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Let R be a Riemann surface with positive. boundary and let {R,} (n =
0,1,2,---) be its exhaustion with compact analytic relative boundary oR,.
Let G be a domain in R such that the relative boundary dG consists of at
most an enumerable number of smooth curves clustering nowhere in R.
In the present paper we consider only domains as mentioned above. If an
open set G has a smooth relative boundary, we call it a regularly open set.
Let G, be a domain in R—R, and G, be a regularly open set in G, such
that G,OG,, where G, is the closure of G, in R. Let U,(z) be a harmonic
function in (G,—G,)NR, such that U,(z)=1 on dG,NR,,=0 on 3G, NR,

and Fa— U,(2)=0 on dR,N(G,—G,). If the Dirichlet integral D(U,(2))<
n

M< o for any n, then U,(z) converges locally uniformly and in Dirichlet
integral as 7—oo to a harmonic function which is denoted by (G, 2, G))
and is called the Capacitary Potential'™ of G, relative to G, (abbreviated by
C.P.. Clearly w(G,, 2, G,) is uniquely determined and has minimal Dirichlet
integral (M. D.L) over (G,— G,) among all harmonic functions with the same
value as ©(G,, z, G)) on 9G,+09G,. Let G,DG;DG,, - be a decreasing
sequence of regularly open sets. Then w(G,, 2, G,) converges locally uni-
formly and in Dirichlet integral as n->co to a harmonic function denoted
by ©({G,}, z, G)). This is called C.P. of {G,}. Len F be a closed set in
G,, if there exists a harmonic function U(?) in G;—F such that U(z)=0
on 3G;, U(z)=1 on F and D(U(z))<co, there exists a uniquely determined
harmonic function o(F, 2z, G,) such that w(F, 2, G)=1 on 0F except at most
a set of capacity zero, =0 on dG, and has M.D.1. Let {F,} be a decreasing
sequence in G;. Then we can define C.P. of {F,} as above. Let W(z) be
the least positive harmonic function in G,—F such that W(z)=1 on oF
except at most a set of capacity zero. We call W(z) the harmonic measure
(abbreviated by H.M.) and denote it by W(F, 2, G,). Similarly H- M. of a
decreasing sequence {F,} can be defined also. -

Let G be a domain in R such that GN R,=0 and let N,(z, p) be a positive
harmonic function in (G—{p})NR,: peR,NG such that N,(z,p)=0 on
dGNR,, N,(z,p) has a logarithmic singularity with coefficient 1 at p and
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_a@_ N,(z$)=0 on 9R,NG. Then N,(zp)—Niz,p) and D({N,(z p)—
n

N(z, p))>0 as n—>oco. N(z,p) has M.D.1, where the Dirichlet integral is
taken with respect to N(z, p)+log|z—p| in a neighbourhood of p. Then
we have N-Martin’s topology'™™ (N-top.) in G+4(G, N) as usual manner
with distance

i p)=sup TP~ TSP for g, pieGHAGN),
where G, is a disk in G and 4(G, N) is the ideal boundary of G obtained
by completion of G with respect to the above metric.

Further let L(z, p) be an N-Green’s function of R—R, such that
L(z, $)=0 on R, with a logarithmic singulariy at p with coefficient 1 and
L(z, p) has M.D.1. over R—R,. Then we have also an N-Martin’s topology
(L-top.) over R—R,+ A(R, L) with distance

L — L(z, p) L(z, p,) —
0 (Pl,f’z)—iglgz 1+ Lz p) - 1+ L(z, p) , PP €R—R+A(R, L)
where D, is a disk in R—R, and 4(R, L) is the ideal boundary.

Let G be a domain in R—R, with non compact relative boundary 8G.
We denote an N-Green’s function of G by N(z, p) (with letter N) vanishing
on dG. On the other hand, when we regard G as a Riemann surface, we
denote an N-Green’s function in G—G, by L'(z, p) (with letter L), where
G, is a disk in G. Let D be a regularly open set in G. Let U(z) be a
non negative continuous superharmonic function in G such that U (2)=0 on
dG and D(min(M, U(2)))< oo for any M: 0<M< 0. Let ;U¥(2) be a func-
tion such that ;U¥(z)=min(M, U(2)) on D+8G and has M.D.1. over G—D.
Put EU(2)=EID sU¥(2). If, for any relatirely compact regularly domain D,
sU(2)=U(z), then U(z) is called a full-superharmonic function in G.EI A
positive harmonic function U(z) in G is called minimal, if U(2)=V(2)=0
implies V(2)=aUl(z): 0<a<1 for any function V(z) such that both V(2)
and U(z)—V(z) are harmonic and full-superharmonic in G. Let 4(G, N)
be the set of all minimal points.B] Then it is known that U(z) is minimal
if and only if U(z)=aN(z,p) for some p€,4(G, N) and 0<a<oo. Let
s4(G, N) be the set of all singular point." Then , :

1). sd(G, N)c 4(G, N).

2). Suppose p€,d4(G,N). Put , ,,N(z, P)=lir2v,(p)ﬂRmN (2,p), where

v.(p)=E[2€G + 4(G, N): 6%(2, p)< %]. Then N(z, )=, »N(z ), Niz,2)
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=lim, »N(z,p). Nizp)=M o(Vy(p),z G) in G—=Vy(p) and Nz, p)=
gm}M(D)N(z, p), where V,(p)=E[zeG: Nz, p)=M] and 0<M<M* =
M-oM* - . . ’

sup N(z, p). R ~
3). Suppose pe.d(G, N). For any V,(p): M<M*, there exists a
number z# such that (v,(p)NG)C Vy(p). , :
4). N( , p)= M* hmw(VM(p),z G)=M*w(p, z, G)=M* lim (G Nv,(p),

n—0

G) for pESA(G N): Where (v, (p), 2, G)= hm 00, (p)NR,, 2, G
Let W(p, z, G)=lim W(GNwv,(p), 2, G) be.H M. of p€,4(G, N). We call

7 =00

p a singular point of first kind or second kind according as W(p, z, G)=
or >0 respectively. We denote the set of all singular points of first kind
and second kind by 4.4(G, N) and ,4(G, N) respectively.

Let G be a regularly open set. Let U(z) be a non. negative harmonic
function in R. We denote by I;[U] the upper envelope of all non negative
continuous subharmonic functions in G vanishing on G and smaller than
U(z) in G.I¥1 A non negative harmonic function U(z) in G is called admis-
sible, if U(2)=0 on dG and if there exists at least a superharmonic function
in R larger than U(z) in R. Let E[U] be the lower envelope of continuous
superharmonic functions in R larger than U(z). Then we see ™

1). E and I are positive linear operators.

2). If U(z) is admissible, then IE[U]=U. For any U(2)>0 in R we
have IEI[U]=I1[U].

3). If G;NnG;=0, then IEI[U] 0 for i#j.

Matsumoto proved the followmg

THEOREM 1.7 Let G, (i=1,2,3,-+) be domains such that G,NG,=0
for i#j. Put G=X,G,. If each G, is of finite genus or more generally is
representable as a covering Surface of a finite number of sheets over the
w-plane and if 1). EI[1]=1 and if 2). I[1] has a finite Dirichlet integral
for any 1, then §,4(R, L) is empty.

In the present paper we consider the relations between 4,4(G, N) and
s:4(R, L) (i=1,2) and problems of types similar to [Theorem 1.

Let G be a domain in R such that GNRy=0 and L(z, ») and N(z, p)
be N-Green’s functions of R—R, and G respectively. We suppose L and
N topologies are defined on R—R,+ 4(R, L) and G—i—A(G N) respectlvely
If peG, then we have at once

| | Lizp)—cllz p) = Niz, ?). |
Let pélA(R,'L). If Lz, p);ECGL(z, p), we write G;p (fhis is equivalent
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to the thiness of CG at p). Let G(L, 4) be the set of all points p in 4(R, L)
with péG. Let pi—i p°€G(L, 4) (this means that p; tends to p” relative to
L-top.) and pii P’ p:€G. Then ' . |
Nz, ) = 1((L(z p")—caL(z p)): 12720
and pe,4(G, N) if and only if 7=1.% -
 Let p be a pomt in G(L, 4). If there exists a sequence { pi} in G such
that p%—>p and pi—é P GAI(G N). We say that pﬁ lies on p Denote by

f(p°) the set of all points lying on p°. Then f(p*) contains one point p*
(denoted by p’=f(p") in 4(G, N) and :

L<z3 Pa>_C’GL(z’ Pa) = N(z}a PS> .
Conversely let p°€,4(G, N). Then f~(p*) consists of only one point p*
in G(L, d4) and L(z, p*)—¢eL(z, p*)=Nl(z, p*. Hence the mapping f is one
to one from G(L,4) onto 4(G, N). We consider ¢4(R, L) and 4s(G, N).
Then we have : :
THEOREM 2. The mappzng fis one to one from G(L, A)ﬂSA(R L) onto
(G N | ,
" Proor. Let PeG(L, /)N 4(R, L) and put q———f(p) Then N(z, Q)=
L(z,p)—caL(2, p) and sup L(z, p)<oco. Hence we have at once sup N(z, q)
<oo and qESA(G’ N)' L6t qESA(Ga N) Then L(Z, p)'—CGL<za P) =N(Z, Q)
and sup N(z, ¢)=M< co.
" weL(z, p)+ MZL(z, p) in R—R,.

Assume pe 4(R, L) (R, L) Then w(p, 2z, R—R,)=0 and
s (ol p)+- M) 2,0 L ) = Lz, p)=lim o L(z,5) .

Now by G3p and by w(p, 2 R—Ry)=0 we have ,{zL (2, p))= lim ,_{asL (2 1)

=0." Also , (,zM=M 0(7,(p)NR, 2, R—R))—0 as n—oo, whence
lifll oLz, p)=0. This is a contradiction. Hence peG(L, 4)N sd(R, L).

LEmMMA 1. Let G, be a domain in R—R, and G, be a regularly open
set such that G,DG, and there exists a harmonic function V(2) in G,—G,
with the property: V(2)=0 on 3G,, V(z)=1 on 0G, and D(V(z))<oco. Let
{G"} n=3 be a decreasing sequence of regularly open sets: G,2G,. Then
o({G.,}, 2, G,) can be defined. Suppose w({G,), z, G)>0. Let U(2) be a non
constant positive harmonic function in R—R, with finite Dirichlet integral
such that sup U(z)<oo and U(z)=¢e U(2) in G,. Then there exists at least
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a point z, in Gi— NG, such that
| Uleo)< sup U() (0({G), 2, G).

266,
ProOF. Put 0(z)=0({G.}, 2, G). Then w(2)=M @(Vy, 2 Gy) on Gi—
Vi: Vu=E[2eG;: 0(z2)=M]: 0<M<1 and w(z) has M.D.L. over Vj,—
int V,,: M,>M, among all harmonic functions with the same value as w(2)
on 3V, +3dV,,. Whence o,(2)~>0(z) as n—>oo, where ,(2) is a harmonic

function in (V,, —int Vi,)N R, such that 0,(2) = 0(2) on @V, +0Vy)NR,

and _a?—wn(z_)=0 on aRnﬂ(Vj.;l—int Vu,). Let {fn(z)}: n=1,2,--- be a se-
n \ ,

quence of continuous functions on 3V, such that |f,(2)| <K<oo and f,(z)—
f(z) as n—>oo. Then

S_a_w(z)ds=D<w(z)>=lim S -é%wn(z)ds, and

on n=co

Wy ‘ WWyNR,
S fl2) aiw(z)ds= lifn S fn(z)aiwn(z)ds 01 for almost
Wy " " VyNR, "

all .M . 0<M<Z1. Such 9V, is called a regular niveau curve. Now
U(z)=ce U(z)=lim U,(z), where U,(2) is a harmonic function in G,NR,

such that U,(z)=U(z) on 9G,NR, and —aa——Un(z)=O on GiNdR,. Hence
n
by Green’s formula

SUn(z)—az—wn(z)ds — Swn(z)ainUn(z)ds

@Yy + V3 YRRV ay Vo) Vg +3Vpr SN+ 0R, OV gy =V g)

where 9V, and 9V, are regular niveau curves.

By D Uwds= | 2 U@ds=0={ LU, (x)ds=
, on , on on
Wy Ry, Vag, VR, Vag,VOR,,
9 U,(z)ds we have
on :
2pg, NPy
d _ 0
U,(2) —w,(z)ds = U, (2)—w,(2)ds .
on on
py, By Wy VR,

Let n——>oo; Then



On minimal points of Riemann Surfaces, I 183

Since /=supU(z), we can find a constant ¢: 0<e<1 such that
2€G,

X Ul2)-9- w(z)ds<(1—¢)l S 9 s, (1)
on on
6171‘11 ‘ aVI,[1
Assume U(z)2lo(2) in G, Then S U<z>aiw<z)dsz S lw(z)g—w(z)ds=
aVMz 7 GVI‘I2 &
IM, S 9 (2)ds.
Wy, "
Let M,—-1. Then
S U(2) -0 w(2)ds=lim IM, S 0 w(x)ds=1 S 9 w2)ds.  (2)
on AR on on .
aVy Wy aVyy

1 1

(1) contradicts (2). Hence we have the lemma.
THEOEREM 3. The mapping f in Theorem 2 is one to one from
5, 4R, L)\NG(L, 4) onto ¢,4(G, N) (i=1,2). .
ProoF. Let pegd(R, L)NG(L, 4\ Then q=f(p)esd(G, N). Let v,(q)
—E[26G+4(G, N): (2, 9)< _712_—]. Put (g, 2, R— R)=lim 0(0,{g) N R, 2 R

—R,). Then w(g, 2, R—R)Z=w(q, 2, G)>O Since w(q, 2, R-—Ro) is C.P. de-
termmed by a sequence {v,(q)NR}, w (q, 2, R—Ry)=, <q>‘wﬂ>;(q, 2, R—R,).M""
Hence w(q,z R—R,) is represented by a canonical measure on 4(R, L)N

o L
(N RNv,(q)), where

means the closure of Rﬂbn(q) relative to L-top.

Let p'e A(R.L)ﬂ( (Rﬂvn( ). Then there exists a sequence {p;} (p;€G)

||38

such that p,;——>p and p¢—>q and L(z Pi)—cal (2, p;) = N(z, p;). Let i—oo0.
Then

L(z#)—caL(z p)=N(z, q).
oo L
Since such p’ is uniquely determined, p’=p. Hence 14(R, L)N(N (RN v,(q))

n=1
=p and (g, z,R—Ro)za L(z,p): 0<a<co.” By sup o(p,z, R—Ry)=1=
sup (g, 2, R— R,)" we have '
| (g2, R—R)=w(p,z, R—Ry). (3)

Hence
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o(p, z,R+Ro)£c3(q, 2, R—R))=w0l(g, 2, G)———li_mw(v*)n(q)ﬂG", 2, G) (4)

Pun V',_.=E[2eG: w(q, 2, G)=1—¢](0<e’'<1). Then

lim w(V’l_e, NG—v,(q)), 2, G) =0 for any given v,(g)."

&/—0
Hence
0=limo(V, . N(G—vlg) % G) ZimW(V1-uN(G=v.(g) % G), (5)

where W(V',_..N(G—v,(q)), 2, G) is HM. of V',_, N(G—,(q)) relative to
G. Since W(V'i ., 5, G) S W(V'_. N7.(9), 2 G)+ WV, N(G—.(q)), 2 G),

we have lim W(V',_.., 2, G)E W(v,(q), 2, G). Let n—>co. Then lim WV .,
150

s'—0

2z, G)Z W:(q, 2, G). On the other hand, for any V’,_,, there exists a neigh-
bourhood v,(g) such that V';_,D(GNo,(q)). Hence

hm W(V,I*s'az3 G)Z W(q’ Z: G) . SR fos (6) :

Let p€5,4(R, L\NG(L, 4). We shall show Fp)=q€s.4(G, N). By (6)it is
sufficient to show lim W(V',_..,2, G)>0. Let V,_,=E[z€R—R,: w(p,z, R

/=0

~R)z1-e]: 0<e<l. Put Hi(y)=2B2R=K),

Vi., Hi(2)=0 on 9R, and D(H,(z))<oo. LetV', ,=E[2€G: alg,z G)2
1—¢']. Then for any given ¢ >0 there exists a neighbourhood v,(g) such

o x v (1——%—).—w(q,z,G) e
thatg(z‘;ﬁ(q)n(;)cV'l;L. Put H,(z)= —

Then H, (z)g 1 on

- .. Then H,(2)<0
2 ) . '
on V', o, Hy(2)=1 on G—int V';_,, and D(H,(z))<co. Hence there exists
O L2 : . . L :
at least a piecewise smooth function H(2) in R— R,—v,(q) such that H;(z)=0
on RNv,(g), Hy(2)=1 on R—R,—int V';_,, and D(H,(2))<o0. Put U, . .(2)
=min (H,(z), Hy(z). Then U, ,(z) is a piecewise smooth function in R—
R,—v,(q) such that U, ,.(2)=0 on dRy+d(v.(q) N R) and=1on V,_,—intV’,_,
and D(U, . ,(2))<oo. Hence we can define C.P. o({{Vi_.—int V';_,}, 2, R—
R,—v,(q)) determined by a sequence {(V,.,— int V',_.,)} relative to R—R,—
v,(q), where e—0 and &' is fixed. Put o, .(2)=0({Vi .int V'i_.}, 2, R—R,—
* * ’
v,(q). Assume o, ,(2)>0. Since o(p,=z, R—R0)=lifn_w(R N%.(g), 2, R—Ry)
by (3), @(p, 2 R—R,) has M.D.L. over R—R,—v,(q) with the same value
as o(p, 2z, R—R,) on dR,+3d(v,(g)NR). Hence by there exists a
point 2, such that
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0 (p, 20 R—R0) <0, (20) .
On the other hand, w(p, 2z, R—R,)=1lim -2 o(Vi_,, % R~ R°>g 'a(2) In R=R,

«—0 1 —&

—v,(q). This is a contradiction. Hence Z)E,m(z)=0. _.
By the Dirichlet principle D(w(V,_,—int V',_,,, 2, R—R)<D(w(V,_. int
Vi, 2, R—Ry—v,( )))—)O as ¢—0, whence

O=lmo(V,_,—intV',_,,, 2, R— R)>hm WV .. —int V'i_.,, 2, R— Ro)

s—0

>lim W((V1 —int V',_,,) NG, 2, G)=0.

e—0

On the other hand, we proved, if pey,4(R, L)NG(L, 4), then
W(p, z, G) = li{n W(GNv,(p), z, G)™ >0,

where v,(p)=E[2€R—Ry+4(L, R): 6%z, p)<-L]."
n

Since for any V,_, there exists a v,(p) such that (R—R))Nv,(p)C V.-,
lim W(V,..nG, 2 G)>0. (7)"

0

Now 0<lim W(GN Vi_., 2, Q)= W(GN V',_., 2 G)+lim W(V,_.—int V,_)N
«—0 «—0 :

G, 2, G). Hence by (6) and (7) we have . .
Wi(g, =z, G)= linol W(V'.oNG, 2,G)=0 and ¢€4,4(G, N).

Next suppose g€5.4(G, N) and let p=f"1(q). Then by (4) w(p, 2, R—R))=
(g 2 G). | - , -
By (6) we have

W(p, z, R—Ry)=lim W(V, ,, 2, R—R)=lim W(V',_.., 2, G)

-0 e—0

= Wl(g, 2, G)>0,

where E[2€G: o(q, 2, G)=1—¢]=V",_.CV,_.=E[26R—R,: bw'(p, 2, R—Ry)=
1—¢]. Hence ¢€4,4(G, N) implies p€g,4(R, L)YNG(L, 4) and the mapping f
is one to one from 4,4(R, L)NG(L, d) onto ,4(G,N). By ¢, d=gd—s,d
and by we have the theorem. . .
C L
LEMMA 2. Let G be a domain in R—R, such that G3p: pe d(R, L).
' ' . L

Then we can find another domain G' such that G'CG and G'3p.

Proor. Let g=f(p) and let G'=E[2€G: Nz, g)>¢]: 0<e<sup N(z, g)-
Since every point of dG is regular for the Dlrlchlet problem in G, aGnN

0G'=0. We shall show G’ 9p. By the Dirichlet principle D(w(G’, 2, R—Ry))
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L D(min(s, N(z, 9)) S 2% Put o(2)=0(G', 2, R—Ry) in R—Ry—G',=1

€ €
in G'. Then gL(z, p)+eco'(2)=L(z, p) on R—Ry—G’ and L (2, p)+ew'(2) is
full- superharmonic in R—R,, whence (oL (2, p)<ceL (2, p)+¢, L(z, p)#FcaL(2, P)

A

and G’ ap

Let G, be a disk in G. When we regard G as a Riemann surface, we
can define L’-topology over G—G,+ 4(G, L') introduced by N-Green’s func-
tion L'(z,p), p€(G—Gy)+4(G, L") of G—G, vanishing on 3G,. As L-topology
over R—R,+4(R, L"), the sets, 4(G, L’), and G'(L’, 4) are defined, where G’
is a subdomain of G—G,. Then we have the following

THEOREM 4. Let G, be a disk in G. Then there exists a one to one
mapping f from g.4(G, N) into 5,4(G,L")(i=1,2).

Proor. Let g€g.4(G, N). Since G is a domain in R—R,, there exists
a uniquely determined point p€g;4(R, L)NG(L ,4) such that

L(z, )=l (5 )= N(z, q): ¢=5(p).
We can find a domain G,C G such that . CICG and Glap Since the fact

Glap depends only the behaviour of G, in a neighbourhood of the boundary
A(R, L), we can suppose without loss of generality that the above mentioned

- — L
-G, satisfies the condition G;NG,=0. Since G,3p, there exists one to one
mapping f; from ¢4(R, L)NG(L, 4) onto 4,4(G;, N,) such that
L(z’ P)—C’GIL(z’ P) = Nl(z" QI) » 1€ S,iA(Gl ’N1> » 41 =f1(P) ’ ( 8 )

where Ni(z, p) is an N-Green’s function of G, vanishing on 8G,. Since G,
is a subdomain of G, there exists a mapping ¢, from .4(G, L')NG,(L’, 4)
onto SJA(G], Nl) and . ‘ .

L'(z, p")—q¢-a L' (2, p") = Ni(z, @), ¢1€5,:4(Gr, N,

? €45:4G, YNGR, 1), ¢ =0:(p"). | (8")

Let G2 be another domam in G such that G,cG—G, and Gzap Then as

above ; .
L(z,P) ca L( ,0)=Na2,q2) s Q€ 5.:4(G2, Ny)y @2 = fo(P),
L Pmealwp) = Nile ), 6= 0.0,

pre . d(G, L'\NG,(L, 4), ‘ ' )

where Nj(z, p) is an N-green’s function of G, vanishing on 9G,.

We shall show p'=p? in other words p° (i=1,2,) does not depend on the
choice of the auxiliary domain G; under the condition that G,NG,=0. To
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prove it we use a supplementary domain G,;, where G;=G,NG,. Then

L .
G33p (because two thin sets is also thin). We have

L(z, p)—ca, L(z, p) = Ny(2, @), ¢:€ 5.4(Gs, Ny), q:=f(p), (9)
L/ (Z, P3)—G—GSL, (Z, PS) = M(Z, QB) and
P €5d(G, L\NG,(L', 4), g3=g5(p°), (10)

where 2\73(2, g) is an N-green’s function of G, vanishing on 9G;. B
Consider L'(z,p") in G,. Since L'(2,p")=g-¢,L (2, p")+ Ni(z,q) on G, and
G—G,(G~GIL,(2’ Pl))za-elL' (Z, Pl), we have G—GaLl(za Pl):G~GlL’(z’ P1>+G—GQN1(2’ ‘I1>

and

L'(z, Pl)—a—eaL’ (2, ") = Ni(z, QI>_G—03N1 (2, ) (11)

Similarly we have L(z, p)—co,L( 15)=Ni(2, ¢)—¢-6,N(z, g;). Hence by (11),
(9) and (10) | |

L'z, p)—a-0,L' (2, p") = Ns(2, gs) = L' (2, p)~a-0,L (%, 7°).  (12)

However by there exists a one to one mapping ¢ form ¢ ,4(G, L)
NGy(L', 4) onto ,4(Gs, N;). Hence by (12) ¢(p)=g=¢p(p") and p'=p"
Similary p*=p*. Hence g¢;'fif '(@)=g:'fif '(q9. We define the mapping
f'zgj‘l-fj -f~! for any domain G, in G such that dG,CG, where f; is one
to one mapping from ,4(R, L)NG,(L, 4) onto 4,4(G;, N;) and g; is from
5,:4(G, L'Y\NG,(L, 4) onto §,4(G,, N, Then f does not depend on the
domain G;. We shall show f(g)# f(g) for ¢, q:€54(G, N) and q,#4q,.
Let Gll?f‘l(ql) and GZ?f“(qz), G,.cG—G, and G,cG—G,. We can find a

relatively compact domain G’ in G—G, such that G’N G,#0, GNG,#0. Put
G;=G,+G,+G'. Then G;3f '(q.), Gs3f '(q,) and there exists one to one
' L L

mappings f; and g¢; from g,4(R, L)NGs(L, 4) onto g,4(G;, N;) and from
5:4(G, L'Y\NG3(L', 4) onto 4,4(Gs, N;) respectively. Then we see at once
f(g)# f(g). Hence the mapping f is one to one and from 5.:4(G, N) into

5:(G, L) and the theorem is proved. o
Let G be a domain in R—R,. We suppose L'-top. over G—G, and
L-top over R—R, are defined, where G, and R, are disks in R and G re-
spectively. The identity mapping z (relative to L’-top.)—>z (relative to L-top.)
can be considered as an analytic function z=f(z). Now f(z) is a almost

finitely sheeted covering.®3] Hence by Beurling’s theorem
NA(G.)=one point in R+4(R,L), =~ (13)

for z€,4(G, L') except at most a set of capacity zero, where f(G.) is the
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closure of f(G.) relative:to L-top. and {G.} runs over all domains G, such
that G, ap Let pesd(G,L'). Then Nf(G,) is one -point by Cap (p)>0
(@(p, 2, G—Gy)>0). Put f(p)=n f(G.). Then we have the following.

THEOREM 5. If p€g.d(G, L"), then f(p)emd(R, L)
Proor. Although this theorem can be deduced from Beurlings and
Riesz’s theorems, we shall prove the theorem more exphc1ty Let pegd (G L’)

and put g=f(p). Let G. ap Then _
0((G=GINp, % G—Gy)=lim o((G=G)N () 5, G—G,) =0, (14)

where v,(p) is a neighbourhood of p pelatlve to L'-top. By (13) for any

v,(q) there exists a domain G, such that G, ap and G.Cv,(q), where G, i
the closure of G. relative to L-top. and v,(g) is a neighbourhood of ¢ re-
lative to L-top. Hence by (14) S

0<w(p, z, G—Gy) = 1im_w(('~25,,(p)n G)NG.,2G—G,) <

hmw(‘v,,( NG, z, G— G)

Let U,(2) be a harmonic function in R—R,—G,—v,(g) such that U,(z)=1
on 3(v,(@)NR),=0 on 3G,+0dR, and U,(z) has M.D.I. (because 9G,+9R, is
compact and ,(q)N(Ry+Gy)=0). Since U,(2)=0 on 3G, and =1 on dv,(q)
NR, D(w(9,(q)N G, 2, G—G,))< Dirichlet integral of U,(z) over G—G,—v,(q)
<D(U,(2)). Clearly U,(2)=w0(v,(@NR, 2, R—R,—G,). Let n—>o00. Then
U,(z) converges locally uniformly and in Dirichlet integral to w(g, z, R—

—G,) and 0<D(w(g, 2z, G— Go))<D(hmw( 2(@), 2, R—Ry—Gy)) and w(g; 2,

R—R,—Gy)>0. On the other hand, since G, is compact in R, 0(g, 2,

R—R)>0 if and only if w(g, 2, R—R,—G,)>0. Hence (g, 2z, R—R,)>0.

‘This shows that g=f(p)ed(R, L) from pe (G, L'). ,
Let p€s.4(G,L). Then by W(G—G.)Np, 2, G—G)=0(G—G.)Np, 2,

G—Gy)=0 we have 0< W(p, 2, G—Gy)=W(pNG,, 2z, G—G)= W(G,, 2, R—
'R0)<W( .(@)NR,z, R—R,). Let n—>oco. Then :

| | Wi(g, 2, R—R)>0 and gqe€ s24(R, L). |
Analytic functions defined in neighbourhoods of singular points.

In the following we suppose the value of analytic functions w=/f(2) falls
on the w-sphere. In the previous paper"™ we proved the following two
theorems :

‘TueoreM 6. Let pesd(R, L) and G be a domain in R such that Gp.
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Then on G there exists no analytic function w=f£2) such that the image
of G by flz) is a covering surface of a finite number of sheets over the
w-sphere. .

THEOREM 7. Let peg,d(R, L) and G be a domain in R such that G;p.
Then on G there exists no analytic function w=f(2) such that the image
of G by f(2) has a finite spherical area.

Suppose there exists a point p€g4(R, LYNG(L, 4) (i=1,2). Then by
there exists a uniquely determined point g€ g .4 ('G,'_L’)"i'elative to
L'-top. over G—G,, where G, is a disk in G and G is considered as a
Riemann surface. Then the above two theorems will be proved more easily
than the previous proofs.

Let w, be a point in the Riemann sphere S, and A(r) be the spherical
area of the image of G by f(z) over a spherical circle: E[w: spherical dis-
tance (w, w,)<r].

If lim é(—ﬂ—

— 2 <OO ’
r—0 re

w, is called an ordinary point. ' ;
We shall prove the following theorem which is an extension of The-
orem 6.

THEOREM 8. Let R be a Riemann surface and let P€s4(R, L). Let G

be a domain in R with the following property: G ;p relative to L-topolbgy
over R—R,. Then there exists no analytic function f(z) in G 'such that
every point w in S, is an ordinary point with respect to the image of G
by flz).

Proor. By and 3 the existence of a point pegd(R, L)N
G(L, 4) implies the existence of a point g€¢d(G, L'). Let f(z) be an analytic
function in G such that every point w is an ordinary point. We can zipply
the Beurling’s theorem in regarding G as a Riemann surface. Since every
point w is an ordinary point, the spherical area of the image of G is finite
and f(z) has a fine limit w,€S,, at ¢ by ¢€4d(G, L"). On the other hand,
w, is an ordinary point. Hence by Beurling’s"™ theorem f{z) must be a
constant=w,. This is a contradiction and we have o

THEOREM 9. Let G; (j=1,2,--:) be a domain in R such that {G,)
clusters nowhere in R, G,NG,;=0 for i#j and G,NR,=0 and

 ef(monE-R)sR-R)=0 G-3G.
Then . 4(R, L);&O if and .only if 54(G;, L)#0 for somef (=1, 2), z;)kefe
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Lj iS L tOP. over Gj—Gj’o and Gj,() Si diSk in Gj.

Proor. The “if” part of the theorem is deduced from
directly. It is sufficient to prove the “only if” part. Let p€s.4(R, L) and
2, be a point in R—R,. Let & be a positive number such that

4 : B . a)(P, zo,R"“»Ro)‘>5>0-

By the assumption for any given positive number ¢ (<9), there exists a
number n,=n(c, 2)) such that o(R—G)N(R—R, )2, R—R,)<e. Hence by
(D(P, z2, R—RO)g 1

w(P, 2o, R—Ro)—w(P, 2o, R—R0)>5_8>0 .

(R-GM(R-E, )

L L
This implies p€(G+R,) and G3p, since R, is compact. There exists the

only one component G; of G such that ngp. - Hence by and
3 there exists a point g(corresponding to p)€ ¢,4(G;, L;. Thus we have
the theorem. _ '

Let G be a domain in R—R, and G* be its universal covering surface.
Map G= conformally onto |é|<1 by £=£&(z). Let N(z,po): p€G be an N-
Green’s function such that N(z,p,)=0 on dG. Then N(z, p,) has angular
limits almost everywhere on I': |§|=1. 4G is mapped ont a set A on I
Let E, be the set in (I"'—A) where N(z, p,) has angular limits=0. Clearly
E, dose not depend on the point p,. Then we proved™ that every Diri-
chlet finite harmonic function vanishing on dG has angular limits=0 in Ej.
Let W(z)=W({GN(R—R,)}, 2 G). Let E, be the set of I'—A where W(z)
has angular limits=0. Then there exists a set e on I' such that mes e=0
and E,—eCEy.

TueoreM 10. Let G, (j=1,2,-) be a domain in R—R, such that
{G,) clusters nowhere in R, G,NG,;=0 for j#i and RiNG;=0. Put G=
Gy Suppose

W({(R—G)n(R—R,,)},z,R—Ro)=0 and
mes Ey=mes E, for any G;.

Then .4(R, L)#0 if and only if §,4(G;, Ly)#0 for some j, where L, is
L-top, over G;. o

At first we shall prove the following.

LEMMA 3. Let G be a damin in R—R,. Let {f.(2)}: f.(2)=0 be a
sequence of continuous functions on 9G such that f,(2)|f(2)=0 and f(2) is
continuous. Let ; U(2) (;U(2)) be the least positive harmonic function in G

such that ; U(z)=fu(2) (;U(2)=f(2)) on 9G.. Then
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v lim , Ulz) = ,U(z).

In fact, let Un,m(z) be if&rmonic function in GﬂR;,, su,ch“'tihat Un,m(z)=
fu(2) on GNR,, and =0 on dR,NG. Then Un,m(z)=2i S f';z(C>"5a“‘Gm(C’
T n
3GN Ry,

2)ds, where G, ({,2) is a Green’s funétidh of GNR,. Let G({, =2) be

a Green’s fuction of G. Then —ai—Gm(C, 2) T'%G(C, z) on aG Hence
. R n ‘ n . "

lim U, u(2)=,U2)= 5 | £u(0))-G(G, 2)ds.Since f,(2) | fi2), we have by

m=co T n

iq
Lebesgue’s theorem

a

U= [ 026 A =lim V).

- on
G

Proor. of the theorem. As in is sufficient to prove the
“only if” part. Let D be a domain in R—R, and let U(z) be a positive
harmonic function in R—R,. Let %»U(2) be the lower envelope of non
negative superharmonic functions in° R—R, larger than U(z) on CD. Let

q€s.4(R, L), then W(q, 2, R—R))=lim W(v,(q)NR, 2, R—R;)>0. By the as-

sumption, for any point 2, in R—R, and any ‘positive number ¢, there exists
a number 7n,=n(zy; ¢) such ‘that W(R—G)N(R—R, ), z;, R—R;)<e< W(g, z,
R—R,). Since W(g, 2, R—R)<1, we have &W((g, 2, R—R)< W(R—-G)N
(R—R,), 20, R—R,) and

&W(g, 2 R—Ry)# W(g, 2, R—Ry), | (15)
where §=G+(Rno—R0).

Since ;zW(R%,(g);z, R—R,) is the least po‘sitive harmonic function in
G larger than W(RN,(q), 2, R—R,) on 3G, | 3

W(m) N G, z, G>z W(R N ‘z—)n—(—q—)’ z, R—RO>_(;\§W(R nm); Z, R_R0>-
Consider W(v,(q),2, R—R,) as f,(z) on 3G in then we have by
(15) and by letting n— oo h A |

Wig, 2, G)z W(g, 2 R—R)—uWig, z R—R)>0.  (16)

Let V, () be the least positive harmonic function in G such that V., (2)=1
on dGNR,. Let T/no(z) be the least positive harmonic function in R—R,,
such that T/no(z)=1 on 0R, . Then V,,o(z)gv,,u(z) on. G—R,, . Since R is

a Riemann surface with positive boundary, sup V. ()<K: K<1 in R—R, .,
by aR,,OHr]R,%:(). - Now Wi(q, 2z, G)>0 implies sup W(g, z, G)=1. Hence
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there exists at least a point 2, in G—R, ., such that W(q, 2, G)—-V, (20)>0.
Since G Rn + con31sts of G;—R, i1, there exists at least a component

Gy—R, .+ contammg 2,. Then W(q, 2, G)>V, (=) and W(g, 2, G5)= W(g,
2, G)—V, (2) ahd “

Wig, 2, G;)>0. (17)

>a] Uhder the condltllon that mes Eszes E, we shall show

lim lim W (CQ,N(R—R,),2,G,) =0

3—0 n=oco

Put W(2)=lim lim W(C2,NR—R,),z,G,) and assume W(x)>0. Map Gj,

§—0 n=oc0

the universal covering surface of G, conformally onto |§|<1 by {-‘ &(2).

Let A be the image of dG; on I': |§|=1. Then since 0< W(z)g 1, W(z)=
on A. and has angular limits=0 a.e. (almost everywhere) on E,. By EyD
Ek e (e is a set Wlth mes e= O) and mes (K 2 —E,)=0, we can find a set E

in I'-A— EN such that mes E>O both W( ) and N(z, p,) have angular

limits >0 a.e. on E. Hence for any given positive number ¢: 3¢<mes E,
*

we.can find a set E, in E such that mes (E—E;)<e, W(z) and N(z, p,)

converge uniformly and G(z, p,) converges uniformly to zero as &—e”eE

inside ‘of an angular domain A(f): A(0)=E[$: arg §=e” <—4—] Also we
e

can find a closed set E, in E, and const. 6>0 such that mes (E—E;)<2¢
and I '

N(z, p)>0 and ﬁ/(z)>5 in C.n(,U AW), (18)

EE

where C,,: 1——1— <|gI<1.

C..N( Y A )) consists of a finite number of components. Let D be a

eEE‘

icomponent such that mes (0DNI)>0. We" consider W( 2)in D. Let 7, be

the 1mage of 652 and let I, ]Sl—l—i. Then 7,NnoDNI,=0 for a<
- ,

min G(z, p) and since G(z po)—>0 as é—I" in D, 7, must separate DN I

260 DN,y

from. 6Dﬂl’ By (18) the image of 02, does not fall in D. Hence
W(C.Q,,,z .Q »=Wi(§) on Dﬂ!)a,a< mm G(z o) (19)

2€dDN

-where W(CQ,,, 2, Q) is the H.M. of CQ, relative to Q and W(¢) is a har-
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monic function in D such that W(£)=1 on dD—1I" and =0 a.e. on dDN[I".
Since 9D is rectifiable, W(£)=0 a.e. on dDNI". . Since 2,,/7G; as a—0 and
WI(CR;, 2z, 2,)—»W(CQ,, 2z, G,) as a—0, : (

Wie)S W(CQN(R-R) % G,) S W(CQ, 2 G) = W(s)

Hence T/ik/'(z) has angular limits =0 a.e. on dDNI". " This cohtradi‘cts¢(1<8)
and we have : .

*

Wiz)=0. (20)
Now lim W(v,(@)N C2,N(R—R,,) G)+lim W(z,(g)N &N (R—R,), 2, G))

th( “@NR—R,),2,G,) 2 W(g, 2 G;)>0

By (20) there exists a number >0 such that

lim W (2,(@)N %, %, G;) = W(gn&,, ,G))>0. Sy
Dimin (N(z, po),3)= 25 and D(w(@,, 2 G;)< 2* and D{w(valg) 2 2 G)
<. By (21) 0gN%, % G)=lim o0, @NE,, 2 G)Z W(gN 2, 2 G)>0.
Clearly "
(g% R—R)zw(gN @, G).  (22)

r-a;0(¢, 2, R—R,) has M.D.I. over G, amnog all harmonic functlons with
the same value as w(g, 2, R—R,) on 3G,. Hence by Lemma 1 there. exists
at least a point 2, such that ,_g 2(g 20, R—Ry)<w(gN;, 20, G;). By (22)
we have '-

(q,ZR RO)i}z gj (q,zR Ro) andG 9(]

Hence by [Theorem 3 and 4 there exists a umquely determmed pomt PE
5.4(G;, Ly). i

REMARK. Under the condition of _ if every Gj satlsﬁes the.
condition of [Theorem 8, then s4(R, L)=0. Also under the condition of
[Theorem 10, if every G, satisfies the condition of then 4,4 (R:,
L)=0. _

On Matsumoto’s conditions.l] We shall cons1der the relatlon between_

Theorem 1 and [Theorem 100 Put G=Y.G,. Clearly I [1]—-11m W({(R—R,)
NG;, 2,G;) for any G;. Let U(z)=I[1] in G, and U( ) 0 on “R— G. We
43
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shall show that E [[1]=1 implies li~m W(R—G)N(R—R,)z, R—R))=0. Let
U, n::(z) be a harmonic function in R,,;,—(R—G)N(R,..—R,) such that

o~

Un,n+‘i(z) = 0 on (aRn—G)+aGn(Rn+z_Rn)’ Un’"_ﬂ;'(Z) = U(z) on aRn+iﬂG
Then lim lim U, ,.,;(2)=E[U(2)]=1. Let Unﬂm(z) be a harmonic function

n=00 ¢=o00

in Roy—(R—G)N(R,u—R,) such that U,,..()=1 on (9R,—G)+9GN
(Rn.is—R,), Un,n+i(z)=0 on dR,.,NG. Then lim lim Un+i(z)=lim W(R—-G)
n (R—_Rn)a Z, R) NOW 1 - ﬁn,7L+f;(z) = 1 = Un,n+'17<z) on (aRn_G)+ aG n (Rn—i-z
_Rn)5
1 - Un,n+z(z)>0 = Un,n+i(z) on aRn+z n G .
Let —>o0 and then n—>c. Then
0=1—E[U(z)]=lim W(R—G)N(R—R,), 2z, R)
= lim W(R—G)N(R—R,), 2, R—R,).

Hence E I[1]=1 implies lim W((R—G)N(R—R,), 2, R—R,)=0.

We shall show D(I[1])<co implies that mes Ey=mes Er. Suppose
D(I[1])< . Let W(z)=I[1] and let E be the set on which W(z) has an-
gular limits=1. Then there exists a set ¢, such that mes ¢,=0 and ECI'—
Ey—A+e, where A is the image of G and I is: |§|=1. By the defini-
tion of E, and since W(z) has angular limits=0 or 1 a.e. on I', there exists
a set ¢, such that EDI'—E,—A—e, and mes e,=0. Hence EyCE,+e +e,.
On the other hand, there exists a set e; such that mes e;=0 and Ey+e,D
E,, whence mes Ey=mes E,. Thus we have the following

\ PROPOSITION. If E I[1]=1, then lim W(R—G)N(R—R,), z, R—R,)=0.
If | D(I[1]))< oo, then mes Ey=mes E, .

Hence Theorem 10 implies Theorem 1.

Riemann surface of almost finite genus. M. Nakai‘®! introduced the notion
of almost finite genus and proved that any Riemann surface of almost finite
genus has no points in ,4(R,L). Let C; (i=1,2,---) be a closed Jordan
curve in R corresponding to a handle of the Riemann surface such that
C:NC;=0 for i#j, C; is not a dividing curve and R—Z;Cz- is of planar
character. Let A; (j=1,2,---) be a relatively compact domain such that
A;NA,;=0 for i#j, A,NR,=0, {4,} clusters nowhere in R and C, is con-
tained in some A;. Let Uj;(z) be a harmonic function in Af—Zq;Ci such
1

Uj(z)=£0 on 04;, U,(z)=1 on 2C;. Put =D(U,(z)). If Z_1_<°°’

J J
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then R is called of almost finite genus. Let G=R—Y,C;. Then G is a
(3 .

domain in R. Matsumoto proved E I[1]=1 and D(I[1])< oo for a Riemann
surface of almost finite genus and R has no points in g,4(R, L). We shall
show that R has no points in ¢4(R, L).

We can choose an exhaustion {R,} such that dR,NA,=0. Let U.(2)
be a piecewise smooth function in R—R, such that U,(2)=0 in R—(;Ajﬂ

(R—R,)), Un(z)=Uj(z) in A;N(R—R,), Let w,(z) be the C.P of (R—G)N
(R-Rn)=¢Z£C¢ﬂ(R—R,L). Then 0,(z)=1 on >,C;N(R—R,),=0 on 3R, and
- = i-1

has M.D.I. Then by the Dirichlet principle

D (0,(2)) £ D (Uafa)) < £-1-,

where the summation is over the number i such that A, is contained in

R—R,. Let n—»>oco. Then limw(R—G)N(R—R,), 2, R—R,)=0 and the

condition of is satished. Now G=R—)YC, is of planar and
can be mapped onto a domain in the w-sphere. Hence by G
has no point in 44(G, L") and by R has no points in g4(R, L).
Then we have

THEOREM 11. Riemann surface of almost finite genus has no points
n gA(R, L).
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