On minimal points of Riemann Surfaces, I.

Dedicated to Prof. Yoshie Katsurada on her 60th birthday

By Zenjiro Kuramochi

Let R be a Riemann surface with positive boundary and let $\{R_n\}$ (n = $(0,1,2,\cdots)$ be its exhaustion with compact analytic relative boundary ∂R_n . Let G be a domain in R such that the relative boundary ∂G consists of at most an enumerable number of smooth curves clustering nowhere in R. In the present paper we consider only domains as mentioned above. open set G has a smooth relative boundary, we call it a regularly open set. Let G_1 be a domain in $R-R_0$ and G_2 be a regularly open set in G_1 such that $G_1 \supset \overline{G}_2$, where \overline{G}_2 is the closure of G_2 in R. Let $U_n(z)$ be a harmonic function in $(G_1 - \overline{G_2}) \cap R_n$ such that $U_n(z) = 1$ on $\partial G_2 \cap R_n = 0$ on $\partial G_1 \cap R_n$ and $\frac{\partial}{\partial n} U_n(z) = 0$ on $\partial R_n \cap (G_1 - \overline{G}_2)$. If the Dirichlet integral $D(U_n(z)) < 0$ $M < \infty$ for any n, then $U_n(z)$ converges locally uniformly and in Dirichlet integral as $n\to\infty$ to a harmonic function which is denoted by $\omega(\widehat{G}_2, z, G_1)$ and is called the Capacitary Potential [1] of \overline{G}_2 relative to G_1 (abbreviated by C. P.). Clearly $\omega(\overline{G}_2, z, G_1)$ is uniquely determined and has minimal Dirichlet integral (M. D. I.) over $(G_1 - \overline{G}_2)$ among all harmonic functions with the same value as $\omega(\overline{G}_2, z, G_1)$ on $\partial G_1 + \partial G_2$. Let $G_2 \supset G_3 \supset G_4$, ... be a decreasing sequence of regularly open sets. Then $\omega(\overline{G}_n, z, G_1)$ converges locally uniformly and in Dirichlet integral as $n\rightarrow\infty$ to a harmonic function denoted by $\omega(\{\overline{G}_n\}, z, G_1)$. This is called C.P. of $\{\overline{G}_n\}$. Len F be a closed set in G_1 , if there exists a harmonic function U(z) in G_1-F such that U(z)=0on ∂G_1 , U(z)=1 on F and $D(U(z))<\infty$, there exists a uniquely determined harmonic function $\omega(F, z, G_1)$ such that $\omega(F, z, G) = 1$ on ∂F except at most a set of capacity zero, =0 on ∂G_1 and has M.D.I. Let $\{F_n\}$ be a decreasing sequence in G_1 . Then we can define C.P. of $\{F_n\}$ as above. Let W(z) be the least positive harmonic function in G_1-F such that W(z)=1 on ∂F except at most a set of capacity zero. We call W(z) the harmonic measure (abbreviated by H. M.) and denote it by $W(F, z, G_1)$. Similarly H. M. of a decreasing sequence $\{F_n\}$ can be defined also.

Let G be a domain in R such that $\overline{G} \cap \overline{R}_0 = 0$ and let $N_n(z, p)$ be a positive harmonic function in $(G - \{p\}) \cap R_n$: $p \in R_n \cap G$ such that $N_n(z, p) = 0$ on $\partial G \cap R_n$, $N_n(z, p)$ has a logarithmic singularity with coefficient 1 at p and

 $\frac{\partial}{\partial n} N_n(z,p) = 0$ on $\partial R_n \cap G$. Then $N_n(z,p) \to N(z,p)$ and $D(N_n(z,p) - N(z,p)) \to 0$ as $n \to \infty$. N(z,p) has M.D.I., where the Dirichlet integral is taken with respect to $N(z,p) + \log|z-p|$ in a neighbourhood of p. Then we have N-Martin's topology [2] (N-top.) in $G + \Delta(G,N)$ as usual manner with distance

$$\delta^{N}(p_{1}, p_{2}) = \sup_{z \in G_{0}} \left| \frac{N(z, p_{1})}{1 + N(z, p_{1})} - \frac{N(z, p_{2})}{1 + N(z, p_{2})} \right| \quad \text{for} \quad p_{1}, p_{2} \in G + \Delta(G, N),$$

where G_0 is a disk in G and $\Delta(G, N)$ is the ideal boundary of G obtained by completion of G with respect to the above metric.

Further let L(z, p) be an N-Green's function of $R-R_0$ such that L(z, p)=0 on ∂R_0 with a logarithmic singularity at p with coefficient 1 and L(z, p) has M.D.I. over $R-R_0$. Then we have also an N-Martin's topology (L-top.) over $R-R_0+\Delta(R, L)$ with distance

$$\delta^L(p_1,p_2) = \sup_{z \in D_0} \left| \frac{L(z,p_1)}{1 + L(z,p_1)} - \frac{L(z,p_2)}{1 + L(z,p_2)} \right|, \quad p_1, p_2 \in R - R_0 + \Delta(R,L)$$

where D_0 is a disk in $R-R_0$ and $\Delta(R, L)$ is the ideal boundary.

Let G be a domain in $R-R_0$ with non compact relative boundary ∂G . We denote an N-Green's function of G by N(z, p) (with letter N) vanishing on ∂G . On the other hand, when we regard G as a Riemann surface, we denote an N-Green's function in $G-G_0$ by L'(z, p) (with letter L), where G_0 is a disk in G. Let D be a regularly open set in G. Let U(z) be a non negative continuous superharmonic function in G such that U(z)=0 on ∂G and $D(\min(M, U(z))) < \infty$ for any $M: 0 < M < \infty$. Let $_{\overline{D}}U^{M}(z)$ be a function such that $_{\overline{D}}U^{M}(z)=\min(M,\,U(z))$ on $\overline{D}+\partial G$ and has M.D.I. over $G-\overline{D}$. Put $_{\bar{D}}U(z)=\lim_{N\to\infty} _{\bar{D}}U^{M}(z)$. If, for any relatively compact regularly domain D, $_{\bar{D}}U(z) \leq U(z)$, then U(z) is called a full-superharmonic function in G. [3] A positive harmonic function U(z) in G is called minimal, if $U(z) \ge V(z) \ge 0$ implies V(z) = aU(z): $0 \le a \le 1$ for any function V(z) such that both V(z)and U(z)-V(z) are harmonic and full-superharmonic in G. Let ${}_{1}\mathcal{L}(G,N)$ be the set of all minimal points. [3] Then it is known that U(z) is minimal if and only if U(z) = aN(z, p) for some $p \in \mathcal{A}(G, N)$ and $0 < a < \infty$. Let $S_{\mathcal{A}}(G, N)$ be the set of all singular point. [4] Then

- 1). $s\Delta(G, N) \subset \Delta(G, N)$.
- 2). Suppose $p \in {}_{1}\Delta(G, N)$. Put ${}_{v_{n}(p)}N(z, p) = \lim_{m = \infty} {}_{v_{n}(p) \cap R_{m}}N(z, p)$, where $v_{n}(p) = E\left[z \in G + \Delta(G, N): \delta^{N}(z, p) < \frac{1}{n}\right]$. Then $N(z, p) = {}_{v_{n}(p)}N(z, p)$, N(z, p)

- $=\lim_{\substack{n=\infty\\ M\to M^*}}N(z,p).\quad N(z,p)=M\quad \omega(V_M(p),z,G)\quad \text{in}\quad G-V_M(p)\quad \text{and}\quad N(z,p)=\lim_{\substack{n=\infty\\ M\to M^*}}N(z,p),\quad \text{where}\quad V_M(p)=E[z\in G:\ N(z,p)\geqq M]\quad \text{and}\quad 0< M< M^*=\sup N(z,p).$
- 3). Suppose $p \in \mathcal{A}(G, N)$. For any $V_{M}(p)$: $M < M^*$, there exists a number n such that $(v_{n}(p) \cap G) \subset V_{M}(p)$.
- 4). $N(z,p) = M^* \lim_{\substack{M \to M^* \ z, G}} \omega(V_M(p), z, G) = M^* \omega(p, z, G) = M^* \lim_{\substack{n \to \infty \ z, G}} \omega(G \cap v_n(p), z, G) = \lim_{\substack{n \to \infty \ z, G}} \omega(v_n(p) \cap R_m, z, G).$

Let $W(p, z, G) = \lim_{n \to \infty} W(G \cap v_n(p), z, G)$ be H.M. of $p \in \mathcal{A}(G, N)$. We call p a singular point of first kind or second kind according as W(p, z, G) = 0 or >0 respectively. We denote the set of all singular points of first kind and second kind by $S_{1,1}\mathcal{A}(G, N)$ and $S_{2,2}\mathcal{A}(G, N)$ respectively.

Let G be a regularly open set. Let U(z) be a non negative harmonic function in R. We denote by $I_G[U]$ the upper envelope of all non negative continuous subharmonic functions in G vanishing on ∂G and smaller than U(z) in G. Let E[U] be the lower envelope of continuous superharmonic functions in G larger than G in G is called admissible, if G is a least a superharmonic function in G larger than G in G in G is called admissible, if G is called admissible, if G is called admissible, if G in G in G and if there exists at least a superharmonic function in G larger than G in G in

- 1). E and I are positive linear operators.
- 2). If U(z) is admissible, then IE[U]=U. For any U(z)>0 in R we have IEI[U]=I[U].
 - 3). If $G_i \cap G_j = 0$, then IEI[U] = 0 for $i \neq j$.

Matsumoto proved the following

THEOREM 1.^[7] Let G_i $(i=1,2,3,\cdots)$ be domains such that $G_i \cap G_j = 0$ for $i \neq j$. Put $G = \sum G_i$. If each G_i is of finite genus or more generally is representable as a covering surface of a finite number of sheets over the w-plane and if 1). EI[1]=1 and if 2). I[1] has a finite Dirichlet integral for any i, then $s,2\Delta(R,L)$ is empty.

In the present paper we consider the relations between $s,i\Delta(G, N)$ and $s,i\Delta(R, L)$ (i=1,2) and problems of types similar to Theorem 1.

Let G be a domain in R such that $G \cap \bar{R}_0 = 0$ and L(z, p) and N(z, p) be N-Green's functions of $R - R_0$ and G respectively. We suppose L and N topologies are defined on $R - R_0 + \Delta(R, L)$ and $G + \Delta(G, N)$ respectively. If $p \in G$, then we have at once

$$L(\mathbf{z},\mathbf{p})-_{\mathrm{CG}}L(\mathbf{z},\mathbf{p})=N(\mathbf{z},\mathbf{p})$$
 .

Let $p \in {}_{1}\Delta(R, L)$. If $L(z, p) \neq {}_{CG}L(z, p)$, we write $G \ni p$ (this is equivalent

to the thiness of CG at p). Let $G(L, \Delta)$ be the set of all points p in ${}_{1}\Delta(R, L)$ with $p \in G$. Let $p_{i} \to p^{\alpha} \in G(L, \Delta)$ (this means that p_{i} tends to p^{α} relative to L-top.) and $p_{i} \to p^{\beta}$: $p_{i} \in G$. Then

$$N(z, p^{\beta}) = \Upsilon(L(z, p^{\alpha}) - c_G L(z, p^{\alpha})): 1 \ge \Upsilon \ge 0$$

and $p^{\beta} \in \mathcal{A}(G, N)$ if and only if $\gamma = 1$. [8]

Let p^{α} be a point in $G(L, \Delta)$. If there exists a sequence $\{p_i\}$ in G such that $p_i \to p^{\alpha}$ and $p_i \to p^{\beta} \in \Delta_1(G, N)$. We say that p^{β} lies on p^{α} . Denote by $f(p^{\alpha})$ the set of all points lying on p^{α} . Then $f(p^{\alpha})$ contains one point p^{β} (denoted by $p^{\beta} = f(p^{\alpha})$) in $\Delta(G, N)$ and

$$L(z,p^{\scriptscriptstylelpha})-_{{\it CG}}L(z,p^{\scriptscriptstylelpha})=N(z,p^{\scriptscriptstyleeta})$$
 .

Conversely let $p^{\beta} \in {}_{1}\Delta(G, N)$. Then $f^{-1}(p^{\alpha})$ consists of only one point $p^{\alpha[8]}$ in $G(L, \Delta)$ and $L(z, p^{\alpha}) - {}_{CG}L(z, p^{\alpha}) = N(z, p^{\beta})$. Hence the mapping f is one to one from $G(L, \Delta)$ onto ${}_{1}\Delta(G, N)$. We consider ${}_{S}\Delta(R, L)$ and $\Delta_{S}(G, N)$. Then we have

THEOREM 2. The mapping f is one to one from $G(L, \Delta) \cap {}_{s}\Delta(R, L)$ onto ${}_{s}\Delta(G, N)$.

PROOF. Let $p \in G(L, \Delta) \cap_{\mathcal{S}} \Delta(R, L)$ and put q = f(p). Then $N(z, q) = L(z, p) -_{cq} L(z, p)$ and sup $L(z, p) < \infty$. Hence we have at once sup $N(z, q) < \infty$ and $q \in_{\mathcal{S}} \Delta(G, N)$. Let $q \in_{\mathcal{S}} \Delta(G, N)$. Then $L(z, p) -_{cq} L(z, p) = N(z, q)$ and sup $N(z, q) = M < \infty$.

$$_{CG}L(z,p)+M \geq L(z,p)$$
 in $R-R_0$.

Assume $p \in \mathcal{A}(R, L) - \mathcal{A}(R, L)$. Then $\omega(p, z, R - R_0) = 0$ and

$$_{v_n(p)}\Big({}_{\operatorname{CG}}L(z,p)+M\Big) \geqq_{v_n(p)}L(z,p) = L(z,p) = \lim_{n = \infty} {}_{v_n(p)}L(z,p) \ .$$

Now by $G \ni p$ and by $\omega(p,z,R-R_0) = 0$ we have $p(c_GL(z,p)) = \lim_{n=\infty} \frac{1}{\nu_n(p)}(c_GL(z,p)) = 0$. Also $\frac{1}{\nu_n(p)}M = M$ $\omega(\bar{v}_n(p) \cap R,z,R-R_0) \to 0$ as $n \to \infty$, whence $\lim_{n=\infty} \frac{1}{\nu_n(p)}L(z,p) = 0$. This is a contradiction. Hence $p \in G(L,\Delta) \cap s\Delta(R,L)$.

Lemma 1. Let G_1 be a domain in $R-R_0$ and G_2 be a regularly open set such that $G_1 \supset \overline{G}_2$ and there exists a harmonic function V(z) in G_1-G_2 with the property: V(z)=0 on ∂G_1 , V(z)=1 on ∂G_2 and $D(V(z))<\infty$. Let $\{G^n\}$ $n \geq 3$ be a decreasing sequence of regularly open sets: $G_2 \supset G_n$. Then $\omega(\{\overline{G}_n\}, z, G_1)$ can be defined. Suppose $\omega(\{\overline{G}_n\}, z, G_1)>0$. Let U(z) be a non constant positive harmonic function in $R-R_0$ with finite Dirichlet integral such that sup $U(z)<\infty$ and $U(z)=_{CG_1}U(z)$ in G_1 . Then there exists at least

a point z_0 in $G_1 - \cap \overline{G}_n$ such that

$$U(z_0) < \sup_{z \in G_1} U(z) (\omega(\{\overline{G}_n\}, z, G_1)).$$

PROOF. Put $\omega(z) = \omega(\{\overline{G}_n\}, z, G_1)$. Then $\omega(z) = M$ $\omega(V_M, z, G_1)$ on $G_1 - V_M$: $V_M = E[z \in G_1: \omega(z) \ge M]$: 0 < M < 1 and $\omega(z)$ has M.D.I. over $V_{M_1} - \text{int } V_{M_2} : M_2 > M_1$ among all harmonic functions with the same value as $\omega(z)$ on $\partial V_{M_1} + \partial V_{M_2}$. Whence $\omega_n(z) \to \omega(z)$ as $n \to \infty$, where $\omega_n(z)$ is a harmonic function in $(V_{M_1} - \text{int } V_{M_2}) \cap R_n$ such that $\omega_n(z) = \omega(z)$ on $(\partial V_{M_1} + \partial V_{M_2}) \cap R_n$ and $\frac{\partial}{\partial n} \omega_n(z) = 0$ on $\partial R_n \cap (V_{M_1} - \text{int } V_{M_2})$. Let $\{f_n(z)\}$: $n = 1, 2, \cdots$ be a sequence of continuous functions on ∂V_M such that $|f_n(z)| < K < \infty$ and $f_n(z) \to f(z)$ as $n \to \infty$. Then

$$\begin{split} &\int\limits_{\partial V_M} \frac{\partial}{\partial n} \omega(z) ds = D\Big(\omega(z)\Big) = \lim_{n = \infty} \int\limits_{\partial V_M \cap R_n} \frac{\partial}{\partial n} \omega_n(z) ds \;, \quad \text{and} \\ &\int\limits_{\partial V_M} f(z) \; \frac{\partial}{\partial n} \omega(z) ds = \lim_{n = \infty} \int\limits_{\partial V_M \cap R_n} f_n(z) \frac{\partial}{\partial n} \omega_n(z) ds \; \text{[10]} \quad \text{for almost} \end{split}$$

all $M: 0 \le M \le 1$. Such ∂V_M is called a regular niveau curve. Now $U(z) = \lim_{n \to \infty} U_n(z) = \lim_{n \to \infty} U_n(z)$, where $U_n(z)$ is a harmonic function in $G_1 \cap R_n$ such that $U_n(z) = U(z)$ on $\partial G_1 \cap R_n$ and $\frac{\partial}{\partial n} U_n(z) = 0$ on $G_1 \cap \partial R_n$. Hence by Green's formula

$$\int_{(\partial V_{M_1} + \partial V_{M_2}) \cap R_n + \partial R_n \cap (V_{M_1} - V_{M_2})} U_n(z) ds = \int_{(\partial V_{M_1} + \partial V_{M_2}) \cap R_n + \partial R_n \cap (V_{M_1} - V_{M_2})} U_n(z) ds$$

where ∂V_{M_1} and ∂V_{M_2} are regular niveau curves.

By
$$\int_{\partial V_{M_1} \cap R_n} \frac{\partial}{\partial n} U_n(z) ds = \int_{V_{M_1} \cap \partial R_n} \frac{\partial}{\partial n} U_n(z) ds = 0 = \int_{V_{M_2} \cap \partial R_n} \frac{\partial}{\partial n} U_n(z) ds = 0$$

$$\int_{\partial V_{M_2} \cap R_n} \frac{\partial}{\partial n} U_n(z) ds \quad \text{we have}$$

Let $n \rightarrow \infty$. Then

$$\int_{\partial V_{M_1}} U(z) \frac{\partial}{\partial n} \omega(z) ds = \int_{\partial V_{M_2}} U(z) \frac{\partial}{\partial n} \omega(z) ds.$$

Since $l = \sup_{z \in G_1} U(z)$, we can find a constant ε_0 : $0 < \varepsilon_0 < 1$ such that

$$\int\limits_{\partial V_{M_1}} U(z) \frac{\partial}{\partial n} \omega(z) \, ds \leq (1 - \varepsilon_0) l \int\limits_{\partial V_{M_1}} \frac{\partial}{\partial n} \omega(z) \, ds \, . \tag{1}$$

Assume $U(z) \ge l\omega(z)$ in G_1 . Then $\int_{\partial V_{M_2}} U(z) \frac{\partial}{\partial n} \omega(z) ds \ge \int_{\partial V_{M_2}} l\omega(z) \frac{\partial}{\partial n} \omega(z) ds =$

$$lM_2 \int_{\partial V_{M_2}} \frac{\partial}{\partial n} \omega(z) ds.$$

Let $M_2 \rightarrow 1$. Then

$$\int_{\partial V_{M_1}} U(z) \frac{\partial}{\partial n} \omega(z) ds \ge \lim_{M_2 \uparrow 1} l M_2 \int_{\partial V_{M_2}} \frac{\partial}{\partial n} \omega(z) ds = l \int_{\partial V_{M_1}} \frac{\partial}{\partial n} \omega(z) ds. \tag{2}$$

(1) contradicts (2). Hence we have the lemma.

Theoerem 3. The mapping f in Theorem 2 is one to one from $s_{i,i}\Delta(R,L)\cap G(L,\Delta)$ onto $s_{i,i}\Delta(G,N)$ (i=1,2).

PROOF. Let $p \in_{\mathcal{S}} \Delta(R, L) \cap G(L, \Delta)$. Then $q = f(p) \in_{\mathcal{S}} \Delta(G, N)$. Let $v_n(q) = E[z \in G + \Delta(G, N) : \delta(z, q) < \frac{1}{n}]$. Put $\overset{*}{\omega}(q, z, R - R_0) = \lim_{n = \infty} \omega(\overline{v_n(q)} \cap R, z, R - R_0)$. Then $\overset{*}{\omega}(q, z, R - R_0) \geq \omega(q, z, G) > 0$. Since $\overset{*}{\omega}(q, z, R - R_0)$ is C.P. determined by a sequence $\{\overline{v_n(q)} \cap R\}$, $\overset{*}{\omega}(q, z, R - R_0) = \int_{n(q)} \sum_{n=0}^{\infty} \omega(q, z, R - R_0)$. Hence $\overset{*}{\omega}(q, z, R - R_0)$ is represented by a canonical measure on $\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty}$

$$L(z, p') - c_G L(z, p') = N(z, q).$$

Since such p' is uniquely determined, p'=p. Hence ${}_{1}\Delta(R,L)\cap(\bigcap_{n=1}^{\infty}(\overline{R\cap v_{n}(q)}))$ =p and $\omega(q,z,R-R_{0})=a$ $L(z,p)\colon 0< a<\infty$. By sup $\omega(p,z,R-R_{0})=1=\sup_{z}\omega(q,z,R-R_{0})^{[12]}$ we have

$$\overset{*}{\omega}(q, z, R - R_0) = \omega(p, z, R - R_0). \tag{3}$$

Hence

$$\omega(p, z, R-R_0) = \overset{*}{\omega}(q, z, R-R_0) \ge \omega(q, z, G) = \lim_{n=\infty} \omega(\bar{v}_n(q) \cap G, z, G). \quad (4)$$

Pun $V'_{1-\epsilon'} = E[z \in G: \omega(q, z, G) \ge 1-\epsilon'](0 < \epsilon' < 1)$. Then

$$\lim_{{}_{\bullet'}\to 0} \omega\Big(V'_{1-{}_{\bullet'}}\cap (G-v_n(q)),\,z,\,G\Big)=0\quad \text{for any given } v_n(q).^{\text{[13]}}$$

Hence

$$0 = \lim_{\epsilon' \to 0} \omega \Big(V'_{1-\epsilon'} \cap (G - v_n(q)), z, G \Big) \ge \lim_{\epsilon' \to 0} W \Big(V'_{1-\epsilon'} \cap (G - v_n(q)), z, G \Big), \quad (5)$$

where $W(V'_{1-\epsilon'}\cap (G-v_n(q)), z, G)$ is H.M. of $V'_{1-\epsilon'}\cap (G-v_n(q))$ relative to $G. \quad \text{Since} \ \ W(V'_{\scriptscriptstyle 1-\epsilon'},z,G) \leqq W(V'_{\scriptscriptstyle 1-\epsilon'} \cap \bar{v}_{\scriptscriptstyle n}(q),z,G) + \ W(V'_{\scriptscriptstyle 1-\epsilon'} \cap (G-v_{\scriptscriptstyle n}(q)),z,G),$ we have $\lim_{s'\to 0} W(V'_{1-\epsilon'}, z, G) \leq W(\overline{v_n(q)}, z, G)$. Let $n\to\infty$. Then $\lim_{s\to\infty} W(V'_{1-\epsilon'}, z, G) \leq W(\overline{v_n(q)}, z, G)$. $(z, G) \leq W(q, z, G)$. On the other hand, for any V'_{1-i} , there exists a neighbor. bourhood $v_n(q)$ such that $V'_{1-i}\supset (G\cap \bar{v}_n(q))$. Hence

$$\lim_{z'\to 0} W(V'_{1-z'},z,G) = W(q,z,G). \tag{6}$$

Let $p \in_{S,2} \Delta(R, L) \cap G(L, \Delta)$. We shall show $f(p) = q \in_{S,2} \Delta(G, N)$. By (6) it is

sufficient to show
$$\lim_{\varepsilon'\to 0} W(V'_{1-\varepsilon'}, z, G) > 0$$
. Let $V_{1-\varepsilon} = E[z \in R - R_0: \omega(p, z, R - R_0)] \ge 1-\varepsilon$: $0 < \varepsilon < 1$. Put $H_1(z) = \frac{\omega(p, z, R - R_0)}{1-\varepsilon}$. Then $H_1(z) \ge 1$ on

 $V_{\scriptscriptstyle 1-\epsilon},\ H_{\scriptscriptstyle 1}(z)=0\ \text{on}\ \partial R_{\scriptscriptstyle 0}\ \text{and}\ D(H_{\scriptscriptstyle 1}(z))<\infty.\quad {\rm Let}\,V'_{\scriptscriptstyle 1-\epsilon'}=E[z\in G\colon\ \pmb\omega(q,z,G)\geqq$ $1-\varepsilon'$]. Then for any given $\varepsilon'>0$ there exists a neighbourhood $v_n(q)$ such

that
$$(\bar{v}_n(q)\cap G)\subset V'_{1-\frac{\varepsilon'}{2}}$$
. Put $H_2(z)=\frac{\left(1-\frac{\varepsilon'}{2}\right)-\omega(q,z,G)}{\frac{\varepsilon'}{2}}$. Then $H_2(z)\leqq 0$

on $V'_{1-\frac{\epsilon'}{2}}$, $H_2(z) \ge 1$ on G-int $V'_{1-\epsilon'}$ and $D(H_2(z)) < \infty$. Hence there exists at least a piecewise smooth function $H_3(z)$ in $R-R_0-v_n(q)$ such that $H_3(z)=0$ on $R \cap v_n(q)$, $H_3(z) = 1$ on $R - R_0 - \operatorname{int} V'_{1-\epsilon'}$ and $D(H_3(z)) < \infty$. Put $U_{\epsilon,\epsilon',n}(z)$ $=\min(H_2(z), H_3(z))$. Then $U_{\iota,\iota',n}(z)$ is a piecewise smooth function in R- $R_0-v_n(q)$ such that $U_{\mathfrak{s},\mathfrak{s}',n}(z)=0$ on $\partial R_0+\partial (v_n(q)\cap R)$ and =1 on $V_{1-\mathfrak{s}}-\mathrm{int}\,V'_{1-\mathfrak{s}'}$ and $D(U_{\epsilon,\epsilon',n}(z)) < \infty$. Hence we can define C.P. $\omega(\{V_{1-\epsilon} - \text{int } V'_{1-\epsilon'}\}, z, R - w)$ $R_0 - v_n(q)$) determined by a sequence $\{(V_{1-\epsilon} - \text{int } V'_{1-\epsilon'})\}$ relative to $R - R_0 - \frac{1}{2}$ $v_n(q)$, where $\varepsilon \to 0$ and ε' is fixed. Put $\omega_{\varepsilon',n}(z) = \omega(\{V_{1-\varepsilon} \text{ int } V'_{1-\varepsilon'}\}, z, R - R_0 - R_0)$ $v_n(q)$). Assume $\overset{*}{\omega_{\iota',n}}(z) > 0$. Since $\overset{*}{\omega}(p,z,R-R_0) = \lim_{n=\infty} \omega(R \cap \bar{v}_n(q),z,R-R_0)$ by (3), $\omega(p, z, R-R_0)$ has M.D.I. over $R-R_0-v_n(q)$ with the same value as $\omega(p, z, R-R_0)$ on $\partial R_0 + \partial (v_n(q) \cap R)$. Hence by Lemma 1 there exists a point z_0 such that

$$\omega(p, z_0, R-R_0) < \overset{*}{\omega}_{i,n}(z_0)$$
.

On the other hand, $\omega(p, z, R-R_0) = \lim_{\epsilon \to 0} \frac{\omega(V_{1-\epsilon}, z, R-R_0)}{1-\epsilon} \ge \omega_{\epsilon',n}^*(z)$ in $R-R_0$

 $-v_n(q)$. This is a contradiction. Hence $\hat{\boldsymbol{\omega}}_{\boldsymbol{\epsilon}',n}(z)=0$.

By the Dirichlet principle $D(\omega(V_{1-\epsilon}-\operatorname{int} V'_{1-\epsilon'},z,R-R_0)) \leq D(\omega(V_{1-\epsilon}\operatorname{int} V'_{1-\epsilon'},z,R-R_0)) = 0$ as $\epsilon \to 0$, whence

$$\begin{split} 0 &= \lim_{\epsilon \to 0} \omega(V_{1-\epsilon} - \mathrm{int}\ V'_{1-\epsilon'}, \, z, \, R - R_0) \geqq \lim_{\epsilon \to 0} \ W(V_{1-\epsilon} - \mathrm{int}\ V'_{1-\epsilon'}, \, z, \, R - R_0) \\ &\geqq \lim_{\epsilon \to 0} \ W((V_{1-\epsilon} - \mathrm{int}\ V'_{1-\epsilon'}) \cap G, \, z, \, G) \geqq 0. \end{split}$$

On the other hand, we proved, if $p \in_{S,2} \Delta(R, L) \cap G(L, \Delta)$, then

$$W(p, z, G) = \lim_{n=\infty} W(G \cap \overline{v_n(p)}, z, G)^{[14]} > 0$$
,

where $v_n(p) = E[z \in R - R_0 + \Delta(L, R): \delta^L(z, p) < \frac{1}{n}].$

Since for any $V_{1-\epsilon}$ there exists a $v_n(p)$ such that $(R-R_0)\cap \overline{v_n(p)}\subset V_{1-\epsilon}$, $\lim_{\epsilon\to 0} W(V_{1-\epsilon}\cap G,z,G)>0 \ . \tag{7}$

Now $0 < \lim_{\epsilon \to 0} W(G \cap V_{1-\epsilon}, z, G) \le W(G \cap V'_{1-\epsilon'}, z, G) + \lim_{\epsilon \to 0} W((V_{1-\epsilon} - \operatorname{int} V'_{1-\epsilon'}) \cap G, z, G)$. Hence by (6) and (7) we have

$$W(q, \mathbf{z}, G) = \lim_{ \mathbf{z} \to \mathbf{0}} W(V'_{1-\mathbf{z}'} \cap G, \mathbf{z}, G) \underline{\geq} \mathbf{0} \ \ \text{and} \ \ q \in_{\mathcal{S}, 2} \mathcal{A}(G, N).$$

Next suppose $q \in_{S,2} \mathcal{A}(G, N)$ and let $p = f^{-1}(q)$. Then by (4) $\omega(p, z, R - R_0) \ge \omega(q, z, G)$.

By (6) we have

$$W(p, z, R-R_0) = \lim_{\epsilon \to 0} W(V_{1-\epsilon}, z, R-R_0) \ge \lim_{\epsilon \to 0} W(V'_{1-\epsilon'}, z, G)$$
$$= W(q, z, G) > 0,$$

where $E[z \in G: \omega(q, z, G) \ge 1 - \varepsilon] = V'_{1-\varepsilon} \subset V_{1-\varepsilon} = E[z \in R - R_0: \omega(p, z, R - R_0) \ge 1 - \varepsilon]$. Hence $q \in_{S,2} \Delta(G, N)$ implies $p \in_{S,2} \Delta(R, L) \cap G(L, \Delta)$ and the mapping f is one to one from $S_{S,2} \Delta(R, L) \cap G(L, \Delta)$ onto $S_{S,2} \Delta(G, N)$. By $S_{S,1} \Delta = S \Delta - S_{S,2} \Delta = S \Delta - S_$

Lemma 2. Let G be a domain in $R-R_0$ such that $G\ni p: p\in {}_{S}\Delta(R,L)$. Then we can find another domain G' such that $\overline{G}'\subset G$ and $G'\ni p$.

PROOF. Let q = f(p) and let $G' = E[z \in G: N(z, q) > \varepsilon]: 0 < \varepsilon < \sup N(z, q)$. Since every point of ∂G is regular for the Dirichlet problem in G, $\partial G \cap \partial G' = 0$. We shall show $G' \ni p$. By the Dirichlet principle $D(\omega(G', z, R - R_0))$

 $\leq \frac{1}{\varepsilon^2} D(\min(\varepsilon, N(z, q))) \leq \frac{2\pi}{\varepsilon}. \quad \text{Put } \omega'(z) = \omega(G', z, R - R_0) \text{ in } R - R_0 - G', = 1$ in G'. Then $c_G L(z, p) + \varepsilon \omega'(z) \geq L(z, p)$ on $R - R_0 - G'$ and $L(z, p) + \varepsilon \omega'(z)$ is full-superharmonic in $R - R_0$, whence $c_G L(z, p) \leq c_G L(z, p) + \varepsilon$, $L(z, p) \neq c_{G'} L(z, p)$ and $G' \ni p$.

Let G_0 be a disk in G. When we regard G as a Riemann surface, we can define L'-topology over $G-G_0+\varDelta(G,L')$ introduced by N-Green's function L'(z,p), $p\in (G-G_0)+\varDelta(G,L')$ of $G-G_0$ vanishing on ∂G_0 . As L-topology over $R-R_0+\varDelta(R,L')$, the sets, $\varDelta(G,L')$, and $G'(L',\varDelta)$ are defined, where G' is a subdomain of $G-\overline{G}_0$. Then we have the following

THEOREM 4. Let G_0 be a disk in G. Then there exists a one to one mapping \hat{f} from $_{S,i}\Delta(G,N)$ into $_{S,i}\Delta(G,L')$ (i=1,2).

PROOF. Let $q \in_{s,i} \Delta(G, N)$. Since G is a domain in $R-R_0$, there exists a uniquely determined point $p \in_{s,i} \Delta(R, L) \cap G(L, \Delta)$ such that

$$L(\mathbf{z},\mathbf{p}) - c_0 L(\mathbf{z},\mathbf{p}) = N(\mathbf{z},q) \colon \quad q = f(\mathbf{p}) \,.$$

We can find a domain $G_1 \subset G$ such that $\overline{G}_1 \subset G$ and $G_1 \ni p$. Since the fact $G_1 \ni p$ depends only the behaviour of G_1 in a neighbourhood of the boundary $\Delta(R, L)$, we can suppose without loss of generality that the above mentioned G_1 satisfies the condition $\overline{G}_1 \cap \overline{G}_0 = 0$. Since $G_1 \ni p$, there exists one to one mapping f_1 from $s, \Delta(R, L) \cap G(L, \Delta)$ onto $s, \Delta(G_1, N_1)$ such that

$$L(z, p) - c_{G_1}L(z, p) = N_1(z, q_1), \quad q_1 \in S_{S_1}\Delta(G_1, N_1), \quad q_1 = f_1(p), \quad (8)$$

where $N_1(z, p)$ is an N-Green's function of G_1 vanishing on ∂G_1 . Since G_1 is a subdomain of G, there exists a mapping g_1 from $g_1 \neq 0$ onto $g_2 \neq 0$ and

$$L'(z, p^{1}) - {}_{G-G_{1}}L'(z, p^{1}) = N_{1}(z, q_{1}), \quad q_{1} \in {}_{S,i}\Delta(G_{1}, N_{1}),$$

$$p^{1} \in {}_{S,i}\Delta(G, L') \cap G_{1}(R', \Delta), \quad q_{1} = g_{1}(p^{1}).$$
(8')

Let G_2 be another domain in G such that $\overline{G}_2 \subset G - G_0$ and $G_2 \ni p$. Then as above

$$egin{aligned} L(z,p) -_{\mathcal{C}G_2} L(z,p) &= N_2(z,q_2) \,, \quad q_2 \in {}_{\mathcal{S},i} \varDelta(G_2,N_2) \,, \quad q_2 = f_2(p) \,, \ L'(z,p^2) -_{G-G_2} L'(z,p^2) &= N_2(z,q_2) \,, \quad q_2 = g_2(p^2) \,, \ p^2 \in {}_{\mathcal{S},i} \varDelta(G,L') \cap G_2(L',\varDelta) \,, \end{aligned}$$

where $N_2(z, p)$ is an N-green's function of G_2 vanishing on ∂G_2 . We shall show $p^1=p^2$, in other words p^i (i=1,2,) does not depend on the choice of the auxiliary domain G_i under the condition that $\overline{G}_i \cap \overline{G}_0 = 0$. To prove it we use a supplementary domain G_3 , where $G_3 = G_1 \cap G_2$. Then $G_3 \ni p$ (because two thin sets is also thin). We have

$$L(z, p) - c_{G_3}L(z, p) = N_3(z, q_3), \quad q_3 \in {}_{S,i}\Delta(G_3, N_3), \quad q_3 = f_3(p), \quad (9)$$

$$L'(z, p^3) - {}_{G-G_3}L'(z, p^3) = N_3(z, q_3) \text{ and}$$

$$p^3 \in {}_{S,i}\Delta(G, L') \cap G_3(L', \Delta), \quad q_3 = g_3(p^3), \quad (10)$$

where $N_3(z,q)$ is an N-green's function of G_3 vanishing on ∂G_3 . Consider $L'(z,p^1)$ in G_3 . Since $L'(z,p^1)=_{g-g_1}L'(z,p^1)+N_1(z,q_1)$ on \overline{G}_3 and $_{g-g_3}(_{g-g_1}L'(z,p^1))=_{g-g_1}L'(z,p^1)$, we have $_{g-g_3}L'(z,p^1)=_{g-g_1}L'(z,p^1)+_{g-g_3}N_1(z,q_1)$ and

$$L'(z, p^{1}) - {}_{G-G_{3}}L'(z, p^{1}) = N_{1}(z, q_{1}) - {}_{G-G_{3}}N_{1}(z, q_{1}).$$
(11)

Similarly we have $L(z, p) - c_{G_3} L(x, p) = N_1(z, q_1) - c_{G_3} N(z, q_1)$. Hence by (11), (9) and (10)

$$L'(z, p^1) - {}_{G-G_3}L'(z, p^1) = N_3(z, q_3) = L'(z, p^3) - {}_{G-G_3}L'(z, p^3).$$
 (12)

However by Theorem 3 there exists a one to one mapping φ form $_{S,i}\Delta(G,L')\cap G_3(L',\Delta)$ onto $_{S,i}\Delta(G_3,N_3)$. Hence by (12) $\varphi(p^1)=q=\varphi(p^3)$ and $p^1=p^3$. Similary $p^2=p^3$. Hence $g_2^{-1}f_2f^{-1}(q)=g_1^{-1}f_1f^{-1}(q)$. We define the mapping $\hat{f}=g_j^{-1}\cdot f_j\cdot f^{-1}$ for any domain G_j in G such that $\partial G_j\subset G$, where f_j is one to one mapping from $_{S,i}\Delta(R,L)\cap G_j(L,\Delta)$ onto $_{S,i}\Delta(G_j,N_j)$ and g_j is from $_{S,i}\Delta(G,L')\cap G_j(L',\Delta)$ onto $_{S,i}\Delta(G_j,N_j)$. Then \hat{f} does not depend on the domain G_j . We shall show $\hat{f}(q_1)\neq \hat{f}(q_2)$ for $q_1,q_2\in_{S,i}\Delta(G,N)$ and $q_1\neq q_2$. Let $G_1\ni f^{-1}(q_1)$ and $G_2\ni f^{-1}(q_2)$, $\bar{G}_1\subset G-G_0$ and $\bar{G}_2\subset G-G_\theta$. We can find a relatively compact domain G' in $G-\bar{G}_0$ such that $G'\cap G_1\neq 0$, $G\cap G_2\neq 0$. Put $G_3=G_1+G_2+G'$. Then $G_3\ni f^{-1}(q_1)$, $G_3\ni f^{-1}(q_2)$ and there exists one to one mappings f_3 and g_3 from $_{S,i}\Delta(R,L)\cap G_3(L,\Delta)$ onto $_{S,i}\Delta(G_3,N_3)$ and from $_{S,i}\Delta(G,L')\cap G_3(L',\Delta)$ onto $_{S,i}\Delta(G_3,N_3)$ respectively. Then we see at once $\hat{f}(q_1)\neq \hat{f}(q_2)$. Hence the mapping \hat{f} is one to one and from $_{S,i}\Delta(G,N)$ into $_{S,i}\Delta(G,L')$ and the theorem is proved.

Let G be a domain in $R-R_0$. We suppose L'-top. over $G-G_0$ and L-top over $R-R_0$ are defined, where G_0 and R_0 are disks in R and G respectively. The identity mapping z (relative to L'-top.) $\rightarrow z$ (relative to L-top.) can be considered as an analytic function z=f(z). Now f(z) is a almost finitely sheeted covering. [15] Hence by Beurling's theorem

$$\bigcap \overline{f(G_r)} = \text{ one point in } R + \Delta(R, L), \tag{13}$$

for $z \in \mathcal{A}(G, L')$ except at most a set of capacity zero, where $\overline{f(G_r)}$ is the

closure of $f(G_{\tau})$ relative to L-top, and $\{G_{\tau}\}$ runs over all domains G_{τ} such that $G_{\tau} \ni p$. Let $p \in {}_{S} \Delta(G, L')$. Then $\bigcap \overline{f(G_{\tau})}$ is one point by Cap (p) > 0 $(\omega(p, z, G - G_{0}) > 0)$. Put $f(p) = \bigcap \overline{f(G_{\tau})}$. Then we have the following.

THEOREM 5. If $p \in_{s,i} \Delta(G, L')$, then $f(p) \in_{s,i} \Delta(R, L)$.

PROOF. Although this theorem can be deduced from Beurlings and Riesz's theorems, we shall prove the theorem more explicity. Let $p \in {}_{\mathcal{S}} \mathcal{A}(G, L')$ and put q = f(p). Let $G_{\mathfrak{r}} \ni p$. Then

$$\omega \left((G - G_{r}) \cap p, z, G - G_{0} \right) = \lim_{n \to \infty} \omega \left((G - G_{r}) \cap \bar{v}_{n}(p), z, G - G_{0} \right) = 0, \quad (14)$$

where $v_n(p)$ is a neighbourhood of p pelative to L'-top. By (13) for any $v_n(q)$ there exists a domain G_r such that $G_r \ni p$ and $\overline{G}_r \subset v_n(q)$, where G_r is the closure of G_r relative to L-top. and $v_n(q)$ is a neighbourhood of q relative to L-top. Hence by (14)

$$0 < \omega(p, z, G - G_0) = \lim_{n = \infty} \omega \left((\bar{v}_n(p) \cap G) \cap \overline{G}_r, z, G - G_0 \right) \le \lim_{n \to \infty} \omega \left(\bar{v}_n(q) \cap G, z, G - G_0 \right).$$

Let $U_n(z)$ be a harmonic function in $R-R_0-G_0-v_n(q)$ such that $U_n(z)=1$ on $\partial(v_n(q)\cap R)$, =0 on $\partial G_0+\partial R_0$ and $U_n(z)$ has M.D.I. (because $\partial G_0+\partial R_0$ is compact and $\bar{v}_n(q)\cap(\bar{R}_0+G_0)=0$). Since $U_n(z)=0$ on ∂G_0 and =1 on $\partial v_n(q)\cap R$, $D(\omega(\bar{v}_n(q)\cap G,z,G-G_0))\leq \text{Dirichlet}$ integral of $U_n(z)$ over $G-G_0-v_n(q)\leq D(U_n(z))$. Clearly $U_n(z)=\omega(\bar{v}_n(q)\cap R,z,R-R_0-G_0)$. Let $n\to\infty$. Then $U_n(z)$ converges locally uniformly and in Dirichlet integral to $\omega(q,z,R-R_0-G_0)$ and $0< D(\omega(q,z,G-G_0))\leq D(\lim_n \omega(v_n(q),z,R-R_0-G_0))$ and $\omega(q,z,R-R_0-G_0)>0$. On the other hand, since G_0 is compact in R, $\omega(q,z,R-R_0)>0$ if and only if $\omega(q,z,R-R_0-G_0)>0$. Hence $\omega(q,z,R-R_0)>0$. This shows that $q=f(p)\in \mathcal{S}(R,L)$ from $p\in \mathcal{S}(G,L')$.

Let $p \in_{S,2} \mathcal{A}(G, L')$. Then by $W((G-G_{\tau}) \cap p, z, G-G_{0}) \leq \omega((G-G_{\tau}) \cap p, z, G-G_{0}) = 0$ we have $0 < W(p, z, G-G_{0}) = W(p \cap G_{\tau}, z, G-G_{0}) \leq W(G_{\tau}, z, R-G_{0}) \leq W(\overline{v_{n}(q)} \cap R, z, R-R_{0})$. Let $n \rightarrow \infty$. Then

$$W(q, z, R-R_0) > 0$$
 and $q \in S_{,2} \Delta(R, L)$.

Analytic functions defined in neighbourhoods of singular points.

In the following we suppose the value of analytic functions w=f(z) falls on the w-sphere. In the previous paper [16] we proved the following two theorems:

THEOREM 6. Let $p \in {}_{S}\Delta(R, L)$ and G be a domain in R such that $G \ni p$.

Then on G there exists no analytic function w=f(z) such that the image of G by f(z) is a covering surface of a finite number of sheets over the w-sphere.

THEOREM 7. Let $p \in_{S,2} \Delta(R, L)$ and G be a domain in R such that $G \ni p$. Then on G there exists no analytic function w = f(z) such that the image of G by f(z) has a finite spherical area.

Suppose there exists a point $p \in_{S,i} \Delta(R, L) \cap G(L, \Delta)$ (i=1, 2). Then by Theorem 3 there exists a uniquely determined point $q \in_{S,i} \Delta(G, L')$ relative to L'-top. over $G - G_0$, where G_0 is a disk in G and G is considered as a Riemann surface. Then the above two theorems will be proved more easily than the previous proofs.

Let w_0 be a point in the Riemann sphere S_w and A(r) be the spherical area of the image of G by f(z) over a spherical circle: E[w]: spherical distance $(w, w_0) < r$].

If
$$\lim_{r\to 0}\frac{A(r)}{r^2}<\infty,$$

 w_0 is called an ordinary point.

We shall prove the following theorem which is an extension of Theorem 6.

THEOREM 8. Let R be a Riemann surface and let $p \in_{\mathcal{S}} \Delta(R, L)$. Let G be a domain in R with the following property: $G \ni p$ relative to L-topology over $R - R_0$. Then there exists no analytic function f(z) in G such that every point w in S_w is an ordinary point with respect to the image of G by f(z).

PROOF. By Theorem 2 and 3 the existence of a point $p \in {}_{\mathcal{S}} \Delta(R, L) \cap G(L, \Delta)$ implies the existence of a point $q \in {}_{\mathcal{S}} \Delta(G, L')$. Let f(z) be an analytic function in G such that every point w is an ordinary point. We can apply the Beurling's theorem in regarding G as a Riemann surface. Since every point w is an ordinary point, the spherical area of the image of G is finite and f(z) has a fine limit $w_0 \in S_w$ at q by $q \in {}_{\mathcal{S}} \Delta(G, L')$. On the other hand, w_0 is an ordinary point. Hence by Beurling's [17] theorem f(z) must be a constant w_0 . This is a contradiction and we have Theorem 8.

Theorem 9. Let G_j $(j=1,2,\cdots)$ be a domain in R such that $\{G_j\}$ clusters nowhere in R, $G_i \cap G_j = 0$ for $i \neq j$ and $G_i \cap \bar{R}_0 = 0$ and

$$\omega\left(\left\{(R-G)\cap(R-R_n)\right\}, z, R-R_0\right)=0, \quad G=\sum G_J.$$

Then $s,i\Delta(R,L)\neq 0$ if and only if $s,i\Delta(G_j,L_j)\neq 0$ for some j (i=1,2), where

 L_j is L top. over $G_j-G_{j,0}$ and $G_{j,0}$ si disk in G_j .

PROOF. The "if" part of the theorem is deduced from Theorem 5 directly. It is sufficient to prove the "only if" part. Let $p \in_{S,i} \Delta(R, L)$ and z_0 be a point in $R-R_0$. Let δ be a positive number such that

$$\omega(p, z_0, R-R_0) > \delta > 0$$
.

By the assumption for any given positive number ε ($<\delta$), there exists a number $n_0 = n(\varepsilon, z_0)$ such that $\omega((R-G) \cap (R-R_{n_0})z_0, R-R_0) < \varepsilon$. Hence by $\omega(p, z, R-R_0) \le 1$

$$\omega(p,z_0,R\!-\!R_0)\!-\!\omega(p,z_0,R\!-\!R_0)\!>\!\delta\!-\!\varepsilon\!>\!0\;.$$

This implies $p \in (G + R_{n_0})$ and $G \ni p$, since R_{n_0} is compact. There exists the only one component G_j of G such that $G_j \ni p$. Hence by Theorem 2 and 3 there exists a point q (corresponding to p) $\in S_{i,i} \Delta(G_j, L_j)$. Thus we have the theorem.

Let G be a domain in $R-R_0$ and G^{∞} be its universal covering surface. Map G^{∞} conformally onto $|\xi| < 1$ by $\xi = \xi(z)$. Let $N(z, p_0) \colon p_0 \in G$ be an N-Green's function such that $N(z, p_0) = 0$ on ∂G . Then $N(z, p_0)$ has angular limits almost everywhere on $\Gamma \colon |\xi| = 1$. ∂G is mapped ont a set A on Γ . Let E_N be the set in $(\Gamma - A)$ where $N(z, p_0)$ has angular limits = 0. Clearly E_N dose not depend on the point p_0 . Then we proved that every Dirichlet finite harmonic function vanishing on ∂G has angular limits = 0 in E_N . Let $W(z) = W(\{G \cap (R-R_n)\}, z, G)$. Let E_k be the set of $\Gamma - A$ where W(z) has angular limits = 0. Then there exists a set e on Γ such that mes e = 0 and $E_k - e \subset E_N$.

THEOREM 10. Let G_j $(j=1,2,\cdots)$ be a domain in $R-R_0$ such that $\{G_j\}$ clusters nowhere in R, $G_i \cap G_j = 0$ for $j \neq i$ and $\bar{R}_0 \cap \bar{G}_j = 0$. Put $G = \sum G_j$. Suppose

$$W(\{(R-G)\cap(R-R_n)\}, z, R-R_0)=0$$
 and
mes $E_N=mes\ E_k$ for any G_j .

Then $_{S,2}\Delta(R,L)\neq 0$ if and only if $_{S,2}\Delta(G_j,L_j)\neq 0$ for some j, where L_j is L-top, over G_j .

At first we shall prove the following.

Lemma 3. Let G be a damin in $R-R_0$. Let $\{f_n(z)\}: f_n(z) \ge 0$ be a sequence of continuous functions on ∂G such that $f_n(z) \downarrow f(z) \ge 0$ and f(z) is continuous. Let $f_n(z) \downarrow f(z) \ge 0$ and f(z) is such that $f_n(z) \downarrow f_n(z) = f_n(z)$ on ∂G . Then

$$\lim_{x \to f_n} U(z) = {}_f U(z).$$

In fact, let $U_{n,m}(z)$ be harmonic function in $G \cap R_m$ such that $U_{n,m}(z) = f_n(z)$ on $\partial G \cap R_m$ and =0 on $\partial R_m \cap G$. Then $U_{n,m}(z) = \frac{1}{2\pi} \int_{\partial G \cap R_m} f_n(\zeta) \frac{\partial}{\partial n} G_m(\zeta, z) ds$, where $G_m(\zeta, z)$ is a Green's function of $G \cap R_m$. Let $G(\zeta, z)$ be a Green's fuction of G. Then $\frac{\partial}{\partial n} G_m(\zeta, z) \uparrow \frac{\partial}{\partial n} G(\zeta, z)$ on ∂G . Hence $\lim_{m \to \infty} U_{n,m}(z) = f_n(z) = \frac{1}{2\pi} \int_{\partial G} f_n(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds$. Since $f_n(z) \downarrow f(z)$, we have by Lebesgue's theorem

$$_{f}U(z) = \frac{1}{2\pi} \int_{\partial G} f(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \lim_{n} \int_{n} U(z).$$

PROOF. of the theorem. As Theorem 9, in is sufficient to prove the "only if" part. Let D be a domain in $R-R_0$ and let U(z) be a positive harmonic function in $R-R_0$. Let $\widehat{c_D}U(z)$ be the lower envelope of non negative superharmonic functions in $R-R_0$ larger than U(z) on CD. Let $q \in_{S,2} \Delta(R,L)$, then $W(q,z,R-R_0)=\lim_n W(v_n(q)\cap R,z,R-R_0)>0$. By the assumption, for any point z_0 in $R-R_0$ and any positive number ε , there exists a number $n_0=n(z_0,\varepsilon)$ such that $W((R-G)\cap (R-R_{n_0}),z_0,R-R_0)<\varepsilon< W(q,z_0,R-R_0)$. Since $W(q,z,R-R_0)\leq 1$, we have $\widehat{c_G}W((q,z_0,R-R_0)< W(R-G)\cap (R-R_{n_0}),z_0,R-R_0)$ and

$$\widehat{c}_{\widetilde{G}}W(q,z,R-R_0) \not\equiv W(q,z,R-R_0), \qquad (15)$$

where $\widetilde{G} = G + (R_{n_0} - R_0)$.

17

Since $\widehat{CG}W(R\overline{v}_n(q), z, R-R_0)$ is the least positive harmonic function in \widehat{G} larger than $W(R \cap \overline{v}_n(q), z, R-R_0)$ on $\partial \widehat{G}$,

$$W(\overline{v_n(q)}\cap \widetilde{G}, z, \widehat{G}) {\geq W(R\cap \overline{v_n(q)}, z, R-R_{\mathrm{0}}) - \widehat{c}\widetilde{c}}W(R\cap \overline{v_n(q)}, z, R-R_{\mathrm{0}}).$$

Consider $W(\overline{v_n(q)}, z, R-R_0)$ as $f_n(z)$ on $\partial \widetilde{G}$ in Lemma 3, then we have by (15) and by letting $n \to \infty$

$$W(q, z, \hat{G}) \ge W(q, z, R - R_0) - \widehat{c}_{\hat{G}} W(q, z, R - R_0) > 0.$$
 (16)

Let $V_{n_0}(z)$ be the least positive harmonic function in \widetilde{G} such that $V_{n_0}(z)=1$ on $\partial G \cap R_{n_0}$. Let $\widetilde{V}_{n_0}(z)$ be the least positive harmonic function in $R-R_{n_0}$ such that $\widetilde{V}_{n_0}(z)=1$ on ∂R_{n_0} . Then $V_{n_0}(z) \leq \widetilde{V}_{n_0}(z)$ on $G-R_{n_0}$. Since R is a Riemann surface with positive boundary, $\sup \widetilde{V}_{n_0}(z) < K : K < 1$ in $R-R_{n_0+1}$ by $\partial R_{n_0+1} \cap \overline{R}_{n_0} = 0$. Now $W(q,z,\widehat{G}) > 0$ implies $\sup W(q,z,\widehat{G}) = 1$. Hence

there exists at least a point z_0 in $G-R_{n_0+1}$ such that $W(q,z_0,\widetilde{G})-\widetilde{V}_{n_0}(z_0)>0$. Since $G-R_{n_0+1}$ consists of $G_i-R_{n_0+1}$, there exists at least a component $G_j-R_{n_0+1}$ containing z_0 . Then $W(q,z_0,\widetilde{G})>\widetilde{V}_{n_0}(z_0)$ and $W(q,z,G_j)\geqq W(q,z,\widetilde{G})-V_{n_0}(z)$ and

$$W(q, z, G_j) > 0. (17)$$

Let $N(z, p_0)$ and $G(z, p_0)$: $p_0 \in G_j$ be a N-Green's function and Green's function of G_j respectively. Put $\Omega_b = E[z \in G_j: N(z, p_0) > \delta]$ and $\tilde{\Omega}_{\alpha} = E[z \in G_j: G(z, p_0) > \alpha]$. Under the condition that mes $E_N = \text{mes } E_k$ we shall show

$$\lim_{\delta \to 0} \lim_{n = \infty} W \left(C \Omega_{\delta} \cap (R - R_n), z, G_{\delta} \right) = 0.$$

Put $W(z) = \lim_{\delta \to 0} \lim_{n = \infty} W(C\Omega_{\delta} \cap R - R_n)$, z, G_j) and assume W(z) > 0. Map G_j^{∞} , the universal covering surface of G_j conformally onto $|\xi| < 1$ by $\xi = \xi(z)$. Let A be the image of ∂G_j on $\Gamma: |\xi| = 1$. Then since $0 < W(z) \le 1$, W(z) = 0 on A and has angular limits = 0 a. e. (almost everywhere) on E_k . By $E_N \supset E_k - e$ (e is a set with mes e = 0) and mes $(E_N - E_k) = 0$, we can find a set E in $\Gamma - A - E_N$ such that mes E > 0, both W(z) and $N(z, p_0)$ have angular limits > 0 a. e. on E. Hence for any given positive number ε : $3\varepsilon < mes E$, we can find a set E_1 in E such that mes $(E - E_1) < \varepsilon$, W(z) and $N(z, p_0)$ converge uniformly and $G(z, p_0)$ converges uniformly to zero as $\xi \to e^{i\theta} \in E$ inside of an angular domain $A(\theta)$: $A(\theta) = E[\xi: |arg \frac{\xi - e^{i\theta}}{e^{i\theta}}| < \frac{\pi}{4}]$. Also we can find a closed set E_2 in E_1 and const. $\delta > 0$ such that mes $(E - E_2) < 2\varepsilon$ and

$$N(z, p_0) > \delta$$
 and $\overset{*}{W}(z) > \delta$ in $C_m \cap (\bigcup_{e^{i\theta} \in E_2} A(\theta))$, (18)

where $C_m: 1-\frac{1}{m} < |\xi| < 1.$

 $C_m \cap (\bigcup_{e^{i\theta} \in E_2} A(\theta))$ consists of a finite number of components. Let D be a component such that mes $(\partial D \cap \Gamma) > 0$. We consider W(z) in D. Let Υ_α be the image of $\partial \tilde{\Omega}_\alpha$ and let $\Gamma_m \colon |\xi| = 1 - \frac{1}{n}$. Then $\Upsilon_\alpha \cap \partial D \cap \Gamma_m = 0$ for $\alpha < \min_{z \in \partial D \cap \Gamma_m} G(z, p_0)$ and since $G(z, p_0) \to 0$ as $\xi \to \Gamma$ in D, Υ_α must separate $\overline{D} \cap \Gamma$ from $\partial D \cap \Gamma_m$. By (18) the image of $\partial \Omega_\delta$ does not fall in D. Hence

$$W(C\Omega_{\delta}, z, \tilde{\Omega}_{\alpha}) \leq W(\xi) \text{ on } D \cap \tilde{\Omega}_{\alpha}, \alpha < \min_{z \in \partial D \cap \Gamma_{m}} G(z, p_{0})$$
 (19)

where $W(C\Omega_{\delta}, z, \tilde{\Omega}_{\alpha})$ is the H.M. of $C\Omega_{\delta}$ relative to $\tilde{\Omega}_{\alpha}$ and $W(\xi)$ is a har-

monic function in D such that $W(\xi)=1$ on $\partial D-\Gamma$ and =0 a.e. on $\partial D\cap\Gamma$. Since ∂D is rectifiable, $W(\xi)=0$ a.e. on $\partial D\cap\Gamma$. Since $\tilde{\Omega}_{\alpha}\nearrow G_{\beta}$ as $\alpha\to 0$ and $W(C\Omega_{\delta}, z, \tilde{\Omega}_{\alpha})\to W(C\Omega_{\delta}, z, G_{\beta})$ as $\alpha\to 0$,

$$\overset{*}{W}(z) \leq W \Big(C \Omega_{\delta} \cap (R - R_n), \, z, \, G_j \Big) \leq W (C \Omega_{\delta}, \, z, \, G_j) \leq W(\xi) \; .$$

Hence $\overset{*}{W}(z)$ has angular limits =0 a.e. on $\partial D \cap \Gamma$. This contradicts (18) and we have

$$\overset{*}{W}(z) = 0. (20)$$

 $\text{Now } \lim_{m \to \infty} W(\overline{v_n(q)} \cap C\Omega_{\delta} \cap (R - R_m), G_j) + \lim_{m \to \infty} W(\overline{\tilde{v}_n}(q) \cap \tilde{\Omega}_{\delta} \cap (R - R_m), z, G_j)$

$$\lim_{m=\infty} W(\overline{v_n(q)} \cap (R-R_m), z, G_j) \ge W(q, z, G_j) > 0.$$

By (20) there exists a number $\delta > 0$ such that

$$\lim_{n=\infty} W(\overline{v_n(q)} \cap \bar{\Omega}_{\delta}, z, G_j) = W(q \cap \bar{\Omega}_{\delta}, z, G_j) > 0.$$
 (21)

 $D(\min\left(N(\mathbf{z}, p_{\scriptscriptstyle 0}), \delta\right)) = 2\pi\delta \ \text{ and } \ D(\boldsymbol{\omega}(\bar{\Omega}_{\scriptscriptstyle \delta}, \mathbf{z}, G_{\scriptscriptstyle J})) \leq \frac{2\pi}{\delta} \ \text{ and } \ D(\boldsymbol{\omega}(\boldsymbol{v}_n(q) \cap \Omega_{\scriptscriptstyle \delta}, \mathbf{z}, G_{\scriptscriptstyle J}))$

$$\leq \frac{2\pi}{\delta}. \quad \text{By (21) } \omega(q \cap \bar{\Omega}_{\delta}, z, G_{j}) = \lim_{n = \infty} \omega(\overline{v_{n}(q)} \cap \bar{\Omega}_{\delta}, z, G_{j}) \geq W(q \cap \bar{\Omega}_{\delta}, z, G_{j}) > 0.$$
 Clearly

$$\omega(q, z, R - R_0) \ge \omega(q \cap \bar{\Omega}_i, z, G_i). \tag{22}$$

 $_{R-G_j}\omega(q,z,R-R_0)$ has M.D.I. over G_j amnog all harmonic functions with the same value as $\omega(q,z,R-R_0)$ on ∂G_j . Hence by Lemma 1 there exists at least a point z_0 such that $_{R-G_j}\omega(q,z_0,R-R_0)<\omega(q\cap\Omega_\delta,z_0,G_j)$. By (22) we have

$$\omega(q, z, R-R_0) \not\equiv_{R-G_0} \omega(q, z, R-R_0)$$
 and $G_j \stackrel{L}{\ni} q$.

Hence by Theorem 3 and 4 there exists a uniquely determined point $p \in S_{,2}\Delta(G_j, L_j)$.

REMARK. Under the condition of Theorem 9, if every G_j satisfies the condition of Theorem 8, then ${}_{\mathcal{S}}\mathcal{A}(R,L)=0$. Also under the condition of Theorem 10, if every G_j satisfies the condition of Theorem 7, then ${}_{\mathcal{S},2}\mathcal{A}(R,L)=0$.

On Matsumoto's conditions. [19] We shall consider the relation between Theorem 1 and Theorem 10. Put $G = \sum G_j$. Clearly $I[1] = \lim_{n \to \infty} W((R - R_n) \cap G_j, z, G_j)$ for any G_j . Let U(z) = I[1] in G_j and U(z) = 0 on R - G. We

shall show that E[I]=1 implies $\lim_{n=\infty}W((R-G)\cap(R-R_n)z,R-R_0)=0$. Let $\widetilde{U}_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-(R-G)\cap(R_{n+i}-R_n)$ such that $\widetilde{U}_{n,n+i}(z)=0$ on $(\partial R_n-G)+\partial G\cap(R_{n+i}-R_n),\ \widetilde{U}_{n,n+i}(z)=U(z)$ on $\partial R_{n+i}\cap G$. Then $\lim_{n=\infty}\lim_{i=\infty}\widetilde{U}_{n,n+i}(z)=E[U(z)]=1$. Let $\widehat{U}_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-(R-G)\cap(R_{n+i}-R_n)$ such that $\widehat{U}_{n,n+i}(z)=1$ on $(\partial R_n-G)+\partial G\cap(R_{n+i}-R_n),\ \widehat{U}_{n,n+i}(z)=0$ on $\partial R_{n+i}\cap G$. Then $\lim_{n=\infty}\lim_{i=\infty}\widehat{U}_{n+i}(z)=\lim_{n=\infty}W((R-G)\cap(R-R_n),z,R)$. Now $1-\widetilde{U}_{n,n+i}(z)=1=\widehat{U}_{n,n+i}(z)$ on $(\partial R_n-G)+\partial G\cap(R_{n+i}-R_n)$, $(\partial R_n-G)+\partial G\cap(R_{n+i}-R_n)$, $(\partial R_n-G)+\partial G\cap(R_{n+i}-R_n)$,

$$1-\widetilde{U}_{n,n+i}(z)>0=\widehat{U}_{n,n+i}(z)$$
 on $\partial R_{n+i}\cap G$.

Let $i \rightarrow \infty$ and then $n \rightarrow \infty$. Then

$$0 = 1 - E[U(z)] \ge \lim_{n} W((R - G) \cap (R - R_{n}), z, R)$$

$$\ge \lim_{n} W((R - G) \cap (R - R_{n}), z, R - R_{0}).$$

Hence E[1]=1 implies $\lim W((R-G)\cap (R-R_n), z, R-R_0)=0$.

We shall show $D(I[1]) < \infty$ implies that mes $E_N = \text{mes } E_K$. Suppose $D(I[1]) < \infty$. Let W(z) = I[1] and let E be the set on which W(z) has angular limits = 1. Then there exists a set e_1 such that mes $e_1 = 0$ and $E \subset \Gamma - E_N - A + e_1$, where A is the image of ∂G and Γ is: $|\xi| = 1$. By the definition of E_k and since W(z) has angular limits = 0 or 1 a.e. on Γ , there exists a set e_2 such that $E \supset \Gamma - E_k - A - e_2$ and mes $e_2 = 0$. Hence $E_N \subset E_k + e_1 + e_2$. On the other hand, there exists a set e_3 such that mes $e_3 = 0$ and $E_N + e_3 \supset E_k$, whence mes $E_N = \text{mes } E_k$. Thus we have the following

PROPOSITION. If E[I]=1, then $\lim_n W((R-G)\cap (R-R_n), z, R-R_0)=0$. If $D(I[1])<\infty$, then $\max_n E_n=\max_n E_k$.

Hence Theorem 10 implies Theorem 1.

Riemann surface of almost finite genus. M. Nakai^[20] introduced the notion of almost finite genus and proved that any Riemann surface of almost finite genus has no points in $_{S,2}A(R,L)$. Let C_i $(i=1,2,\cdots)$ be a closed Jordan curve in R corresponding to a handle of the Riemann surface such that $C_i \cap C_j = 0$ for $i \neq j$, C_i is not a dividing curve and $R - \sum_i C_i$ is of planar character. Let A_j $(j=1,2,\cdots)$ be a relatively compact domain such that $\bar{A}_i \cap \bar{A}_j = 0$ for $i \neq j$, $\bar{A}_i \cap \bar{R}_0 = 0$, $\{A_i\}$ clusters nowhere in R and C_i is contained in some A_j . Let $U_j(z)$ be a harmonic function in $A_j - \sum_i C_i$ such $U_j(z) = 0$ on ∂A_j , $U_j(z) = 1$ on $\sum_i C_i$. Put $\frac{1}{M_i} = D(U_j(z))$. If $\sum_j \frac{1}{M_i} < \infty$,

then R is called of almost finite genus. Let $G=R-\sum_{i}C_{i}$. Then G is a domain in R. Matsumoto proved E I[1]=1 and $D(I[1])<\infty$ for a Riemann surface of almost finite genus and R has no points in $_{S,2}\Delta(R,L)$. We shall show that R has no points in $_{S}\Delta(R,L)$.

We can choose an exhaustion $\{R_n\}$ such that $\partial R_n \cap \bar{A}_i = 0$. Let $\hat{U}_n(z)$ be a piecewise smooth function in $R - R_0$ such that $\hat{U}_n(z) = 0$ in $R - (\sum_i A_j \cap (R - R_n))$, $\hat{U}_n(z) = U_j(z)$ in $A_j \cap (R - R_n)$, Let $\omega_n(z)$ be the C.P of $(R - G) \cap (R - R_n) = \sum_{i=1}^{\infty} C_i \cap (R - R_n)$. Then $\omega_n(z) = 1$ on $\sum_{i=1}^{\infty} C_i \cap (R - R_n) = 0$ on ∂R_0 and has M.D.I. Then by the Dirichlet principle

$$D\left(\boldsymbol{\omega}_{n}(z)\right) \leq D\left(\widehat{U}_{n}(z)\right) < \sum_{i=1}^{\infty} \frac{1}{M_{i}},$$

where the summation is over the number i such that A_i is contained in $R-R_n$. Let $n\to\infty$. Then $\lim_n \omega((R-G)\cap (R-R_n), z, R-R_n)=0$ and the condition of Theorem 9 is satisfied. Now $G=R-\sum C_i$ is of planar and can be mapped onto a domain in the w-sphere. Hence by Theorem 8, G has no point in ${}_{\mathcal{S}} \Delta(G, L')$ and by Theorem 9 R has no points in ${}_{\mathcal{S}} \Delta(R, L)$. Then we have

Theorem 11. Riemann surface of almost finite genus has no points in $_{\mathcal{S}}\Delta(R,L)$.

Department of Mathematics Hokkaido University

References

- [1] Z. KURAMOCHI: Potentials on Riemann surfaces, J. Fac. Sci. Hokkaido Univ. Ser. 1. 16 (1962), 5-79.
- [2] See [1] and [3].
- [3] Z. KURAMOCHI: Superharmonic functions in a domain of a Riemann surface, Nagoya Math. J., 31 (1968), 41-58.
- [4] See (1) and Z. KURAMOCHI: Singular points of Riemann surfaces, J. Fac. Sci. Hokkaido Univ. Ser. 1, 16 (1962), 80-148.
- [5] M. HEINS: On the Lindelöf principle, Ann. Math, 61 (1955), 440-473.
 Z. KURAMOCHI: Relations between harmonic dimension, Proc. Japan Acad. 30 (1954), 576-580.
- [6] See (5).
- [7] K. MATSUMOTO: A condition for each point of the Kuramochi boundary to be of harmonic measure zero: Lecture note 58, Springer Verlag (1968), 88-96.
- [8] Z. KURAMOCHI: Relations between two Martin's topologies on a Riemann sur-

face, J. Fac. Sci. Hokkaido Univ. Ser. 1. 19 (1966), 146-153.

- [9] Z. KURAMOCHI: Correspondence of boundaries of Riemann surfaces, J. Fac. Sci. Hokkaido Univ. Ser. 1, 17 (1963), 96-122.
- [10] See (1).
- [11] See (1).
- [12] See (1).
- [13] See (4). In (4) the assertion is proved in $R-R_0$, but it is easily proved for G without any change.
- [14] See (4).
- [15] Z. KURAMOCHI: On Beurling's and Fatou's theorems: Lecture note, 58, Springer Verlag, (1968), 43-69.
- [16] See (4).
- [17] See (9).
- [18] See (1).
- [19] See (2).
- [20] M. NAKAI: Genus and clssifications of Riemann surfaces: Osaka Math. J. 19 (1962), 153-180.

(Received February 26, 1972)

28.1 4 7