, (5.2)

where Q¢ =]0,t1[xQ.
Let be (v,T) € @(v) X G(T) We consider the equations (2.1)—(2.3) for
0, m, o with (v,T) = (U T)

oo+ V- (0v) =0, (5.3)
o+ V- (m0) = —Hy(T, 7, 0), (5.4)
Z+me(ﬂ@@7mb
= [hg(T,m;m) + Bi(o;m) — gi(m)[m — Tos0y(T)] " |0
+ go(m)[N* — N(0)]* [ — Tpsqy (T)] T + Ba(o;m), (5.5)
where
o 1
u= ammvg (5.6)

Before the complete analysis of the equation system (5.3)—(5.5), in this
section, we study the equation (5.3), which is linear, and the linearized
equations for (5.4) and (5.5).

For the equation (5.3) we know the following result (see for example [3],

[4])-

Lemma 5.1 Let be p > 4 and v € @ﬁf). The equation (5.3) with the
condition (3.1) admits a unique solution

0 € C°([0,t1]; W, (2))
and we have
HQ(t, )H%/;(Q) S qQ(t)7 0< aQ(t) S Q(ta x) S Bg(t) < oo in Qt17 (57)

where
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a(t) = érelsfu 00 () exp(—cR@,t)t(P—l)/p)v

B,(t) = sup oo() exp(cR ot P~ H/7), (5.8)
xEN

Qo) = | 00llTy1 () xR0t 'P), Ry = [l q,)-

For the linearized equation of (5.4), we have the following lemma.

Lemma 5.2 Let bep > 4,7 € @fﬁj), T ¢ @ﬁlT), 7 € CO([0,t1]; Wy (2)),

7€ CO[0,t1]; W) (Ry x ). We suppose that there exists a positive number
M such that supp(G(t,-,-)) C Qgz, for every t € [0,t1]. Then the equation

om+ V- (nv) = —Hy(T,7,0) (5.9)

with the initial condition (3.2) admits a unique solution © € C°([0,t1];
W, () and we have

[ (¢, ')||€VI}(Q) < qx(t), (5.10)
where

ar(t) = [II70lfy1 () + Ry (Rz oyt + Rz t)]

x exp (Rt + R ) (R 1t + Rz ), 1)

Rz =Tlw210y  Ba = [Flleoqog:w; @)

Rizt) = [IT]lcoo,0,wi ®, x2))-

Proof.  See [14]. O

Lemma 5.3 Let be v € @g’), T ¢ @EIT), T € C’O([O,tl];WI}(Q)),
7 € C%[0,t1]; W, (Ry x Q). Moreover we assume that 9o € CO([0,t1];
L>® (R4 x ). Then there exists a positive constant M1 such that, provided
that a(m,-,-) = 0 for m ¢]m, /2, M1[, the equation

P ~
S+ Vi - (U (@, T, 7))
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= [ha(T,™5m) + Bi(7;m) — g1 (m)[T — Tosay(T)] " |0

+9o(m)[N* = N@)]* [T = Tusy(T)] " + B2 (@ m), (5.12)

with the initial conditions (3.3)—(3.6) admit a unique solution o € C°([0,t1];
VVI}(RJr x Q)) satisfying the following relations

Omo € C([0,11]; L (R4 x Q)), (5.13)
Mg —
o(-,m,-)=0 for m¢ ]Q,Ml [, (5.14)
||O'(t, K] ')||[§/}}(R+><Q) = ||U(t7 B )H{I/)Vpl(gﬁl) < QJ(t)v (515)

10ma (&, ) e (m, x )

t
_ 2 — 2
< {namaoummm e / (L 75, ) ey + 1705 ) e s
2 _ 2
+ llo(s, ')||L°°(R+><Q) + [0 (s, ')||L°0(R+><Q) )ds
t
% exp [ / (L4 12 -5, M oogey + 17, M o

+ HE<3ﬂ')HL°°(R+><Q))dS ) (5'16)

where
4o (t) = {||0-0||€VZ}(QM1) +c[(1+ R%ﬁ,t) + R?E,t))t
-1 2 -2
+ R(m)t(p )Py R(T,t)t(q )/q]}

X exp {c[(l + R%ﬁ,t) + R?E,t))t + R@,t)t(p_l)/p + R?ft)t(q—z)/q]}.
(5.17)
Proof. For the proof of the existence and uniqueness of the solution in

C°([0,21]; W, (2)) and the relation (5.14), see [14]. The relation (5.13) will
follow from (5.16).
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For the inequality (5.15), by taking into account (3.20), (5.6) and (5.14),
from (5.5) and integration by parts we deduce

/ Up71V(m,w)U . [741 (ﬂ, 7, T)dmdx
1

= —p/ PV (rm,z) - Uy (u, T, 7)dmdz, (5.18)
Q

M1

/Q Vim0 Vim0 - (Ust(@ T, 7) - Vi 2)) V(o dmedae
My
1

:—p/ IV )0V (o - Uni(@, T, ) dmda. (5.19)

My
Multiplying the equation (5.12) by oP~! and integrating it on Q7.
thanks to (5.18), we obtain

d =7 — T —
oy = =) [ 0"y Ou(a. T R)dmds

My
p/
Q

oPai(t,m,x)dmdzx + p/ P71y (t, m, x)dmdx
Q

M1 M1

(5.20)

where

ai(t,m,z) = hg(T,7;m) + B1(7;m) — g1 (m)[7 — Tos(T)] ",

by (ta m, :E) = gO(m) [N* - N(E)]Jr[ﬁ - ﬁvs(l)(T)]+ + B2(E§ m)

On the other hand, applying the differential operator |V(m@)o’|p’2v(m@)o’-
V (m,z) to the equation (5.12) and integrating it on Q37,, we have

d
& Hv(m,z)anip(gﬁl)

= _p/ |v(m7z)0"p_2V(m7z)O' . V(m’w) [V(m7w) . (0'1741 (ﬂ, 7, ﬁ))] dmd(L’

My
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+ p/ IV .00 P>V (m,0) 0+ YV (may [@F (m, 2, 80 + by (¢, m, x)|dmd.

(5.21)

Remembering the definitions of aj (¢, m, x) and by (¢, m, z) and using repeat-
edly the Sobolev and Holder inequalities, we deduce

’ / UPV(m’m) . ﬁ4l(ﬂ, 7, ﬁ)dmd:}:
Qﬁl

+ ‘/ oPai(t,m,x)dmdx
Qz,

<c(l+ Tlwr + 1TIwz) + lTllwz oy, + 171w o))

ol g P (5.22)

‘ / o? by (t, m, x)dmdx
Q

M

< (L4 7o) + 1T 12 o) + HE”%/VZ}(QWI))(Ho-Hip(QMl) +1), (5.23)

—1
< llolfria lIbrllzeoy, )
(©7,) 1

’ / |V(m’m)0‘p72V(m’m)0 . v(m,x) [V(m,x) . (0[74[(U, 7, ﬁ))] dmdz
O,
< c(L+ 7wy o) + ITllwze) + [@llwze,,,)) ||O-||€V]}(Qﬁl)7 (5.24)

‘ / IV 1, P>V ()0 + V() (@5 (8, m, )0 ) dmd
Q.

< c(1+ [ llw ) + 1T wz ) + HEHWI}(QWI))HO-HIP;VI}(Qﬁl)? (5.25)

’ / |V(m,m)0\p72v(m’m)a “V(m,z)b1(t, m, x)dmdx
Oz,

<c(1+ |If||%/vzg(g) + ||TH%/V3(Q) + ||5”%V,}(Qm))

X (HUHI;VI}(QWN +1). (5.26)

From (5.20)-(5.26), taking into account (5.6), we obtain
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d _ _ = _
%”UHI;V%QE) <c(1+ [Pllwz) + ”7r||%/[/p1((2) + ”TH%/Vg(Q) + HUH%/V;}(Qﬁl))

x (||0H€V;(QM1) +1),
from this inequality we deduce (5.15) with ¢, (¢) defined as in (5.17).

To prove the inequality (5.16), we consider r > p. Applying the operator
0m0|" " OO to the equation (5.12) and integrating it on Qg7,, we have

d
at HamUHLT(Qﬁl)

< C[(l + ||V - u(s, ')||Loo(szﬁ1) + HﬁHLOO(Q) + ||5||Loo(9ﬁ1)) [|Oma]| L™ (Qy,)

+ HEHLoo(QVl) ( ”EHLT(Qﬁl) + ||am5||y(9ﬁ1) )
+ (14 Il ey + 17 e g ) Bl 2y |- (5.27)

Applying Gronwall’s lemma and taking the limit for » — oo we obtain (5.16).
O

6. Equations for the water densities with given velocities and
temperature

To prove the existence and uniqueness of the solution (7, o) to the non-
linear equation system (5.4)—(5.5) and obtain its estimates with given tem-
perature T" =T and velocity v = T, we use the following lemma.

Lemma 6.1 Let be v € @g}), T ¢ @ng) and Ry > 0. We assume that
H@HWPQJ(Q“) < Ro, HT”W(?’I(Qtl) < Ro. (6.1)

Then there exists ta = ta(Rp), 0 < to < t1, such that, if T € C°([0,t5];

W, (), @ € CO[0,t2]; W, (Ry x Q)) and 0,5 € CO([0,41]; L= (R4 x Q)

with the conditions

7l coo,t21:w2 2)) < llmollwr() + 1,

15[ o 0,21 R %)) < lloollwi @y x0) + 1,
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10mT o ((0,ta); L5 (R4 x2)) < [|Om0oll Lo ®, xa) + 1, (6.2)

then the solution (mw, o) of the equations (5.9), (5.12) with the initial condi-
tions (3.2)—(3.3) satisfies the conditions

17l coqo,tapwr () < lImollwi ey + 1,
lollcoo,elwi ®y x0) < loollwr @, <o) + 1,

10mallcoo,ta): Ry x2)) < 10m00l| Loy x0) + 1, (6.3)

U('ama') =0 for m¢ :|77;(1,M1 |:

Proof. The lemma follows from the relations (5.10), (5.14), (5.15), (5.16)
(see also (5.11), (5.17)). O

Lemma 6.2 Let be v, T, My, Rg, to = to(Ro) as in Lemma 6.1. Then
there exists ts €]0,ta] such that the equation system (5.4)—(5.5) with the
initial conditions (3.2)—(3.3) admit a unique solution (w,o) € C°([0,t3];
W, () x CO([0,ts]; Wy (Ry x ))), satisfying the conditions
7l coqo.tapwr ) < Imollwie) + 1,
lollcoo,tslwi Ry xa)) < lloollwiw, xo) + 1,

10ma|lco(o,talsno0 (R x2)) < 10m00||Le=®, x) + 1, (6.4)
J('ama ) =0 fOT m € :|Tr2LavM1 |:
Proof. For 0 <t < to, we define the set
Ay = {(m, o) satisfies the conditions (C.1)-(C.4)}, (6.5)

where
me CO[0,t]; W, (), o€ C0,t; W, (R4 x Q)), (C.1)
77(07 ) = 770(')’ 0(07 ) ) = UU('? ')’ (02)
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[7llcogo,:wi) < lImollwi) + 1,
lollcoqo.nw®y xa)) < lloollwi@m, <o) + 1,

[0mo|lco((0,62);0% (R4 x2)) < [|Om0ollLe®y xa) + 1, (C.3)
ot’',m,x) =0 for m¢ ]T’;‘I,Ml[, reQ, 0<t <t (C.4)

From Lemma 6.1, the map Gy ; : Ay — Apy that sends (7,7) € Apy to
the solution (7, 0) = G1,4(7,7) of the equations (5.9), (5.12) is well defined.

Now, we prove that there exists t3, 0 < t3 < t3, such that G 4, is a con-
traction with respect to the metric of C°([0, 3]; LP(€2)) x C°([0, t3]; L* (Q357,))
on the closed set Ap,j. For this, we consider two elements (71,71), (72,02)
of A with their values by the map G1; are (m;, 04) = G14(73,0), i = 1,2;
we denote by

ﬁ:f2—ﬁ1, Y=09—01, lIl=myg—m, X=o09—o0;. (66)

The difference between the equations (5.9), (5.12) with (72, 2) and (71,771)
gives

ol _ _

E + V- ( ) Hgl (T,fl,ﬁl) — Hgl (T,fz,ﬁg) , (67)
% 0 _

En + — 5 [mhg (T, T2;m)E] + V - (X0)

= [hgu(T, Ta5m) + Bi(a2;m) — g1(m)[2 — s (T)] 7|2
+ ail{m[hgl(T,m; m) — hg (T, T2;m)]oy }
+ [hg (T, T23m) — hg(T, 713 m)|or + [B1(T2;m) — Bi(G1;m)]o
+g1(m) ([T1 = s (T)]™ = [F2 = Tus (T)] 7 ) o1
+ go(m) ([N* = N(@2)]* [Fa—T0s (D) = [N* =N (71)] " [71 =70 (T)]T)
+ Ba(G2;m) — Ba(d1;m). (6.8)

Multiplying the equations (6.7)-(6.8) respectively by |[II|P~! and |Z|P~1!,
integrating the first on {2 and the second on {237 and taking into account the
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conditions (6.1) and the estimates already known, we deduce the following
inequalities

%”HHLp(Q) < CHU”W2(Q)HHHLP(Q)
+e(L+ [T wa o) (Ml Le@) + 125l Le0y,)) T ()
(6.9)
d
%HEHLP(Qf ) S e+ Tllwz o) + ||UHW2(Q))HE||LP(QM1)
+e(L+ T lwe) (Ml o) + 1Bl Leoy,)) HEHZ[),;(lQMl)‘
(6.10)

It is useful to recall that [|0,00l L~®, x0) < 00, the inequality (6.10) is
obtained without introducing a regularization of 7. Indeed, the term that
had requested a regularization of 7 in [14] can be treated in the following
way

‘/\E]p18m{m[hgl(T,7r1;m)—hgl(T,Wg;m)]al}dmdx
My

<c / ISP~ (o1 | + |90 |)dmdz
7,

< c(|lou(t, )HLoo(QM ) 1Omo1(t, ) oo oy ))
X HZ( )HLP(QM ) HH HLP(Q)'

Multiplying (6.9)—(6.10) respectively by HHH;&) and HZH;?Q) and tak-
ing into account (6.1), we deduce

ITL(E, )l 2o ) + 12 )l ey,

< Cec(tth(q—l)/qut(p—l)/p) (t + t(qil)/q)

< (Il copo,;202) + ||§||00([o,t};m(9ﬁl))). (6.11)
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It is clear that there exists t3 €10, t2] such that

Cec(t3+ti(’)q71>/q+t1(’)p71>/p)(t3 T t:())q—l)/q) <

N |

Therefore, remembering the definition of G+ and (6.6), we deduce that the
map G, restricted to Ay, is a contraction with respect to the metric of
CO([0,5]; LP()) x CO([0, t3]; LP(Q5z,))- O

Lemma 6.3 Let be T € @,ﬁf), T e @g) verifying (6.1) and o, m, o the
solutions of the equations (5.3)—(5.5) with the initial conditions (3.1)—(3.3).
Under the same hypotheses of Lemma 6.2, there exists t4 €]0,t3] such that
for t € [0,t4] we have

1.
lo( )y < 2lleo() iy 5 inf oo(a) < oft, ) <2 sup go(a) €,

2 2'e€Q ' e
(6.12)
0<m(t,z) < sup mo(2') +1 =z €Q. (6.13)
z’'eQ
Proof.  See [14]. O

7. Linear equation for the velocity and temperature

In this section we study the linearized equations of (2.4) and (2.5). We

assume that v € @,Ef) and T € @ng) and consider the linear equations in v
and T

0+ ™~ yav— <<+")V(v.v)

ot 3
— (o4 ™)@ V)T Rov(<5a + ;)T>
- [/Ooo(a+v)dm+g+7r] Ve, (7.1)

oT > oT —
(Q""ﬂ-)cvat_RAT:_(Q+W)chUjM_RO(Q+ 7T>Tv”U
J
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ov; 6@ 2 _\ 0v;
+nz (8% axi_3%v'”)ax +(V-0)?2-V-E

1,7=1

+ LgZHgl (T, T, 0') + LlsHls(Ta o, V) + Lgngs(T, T, V), (72)

where g, m, o are the solutions of the equations (5.3)—(5.5) with the initial
conditions (3.1)—(3.3); their existence and uniqueness are proved in Lemma
6.1 and Lemma 6.2.

As in [15], we introduce the following auxiliary functions

Voo ® = [0y3s 0 S0 0 s g (79)
Vig)(t) = HT||W21 ) T sup 1T I, (7.4)
o<t <t Wi @)

(for the general theory about the concerned functional spaces, see also [16],
[17], [18]).

Lemma 7.1 Let be T € @,Ef), T e @g) and (o, 7,0) the solution of the
equation system (5.3)—(5.5) with the initial conditions (3.1)—(3.3) given in
Lemma 5.1 and Lemma 6.2. Then the equations (7.1) and (7.2), with the
conditions (3.4)—(3.5), admit a unique solution

ve W2 (Qr), T eWIH(Qu) (7.5)
Moreover we have
t
Vip,o)(t) < C(HUO‘ 2-2/p ) /0 1+ Vipw t')?)dt’ +t(2q—P)/qv(qj) (t)),
(7.6)

-~ + t2(p—q)/17v(pﬁ) (t)2q/p

Vo (0) < ¢ Tl
t
+/0 (1+V(q,T)(t/)V(pﬂ)( q/p"‘Hv gHLq(Q)) /] (7.7)

for 0 <t <ty (ts is defined in Lemma 6.3).

Proof. According to Theorem 9.1 of the chapter IV of [5], the equation
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(7.1) admits a unique solution v € Wﬁ’l(Qts), and by virtue of an extension
of the same theorem (see the last remark before paragraph 10, chapter IV
of [5]) we obtain a unique solution T' € W' (Q;,) of the equation (7.2).

Taking into account Lemma 6.3, we obtain (see [15] and also Lemma
3.4 of the chapter II of [5]) for 0 < ¢ < tg

V(Pﬂ))( ) < C(H 0||p 2 2/p(Q) + HF ||Lp(Qt ) (78)

V(QT)( ) < C(”TOHq 2- 2/q(Q) + HFTH%q(Qt)), (7.9)

where F,, and Fr are respectively the second member of (7.1) and that of
(7.2).
As 2q > p > ¢ > 3 it is not difficult to see that

HROV<<Q+W>T> + [/ adm—i—g—{—ﬂ]V(I)
Ha Hh 0

= C(l + V(q,?) (t)HTHIIjI;q?q(Q))v
t 3 __ __ _
ov, 0v; 2 81}1

Q=1
t
< [ I Vi ()

p

Lr(Q)

q
dt’
L1(Q)

The other terms of F,, and Fr can be estimated in the usual way (see also
(2.9)). Thus we deduce (7.6)—(7.7) from (7.8)—(7.9). O

8. Existence and uniqueness of the local solution
To prove Theorem 3.1, we start with the following lemma.

Lemma 8.1 There exist positive constants R,, Rt and t5 €]0,t4] such
that, if0 <t <t5,5€ O, T € O and if

Vo) (t) < Ru, Vi, 7(t) < Rr,

then the solution (v,T) of the equations (7.1)—(7.2) with the conditions
(3.4)—(3.5) satisfies the inequalities
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Vo) (£) < Ro, - Vigr)(t) < Rr.

Proof.  The lemma follows from (7.6)—(7.7) by simple calculations. O
We define

B, = {(v,T) € 0 x 0 | Vipoy(t) < Ry, Vigry(t) < RBr}.  (8.1)

For 0 < t < t5 we define the map G; : By — @ﬁv) X @ﬁT) such that,
for (v,T) € By, (v,T) = G¢(v,T) is the solution of the equation (7.1)—(7.2)
with the conditions (3.4)—(3.5). By virtue of Lemma 8.1 we have

Gt(Bt) C By, 0<t<ts. (8.2)
Proof of Theorem 3.1. For 0 < t < t5, we define
Y, = [L?(0,t; Hy (€2)) N L0, ¢; L*(2))]
x [L?(0,¢; H(Q)) N L>°(0,t; L*(2))]. (8.3)

We remark that the set B; defined in (8.1) is a closed convex set in the space
Y;. Therefore, to prove the theorem, it is sufficient to check that there exists
t € ]0,t5] such that the operator Gy is a contraction in the natural topology
of Y;.

Let be (01,T1), (02,T2) € B, 0 < t < t5. First we consider the
solutions (g1, 71, 01) and (2, e, 02) for the equation system (5.3)—(5.5) with

the conditions (3.1)-(3.3) and with the substitutions v = vy, T' = T'; and
UV = Va2, T:TQ We put

B = g1 — 03, EM =) — 7, El =gy — 0y,
E[v] =V — Vg, E[T} = Tl —Tg.
We define
Wt m, @) = Bilt,2) — —— V()
Ui\, M, L) = Vi(l, L) — x),
o (m)

— — T
Ui = (mhg (Ty,mi5m), Wit U2, Wis)
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el = (e el ell), =12

From the difference between the equations (5.3)—(5.5) for g1, 71,01 and
those for g9, 9, 09 it follows that

8B + 5, . VEY DY . Vo, + BV .7, 4 0,V - D =0,  (8.4)
0B +7, - VEW + DY Yy + BV 5, + 1w - D
= Hy (T2, ma,02) — Hy(T1,m1,01), (8.5)
O E + Uy — Uuz) Vi B + D V)02
+ E{"]V(mw) Uxn + 02V () . pv
= [hg(T1,m1;m) + Bi(o1;m) — g1(m)[m — ﬁvs(z)(Tl)]_]EM
+ {hg(T1,m1;m) — hgi(Ta, m2;m) + By (o1;m) — Bi(o2;m)
— g1(m) ([m1 — Tpsy(T1)]™ — [m2 — Tos@y(T2)] ") for2
+ go(m) ([ = Tosy(T1)] T [N* = N(o0)]*
— [ = Ty (T2)] T [N* = N(02)] ")
+ Ba(01;m) — Ba(02;m). (8.6)
We remember the relations
/ (o1 - VE€)Eleldg — — - / (V- 5)(E9)2da,
Q 2 Ja

1
/(ul-VEW)Ede = —/(V-vl)(E[”])Qdm,
Q 2 Jo

J

So, multiplying (8.4)—(8.6) by Eld, EI"l El°l integrating the first two on
2 and the others on {137 and taking into account estimates already known,
we obtain with usual calculations

— 1 .
(U1 - VE) B dmda = —2 / (V- Uua)(EY))?dmdz.
My v
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||E[ NEai) < e+ o lwz@) | E¥ 72 ) + | D" ||H1(Q)> (8.7)

%HEM]H%Q(Q) <c(1+ [ollwz) + HTlH%/V?(Q))
x (|IEM|72 0 + I|1EP ]HL2(QM )
+e(ID" oy + 1D F2y)- (88)
DY, ) < oL+ Inllwgion + 1Tz + 1T lvzco)
< (1B 2y + 127220, )
+c(ID" ey + 1D 1) (8.9)
From (8.7)—(8.9) and the initial conditions
gl (0,-) =0, E[“](O, ) =0, E[Ul(()’ ) =0,
it follows that
1B @)1Z20) + BT @) 1Z20) + 1B )220y )
| D) sy + 1D Bt
(8.10)
We consider the difference between the equations (7.1)—(7.2) for

(v1,T1) = G¢(v1,T1) and those for (ve,Ty) = G¢(v2,T3), so that if we
put Dl = 4, — vy and DTT = T}, — T, we obtain

(01 + m1)8, D" — pADI] — <<+ 3>V(V-DM)

(B 1 B8, — (01 + m)(@1 - VD — (B9 + ET) (5, - V)5,

i Elel  glrlN _
—(Q2+W2)(D[ ! 'V)Uz—ROV(< + >T1>
Ha Hh
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—R0V<<Q + 7T2>D[T]> - [/ El)dm + El +EW}V¢, (8.11)
Ha 0

(o1 + 7r1)cv8tD[T} — kAD!T]

5. oD"
= —(E[Q] + E[ﬂ])cvatT2 — (01 +m1)cy Z@u ‘

1=1
3 — 3 —
- v D — (B e ET v i
(01 +m)e ; i oz, (B¢ + EM)e ;Uz, oz,
—R0<91+”1)T v.-D" - R <91 +7“)D[T]v 0
Ha 1223 Ha Kh
Elel gilr
- 0( + >T2V U
Ha K
3 — [v] — 0]
8D 8.DJ 2 [’L) avlz
—_— —=0;;V-D
+nz<al‘] + 8:z:¢ 3 J >al']
i,j=1
—[v]
81)21 ygj 2 _ 0D;
-y YA VA (
+n Z <8x] ox; 3 iV U2> Ox;
1,j=1
+C[(V-11)? = (V- 52)%] = V- (€M - 1)
+ Ly [Hgl(Th?Tl,Jl) - Hgl(TQ,M,Uz)]- (8.12)

If we remember (2.6), (2.8) (3.15), we have

V- (M — gl
[ (0 4o
+/O (ag\?’) (m) +7‘§\3) (m))oy (m)dm)

x / (L (@, a1) = LY (2,q1)) dgrdx
S
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[ (0 )+ o o)
0

+ / (a§3>(m)+r§3)(m))EMdm) / 21§2>(x,q1)dq1dA
0 S

+/ (r&l)gl +r§\2)7r1 +/ r&g)al (m)dm>
0 0

X /SQ (L (@, a1) = L (x,01)) da; dA

+/ <T§\1)E[Q] +r§\2)E[’T] +/ rg\?’)(m)E["}dm)/ I)(\Q)(x,qi)dqid)\
0 S2

0

+47r/ <a&1)g +aPm +/ ag\g)(m)m(m)dm)
0 0
X (B()\,Tl) — B(}\,TQ))d)\

+4m /O <agl)E[9] +aPEM 4 /O af’)(m)E[U]dm)B(A,Tz)dA.
(8.13)

We multiply the equations (8.11) and (8.12) respectively by
DI /(py + 1) and D1/(p, 4+ 1) and integrate them on Q. We remem-
ber the inequalities

3 90(po1+m1) BD [v] 3 9(o1+m1) oD [v]

n / E ,] Oz 81‘] Dl de| + <€+77> / Z 7 ox; 31:J Z da
Q (01 +m)? 3 Q (01 + )2

— o] 1143 o] 1-3
<e(lletllwy o + Imllwy @) PP o I DM by

v 2 -3 2 -3 v
< ell D30 0y + Ce (oA + Im 1570 P DM gy,

where C; is a constant determined by an arbitrary constant ¢ > 0. To
estimate the term

‘/ gl _ gl2l)gy
P1 +7T1

<

Hv (e - 5[21)‘

7] ‘

1nf 00 L2(Q) H L2(Q)’
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we deduce, from Lemma 4.5
IV - (€M = B L2 e
<c(l+latllwye + Imllwze) + lotllwsomn,))

L o ol
< (I |2 ) + 1E™ 2 () + 1B r2g) + 1D 2. (8:14)

Thus using repeatedly the Sobolev, Holder and Cauchy-Schwartz in-
equalities, we obtain

d
aHD[U] ”%2(9) +50||D[U]||%11(Q)
<c(l+ H@HW,?(Q)Q)(”D[U]Hiz(ﬂ) + HE[Q]Hi?(Q) + HE[W]Hi%Q)

FEN ey ) + 1D ey + P 1) (815)
LD 3y + 2l DT
< (U Tz oy + 120rz0) (10 12y + 1B g
+ (B

a]||? *[} 2 *[T] 2
FE N ey y + 1P Mgy + 1D (2 ) (8:16)

() ()
From (8.10), (8.15)—(8.16) we obtain

IDM (01220 + 1D ()72

+ o /Ot (1D ) ) + | D] () (g dt’)
< et T HTIIN) (y(aD)fa y (o-2)/p)

—m) ]
X [HD 1o 0.1:22)) 1D 120 0.:22(62))

t
c (p=1)/p 1 4(a=2)/q —[v] —[T]
+ el / (D™ )11 + D™ () 2 )t |

(8.17)
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The inequality (8.17) allows us to find a ¢ € [0,¢5] such that

HD[v]Hioo(O,f;Lz(Q)) + ||D[T]||2L°°(0,5;L2(Q))
oln2 )12
+ DM 0 2101 0y + ID a0 2001 )

Al 2 A2
< KD L 0 gz + 1D L0 2220

Pl T 12
1D N 2001 (@) T I1P N2 701 (0))

with 0 < k < 1. It means that the operator Gy : By — B; is a contraction.
This, also thanks to the Lemma 4.1, allows us to conclude the proof of the

existence and uniqueness of the solution on the interval [0, ¢]. U
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