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Y. Utumi obtained that if a ring R is left self-injective then so is the
residue class ring R/J modulo the Jacobsn radical J of R. And B. L. Osofsky
[5] extended this result to the case of endomorphism rings of quasi-injective
modules. In this note we study endomorphism rings of those modules which
are weaker than quasi-injectives, conforming to the method by Utumi [8].

1. Preliminaries. We will assume throughout that R is a nonzero
ring with identity and that M=_{R}M denotes a nonzero unital left R-module.
Let RA be an (R-)submodule of RM. A complement RA^{c} of RA in RM
is a maximal submodule of RM such that A\cap A^{c}=0 . And, a double com-
plement RA^{cc} of RA in RM is a complement of a complement of RA in RM
such that A\subset A^{cc} . Zorn’s lemma ensures the existence of RA^{c} and RA^{cc}

for every submodule RA of RM. RA is called complemented in RM if RA
is a complement of some submodule of RM in RM. To be easily seen,
every direct summand of RM is complemented in RM. Moreover, RA is
essential in RA^{cc} and RA^{cc} is (essentially) closed in RM, i.e., RA^{cc} has no
proper essential extension in RM.

The above leads the following smoothly:
LEMMA 1. Let RA be a submodule of RM. Then the following con-

ditions are equivalent:
(i) RA is closed in RM.
(ii) RA is complemented in RM.
(iii) A=A^{cc} for some double complement RA^{cc} of RA in RM.
(iv) A=A^{cc} for every double complemmt RA^{cc} of RA in RM.
(v) Let RB be any submodule of RM contained in A. If RB is essential

in RA, then there exists such a double complement RB^{cc} of RB in RM that
B^{cc}=A .

The following notations will be adopted henceforth. Let RM be a left
R-module and let S be the (R-)endomorphism ring of RM, acting on the
right side. Therefore M=_{R}M_{S} is a left R- and right S-bimodule. For RM
we set

Z(_{R}M)= {a\in M|_{R}^{R}a is essential in RR },
Z(M_{S})= {a\in M|a_{S}^{S} is essential in S_{S}}
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and Y(S)= {x\in S|RxM is essential in RM},
where Ra=\{r\in R|ra=0\} , a^{S}=\{x\in S|ax=0\} and Mx means the kernel of x.
Thus, to be easily proved, both Z(_{R}M) and Z(M_{S}) are (R-S-)submodules of
RMS, Y(S) is a tw0-sided ideal of S, having no nonzero idempotent of S
and MY(S)\subset Z(_{R}M) .

2. Quasi-injective modules and pseudo-injective modules. RM is
called quasi-injective (or pseud0-injective *) if every (R-)homomorphism (or
every (R-)monomorphism) of any submodule RA\subset_{R}M into RM can \backslash b^{1}’\grave{e} ex-
tended to an (R-)endomorphism of RM. Let R\hat{M} be an injective h\dot{u}11 of
RM and T its endomorphism ring, acting on the right: \hat{M}=_{R}\hat{M}_{T} . Then
we recall the following characterization of quasi-injective modules:

[JOHNSON-WONG] RM is quasi-injective if and only if M=MT.
Let T’ be the subset of T composed of all monomorphisms of R\hat{M} into

R\hat{M} . RM is called to be finite-dimensional if every independent set of sub-
modules of RM is finite. Then we have:

PROPOSITION 1. Let RM be fifinite-dimensional. Then RM is pseudO-
injective if and only if M=MT’. (Cf. [6, Theorem 3. 7].)

PROOF. It is proved similarly to the quasi-injective case that if RM is
pseud0-injective then Mx\subset M for all x\in T’ (without the assumption of RM
finite-dimensional).

Assume the finite-dimensional RM=MT’. Let RA be a submodule of
RM, and \varphi any monomorphism of RA into RM. Since RA is a finite-
dimensional submodule of R\hat{M} , Miyashita [4, Corollary 2, p. 175] implies
that \varphi can be extended to an automorphism x\in T’ . Hence, as Mx\subset M,
the contraction of x to M is an endomorphism of RM, which is an exten-
sion of \varphi .

3. Direct modules. Now, although quasi-injectivity implies pseud0-
injectivity evidently, we want to extract another type of property from quasi-
injective modules. Let RA, RA’ be submodules of RM. Then RA’ will be
called a direct hull of RA in RM, if RA’ is an essential extension of RA and
RA’ is a direct summand of M_{R} . And, RM will be called direct if every
submodule of RM has a direct hull in RM. Moreover, a direct RM is called
uniquely direct if for any submodules RA, RB\subset_{R}M every isomorphism be-
tween RA and RB can be extended to an isomorphism between any direct
hulls RA’ and RB’ of RA and RB in RM respectively. If RM is injective,
then each submodule of RM has an injective hull in M which is, of course,

*) See Singh and Jain [6].
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a direct summand of RM. Therefore a direct hull in an injective module
is nothing but an injective hull contained in it.

RM(\neq 0) is called uniform if every nonzero submodule of RM is essential
in RM, or equivalently if every pair of nonzero submodules of RM has a
nonzero intersection. Hence, RM is uniform if and only if RM is direct
and indecomposable.

LEMMA 2. RM is direct if and only if every submodule of RM which
is closed in RM is a direct summand of RM.

PROOF. Let RM be direct, and RA any closed submodule of RM. Then
RA has a direct hull RA’ in RM. Since RA is essential in RA’ , the closed
RA coincides with RA’. which is a direct summand of RM.

Conversely, assume that each closed submodule of RM is a direct sum-
mand of RM. For any submodule RA\subset_{R}M, there exists a double com-
plement RA^{cc} of RA in RM. By assumption RA^{cc} is a direct summand of
RM. Since RA is essential in RA^{cc} , RA^{cc} is a direct hull of RA in RM.

If a submodule RA\subset_{R}M is contained in a direct summand RM’ of RM,

then within M’ we can find a certain double complement RA^{cc} of RA in
RM, just as mentioned in [4, Theorem 2. 3]. Therefore, if RM is direct
RA^{cc} is a direct summand of RM and accordingly of RM’ . Namely, every
direct summand of a direct module is direct.

If Z(_{R}M)=0 , then any submodule of RM has a unique closed essential
extension in RM. Actually, let RA’ and RA’ be two essential extensions of
RA in f.M which are both closed in RM. Then Z(_{R}M)=0 implies that RA

is essential in ,‘\supset A’+A_{:}’ and hence A’=A’. Thus we obtain the following:

PROPOSITION 2. If J?M is direct with Z(_{R}M)=0 , thm every submodule
of RM has a unique direct hull in hM.

It is to be noted here that each submodule RA\subset_{R}M is a direct sum-
mand of RM if and only if A=Me for some idempotent e\in S.

PROPOSITION 3. If RM is direct with Z(_{R}M)=0 , thm Z(M_{S})=0 .
PROOF. Let a\in Z(M_{S}) . Then there exists an idempotent e\in S such that

RRa is essential in J_{I}Me. Take any elements x\in a^{S}\cap eS and b\in M. Since

R(be+Ra)=\{r\in R|rbe\in Ra\}

is an essential left ideal of R, R(be+Ra)bx=0 implies that bx\in Z(_{R}M), i.e. ,

bx=0. Therefore a^{S}\cap eS=0 . As a_{S}^{S} is essential in S_{S}, eS=0 or e=0.
Thus a=0, as required.

Now we state some conditions concerning RM.
CONDITION (I): Every submodule of RM isomorphic to a direct sum-
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mand of J\iota M is also a direct summand of \Gamma\iota M.
CONDITION (I’) : Every submodule of RM isomorphic to a closed sub-

module of RM in RM is also closed in RM.
By Lemma 2, Conditions (I) and (I’) are equivalent if RM is direct.

And, if R is a (von Neumann) regular ring, then (_{R}M=)RR sitisfies Con-
dition (I).

CONDITION (II): If \Gamma_{1}A and RB are direct summands of \mathcal{F}\iota M such that
A\cap B=0 , then RA\oplus B is also a direct summand of RM.

It will be proved readily that this condition is equivalent to the next:

CONDITION (II’) : If Me\cap Mf=0 for idempotents e , f\in S, then there
exists an idempotent g\in S such that Me=Mg and Mf\subset M(1-g) .

For \Gamma\iota M Condition (I) yields Condition (II), proved in this way. Suppose
Me\cap Mf=0 for e=e^{2} , f=f^{2}\in S. Since RMf(1-e) is isomorphic to RMf, by
Condition (I) Mf(1-e)=Mg for some g=g^{2}\in S. Hence RMe\oplus Mf is is0-
morphic to RMe\oplus Mg=M(e+g -- eg) , where e+g-eg\in S is an idempotent.
Therefore, Condition (I) implies again that RMe\oplus Mf is a direct summand
of RM.

We already know another characterization of quasi-injective modules:
[FAITH-UTUMI] RM is quasi-injective if and only if,\grave{f}M satisfifies the

following: let RA and {}_{Jr}C be submodules of RM and let RC be closed in
RM. Then every homomorphism of RA into RC can be extmded to a homO-
morphism of AM into RC.

As an immediate consequence of this theorem we obtain that any closed
submodule of RM is a direct summand of RM if RM is quasi-injective. Thus,
we can set up the following:

PROPOSITION 4. Every quasi-injective module is pseudO-injective and
direct.

In case RM is pseud0-injective, the following holds by a similar manner:
let RA, RB and RC be submodules of RM such that RB is an essential ex-
tension of RA and RC is closed in RM. Then every monomorphism \varphi of
RA into RC can be extended to a monomorphism \varphi’ of J\iota B into RC.

In this condition, if \varphi is particularly an isomorphism of RA onto RC,
then A must coincide with B. Hence, a pseud0-injective RM satisfies Con-
dition (I’).

THEOREM 1. The following are equivalent:
(i) RM is uniquely direct.
(ii) RM is psmdO-injective and direct.
(iii) Let J\iota A and JiC be submodules of RM and let RC be closed in RM.
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Then every monomorphism of RA into RC can be extended to a homomor-
phism of RM into RC.

If one of these conditions holds, then:
(iv) RM is direct with Condition (I).
And this implies that
(v) RM.is direct with Condition (II).

PROOF. ( i)\Rightarrow(ii) : Let \varphi be any monomorphism of a submodule
RA\subset_{R}M into J_{I}’ M. Then J A and the image RA\varphi have direct hulls RMe

and RMf, e=e^{2}, f=f^{2}\in S, respectively. And, there exists, by the uniqueness
of direct hu11s_{2} an isomorphism \varphi’ of J_{1}Me onto RMf which induces \varphi on
RA. Therefore e\varphi’ gives an endomorphism of M_{R} which is an extension
of \varphi . This shows that RM is pseud0-injective.

(ii)\supset(iii) : By Lemma 2 we deduce that a closed RC is a direct sum-
mand of RM, say C=Me, e=e^{2}\in S. Let \varphi be a monomorphism of J\iota\urcorner A into
{}_{Jr}C. Then the monomorphism \varphi\nu , where \nu is the natural injection of RC

into RM, can be extended to an endomorphism x\in S, since RM is pseud0-
injective. Hence, the homomorphism xe of RM into RC is an extension
of \varphi .

Immediately (iii)\Rightarrow^{1}(ii) .
(ii)\supset(i) : In order to prove the uniqueness of direct hulls, settle an

isomorphism \varphi of RA onto RB for two submodules RA, RB\subset_{R}M. Then since
RM is pseud0-injective, \varphi is induced by an endomorphism x\in S. Take any
direct hulls RA’\subset_{R}M of RA and \Gamma, Me of RB, e=e^{2}\in S. The contraction of
x to RA’ and e compose a homomorphism \varphi’ of RA’ into RMe, which is
clearly an extension of \varphi . However, as RA is essential in RA’, \varphi’ is mon0-

morphic. Since pseud0-injectivity implies Condition (I’), as noticed before,
RA’\varphi is closed in RM. On the other hand RB is essential in RMe, B\subset

A’\varphi\subset Me, and therefore A’\varphi’= Me. Thus \varphi’ is an isomorphism of RA’

onto RMe.
(ii) \Rightarrow(iv)\Rightarrow(v) : These implications have already been shown previ-

ously, completing the proof.
In our theore\ln if RM=_{J_{1}^{\backslash }}R is suited to the statement of (iv), then R is

what is called Utumi’s left continuous ring. And, [7, Example 3] is to be
seen yet.

If a submodule of RM has two direct hulls RMe, RM.f (e=e^{2}, f=f^{2}\in S)

in RM, then Me\cap M(1-f)=0 and RMe is isomor.phic to RMef. Further-
more, if RM satisfies Condition (II), then Me\oplus M(1-f)=Mg for some g=
g^{2}\in S. Therefore Mef=Mgf, where gf is an idempotent of S, must coincide
with Mf since RMgf is essential in RMf. Thus we have: if RM is direct
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w_{f}ith Condition (II), then any direct hulls of a submodule RA\subset_{R}M in RM
are isomorphic leaving A elementwise fixed.

An application of Miyashita’s uniform dimension theorem to a uniquely
direct module yields the following, the proof of which will be omitted
because of its similarity to that of [4, Theorem 4. 5].

PROPOSITION 5. Let RM be uniquely direct.
(i) Let \{_{1},A_{\lambda}|\lambda\in\Lambda\} and \{_{R}B_{\gamma}|\gamma\in\Gamma\} be maximal indepmdmt sets of uni-

form submodules of RM, and let RA’\lambda and RB_{r}’ be any direct hulls of RA\lambda

and RB_{r}(\lambda\in\Lambda, \gamma\in\Gamma) respectively. Then there exist a one-tO-One correspondence
\chi of \Lambda onto \Gamma and an automorphism x\in S such that A_{\lambda}’x=B_{(\lambda)\chi}’ for all \lambda\in\Lambda .

(ii) Moreover, let RM be fifinite-dimensional. Then M is a direct sum
of a fifinite number of pseudO-injective uniform submodules and such a repre-
sentation of M is unique up to isomorphism.

(iii) Let RA and RB be fifinite-dimmsional submodules of RM. Thm
every isomorphism between RA and RB can be extended to an automorphism
of RM.

PROPOSITION 6. Let RM be direct with Condition (I). If \varphi is a homO-
morphism of any submodule RA\subset_{R}M into RM such that A\cap A\varphi=0 , then \varphi

can be extmded to an endomorphism of RM.
PROOF. Take direct hulls RMe and RMf of RA and P_{1}A\varphi respectively,

where e=e^{2}, f=f^{2}\in S. Then since Me\cap Mf=0 , we may assume ef=fe=0
by Condition (II) for RM. Set RB=\{a+a\varphi|a\in A\} , which is a submodule of
RM contained in M(e+f). Since RM is direct, there exists g=g^{2}=g(e+f)\in S

such th\dot{a}tRB is essential in RMg. Because B\cap M(1-e)=0 , Mg\cap M(1-e)=0
and so RMg is isomorphic to RMge. Hence by Condition (I) for RM, RMge
is a direct summand of \lambda M. However, since \lambda A=Be is essential in RMe,
Mge=Me. Therefore given any element a\in M, there exists a unique element
bg\in M. (b\in M) such that ae=bge, i.e. , there exists an endomorphism x\in S

such that ax=bg . Hence e=xe and x=xg . And an easy verification
implies that a\varphi

– axf\in Mf^{\backslash }\cap Mg=0 for all a\in A . Thus xf is an extension
endomorphism of \varphi .

Proposition 6 will be used as a lemma to obtain the following:
Let RM be direct with Condition (I). And let RM be a direct sum of

n submodules, n>1 , say M=A_{1}\oplus A_{2}\oplus\cdots\oplus A_{n} , RAi\subset RM(i=1,2, \cdots, n), such
that each \sum\oplus_{f\neq i}A_{j} contains an isomorphic image of RAi . Then RM is
quasi-injective.

To establish the proof see Utumi. [8, Theorem 7. 1].

4. Endomorphism rings of uniquely direct modules. For the en\acute{d}o
-
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morphism ring S of RM, we let \overline{S}=S/Y(S) denote the residue class ring of
S modulo Y(S). And for x\in S,\overline{x} will denote the residue class of x modulo
Y(S).

On lifting idempotents modulo Y(S) we have the following:

LEMMA 3. Let RM be direct with Condition (II). And let x, e=e^{2}\in S.
If \overline{x}=x\overline{e}=\overline{x}^{2}arrow, then there exists an idmotent f=fe=f^{2}\in S such that \overline{x}=\overline{f} .

PROOF. By our assumption x-xe, x-x^{2}\in Y(S) , there exists an essential
submodule RA of RM such that A(x-xe)=A(x-x^{2})=0 . As RM is direct,

we can take direct hulls RMg of RAx=Axe in RMe and RMh of RA(1-x)
in RM, where g=ge=g^{2} , h=h^{2}\in S. And since Ax\cap A(1-x)=0 , Mg\cap Mh=0 .
It follows by Condition (II’) that there exists f=f^{2}\in S such that Mg=Mf
and Mh\subset M(1-f) . Thus Ax(1-f)=A(1-x)f=0 and so x(1-f), (1-x)f\in

Y(S). Hence x-f\in Y(S) . And f=fe since Mf\subset Me, completing the proof.

PROPOSITION 7. Let RM be direct with Condition (I). Then Y(S)

coincides with the Jacobson radical J(S) of S, and \overline{S} is a regular ring.

PROOF. Let first x\in Y(S) . Then since RMx is essential in RM, Mx\cap

M(1+x)=0 implies M(1+x)=0. Hence RM is isomorphic to RM(1+x), which
is a direct summand of RM by Condition (I). On the other hand, RM(1+x)

is essential in \Gamma M as Mx\subset M(1+x) . Hence M(1+x)=M. Thus 1+x is
an automorphism of RM, meaning that x is a quasi-regular element of S ;

x\in J(S) . This shows the inclusion Y(S)\subset J(S) .
Let next y\in S. Setting RA=^{M}y and RA^{c},=Me, e=e^{2}\in S, we have an

isomorphism of RA^{c} onto RA^{c}y . Hence by Condition (I) there exists f=f^{2}\in S

such that A^{c}y=Mf. Therefore, for any element a\in M we can find a unique
b\in A^{c} such that af=by ; there exists z\in S such that f=zy. Since RA\oplus A^{c}

is essential in RM, it follows from (A\oplus A^{c}) (y – yzy)=0 that y-yzy\in Y(S) .
Thus \overline{S} is regular.

If in particular y\in J(S) , then y\in Y(S) since 1– yz is a unit of S. This
completes the proof.

LEMMA 4. Let RM be direct with Condition (I) and let e_{\lambda}=e_{\lambda}^{2}\in S(\lambda\in\Lambda) .
If \{_{S}\overline{S}\overline{e}_{\lambda}|\lambda\in\Lambda\} is an independent set, thm so is \{_{R}Me_{\lambda}|\lambda\in\Lambda\} .

PROOF. We have only to prove the lemma under \#\Lambda<\infty ; we deduce
that if \{_{S}\overline{S}\overline{e}_{1,S}\overline{\overline{S}}\overline{e}_{2’ S}\ldots,\overline{S}\overline{e}_{n}\} is independent, then so is \{_{R}Me_{1’ R}Me_{2,R}\ldots,Me_{n}\}

for idempotents e_{1} , e_{2} , \cdots,e_{n}\in S. First we treat the case of n=2. Since \overline{S}

is regular, there exists f=f^{2}\in S by Lemma 3 such that \overline{S}e_{1}=\overline{S}.\overline{f} and \overline{S}\overline{e}_{2}\subset

\overline{S}(\overline{1}-\overline{f}^{-}.) . Evidently, (Me_{1}\cap Me_{2})\cap^{M}(e_{2}f)\subset^{M}(1-e_{1}+e_{1}f) . Since \overline{e}_{1}=\overline{e}_{1}\overline{f} , RM(e_{1}-

e_{1}f) is essential in RM and so M(1-e_{1}+e_{1}f)=0 . Therefore (Me_{1}\cap Me_{2})\cap

M(e_{2}f)=0. However, RM(e_{2}f) is essential in JlM since \overline{e}_{2}\overline{f}=0 . This yields
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Me_{1}\cap Me_{2}=0 . Next, assume n\geqq 3 and that our assertion holds for n –1
idempotents of S. By assumption { .Me_{1} , RMe2, \cdots, RMen-l} is independent.
Hence by Condition (II) for RM, there exists e=e^{2}\in S such that Me_{1}\oplus Me_{2}

\oplus\cdots\oplus Me_{n-1}=Me. Therefore, we can find idempotents e_{1}’ , e_{2}’ , \cdots , e_{\acute{n}-1}\in S such
that Me_{i}’=Me_{i}(i=1,2, \cdots, n-1) and e_{1}’+e_{2}’+\cdots+e_{n-1}’=e. Since Se_{i}’=Se_{i}\subset Se

(i=1,2, \cdots, n-1),\overline{S}\overline{e}_{1}\oplus S\overline{e}_{2}\oplus\cdots\oplus\overline{S}\overline{e}_{n-1}=\overline{S}e_{1}’\oplus\overline{S}e_{2}’\oplus\cdots\oplus\overline{S}e_{n-1}’=\overline{S}e.j Accord-
ingly, \overline{S}\overline{e}\cap\overline{S}e_{n}=0 implies Me\cap Me_{n}=0, whence it follows that \{_{R}Me_{1} , RMe2 ,
\ldots , RMen} is independent. This completes the proof by induction.

THEOREM 2. If RM is direct with Condition (I), -then so is s\overline{S} .
PROOF. Since \overline{S} is regular by Proposition 7, s\overline{S} satisfies Condition (I).

Hence it is enough to show s\overline{S} direct. Let \mathfrak{A} be any left ideal of \overline{S} . Then,
in virtue of using Zorn’s lemma, there exist \overline{e}_{\lambda}\in \mathfrak{A}(\lambda\in\Lambda) such that the direct
sum s \sum\oplus_{\lambda\in\Lambda}\overline{\overline{S}}^{v}\overline{e}_{\lambda} is essential in s\mathfrak{A} . Since \overline{S} is regular, we can assume, \tilde{\dot{b}}y

Lemma 3, e_{\lambda}=e_{\lambda}^{2}\in S for all \lambda\in\Lambda . Hence, \{_{h}Me_{\lambda}|\lambda\in\Lambda\} is independent by
Lemma 4. Set RMe(e=e^{2}\in S) be a direct hull of R \sum\oplus_{\lambda\in\Lambda}Me_{\lambda} in RM. Then,
it follows from this that s \sum\oplus_{\lambda\in.4}\overline{S}\overline{e}_{\lambda} is essential in sSe. Because, let \mathfrak{B}\subset\overline{S}\overline{e}

be a left ideal of \overline{S} such that \mathfrak{B}\cap\sum\oplus_{r\epsilon A}\overline{S}e_{2}=0 . If \overline{x}\in \mathfrak{B},\overline{S}\overline{x}\cap\sum\oplus_{\lambda\epsilon A}\overline{S}e_{\lambda}=0 ;
we may say x=xe=x^{2}\in S and hence Mx \cap\sum\oplus_{\lambda\epsilon A}Me_{\lambda}=0\vee by Lemma 4. Since
R \sum\oplus_{\lambda\in A}Me_{\lambda} is essential in RMe, we have Mx=0, namely, x=0. This assert.s
\mathfrak{B}=0 , consequently.

On the other hand, for every \overline{y}\in \mathfrak{A} , . \nabla.\sum\oplus_{\lambda\in A^{\llcorner}}^{\overline{q}}\text{\’{e}}_{\lambda}\cap\overline{S}_{\overline{lj}}. is essential in s\overline{S}\overline{y} .
Hence, s^{\overline{\kappa^{Q}}\overline{e}\cap\kappa^{\overline{c}_{l}}}\overline{J} is essential in s\overline{S}_{l}\overline{J} . However, since \overline{S} is regular, .\nabla\overline{S}\overline{e}\cap\overline{S}\overline{y}

is a direct summand of s^{\overline{Q}}\llcorner . Therefore \overline{S}\overline{e}\cap\overline{S}_{l}\overline{J}=\overline{S}\overline{y} and so \overline{Jl}\in\overline{S}\partial. Thus
\mathfrak{A}\subset\acute{\frac{}{S}}\overline{e}, \cdot whence it follows that \grave{c}\neg \mathfrak{A} is essential in s\overline{S}e. This shows that s\overline{S}e

is a direct hull of s\mathfrak{A} in s\overline{S} , completing the proof.
THEOREM 3. If RM is uniquely direct, then so is s\overline{S} .
PROOF. By Theorems 1 and 2, we have only \dot{t}0 prove that s\overline{S} is pseud0-

injective. Let \mathfrak{A} be a left ideal of \overline{S} and let \Phi be any monomorphism of
6^{\urcorner}\mathfrak{A} into \backslash \nabla\overline{S} . Then we shall extend \Phi to an endomorphism of s^{\overline{Q}}\llcorner . As in
the proof of Theorem 2, we can find e_{\lambda}=e_{\lambda}^{2}\in S(\lambda\in\Lambda) such that the direct
sum s \sum\oplus_{\lambda\in A^{\llcorner}}^{\overline{q}}\overline{e}_{J} is essential in s\mathfrak{A} . Let \overline{e}_{A}\Phi=\overline{x}_{\lambda}\in\overline{S} , x_{\lambda}\in S(\lambda\in\Lambda) . Then
\{_{S}\overline{\overline{S}}\overline{x}_{\lambda}|\lambda\in\Lambda\} is an independent set and s \sum\oplus_{\lambda\in A}\overline{S}\overline{e}_{J} is isomorphic to s \sum\oplus_{\lambda\in A}\overline{S}\overline{x}_{\lambda} .
Since \overline{S} is regular, by Lemma 3 for each \lambda\in\Lambda there exist y_{\lambda} , f_{\lambda}=f_{\lambda}^{2}\in S such
that \overline{x}_{\lambda}=\overline{x}_{\lambda_{\iota}}\overline{y}_{\lambda}\overline{x}_{\lambda}and.\overline{y}_{i}\overline{x}_{\lambda}=\overline{f}_{\lambda} . Hence \overline{S}\overline{x}_{\lambda}=\overline{S}\overline{\overline{f}}_{\lambda} for all \lambda\in\Lambda . By Lemma 4,
we can set submodules of JtM ;

RA= \sum\oplus_{\lambda\in\Lambda}Me_{\lambda} , RB= \sum\oplus_{\lambda\epsilon\Lambda}Mf_{j}

as direct sums of direct summands of RM. Let y’ be a homomorphism. of
RA into RB, and z’ a homomorphism of IiB into RA, defined as follows:
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RARBy’\overline{\overline{z’}} ,

ay’= \sum_{\lambda\epsilon\Lambda}a_{\lambda}x_{\lambda}f_{\lambda} for a= \sum_{\lambda\in\Lambda}a_{\lambda}\in A .
bz’= \sum_{\lambda\in A}b_{\lambda}y_{\lambda}e_{\lambda} for b= \sum_{\lambda\in A}b_{\lambda}\in B ,

where a_{\lambda}\in Me_{\lambda} , b_{\lambda}\in.Mf_{\lambda} for all \lambda\in\Lambda and a_{\lambda}=0, b_{\lambda}=0 for almost all \lambda\in\Lambda .
Then, it follows that \overline{e}_{\lambda}\overline{x}_{\lambda}\overline{f}_{\lambda}\overline{y}_{\lambda}\overline{e}_{\lambda}\Phi=\overline{x}_{\lambda} , namely, \overline{e}_{\lambda}\overline{x}_{\lambda}\overline{f}_{\lambda}\overline{y}_{\dot{\lambda}}e_{\lambda}=\overline{e}_{\lambda} and so M(1+

e_{\lambda}x_{\lambda}f_{\lambda}y_{i}e_{\lambda}-e_{l})=0 for all \lambda\in\Lambda . If ay’=0 for a= \sum_{\lambda\epsilon\Lambda}a_{\lambda}\in A, a_{\lambda}\in Me_{\lambda}(\lambda\in\Lambda), then
ay’z’= \sum_{\lambda\in A}a_{\lambda}x_{\lambda}f_{\lambda}y_{\lambda}e,=0 . Hence a_{\lambda}x_{\lambda}f_{\lambda}y_{\lambda}e_{\lambda}=0 for all \lambda\in\Lambda . Therefore, since
a_{\lambda}\in^{M}(1+e_{\lambda}x_{\lambda}f_{\lambda}y_{i}e_{\lambda}-e_{\lambda}) for all \lambda\in\Lambda , a=0. This yields th\dot{a}t y’ is a monomor-
phism. Thus, we can find an endomorphism y\in S which is an extension
of y’, since RM is pseud0-injective. Now, let \Psi be an endomorphism of
s\overline{S} , by defining \alpha\Psi=\alpha\overline{y} for \alpha\in\overline{S} . Since e_{\lambda}y=e_{\lambda}x_{\lambda}f_{\lambda},\overline{e}_{\lambda}\Psi=\overline{x}_{\lambda}=\overline{e}_{\lambda}\Phi for all
\lambda\in\Lambda , whence we obtain \Psi=\Phi on s \sum\oplus_{\lambda\in A}\overline{S}\overline{e}_{\lambda} . Given \alpha\in \mathfrak{A} , since s \sum\oplus_{\lambda\in\Lambda}\overline{S}\overline{e}_{\lambda}

is essential in s\mathfrak{A} ,

\mathfrak{B}=\{\beta\in\overline{S}|\beta\alpha\in\sum\oplus_{\lambda\in A}\overline{S}\overline{e}_{\lambda}\}

is an essential left ideal of \overline{S} . And since \mathfrak{B}\alpha(\Psi-\Phi)=0, we have \alpha(\Psi-\Phi)\in

Z(_{S}\overline{S}) . However Z(_{S}\overline{S})=0 since \overline{S} is a regular ring. Consequently, we have
\mathfrak{A},\cdot(\Psi-\Phi)=0;\Psi is an extension of \Phi, as desired.

[OSOFSKY] If RM is quasi-injective, then s\overline{S} is injective.
The proof of this theorem has been given as a simplified form of that

of our Theorem 3. Indeed, since we have only to extend any “homomor-
phism” \Phi of s\mathfrak{A} into s\overline{S}, there is no need of referring to idempotents f_{\lambda} of S.

Finally, the author would like to express his direct gratitude to the
revisers Prof. T. Tsuzuku, Prof. T. Onodera and Prof. Y. Miyashita for
their genial advices and encouragements.
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