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Introduction
’ Throughout this paper, we assume that every ring has an identity 1,

every module over a ring is unitary and a ring extension A/B has the same
identity 1. For a commutative ring R, we consider only R-alge.bras which
are finitely generated as R-modules. By [5], an R-algebra \Lambda is called left
semisimple if any fifinitely generated left \Lambda-module is (\Lambda, R)-projective. Simi-
larly we can define right semisimple R-algebras, and an R-algebra \Lambda is called
semisimple if \Lambda is left and right semisimple. When R is indecomposable,
an R-algebra \Lambda is called simple if (1) \Lambda is semisimple, (2) there exists left
\swarrow 1-module AE which is finitely generated projective completely faithful and
(\Lambda, R)-irreducible ([12]). We call an R-algebra \Delta a division| R-algebra if \Delta

is semisimple and (\Delta, R)-irreducible. Obviously division algebras are simple
algebras.

The followings are well known. Let K be a field (a field means com-
mutative field) and let A be a finite dimensional central simple K-algebra.
Then there exists a central division K-algebra D such that A\cong(D)_{n}(n\cross n full
matrix ring over D), and the free rank of D over K([D:K]) equals s^{2} where
s(\geqq 1) is an integer. This s is called the Schur index of A and D is called
a division algebra to which A belongs.

Let \Delta be a division R-algebra and \Lambda be a simple R-algebra. If there
exists a Morita module 4M\Delta ([9]), \Delta is called a division R-algebra to which
\Lambda belongs. By [12], any simple R-algebra belongs to some division R- a1gebra_{i}.
Now, let R be a Hensel ring ([2], [10]) and \Lambda be a simple R-algebra Then
\Lambda\cong(\Delta)_{n} where \Delta is a division R-algebra to which \Lambda belongs. Moreover, \Delta

is uniquely determined up to isomorphisms and n is uniquely determiend
([12]).

The purpose of this paper is to extend some properties with respect
to the Schur index concerning fields to the case of that R is a Noetherian
Hensel ring.

We prove the followings.
THEOREM 2. 2. Let R be a semilocal ring (not necessarily Noetherian
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and has maximal ideals of fifinite numbers) which has no proper idempotmts
(i, e, R has no idempotmts except 0 and 1), S be a commutative ring, a ring
extmsion S/R be a fifinite Galois extension with Galois group G, and \Lambda be

a cmtrd separable R-algebra. We put \Gamma=\Lambda\bigotimes_{R} S. Tnen, H^{1}(G, I(\Gamma))arrow H^{2}(G\delta,

U(S)) is injective. Here, U(S) dmotes the unit group of S, I(\Gamma)=U(\Gamma)/U(S),

and U(\Gamma) denotes the unit group of \Gamma-

THEOREM 2. 7. Let R be a Noetherian Hensel ring, S be a commuta-

tive ring and a ring extension S/R be a fifinite Galois extmsion with Galois
group G such that S has no proper idempotents. Let [c_{\sigma,\tau}]\in H^{2}(G, U(S)),
\Lambda=(R)_{l} and T=\Delta(c_{\sigma,\sim}, S, G) (crossed product). Thm [c_{\sigma,\tau}] is contained in
the image of \delta if and only if the Schur index of T (see &fifinition 1. 3.)

divides l .
THEOREM 2. 2 was proved in [11], when R is a field and \Lambda=(R)_{t} for

an integer t\geqq 1 . THEOREM 2. 7 was proved in [11], when R is a field.
The authors extend their hearty thanks to Professor Y. Miyashita for

his helpful suggestion and encouragement.

\S 1. The Schur indexes of central separable algebras

In this section, so far as we don’t especially state, let R be a Noetherian
Hensel ring with unqiue maximal ideal l\mathfrak{n} .

LEMMA 1. 1. ([6]. THEOREM 4.) If \Lambda is a central separable R-dgebra,
then it is a central simple R-algebra.

PROPOSITION 1. 2. Let \Lambda be a central separable R-dgebra, and \Delta be a
division R-algebra to which \Lambda bdongs. Then \Delta is free R-module and
[\Delta;R]=s^{2} (s is an integer \geqq 1 ).

PROOF. \Delta is a central separable R-algebra ([12]. PROPOSITION 3.) and
R is a local ring (not necessarily Noetherian). Hence \Delta is a free R-module.
\Delta/\mathfrak{m}\Delta is a central division R/\mathfrak{m}-algebra ([12]. THEOREM 8, [1]. COROLLARY
1. 6.). [\Delta:R]=[\Delta/\mathfrak{m}\Delta:R/\mathfrak{m}]=s^{2} . Q. E. D.

DEFINITION 1. 3. The s which is obtaihed in Proposition 1. 2 is called
the Schur index of \Lambda .

PROPOSITION 1. 4. Let \Lambda be a central separable R-algebra, and \Delta be a
division R-algebra to which \Lambda belongs. Then a division R/\mathfrak{m}-algebra to
which \Lambda/\mathfrak{m}\Lambda belongs is \Delta/\mathfrak{m}\Delta , and the Schur index of \Lambda equds the Schur
index of \Lambda/\mathfrak{m}\Lambda .

PROOF. By our assumptios, \Lambda\cong(\Delta)_{n} and \Lambda/\mathfrak{m}\Lambda\cong(\Delta/\mathfrak{m}\Delta)_{n} . Q. E. D.
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When R is a field, the following PROPOSITION 1.5, 1.6 and 1.7 are
well known. By Br(R), we denote the Brauer group of R. When R is a
Hensel ring (not necessarily Noetherian) with unique maximal ideal \mathfrak{m}, if
we use the fact that Br(R)\cong Br(R/\mathfrak{m})([2]) , these PROPOSITIONS are easily
proved. By [\Lambda] , we denote the element of Br(R) represented by the central
separable R-algebra \Lambda .

PROPOSITION 1. 5. For any [\Lambda]\in Br(R), [\Lambda]^{s}=[R] where s is the Schur
index of \Lambda .

PROPOSITION 1. 6. Let e be the exponmt of [\Lambda]\in Br(R) (that is, e is
the minimd integer n\geqq 1 such that [\Lambda]^{n}=[R]), and p be a prime number
such that p divides s. Then p divides e.

PROPOSITION 1. 7. Let \Delta be a central separable division R-dgebra, and
the Schur index of \Delta=1Ip_{i}^{\alpha_{l}}n (unique factorization to prime numbers). Thm

i=1
there exist central separable division R-dgebras \Delta_{1} , \cdots , \Delta_{n} such that \Delta\cong\Delta_{1}

\bigotimes_{R}\cdots \bigotimes_{R}\Delta_{n} , and the Schur index of \Delta_{i} equds a power of p_{i}(i=1, \cdots, n) .

PROOF. \Delta/\mathfrak{m}\Delta is a central division R/\mathfrak{m}-algebra, and the Schur index
of \Delta/\mathfrak{m}\Delta^{n}=11p_{i^{i}}^{\alpha}i=1^{\cdot} Hence \Delta/\mathfrak{m}\Delta=U_{1}\bigotimes_{R/m}\cdots,\bigotimes_{t/m}U_{n} where each U_{i} is a central
division R/\mathfrak{m}-algebra, and the Schur index of U_{i} equals a power of p_{i} . As
R is a Hensel ring, there exists a central separable division R-algebra \Delta_{i}

such that \Delta_{i}/\mathfrak{m}\Delta_{i}\cong U_{i}(i=1, \cdots, n) ( [12]. PROPOSITION 14, THEOREM 8.).
Hence \Delta/\mathfrak{m}\Delta\cong\Delta_{1}/\mathfrak{m}\Delta_{1}\bigotimes_{R/\mathfrak{n}},\cdots\bigotimes_{R’ m}\Delta_{n}/\mathfrak{m}\Delta_{n}=(\Delta_{1}\bigotimes_{t},\cdots\bigotimes_{R}\Delta_{n})\bigotimes_{R}R/\mathfrak{m}, and \Delta\cong\Delta_{1}\bigotimes_{R}\cdots\bigotimes_{A}.\Delta_{n}

([12]. PROPOSITION 14.). The Schur index of \Delta_{i} equals that of U_{\dot{f}} . Q. E. D.
PROPOSITION 1. 8. Let \Lambda be a cmtral separable R-algebra, and \Delta and

\Delta’ be division R-algebras such that \Lambda=(\Delta)_{n}=(\Delta’)_{n} . Thm an R-algebra is0-
morphism \beta:\Deltaarrow\Delta’ (see introduction) is a restriction of an inner automor-
phism of \Lambda .

PROOF. As R is a Hensel ring, \beta can be extended to an inner automor-
phism of \Lambda ([3]. THEOREM 1.2). Hence there exists a \lambda\in U(\Lambda) (the unit
group of \Lambda such) that \Delta’=\lambda\Delta\lambda^{-1} . Q. E. D.

\S 2. A generalization of P. Roquette’s theorems

In this section, we state about a generalization of [11] \S 3.
LEMMA 2. 1. Let R be a commutative ring and A be an R-algebra

which is fiat and faithful as an R-module (not necessarily fifinitely gmerated).
Let B be an R-module which is fifinitely generated, projective and faithful.
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Then the followings are true.

(1) If S is a subset of A, thmV_{A\bigotimes_{R}B}(S)=V_{A}(S) \bigotimes_{R}B where we can
consider A\otimes B(A, A)-bimodule under ( \sum_{i}a_{i}\otimes b_{i})a=\sum_{i}a_{i}a\otimes b_{i} and
a( \sum_{i}a_{i}\otimes b_{i})=\sum_{i}aa_{i}\otimes b_{i}R .

(2) Moreover, let B be an R-dgebra. Let S and T be subrings of
A and B respectively. If V_{A}(S) is a fifinitely generated and prO-
jective R-module, then V_{A\bigotimes_{R}B}(S \otimes T)=V_{A}(S)\bigotimes_{R}V_{B}(T) where S\otimes T=

\{\sum_{i}s_{i}\otimes t_{i}\in A\bigotimes_{R}B|s_{i}\in S, t_{i}\in T\} .

Here, V_{A}(S)= {a\in A|as=sa for all s\in S} and V_{A\bigotimes_{R}B}(S \otimes T)=\{\sum_{i}a_{i}\otimes b_{i}\in A\bigotimes_{R}B| ,

( \sum_{i}a_{i}\otimes b_{i})x=x(\sum_{i}a_{i}\otimes b_{i}) for all x\in S\otimes T\rangle .

PROOF. (1) First, we prove in the case that B is a free R-module.
V_{A\bigotimes_{R}B}.(S) \supset V_{A}(S)\bigotimes_{R}B is trivial. Let \{b_{i}|i=1_{?}\cdots, l\} be a free bas.e of B. For

any \sum_{i=1}^{l}a_{i}\otimes b_{i}\in V_{A\bigotimes_{R}B}(S)(a_{i}\in A), ( \sum a_{i}\otimes b_{i})s=\sum sa_{i}\otimes b_{i}=\sum sa_{i}\otimes b_{i}=s(\sum a_{i}\otimes b_{i}),

As 1\otimes b_{1},\cdots , 1\otimes b_{l} are linearly independent over A in A \bigotimes_{R}B, a_{i}s=sa_{i} for
all i=1 , \cdots , l . Hence a_{i}\in V_{A}(S) . In the case that B is a finitely gener\dot{a}ted ,
projective and faithful, there exists a finitely generated and free R-module
F such that F=B\oplus B’ (direct sum as an R-module).

V_{A\bigotimes_{d}B},(S)=A \bigotimes_{R}B\cap V_{A\bigotimes_{R}F}(S)

=A \bigotimes_{R}B\cap(V_{A}(S)\bigotimes_{R}F)

=A \bigotimes_{R}B\cap\{(V_{A}(S)\bigotimes_{R}B)\oplus(V_{A}(S)\bigotimes_{R}B’)\}

=V_{A}(S) \bigotimes_{R}B.

(2) V_{A\bigotimes_{R}B}(S\otimes T)=V_{A\bigotimes_{R}B}(S)\cap V_{A\bigotimes_{R}B}(T)

=V_{V_{A}(S)\bigotimes_{R}B}(T)

=V_{A}(S), \bigotimes_{t}V_{B}(T) (by (1\rangle.)

Q. E. D.
Let R be a semi local ring (not necessarily Noetherian and has maximal

ideals of finite numbers) which has no proper idempotents (i.e. has no
idempotents except 0 and 1^{s} ), S be a commutativ\dot{e} ring, a ring extension
S/R be a finite Galois extension with Galois group G, and \Lambda be a central
separable R-algebra. If we put \Gamma=\Lambda,\bigotimes_{f}S, \Gamma/\Lambda is a Galois extension with

Galois group G([8]). For a ring A, we denote the unit gryup of A by
U(A). Then we have a G-exact sequence
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h
1- U(S)arrow U(\Gamma) - I(\Gamma) -arrow 1

where I(\Gamma)=U(\Gamma)/U(S) and h is the canonical map. From this exact se-
quence, we obtain an exact sequence

\delta

(^{*}) H^{1}(G, U(S))arrow H^{1}(G, U(\Gamma))arrow H^{1}(G, I(\Gamma))-H^{2}(G , U(S))

([11]. \S 2.).
THEOREM 2. 2. (cf. [11\rfloor. \S 3. COROLLARY of PROPOSITION 3.) Under

the above assumptions, \delta is injective.
PROOF. Let \Delta(\Gamma, G)=\sum_{\sigma\in G}\oplus\sigma\Gamma and \Delta(S, G)=\sum_{\sigma\in G}\oplus\sigma S be trivial crossed

products. Then \Delta(\Gamma, G)=\Lambda\bigotimes_{l},\Delta(S, G) . Hence \Delta(\Gamma, G) is a central separable
R-algebra ([1]. PROPOSITION 1.5.). When we put \mathfrak{G}=\bigcup_{\sigma\in G}\sigma U(\Gamma)\subset U(\Delta(\Gamma_{J}rG)) ,
\mathfrak{G} is a splitting extension of U(\Gamma) by G as a G-group. That is, GU(\Gamma)=\mathfrak{G} ,
G\cap U(\Gamma)=1 and U(\Gamma)\triangleleft \mathfrak{G} (normal subgroup). We put \backslash \mathscr{A}=\{\mathfrak{H}\subset \mathfrak{G}|\mathfrak{H} is a
G-subgroup of \mathfrak{G} , \mathfrak{H}\cap U(\Gamma)=U(S) and \mathfrak{H} U(\Gamma)=\mathfrak{G}\} . That is, each element
of \vee r\swarrow\sqrt is an extension of U(S) by G as a G-group. For \mathfrak{H} and \mathfrak{H}^{J}\in \mathscr{B}^{\nearrow} ,
we define \mathfrak{H}_{\vee}\sim \mathfrak{H}’ by existence of a\in U(\Gamma) such that \mathfrak{H}_{\vee}’=a^{-1}\mathfrak{H}a . It is well
known that \mathfrak{H}\sim \mathfrak{H}’ implies that \mathfrak{H} and \mathfrak{H}’ are the same extension type.
Then by [11] \S 2 PROPOSITION 1, the following diagram is commutative.

H^{1}(G, I(\Gamma))arrow H^{2}(G, U(S))\delta

f|\downarrow f^{-1} | g

\mathscr{A}^{c}’/\sim – ext(G, U(S))

where f is a bijection and defined by the following way. We denote an
element of \mathscr{F}/\sim containing \mathfrak{H} by [\mathfrak{H}] . When a [\mathfrak{H}] is given, for any
\sigma\in G , we can write \sigma=u_{\sigma}a_{\sigma}^{-1} where u_{\sigma}\in \mathfrak{H} and a_{\sigma}\in U(I^{\cdot}) . Put h(a_{\sigma})=b_{\sigma} . Then
we can find that the \{b_{\sigma}|\sigma\in G\} is a crossed homomorphism, and when we
write [b_{\sigma}]\in H^{1}(G, I(\Gamma)) , f([\mathfrak{H}])=[b_{\sigma}] . f^{-1} is defined by the following way.
That is, when [b_{\sigma}]\in H^{1}(G, I(\Gamma)), pick up any a_{\sigma}\in h^{-1}(b_{\sigma})=\{x\in U(\Gamma)|h(x)=b_{\sigma}\}

\subset U(\Gamma) , and put \mathfrak{H}=\cup\sigma a_{\sigma}U(S)\subset \mathfrak{G} , then \mathfrak{H}\in \mathscr{B}’ . Let \mathfrak{H}\in\swarrow andu_{\sigma}=\sigma a_{\sigma}

\sigma\in G

( \sigma\in G and a_{\sigma}\in U(\Gamma)), then u_{\sigma}u_{\tau}\equiv u_{\sigma}, mod(U(S)). Hence if we put u_{\sigma}u_{\tau}=

u_{\sigma\tau}c_{\sigma,\tau}(c_{\sigma,\tau}\in U(S)), the set \{c_{\sigma,\tau}|\sigma, \tau\in G\} is a factor set, and (\delta\circ f)([\mathfrak{H}_{-}])=[c_{\sigma.\tau}]\in

H^{2}(G, U(S)) . \alpha ([ -]) is the class of the same extension type as \mathfrak{H} . Let \mathfrak{H}

,

and \mathfrak{H}’ be the same extension type, and by the above methods, let factor
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sets \{c_{\sigma,\tau}\} and \{c_{\sigma,-}’\} correspond to \mathfrak{H} and \mathfrak{H}’ respectively. Then [c_{\sigma,\tau}]=[c_{\sigma,\tau}’]\in

H^{2}(G, U(S)) . That is, there exists the set \{c_{\sigma}|\sigma\in G\}\subset U(S) such that c_{\acute{\sigma},-}=

\Phi

C_{\sigma},{}_{\tau}C_{\sigma}^{\tau}C_{\tau}C_{\sigma\tau}^{-1} . Moreover \Delta(c_{\sigma,\tau}, S, G)arrow\Delta(c_{\sigma,\tau}’, S, G)(\sum_{\sigma\epsilon e}v_{\sigma}s_{\sigma}|arrow\sum v’{}_{\sigma}C_{\sigma}^{-1}S_{\sigma}) is an iso-
\Phi\sigma\epsilon G

morphism where \Delta(c_{\sigma,-}, S, G) and \Delta(c_{\sigma,\tau}’, S, G) are crossed products, and
\{v_{\sigma}|\sigma\in G\} and \{v_{\sigma}’|\sigma\in G\} are free S-basis of \Delta(c_{\sigma,\tau}, S, G) and \Delta(c_{\sigma,\tau}’, S, G) respec-
tively. Then

\Phi

\Delta(c_{\sigma,\tau}, S, G)-\Delta(c_{\sigma,\tau}’, S, G)

\Delta(\Gamma, G)\supset\sum_{\sigma\epsilon G}u_{\sigma}S\varphi\downarrow

\Phi’

\sum_{\sigma\in G}u_{\sigma}’S\subset\Delta(\Gamma, G)\downarrow\psi

is a commutative diagram, and \Phi , \Phi’ , \varphi and \psi are R-algebra isomorphisms
where \varphi(\sum v_{\sigma}s_{\sigma})=\sum u_{\sigma}s_{\sigma} and \psi(\sum v_{\sigma}’s_{\sigma})=\sum u_{\sigma}’s_{\sigma} . The facts that \varphi and \psi are
isomorphisms due to the followings. \sum_{\sigma\epsilon G}u_{\sigma}S=\sum_{\sigma\in G}\oplus\sigma a_{\sigma}S\subset\sum_{\sigma\in G}\oplus\sigma\Gamma=\Delta(\Gamma, G) .
If \sum u_{\sigma}s_{\sigma}=0, a_{\sigma}s_{\sigma}=0 for all \sigma\in G . As a_{\sigma}\in U(\Gamma), s_{\sigma}=0 for all \sigma\in G . By \varphi

and \psi, we can identity \Delta(c_{\sigma,\tau}, S, G) with \sum u_{\sigma}S and \Delta(c_{\sigma,\tau}’,S, G) with \sum u_{\sigma}’S.
Then \Phi’ is the restriction map of \Phi on \sum_{\sigma\in G}u_{\sigma}S. As R is a semilocal ring

and has no proper idempotents, by [3] THEOREM 1. 2, \Phi can be e\dot{x}tended
to an inner automorphism \Phi^{*} of \Delta(\Gamma, G) . That is, there exists a unit element
a\in U(\Delta(\Gamma, G)) such that \Phi^{*}(x)=a^{-1}xa for all x\in\Delta(\Gamma,\cdot G) .

\Delta(\Gamma, G)arrow\Phi^{*}\Delta(\Gamma, G)
x|arrow a^{-1}xa

\Delta(c_{\sigma,\tau},S, G)\Delta(c_{\sigma,\tau}’, S, G)||\overline{\Phi}

By the definition of \Phi , \Phi fixes all elements of S. Hence a\in V_{\Delta(\Gamma,G)}(S) . On the
other hand, \Gamma=V_{\Delta(\Gamma,G)}(V_{\Delta(IG)}"(\Gamma))=V_{\Delta(\Gamma,G)}(S)\ni a . Because, by [7] THEOREM 2,

\Gamma=V_{\Delta(\Gamma,G)}(V_{\Delta(\Gamma,G)}(\Gamma)) , and

V_{\Delta(\Gamma,G)}( \Gamma)=V_{\Lambda\bigotimes_{R}\Delta(S,G)}(\Lambda\bigotimes_{A^{l}}S)

=R \bigotimes_{R}V_{\Delta(S,G)}(S)

=S (by LEMMA 2. 1.).

As \mathfrak{H}=\bigcup_{\sigma\in G}u_{\sigma}U(S) and \mathfrak{H}’=\bigcup_{\sigma\epsilon G}u_{\sigma}’U(S) , \mathfrak{H}’,=a^{-1}\mathfrak{H}a . That is, \mathfrak{H} and \mathfrak{H}’ are con-
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jugate under an element of U(\Gamma) . Hence our THEOREM follows from [11]
\S 2 COROLLARY of PROPOSITION 1: Q. E. D.

COROLLARY 2. 3. Under the same assumptions as in THEOREM 2. 2,
we obt\dot{a}in H^{1}(G, U(\Gamma))=1 .

PROOF. The fact that H^{1}(G, U(S))=1 (Hilbert’s THEOREM 90, [1].
THEOREM A. 9.) and the exact sequence (^{*}) lead us to the conclusion. Q.E.D.

COROLLARY 2. 4. Under the same assumptions as in THEOREM 2. 2,
and if S has no proper idmpotmts, we obtain a one to one onto corre-
spondmce betwem the image of \delta and \mathfrak{T}=\{isomorphism class of T|R\subset S\subset

T\subset\Delta(\Gamma,\cdot G) , T is a cmtral separable R-algebra such that T contains S as
a maximal commutative subalgebra}.

PROOF. The correspondence from an element [c_{\sigma,-}] of the image of \delta

to an element an isomorphism class of T=\Delta(c_{\sigma,\tau}, S, G) of \mathfrak{T} gives its corre-
spondence. For, let [T]\in \mathfrak{T} be given. As R is a semilocal ring and S has
no proper idempotents, each element of G can be extended to an inner
automorphism of T ([3]. THEOREM 1. 2.). Hence by [1] PROPOSITION A.
13, T= \Delta(c_{\sigma,\tau}, S, G)=\sum_{\sigma\in G}\oplus w_{\sigma}S where \{w_{\sigma}|\sigma\in G\} is a free S-base of T. If
we put \mathfrak{H}=\bigcup_{\sigma\in G}w_{\sigma}U(S)\subset T. then \mathfrak{H}\in \mathscr{A}^{c} . For, if we put \sigma^{-1}w_{\sigma}=a_{\sigma} , for
any \alpha\in S, \alpha a_{\sigma}=\alpha\sigma^{-1}w_{\sigma}=\sigma^{-1}\alpha^{\sigma^{-1}}w_{\sigma}=\sigma^{-1}w_{\sigma}(\alpha^{\sigma^{-1}})^{\mathcal{O}}=\sigma w_{\sigma}\alpha=a_{\sigma}\alpha- 1 . Hence a_{\sigma}\in

V_{\Delta(\Gamma,G)}(S)=\Gamma (see PROOF of THEOREM 2. 2) and a_{\sigma}=\sigma^{-1}w_{\sigma}\in\Gamma_{\cap}U(\Delta(\Gamma, G))

=U(\Gamma) . Hence w_{\sigma}=\sigma a_{\sigma}(a_{\sigma}\in U(\Gamma)) . \mathfrak{H}U(\Gamma)=(\bigcup_{\sigma\in G}w_{\sigma}U(S))U(\Gamma)=\bigcup_{\sigma\in G}w_{\sigma}U(\Gamma)=

\cup\sigma a_{\sigma}U(\Gamma)=\cup\sigma U(\Gamma)=\mathfrak{G} . For any \beta\in \mathfrak{H}_{\cap}U(\Gamma) we can write \beta=w_{\sigma}s(s\in U(S)) .
\sigma\in G \sigma\in G

Then \sigma must be 1. That is, \beta=w_{1}s=c_{1,1}s\in U(S) . Hence \mathfrak{H}\in \mathscr{B}^{\nearrow} . So, [11]
\S 2 COROLLARY of PROPOSITION 1 leads us to the conclusion. Q.E. D.

LEMMA 2. 5. (cf. [11]. \S 3. LEMMA 2.). Let R be a Noetherian Hmsel
ring, S be a commutative ring whicfi has no proper idempotmts and S/R

be a fifinite Galois extension with Galois group G. (In this case, by [10]
(43, 15) and (43, 16), S is also a Hensel ring.) We put T=\Delta(c_{\sigma,\tau}, S, G) .
Thm there exists a right T-module N_{T} such that N_{T} is fifinitely gmerated
projective and (T, R)-irreducible uniquely up to an isomorphism and [N:S]
equals the Schur index of T_{r}

PROOF. There exists a division R-algebra \Delta such that T=(\Delta)_{n} . We
put e_{ij} the matrix in (\Delta)_{n} with 1 in the (i, j)-position and zeros elsewhere.
We put N= \sum e_{1f}\Delta n . Then this LEMMA is similarly proved as [11] \S 3 LEMMA

j=1
2. Q. E. D.

PROPOSITION 2. 6. Let R be a Noetherian Hensel ring, S be a com-
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mutative ring which has no proper \acute{\iota}dempotmts, S/R be a fifinite Galois
extension with Galois group G, \Lambda be a central separable R-algebra, \Gamma=\Lambda\bigotimes_{R}S,

[c_{\sigma,-}]\in H^{2}(G, U(S)) , T=\Delta(c_{\sigma,\tau}, S, G) and M_{\Lambda} be a fifinitely gmerated projective
and (\Lambda, R)-irreducible right \Lambda-module. Then if [c_{\sigma,\tau}] is contained in the
image of \delta(i.e. T\subset\Delta(\Gamma, G)) , s divides [M:R] where s is the Schur index
of T_{1}

PROOF. By the facts that M_{\Lambda} is a right \Lambda-module and S_{\Delta(S,G)} is a right
\Delta(S, G)-module, M \bigotimes_{R}S is a right \Delta(\Gamma, G)-module. That is, (m\otimes s)(\sigma(\lambda\otimes s’))

=m\lambda\otimes s^{\sigma}s’ or (m\otimes s)(\sigma\gamma_{\sigma})=(m\otimes s^{\sigma})\gamma_{\sigma}(m\in M, s, s’\in S, \sigma\in G, \lambda\in\Lambda, \gamma_{\sigma}\in\Gamma) . There
exists an integer n\geqq 1 such that \Lambda_{A}\cong M_{4}^{(n)} (an isomorphism as a right \Lambda-

module, [12]. PROPOSITION 4.) where M^{(n)} denotes a direct sum of n-copies
of M. M \bigotimes_{R}S is a finitely generated and projective right \Delta(\Gamma, G)-module.
\Delta(\Gamma, G) is a finitely generated and free right T-module. For, \Delta(\Gamma, G)\cong

V_{\Delta(\Gamma,G)}(T) \bigotimes_{R}T(vt-v\otimes t) ([1]. THEOREM 3. 3), this isomorphism is an R-

algebra isomorphism and an isomorphism as a right T-module, and V_{\Delta(\Gamma,G)}(T)

is a central separable R-algebra ([1]. THEOREM 3. 3.). Hence, M, \bigotimes_{\iota^{\supset}}S is a

finitely generated and projective right T-module. Let N_{T} be a finitely gen-
erated, projective and (T, R)-irreducible right T-module. Then M \bigotimes_{R}S_{T}\cong N_{T}^{(t)}

(an \sqrt isomorphism as a right T-module for an integer t\geqq 1 ). Hence, [M:R]
=[M \bigotimes_{Jd}S:S]=[N^{(t)} : s]=t[N:S]=ts. Q. E. D.

THEOREM 2. 7. (cf. [11] COROLLARY of PROPOSITION 5.) Under the
same assumptions as in PROPOSITION 2. 6, whm \Lambda=(R)_{l} , we obtain that [c_{\sigma,-}]

is contained in the image of \delta if and only if s divides l.
PROOF. In this case, as R is a division R-algebra and [M:R]=l.

Hence we only require to prove if part. [N^{(\frac{l}{s})} : S]= \frac{l}{s}[N:S]=l. Hence

N^{(\frac{l}{s}\}} \cong M\bigotimes_{R}S as a S-module. As N_{T} is faithful, T\subset End_{R}(N^{(\frac{l}{s})})\cong End_{R}(M

\bigotimes_{R}S)\cong\Delta(\Gamma, G) . Hence COROLLARY 2. 4 leads us to the conclusion. Q.E.D.

PROPOSITION 2. 8. Let L\supset K\supset k be extensions of fifields such that\circ L/k

and K/k are Galois extensions (fifinite or infifinite) with Galois groups G(L/k)
and G(K/k)respect.\iota vely , and let \Lambda be a central simple k-algebra. We put
I( \Lambda\bigotimes_{k}K)=U(\Lambda\bigotimes_{k}K)/U(K) and I( \Lambda\bigotimes_{k}, L)=U(\Lambda\bigotimes_{k}L)/U(L) . Then the following

infiation map is injective.

H^{1} (.G(K/k) , I( \Lambda\bigotimes_{k}K)) \overline{\inf}H^{1}(G(L/k), I( \Lambda\bigotimes_{k}L)) .
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PROOF. By THEOREM 2. 2, this is easily seen. Q. E. D.
PROPOSITION 2. 9. Let k be a fifinite dimmsional algebraic number fifield,

\overline{k} be an algebraic closure of k, \{v\} be the set of all valuations over k, k_{v} be
the completion of k by v,\overline{k}_{v} be an algeb\dot{r}aic closure of k_{v} and m^{t} be an
integer (>0) . Then we can defifine canonical map

\Phi_{v} : H^{1} ( G(\overline{k}/k) , PGL_{m}(\overline{k}))arrow H^{1}(G(\overline{k}_{v}/k_{v}), PGL_{m}(\overline{k}_{v})) .
Furthermore, for any x\in H^{1}(G(\overline{k}/k), PGL_{m}(\overline{k})), \Phi_{v}(x)=1 for almost all v and

(\Phi_{v}):H_{1}(G(\overline{k}/k) , \mathfrak{X}L_{m}(\overline{k}))-uH^{1}(G(\overline{k}_{v}/k_{v})v’ PGL_{m}(\overline{k}_{v}))

,41

is injective.
PROOF. By THEOREM 2. 2 and Hasse’s THEOREM ([4]), this is easily

proved. Q. E. D.
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