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Introductlon

A Throughout thls paper, we assume that every ring has an. 1dent1ty 1,
every maodule over a ring is unitary and a ring extension A/B has the same
identity ‘1. For a commutative ring R, we consider only R-algebras which
are finitely generated as R-modules. By [5], an R-algebra A is called left
semisimple if any finitely generated left A-module is (4, R)-projective. Simi-
larly we can define right semisimple R-algebras, and an R-algebra A is called
semisimple if A is left and right semisimple. When R is indecomposable,
an R-algebra A is called simple if (1) 4 is semisimple, (2) there exists left
A-module ,E which is finitely generated projective completely faithful and
(4, R)-irreducible ([12]).- We call an R-algebra 4 a division"R-algebra if 4
is semisimple and (4, R)-irreducible. Obviously division algebras are simple
algebras. | '

The followings are well known. Let K be a field (a field means com-
mutative field) and let' A be a finite dimensional central simple K-algebra.
Then there exists a central division K-algebra D such that A=(D), (nx n full
matrix ring over D), and the free rank of D over K([D: K]) equals s* where

s(=1) is an integer. This s is called the Schur index of A and D is called
a division algebra to which A belongs.

~ Let 4 be a division R-algebra and A4 be a 51mple R-algebra. If there
exists a Morita module M, ([9]), 4 is called a division R-algebra to which
A belongs. By [12], any simple R-algebra belongs to some division R-algebra.,
Now, let R be a Hensel ring ([2], [10]) and 4 be a simple R-algebra. Then
A=(4), where 4 is a division R-algebra to which A belongs. Moreover, 4
is uniquely determined up to isomorphisms and z is uniquely determiend
([12]).

“The ‘purpose of this paper is to extend some properties with respect
to the Schur 1ndex concernmg fields to the case of that R is a_ Noetherlan
Hensel ring. ’ ‘

We prove the followings.

THEOREM 2.2. Let R be a semilocal ring (not necessarily Noetherian
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and has maximal ideals of finite numbers) which has no proper idempotents
(i,e, R has no idempotents except 0 and 1), S be a commutative ring, a ring
extension S|R be a finite Galois extension with Galois group G, and A be

0
a central separable R-algebra. We put I'=AQ®S. Tnen, H'(G, I(I")~>H*(G,
R

U(S)) is injective. Here, U(S) denotes the unit group of S, I(I")=U()/U(S),
and U(I") denotes the unit group of I

THEOREM 2.7. Let R be a Noetherian Hensel ring, S be a commuta-
tive ring and a ring extension S|R be a finite Galois extension with Galois
group G such that S has no proper idempotents. Let [c,.]e HX(G, U(S)),
A=(R), and T=A4(c..,S,G) (crossed product). Then [c,.] is contained in
the image of & if and only if the Schur index of T (see definition 1.3.)
divides [.

THEOREM 2.2 was proved in [11], when R is a field and A=(R), for

an integer ¢t=1. THEOREM 2.7 was proved in [11], when R is a field.
The authors extend their hearty thanks to Professor Y. Miyashita for

his helpful suggestion and encouragement.

§1. The Schur indexes of central separable algebras

In this section, so far as we don’t especially state, let R be a Noetherian
Hensel ring with ungiue maximal ideal m.

Lemma 1.1. ([6]. TuroreM 4.) If 4 is a central separable R- algebra,
then it is a central simple R-algebra.

ProPOSITION 1.2. Let A be a central separablé R-algebra, and 4 be a
division R-algebra to which A belongs. Then A is free R-module and
[4; Rl=5* (s is an integer =1). '

PrOOF. 4 is a central separable R-algebra ([12]. ProposiTiON 3.) and
R is a local ring (not necessarily Noetherian). Hence 4 is a free R-module.
d/md is a central division R/m-algebra ([12] TuroreMm 8, [I] CoroLLARY
1.6.). [4:Rl=[d4/md: R/m]=s". Q.E.D.

DEFINITION 1.3. The s which is obtaihed in Proposition 1.2 is called
the Schur index of A.

PROPOSITION 1.4. Let A be a central separable R-algebra, and 4 be a

division R-algebra to which A belongs. Then a division R|m-algebra to
which AjmA belongs is dlmd, and the Schur index of A equals the Schur

index of AjmA.
‘ProoF. By our assumptios, 4=(4), and Ad/mA=(4/md),. Q.E.D.
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When R is a field, the following ProprosiTION 1.5, 1.6 and 1.7 are
well known. By Br(R), we denote the Brauer group of R. When R is a
Hensel ring (not necessarily Noetherian) with unique maximal ideal m, if
we use the fact that Br(R)=Br(R/m) ([2]), these PROPOSITIONS are easily
proved. By [4], we denote the element of Br(R) represented by the central
separable R-algebra /.

ProrosIiTION 1.5. For any [A]e Br(R), [A]’=[R] where s is the Schur
index of A. '

PROPOSITION 1.6. Let e be the exponent of [Al€Br(R) (that is, e is
the minimal integer n=1 such that [A"=[R]), and p be a prime number
such that p divides s. Then p divides e. \ | ‘

PrROPOSITION 1.7. Let 4 be a central separable division R-algebra, and

the Schur index of A= Il py* (unique factorization to prime numbers). Then
i=1

there exist central separable division R-algebras 4.,---,4, such that 4=,
@-“@An, and the Schur index of d; equals a power of p, i=1, -, n).

ProoF. 4d/md is a central division R/m-algebra, and the Schur index
of A/mA=ﬁ pii. Hence 4md=U,®---QU, where each U, is a central
=1

R/m  R/m

division R/m-algebra, and the Schur index of U, equals a power of p;,. As
R is a Hensel ring, there exists a central separable division R-algebra 4,
such that 4,/md,=U, (i=1,---,n) ([12] ProrosiTioN 14, THEOREM 8.).
Hence A/mAEAl/mAI®--~®An/mdnz(dl(?---@lgdn)cl?R/m, and A;AI%)---C%A,,

R/nt R/m

([12]. ProrosiTion 14.). The Schur index of 4, equals that of U,. Q.E.D.

ProposITION 1.8. Let A be a central separable R-algebra, and 4 and
4" be division R-algebras such that A=(4),=(4"),. Then an R-algebra iso-
morphism B: d—4' (see introduction) is a restriction of an inner automor-
phism of A.

ProoF. As R is a Hensel ring, 8 can be extended to an inner automor-
phism of 4 ([8] THEOREM 1.2). Hence there exists a 2€U(4) (the unit
group of A such) that 4/'=142"". Q.E.D.

§2. A generalization of P. Roquette’s theorems

In this section, we state about a generalization of §3.

LEmMA 2.1. Let R be a commutative ring and A be an R-algebra
which is flat and faithful as an R-module (not necessarily finitely generated).
Let B be an R-module which -is finitely generated, projective and faithful.
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Then the followmgs are true. ' SR g :
(1) If S is a subset of A, then VA®B(S) ( )®B where we can
o | conszder A®B (4, A)- bzmodule under (Zab®b) ;aiq®b and
(;@@bi) ;aaz@)b.

(2) Moreover, let B be an R-algebra. Let S and T be subrings of
: - A’ and B respectively. - If V,(S) is a finitely generated and pro-
jective R-module, then VA®B(S®T)=VA(S)® Va(T) where SQT=

R

' {Zs¢®t €A®B|s¢ES QET}
Here, V,(S)={acAlas=sa for all seS} and VA@,B(S@T) {Zai®b.ieA®B],‘
(Xa:®b)xr=x(Xa,Qb;) for all zeSRT}.

"Proor. (1) -First, we prove in the case th’a.truB is ‘a free R-module.
Vigp(S)D V(S)®B is._ trivial. Let {bili=1, -1} be_a f,ree‘base of B. For
R ’ ) ‘R ’ : ' ' :

[ . g
any iglaz‘®bie VA%B(S) (@€ A), (La;Qb; )S“Zsaz®b¢ 25%@54—’ (2a:,Rb,)
As 1®b,,---,1R®b, are linearly independent over: A in A®B, a,s=sa; for
R .
all i=1,---,1. Hence a;,€ V,(S). In the case that B is a finitely generated,
projective and faithful, there exists a finitely generated and_f‘re_e' R-module.
F such that F=B®B' (direct sum as an R-module).
VA(%P(S) = A(]?B N VA%F(‘S)
= A(]?Bﬂ (VA(S)C?F)
= ARBN{V,SIRBO(VAS)DB)
| = VA(S)%@B.' o '
= VVA(S)%)B(T)
SVASIOVAT) by (1)
Q E D s T N . .
Let R be a semi local ring (not necessarily Noetherlan and has maximal
ideals of finite numbers) which has no proper idempotents (1 e. has no
idempotents except 0 and 1), 'S be a commutative ring, a ring extension

S/R be a finite Galois extension with Galois group G, and 4 be a central
separable R-algebra. If we put I =/1®S I'[4 is a Galois extension with

Galois group G ([8]). For a ring A, we denote the unit gryup -of A by
U(A). Then we have a G-exact sequence ‘
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: h
1—US)—UIDN—I(I"—1
where I(I")=U(I')JU(S) and h is the canonical map. From this exact se-
quence, we obtain an exact sequence ’ |
5
() H'(G, U(S))—H!(G, U(I'))—H'(G, I(I')—H*(G, U(S))

(11} §2.)

THEOREM 2.2. (cf. [11). §3. COROLLARY of ProprosITION 3.) Under
the above assumptions, 0 is injective.

Proor. Let 4(I'yG)=Y.@®al’ and 4(S, G)=Y,@cS be trivial crossed
e@

€q

products. Then A", G)=A®4(S, G). Hence 4(I"; G) is a central separable
R
R-algebra ([1]. ProrositioN 1.5.). When we put &= UsU(cUU(T, G)),
€@

® is a splitting extension of U(I") by G as a G-group. That is, GU (IN=6,
GNUI')=1 and U(I") <|® (normal subgroup). We put. .« ={HCS|D is a
G-subgroup of &, SNUMN=U(S) and SU(I")=G)}. That is, each element
of 7 is an extension of U(S) by G as a G-group. For 9 and 9 e.%,
we define H~P’ by existence of acU(I') such that ' =a'a. It is well
known that ~&' implies that $ and O’ are the same extension type.
Then by § 2 ProrosiTiON 1, the following diagram is commutative.
5 ,
HYG, IT)— H*(G, U(S))

S H S ‘ g
|~ —— ext (G, U(S))
[44

where f is a bijection and defined by the following way. We denote an
element of &/~ containing by [$]. When a [9] is given, for any
c€G, we can write c=wu,a;' where «,€9 and a,€U(I"). Put h(a,)=5b,. Then
we can find that the {b,]6€G) is a crossed homomorphism, and when we
write [b,]Je H'(G, I(I"), f([9])=[b.]. f ' is defined by the following way.
That is, when [b,]e H (G, I(I")), pick up any a,eh™(b,)={xcU(")|h(x)=0,)}
cU(I"), and put %):g;aa,U(S)C@, then Ye.&. Let $€ & and u,=ova,
(6eG and a,e U(I"), then wu.=u, mod(U(S)). Hence if we put wuu .=
UseCo (€, €U(S)), the set {c,.lo, 7€ G} is a factor set, and (3of)([D])=[c..]€
H*G, U(S)). af[9]) is the class of the same extension type as . Let
and ' be the same extension type, and by the above methods, let factor
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sets {c,.} and {c,.} correspond to  and §’ respectively. Then [c,.]=[c;.]€

H*G, U(S)). That is, there exists the set {c,JeeG}C U(S) such that c, .=
o :
c,..cic.c;t. Moreover 4(c,., S, G)—~4(c ., S, G) (Zv.s,— Nvics's,) is an' iso-

6q 1] 7eq

morphism' where 4(c,.,S,G) and d(c, ., S,G) are crossed products and
{v,|o€G)} and {v,|e€G} are free S-basis of 4(c, ., S, G) and A( ¢ ., S, G) respec-
tively. Then |

]
A(Ca,,, S ’ G) _— A(C;’,, S, G)

sol o lsb
A, G)> X usS Tu.ScA(l,G)

€@ ¢/ €@

is a commutative diagram, and @, @', ¢ and ¢ are R-algebra isomorphisms

where ¢(Xv,s,)= 2 u,s, and ¢(Xv.s,)=2u.s,. The facts that ¢ and ¢ are

isomorphisms due to the followings. > %,S =26C-Baa.,S C Y @el'=4A(T", G)
. e @ o€ e

If Yus,=0, as,=0 for all ¢eG. As a,eU(l"), 5,=0 for all geG. By ¢

and ¢, we can identity 4(c,., S, G) with 2 «,S and 4(c.,S, G) with 2ju«,S.

Then @' is the restriction map of ® on }u,S. As R is a semilocal ring
eq

and has no proper idempotents, by [3] THEOREM 1.2, @ can be extended

to an inner automorphism @* of A(I", G). That is, there exists a unit element
acU(4(I', G)) such that @*(x)=a"'za for all zed(I’, G).

o* |
4, G) — (I, G) . x'—a'za

l

d(c,., S, G) — dlc,., S, G)
o

By the definition of @, @ fixes all elements of S. Hence a€ Y}‘,(p,g) (S). On the
other hand, I'= VA([‘,G)(VA(I‘,G) (F)): Vd(p’g) (S)Ba. Because, by THEOREM 2,

I'=Vir.e(VaraI)), and
Viroll) = Viguis ADS)
~ R Viis0(S)
=S5 ~ (by LEMMA 2. 1)
As ®=”Ejau(,U (S) and ' = UwU(S), $'=a'Qa. That is, $ and ' are con-

€@
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jugate under an element of U(I"). Hence our THEOREM follows from
§2 CoroLLARY of ProrosiTioN 1. Q.E.D.

CoROLLARY 2.3. Under the same assumptions as in THEOREM 2.2,
we obtain H'(G, U(IM)=1. : -

Proor. The fact that HYG, U(S)) =1 (Hilbert’'s Tueorem 90, - [1].
THEOREM A. 9.) and the exact sequence (*) lead us to the conclusion. Q.E.D.

CorROLLARY 2.4. Under the same assumptions as in THEOREM 2.2,
and if S has no proper idempotents, we obtain a one to one onto corre-
spondence between the image of 6 and I = {isomorphism class of T|RCSC
TcAI',G), T is a central separable R-algebra such that T contains S as
a maximal commutative subalgebra).

Proor. The correspondence from an element [c,.] of the image of ¢
to an element an isomorphism class of T'=4(c, ., S, G) of T gives its corre-
spondence. For, let [T']€¥ be given. As R is a semilocal ring and S has
no proper idempotents, each element of G can be extended to an inner
automorphism of 7" ([3] Tureorem 1.2.). Hence by ProrosiTION A.
13, T=4d(c,., S, G)=§;(—BwaS where {w,|eeG} is a free S-base of 7. If

we put $=Uw,U(S)CT, then He.¥'. For, if we put ¢'w,=a,, for
€@

any a€S, aa,=ac"'w,=¢'a’ w,=0¢"'w,(@ ) =0¢"'wa=aa. Hence a,c

Vir.ey(S)=I" (see PRoOOF of THEOREM 2.2) and a,=¢'w,e 'nUU(I, G))

=U(l'). Hence w,=oa,(a,cU"). HSUD)=(Uw,USUD=Uw U=
¢€G

€@

an,U(F)=ng;aU(F)=@. For any BeHnU(I") we can write f=w,s(s€ U(S)).

oG

Then ¢ must be 1. That is, f=w,s=c,,;s€ U(S). Hence He.%. So,
§ 2 CoroOLLARY of ProposITION 1 leads us to the conclusion. Q.E.D.

LemmMmA 2.5. (¢f [11].- §3. LEMMA 2.). Let R be a Noetherian Hensel
ring, S be a commutative ring which has no proper idempotents and SR
be a finite Galois extension with Galois group G. (In this case, by [10]
(43, 15) and (43, 16), S is also a Hensel ring.) We put T=A4d(c,,., S, G).
Then there exists a right T-module N, such that N, is finitely generated
projective and (T, R)-irreducible uniquely up to an isomorphism and [N:S]
equals the Schur index of T.

Proor. There exists a division R-algebra 4 such that T'=(d4),. We
put e;; the matrix in (4), with 1 in the (i, j)-position and zeros elsewhere.
We put N= ileud. Then this LEMMA is similarly proved as §3 LEmMMaA
2. Q.E.D. ’

ProrosiTiON 2.6. Let R be a Noetherian Hensel ring, S be a com-
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mutative ring which has no proper idempotents, S|R be a finite Galots
extension with Galois group G, A be a central separable R-algebra, I'=ARS,
R

[c..Je HX (G, U(S)), T=4(c,.,S, G) and M, be a finitely generated projective
and (A, R)-irreducible right A-module. Then if |[c,.] is contained in the
image of ¢ (i.e. TCA(F G)), s divides [M : R] where s is the Schur index
of T. o

ProoF. By the facts that M, is a rlght A-module and Sy is a right
(S G)-module, M®S is a right 4(I', G)-module. That is, (m®s)(¢(A®s")

=mi®s’s’ or (m®s)(a7’) (m®s )1, (meM, s, s'eS, oG, 2€4, 1,€I'). There
exists an mteger n=1 such that 4,=M{ (an isomorphism as a right 4-
module, [12]. ProrosiTiON 4.) where M ™ denotes a direct sum of n-copies
of M. M®S is a finitely generated and projective right 4(I", G)-module.
R
4(I', G) is a finitely generated and free right 7T-module. For, 4(I", G)=
Vie.ao(T )®T (vte——v®%) ([1I]. Tureorewm 3. 3), this isomorphism is an R-
algebra 1somorphlsm and an 1sornorphlsm as a right 7-module, and Viean(T)
is a central separable R-algebra ([I]. TueorEM 3.3.). Hence, M®S is a
’ ’ ”n

finitely generated and projective right T-module. Let N, be a finitely gen-
erated, projective and (7, R)-irreducible right T-module. Then M®.S,= N§"
R

'(an Jisomorphism as a right 7-module for an integer z= 1). Hence, [M:R]
=[M®JS:S]=[N®:S]=¢[N:S]=t. Q.E.D. '
e

- TureoreMm 2.7. (¢f. [11] CoroLLARY of ProrosiTiON 5.) Under the
same assumptions as in PROPOSITION 2.6, when A=(R),, we obtain that [c. ]
is contained in the image of ¢ if and only if s divides L.

| Proor. In this case, as R is a division R- algebra and [M:R]=L
Hence we only require to prove if part. [N(. ). : S]= [N S]=[ Hence

N =M®S as a Smodule. As N, is faithful, TCEndy(N NG ~End,, (M
®S) (F G). Hence CoROLLARY 2.4 leads us to the conclusion. Q.E.D.
R

ProposITION 2.8. Let LOKDFk be extensions of fields such that- L[k
and K|k are Galois extensions ( finite or infinite) with Galois groups G(L/k)

‘and G(K|[k) respectively, and let A be a central simple k-algebra. We put
I(‘/I(?K): U(A(?K)/U(K) and .I(AQ;)L)= U(AQL)U(L). Then the following

inflation ‘map is injective.

H'(G(K/K), IAQK))——H'(G(LJk), IAQL)).

ko an
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Proor. By THEOREM 2.2, this is easily seen. Q.E.D.

PROPOSITION 2.9.  Let k be a finite dimensional algebraic number field,
k be an algebraic closure of k, {v} be the set of all valuations over /e k, be
the completion of k by v, k, be an algebraic closure of k, and m be an
integer (>0). Then we can define canonical map

@,: H'(G(k[k), PGL,(®)— H'(G(k,/k,), PGL, (%.)).
Furthermore, for any xe H'(G(k/k), PGL,,(k)), @,(x)=1 for almost all v and
(@): H\(G(kR), PGL,(®)~= Ul H'(G(Efk), PGLLR))
is injective. , | _
Proor. By THEOREM 2.2 and Hasse’s: THEOREM ([4]), this is easily
proved. Q.E.D.

Department of :Mafhematics, Hokkaido University - -
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