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Abstract. In this work we consider a family of Spin complex groups constructed

in [1] which have outer automorphisms of order three. We define an action of

Out(Spin(n,C)) × C∗ on the moduli space of Spin-Higgs bundles and we study the

subvariety of fixed points of the induced automorphisms of order three. These fixed

points can be expressed in terms of some kind of Higgs pairs associated to certain

subgroups of Spin(n,C) equipped with a representation of the subgroup. We further

the study for the simple case, G = Spin(8,C).
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Introduction

Let X be a compact Riemann surface of genus g ≥ 2 and let G be a
reductive complex Lie group with Lie algebra g. As it is stated in Definition
1.3, a G-Higgs bundle over X is a pair (E, ϕ) where E is a holomorphic prin-
cipal G-bundle and ϕ is a holomorphic global section of the adjoint bundle
of E, E(g), twisted by the canonical bundle, K. A notion of polystability
can be given for Higgs bundles generalizing the notion of polystability given
by Ramanathan in [17], [18] and [19] for principal bundles obtaining that
the moduli space of polystable G-Higgs bundles, M(G), is a complex variety
of dimension 2 dimG(g − 1).

Higgs bundles were introduced by Hitchin in [11] and are of interest in
many different areas including surface group representations, gauge theory,
Kähler and hyperkähler geometry, integrable systems, Langlands duality
and mirror symmetry.

A way of studying the geometry of M(G) is by the study of subvarieties
of the moduli space. Given an automorphism of M(G), we have a natural
subvariety given by the subset of fixed points in M(G) for this automor-
phism. Then, it is natural to study automorphisms of finite order of M(G),
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in the spirit of [15]. The case of involutions was developed by Garćıa-Prada
and Ramanan in [7] and [10], where they showed that they are related to
representations of the fundamental group of the surface in real forms of G.
In [1] we studied the case of order three automorphisms for the moduli space
of principal Spin-bundles. In this paper we will deal with the case of auto-
morphisms of order three of the moduli space of Spin(n,C)-Higgs bundles.
In [7] the same problem is considered but with a different approach.

Our order three automorphisms come from the triality automorphism.
If the group G is complex, simple and simply connected with Lie algebra g,
the group Out(G) is isomorphic to the group of symmetries of the Dynkin
diagram of g. Then the only possibility for g to have outer automorphisms
of order three is when g = so(8,C), for which the group of symmetries of
its Dynkin diagram is S3. In [1], a family of Spin groups with outer auto-
morphisms of order three are constructed. Here, we define an appropriate
action of Out(G) on M(G) for these groups.

We also define a natural action of C∗ on M(Spin(n,C)) which will
give rise to new automorphisms of order three of the moduli. These au-
tomorphisms come from primitive cubic roots of unity in C∗. These two
actions can be combined to give rise to an action of Out(Spin(n,C)) × C∗
on M(Spin(n,C)). This action will provide a family of automorphisms of
order three of the moduli whose subvarieties of fixed points will be studied
here for the case in wich n ∼= 0 mod 8. Moreover, we will give a complete
description in the simple case, when n = 8.

This paper is organized as follows. In Section 1 we present some basic
notions of stability of Higgs bundles and Higgs pairs we will use throughout
the article. In Sections 2 and 3 we describe the action of the group Out(G)×
C∗ in M(G). In Section 4 we recall the basic concepts of triality and present
the groups that work later and in Section 5 we study the subvariety of fixed
points for the action of the automorphisms of order three in M(Spin(n,C))
coming from the preceding action, for n ∼= 0 mod 8. Finally, in Section 6
we further study the case Spin(8,C) and in Section 7 we study in detail the
moduli spaces of Higgs pairs which play a role in the description of fixed
points.

1. The moduli space of G-Higgs bundles

From now on, X will be a compact Riemann surface of genus g ≥ 2.
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Let G be a complex reductive Lie group and ρ : G → GL(V ) be a
complex representation of G. Here, we give the notion of (G, ρ)-Higgs pair.
A G-Higgs bundle will be a particular case of (G, ρ)-Higgs pair in which we
take the adjoint representation of G. This will be relevant for us because the
fixed points which we will describe will usually be Higgs pairs but not Higgs
bundles. Then, we will explain the notions of stability and polystability for
(G, ρ)-Higgs pairs and a simplified notion of stability for G-Higgs bundles.

Definition 1.1 Let E be a principal G-bundle and P be a parabolic
subgroup of G. Let χ : P → C∗ a character of P . Let σ : EP → E be a
reduction of the structure group of E to P . We define the degree of E with
respect to σ and χ by

deg E(σ, χ) = deg χ∗EP .

Let E be a principal G-bundle over X and ρ : G → GL(V ) a complex
representation of V . Associated to E and V , we define the vector bundle

E(V ) = E ×ρ V.

Definition 1.2 ((G, ρ)-Higgs pair) Let ρ : G → GL(V ) be a finite dimen-
sional complex representation of G. A (G, ρ)-Higgs is a pair (E, ϕ) where
E is a principal G-bundle and ϕ ∈ H0(X, E(V ) ⊗ K) and K denotes the
canonical bundle over X.

Definition 1.3 A G-Higgs bundle is a (G, Ad)-Higgs pair, where Ad :
G → GL(g) is the adjoint representation of G and g denotes the Lie algebra
of G.

If (E, ϕ) is a G-Higgs bundle, the section ϕ is called the Higgs field of
(E, ϕ).

Let P be a parabolic subgroup of G, χ be a character of P and sχ be its
dual by the Killing form. Let ρ : G → GL(V ) be a complex representation
of G. We denote by V t,−

χ the subspace of V spanned by the eigenvectors of
sχ whose eigenvalues are less or equal to 1. Then, we define

V −
χ = {v ∈ V : ∃t0 such that ρ(etsχ)v ∈ V t,−

χ ∀t > t0}
V 0

χ = {v ∈ V : ρ(etsχ)v = v ∀t}.
(1)
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Let Psχ
and Lsχ

be the Lie subgroups of G whose Lie algebras are

psχ
= {x ∈ g : Ad(etsχ)(x) is bounded as t →∞}

lsχ
= {x ∈ g : [x, sχ] = 0},

respectively. These subgroups are studied in detail in [9, Lemma 2.5]. The
group Psχ is a parabolic subgroup of G and Lsχ is a Levi subgroup of
Psχ

. It can be proved that V −
χ is invariant under the action of Psχ

and
V 0

χ is invariant under the action of Lsχ
. If V = g and ρ is the adjoint

representation, then V −
χ = psχ and V 0

χ = lsχ .
Let (E, ϕ) be a (G, ρ)-Higgs pair for the complex representation ρ of

G. A reduction of structure group, σ : EP → E, of E to P will be called
admissible if

ϕ ∈ H0(X, EP (V −
χ )⊗K). (2)

Now, we give the notion of stability for (G, ρ)-Higgs pairs.

Definition 1.4 (Semistable (G, ρ)-Higgs pair) Let ρ : G → GL(V ) be
a complex representation of G. Let (E, ϕ) be a (G, ρ)-Higgs pair. The
pair (E, ϕ) is called semistable if for any parabolic subgroup P of G, any
antidominant character χ of P and any reduction of the structure group of
E to P , σ : EP → E, such that ϕ ∈ H0(X, EP (V −

χ )⊗K), we have

deg E(σ, χ) ≥ 0.

Definition 1.5 (Stable (G, ρ)-Higgs pair) Let ρ : G → GL(V ) be a com-
plex representation of G and (E, ϕ) a (G, ρ)-Higgs pair. The pair (E, ϕ) is
called stable if it is semistable and for any nontrivial P , χ and σ : EP → E

as above such that ϕ ∈ H0(X, EP (V −
χ )⊗K),

deg E(σ, χ) > 0.

Definition 1.6 (Polystable (G, ρ)-Higgs pair) Let ρ : G → GL(V ) be a
complex representation of G and (E, ϕ) a (G, ρ)-Higgs pair. The pair (E, ϕ)
is called polystable if it is semistable and for each P , σ : EP → E and χ as
in the definition of semistable (G, ρ)-Higgs pair such that deg E(σ, χ) = 0,
there exists a holomorphic reduction of the structure group of EP to a
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Levi subgroup L of P , σL : EL → EP . Moreover, in this case, we require
ϕ ∈ H0(X, E(V 0

χ )⊗K).

The general theory of (G, ρ)-Higgs pairs can be found in [8] and in [24],
where a construction of the moduli space of (G, ρ)-Higgs pairs is given.

It is easy to prove that the condition given in Definition 1.4 for a (G, ρ)-
Higgs pair to be semistable is necessary to be checked only for maximal
parabolic subgroups of G (of course, this also works for the particular case
of G-Higgs bundles).

The moduli space of G-Higgs bundles, denoted by M(G), is the pro-
jective variety parametrizing all possible isomorphism classes of polystable
G-Higgs bundles on X. An explicit construction of the moduli space of G-
Higgs bundles can be found in [21] or, with more algebraic techniques, in
[24].

Definition 1.7 (Simple G-Higgs bundle) A G-Higgs bundle (E, ϕ) is
called simple if Aut(E, ϕ) = Z(G), where Z(G) denotes the center of G.

The following result, which relates smoothness to simplicity, is proved
in [9, Proposition 3.18].

Proposition 1.1 Let (E, ϕ) be a stable and simple G-Higgs bundle. Then,
(E, ϕ) is a smooth point in M(G).

In a smooth point, the expected dimension of the moduli space of G-
Higgs bundles is 2 dimG(g − 1).

We will now sum-up some useful notions about maps between moduli
spaces of G-Higgs bundles.

Suppose that G is semisimple. Let G0 be a maximal compact subgroup
of G. Let g0 be the Lie algebra of G0 and k the Killing form of g. Since g

is semisimple, k is a nondegenerate symmetric bilinear form on g which sta-
blishes an isomorphism g ∼= g∗. We define the following hermitian product
on g:

h(Y, Z) = k(Y, σ(Z)),

where σ denotes the Cartan involution which induces G0. Since k is invariant
under the adjoint action of G on g, we have that the restriction of the adjoint
representation of G, Ad0 : G0 → U(g), is a unitary representation. The
restriction of k to G0 is also nondegenerate.
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Let H be a semisimple Lie subgroup of G with maximal compact sub-
group H0. Let h = LieH and h0 = LieH0. The Killing form of G, k, restricts
to the Killing form of H (denote it by k, too) and it is a nondegenerate sym-
metric bilinear form, since H is semisimple. It is also nondegenerate on h0.
Suppose that we have a subspace m of g in which h is a nondegenerate Her-
mitian form and the restriction of the adjoint action of G to H respects m,
AdH : H → GL(m). Then, we have that the diagram

G0
Ad0 // U(g)

H0

OO

AdH
0

// U(m)

OO

commutes.
Let (EH , ϕH) be an (H, AdH)-Higgs pair. We have a natural inclusion

of vector bundles EH(m) ↪→ EG(g) which induces an inclusion of groups
H0(X, EH(m) ⊗K) ↪→ H0(X, EG(g) ⊗K). We define ϕG to be the image
of the element ϕH by this inclusion. Then, to each (H, AdH)-Higgs pair
(EH , ϕH) we may associate a G-Higgs bundle (EG, ϕG). We will see the
following result.

Proposition 1.2 Let H be a semisimple Lie subgroup of the complex Lie
group G. Let (EH , ϕH) be a polystable (H, AdH)-Higgs pair. Then, the
G-Higgs bundle (EG, ϕG) is polystable.

In order to prove Proposition 1.2, we briefly introduce the notation and
techniques used by Hitchin in [11], who introduced a natural gauge equation
for Higgs bundles. Details can be found in [8, Section 2].

Let ρ : G → GL(V ) be a Hermitian complex representation of G such
that its restriction to the maximal compact subgroup G0 of G is unitary. Let
ρ0 : G0 → U(V ) be this restriction. Let K be the canonical line bundle over
the curve X and let h be any Hermitian metric on K. Let F ∈ Ω2(X,C) be
the curvature of the Chern connection of h. Let E be a principal G-bundle
over X which admits a reduction of structure group, σ : EG0 → E, to G0.
The vector bundle E(V ) induced by the representation ρ admits a Hermitian
structure, induced by the canonical isomorphism E(V ) ∼= EG0×G0 V . Given
any Higgs field ϕ ∈ H0(X, E(V )⊗K), we may identify iϕ⊗ϕ∗ with a skew
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symmetric section of End(E(V ) ⊗ K) (here, the dual of ϕ is taken with
respect to the Hermitian forms of E(V ) and K). We define the holomorphic
global section

µEG0
(ϕ) = ρ∗0

(
− i

2
ϕ⊗ ϕ∗

)
, (3)

where the map ρ∗0 : EG0(u(V ))∗ → EG0(g0)∗ is induced by the dual of the
infinitesimal action of g0 on V . Now, since g0

∼= g∗0 via its non degenerate
bilinear form, we may identify µEG0

with an element of H0(X, EG0(g0)). In
[9, Theorem 2.24] the following result is proved.

Theorem 1.1 Let h be a Hermitian metric on the canonical bundle K

and let F be the curvature of the corresponding Chern connection. Let
ρ : G → GL(V ) be a Hermitian complex representation of G such that its
restriction to the maximal compact subgroup G0 of G is unitary. Let (E, ϕ)
be a polystable (G, ρ)-Higgs pair. Then there exists a reduction of structure
group σ : EG0 → E of E to G0 such that

Λ(FEG0
+ F ) + µEG0

(ϕ) = 0, (4)

where FEG0
∈ Ω2(X, EG0(g0)) is the curvature of the Chern connection on

E with respect to its Hermitian metric, Λ : Ω2(X) → Ω0(X) is the adjoint
of wedging with the volume form on X and µEG0

(ϕ) is defined in (3).
Conversely, if (E, ϕ) is a (G, ρ)-Higgs pair which admits a reduction of

structure group to G0 which is a solution of (4), then (E, ϕ) is polystable.

Proof of Proposition 1.2. Suppose that the (H, AdH)-Higgs pair (EH , ϕH)
is polystable. From Theorem 1.1 applied to (H, AdH), there exists a reduc-
tion of structure group σH : EH,H0 → EH to the maximal compact subgroup
H0 of H such that this reduction is a solution of (4). The composition of
σH with the map EH → EG induces a reduction of structure group of EG

to G0,

σG : EG,G0 = EH,H0 ×H0 G0 → EG, σG([e, g]) = [e, g].

The image of the Chern connection of EH,H0(h0) by the inclusion
map Ω1(X, EH,H0(h0)) ↪→ Ω1(X, EG,G0(g0)) is the Chern connection of
EG,G0(g0). Then FEH,H0

= FEG,G0
. The same argument shows that
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ϕH ⊗ ϕ∗H = ϕG ⊗ ϕ∗G, so µEH,H0
(ϕH) = µEG,G0

(ϕG). From this,

Λ(FEG,G0
+ F ) + µEG,G0

(ϕG) = Λ(FEH,H0
+ F ) + µEH,H0

(ϕH) = 0.

From Theorem 1.1, the G-Higgs bundle (E, ϕ) is polystable. ¤

If we take m = h, then AdH is the adjoint representation of H in its Lie
algebra, so we have, as a particular case, the following.

Proposition 1.3 Let (EH , ϕH) be a polystable H-Higgs bundle. Then the
associated G-Higgs bundle (EG, ϕG) is polystable.

This says that the map (EH , ϕH) 7→ (EG, ϕG) induces a map M(H) →
M(G) from the moduli space of H-Higgs bundles to the moduli space of
G-Higgs bundles.

2. The action of Out (G) on M(G)

Let G be a complex reductive Lie group and let M(G) be the moduli
space of polystable G-Higgs bundles over X. We use the action of the group
Aut(G) of automorphisms of the Lie group G on the set of principal G-
bundles over X given in [1], in order to define the following for G-Higgs
bundles.

Definition 2.1 Let (E, ϕ) be a G-Higgs bundle and A ∈ Aut(G). We
define A(E, ϕ) to be

A(E, ϕ) = (A(E), dA(ϕ)),

where A(E) is equal to E as a complex manifold but equipped with the
action of G on the right

A(E)×G
¦→ A(E), e ¦ g = eA−1(g),

and dA : H0(X, E(g)⊗K) → H0(X, E(g)⊗K) is the map induced by the
map E(g) → E(g) which consists on taking the differential of A on each
fibre.

This action is well-defined and, in fact, it defines an action of Out(G)
on the set of isomorphism classes of G-Higgs bundles in the following way:
if σ ∈ Out(G) and A ∈ Aut(G) is an automorphism of G representing σ,
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then σ(E, ϕ) = (A(E), dA(ϕ)).

Remark In fact, it is easy to see that, if g ∈ G and A = ig is the inner
automorphism given by g, the map f : (E, ϕ) → (A(E), dA(ϕ)) defined by
f(e) = eg−1 is an isomorphism of principal G-bundles (see [13]).

Our goal now is to prove that Out(G) acts on the moduli space of G-
Higgs bundles, M(G).

We shall prove the following result.

Proposition 2.1 If (E, ϕ) is a polystable (resp. stable, semistable) G-
Higgs bundle and A ∈ Aut(G), then A(E, ϕ) is polystable (resp. stable,
semistable).

To do that, we will need some lemmas.

Lemma 2.1 If P is a parabolic subgroup of G and A ∈ Aut(G), then
A(P ) is a parabolic subgroup of G. The decomposition P = L · U is a Levi
decomposition of P if and only if A(P ) = A(L)·A(U) is a Levi decomposition
of A(P ).

Proof. The first assertion is trivial from the definition of parabolic sub-
group. For the second part we shall take into account that the unipotent
radical of A(P ), RadA(P ) coincides with A(RadP ) and the form of the Levi
decomposition. ¤

Lemma 2.2 Let (E, ϕ) be a G-Higgs bundle, P be a parabolic subgroup of
G, L be a Levi subgroup of P , A ∈ Aut(G), σ : (EP , ϕP ) → (E, ϕ) be a re-
duction of the structure group of (E, ϕ) to P and σL : (EL, ϕL) → (EP , ϕP )
be a reduction of the structure group to L. Then A(σ) : A(EP , ϕP ) →
A(E, ϕ) defined by A(σ)(e) = σ(e) is a reduction of the structure group of
(E, ϕ) to A(P ). Moreover, if σ is an admissible reduction (see (2)), then
A(σ) is admissible.

Proof. The first part is immediate. For the second, let χ : A(P ) → C∗ be a
character of A(P ) that is trivial in the connected component of the identity.
Then χ is of the form χ ◦ A−1 for a character χ : P → C∗ that is trivial in
the connected component of the identity. The line bundle (χ ◦A−1)∗A(EP )
can be described as the set of classes of the form [e, α] where e ∈ EP , α ∈ C∗
and the class of (e, α) is given by all the elements of the form
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(
eA−1(g), χ

(
A−1(g)

)−1
α
)
, g ∈ A(P ),

that is, by all the elements of the form

(eh, χ(h)−1α).

Then it is clear that (χ ◦A−1)∗A(EP ) is isomorphic to χ∗EP . If χ∗EP has
degree 0, then (χ ◦A−1)∗A(EP ) has degree 0. ¤

Proposition 2.2 Let (E, ϕ) be a semistable (resp. stable) G-Higgs bundle
and A ∈ Aut(G). Then A(E, ϕ) is semistable (resp. stable) as a G-Higgs
bundle.

Proof. Let P be a parabolic subgroup of G for which (E, ϕ) admits a
reduction of structure group, σ : EP → E with ϕ ∈ H0(X, EP (p)⊗K), and
a character χ of P . Then, deg E(σ, χ) ≤ 0 (resp. < 0). From the proof of
Lemma 2.2 it follows that

deg A(E)(A(σ), χ) = deg E(σ, χ) ≤ 0 (resp. < 0). ¤

Proposition 2.3 If (E, ϕ) is a polystable G-Higgs bundle and A ∈
Aut(G), then A(E, ϕ) is a polystable G-Higgs bundle.

Proof. Since (E, ϕ) is semistable, A(E, ϕ) is semistable by Proposition 2.2.
Let P be a parabolic subgroup of G for which (E, ϕ) admits a reduction of
structure group, σ : EP → E with ϕ ∈ H0(X, EP (p)⊗K), and a character
χ of P for which deg E(σ, χ) = 0. Let L be a Levi subgroup of P . Since
(E, ϕ) is polystable, there exists a reduction of the structure group of EP

to EL, σL, and ϕ ∈ H0(X, EL(l) ⊗K). Then A(E) admits a reduction of
structure group, A(σ), which satisfies

deg A(E)(A(σ), χ) = deg E(σ, χ) = 0,

so we deduce deduce that A(E)A(P ) = A(EP ) admits a reduction of
the structure group to A(L), A(σL), with ϕ ∈ H0(X, EL(l) ⊗ K) =
H0(X, A(EL)(dA(l))⊗K). ¤

Proof of Proposition 2.1. It is a consequence of Propositions 2.2 and 2.3.
¤
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The preceding results allow us to define the following action of Out(G)
on M(G).

Definition 2.2 Let (E, ϕ) be a polystable G-Higgs bundle and σ ∈
Out(G). We define

σ(E, ϕ) = A(E, ϕ),

where A ∈ Aut(G) represents σ.

This definition retrieves the action of Out(G) on the moduli space of
polystable principal G-bundles given in [1] only by considering the closed
immersion of the moduli space of principal G-bundles in M(G) given by
E 7→ (E, 0).

3. The action of Out (G) × C∗ on M(G)

We consider the following action of the group C∗ on the set of G-Higgs
bundles as follows.

Definition 3.1 If (E, ϕ) is a G-Higgs bundle and λ ∈ C∗, we define

λ(E, ϕ) = (E, λϕ).

It is immediate that reductions of structure group of (E, ϕ) are in bi-
jective correspondence with reductions of structure group of (E, λϕ) for all
λ ∈ C∗ in such a way that the notions of stability, semistability and polysta-
bility are also equivalent. This, applied to parabolic subgroups, gives the
following result.

Proposition 3.1 Let (E, ϕ) be a semistable (resp. stable, polystable) G-
Higgs bundle and λ ∈ C∗. Then λ(E, ϕ) is a semistable (resp. stable, poly-
stable) G-Higgs bundle.

The preceding result ensure that the action of C∗ is well defined in
M(G). Moreover, if λ is a primitive cubic root of unity, then its action on
M(G) induces an automorphism of order three. We will be interested in
this kind of automorphisms.

We can now define the following action of Out(G) × C∗ on the moduli
space of G-Higgs bundles, which is nothing but the combination of the two
preceding actions of Out(G) and C∗.
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Definition 3.2 If (E, ϕ) is a polystable G-Higgs bundle and (A, λ) ∈
Out(G)× C∗, then we define

(A, λ)(E, ϕ) = (A(E), λdA(ϕ)).

This action is well defined by Propositions 2.1 and 3.1.
We will be interested in elements of the form (τ, λ) where λ is a primitive

cubic root of unity and τ is an outer automorphism of order three of G.
These elements induce automorphisms of order three on M(Spin(n,C)).

4. Spin-groups and the triality automorphism

The group G = Spin(n,C), with n even and n ≥ 4, is the simply con-
nected simple complex group with Dynkin diagram Dn/2. It is a double
covering of the group SO(n,C) and then it can be seen as an extension of
SO(n,C) by Z2.

There is a natural action of the group Aut(G) on the centre of G,
Z = Z2 ⊕ Z2. Hence, we get a homomorphism of Aut(G) into the group
S(Z2) of permutations of the set Z2 = Z \ {1} of elements of order 2.
The subgroup Int(G) of inner automorphisms of G acts trivially on Z, so
we get a homomorphism of Out(G) into S(Z2) ∼= S3, which is actually an
isomorphism when n = 8.

For the simple case, G = Spin(8,C), there are three mutually non iso-
morphic irreducible representations of G of dimension 8 each. Exactly one
nontrivial element of Z2 for each representation acts trivially. We have also
a bijection between the set of outer involutions of G and Z2. Thus we have
bijections between the set of elements of order 2 in Z, the set of involutions
in Out(G) and the set of isomorphism classes of irreducible 8-dimensional
representations of G. Indeed, for each z ∈ Z2, there exists a unique 8 dimen-
sional irreducible representation ρz of G and a unique outer automorphism
of order 2, σz, such that ρz(z) = 1 and σz(z) = z.

The representation ρz (with associated 8-dimensional complex vector
space Vz) descends to a representation

Spin(8,C)/ 〈1, z〉 ∼= SO(8,C) → GL(Vz),

so it induces an invariant nondegenerate quadratic form qz on Vz and so a
short exact sequence of groups
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1 → 〈1, z〉 ∼= Z2 → Spin(qz) → SO(qz) → 1.

Let τ be an element of order three in Out(G). This is called triality
automorphism. There are two such automorphisms, τ and τ−1 = τ2. Let z1,
z2, z3 be the three elements of Z2. We may assume that they satisfy τ(z1) =
z2, τ(z2) = z3, τ(z3) = z1. The election of this order induces an election of
an element z ∈ Z2 of order 2 (say z = z1) and, then, a representation space
V and a quadratic form q on V as above. The automorphism τ induces
then an outer automorphism of G/Z ∼= PSO(q) of order 3. There must exist
subspaces of rank 2, V1, V2, V3 and V4 such that τ interchanges V1, V2 and V3

and leaves V4 invariant. This says that triality induces an automorphism of
the subgroup of GL(2,C)4 consisting of matrices {(A,B, C, D)} all of whose
determinants are the same. There is a natural homomorphism of this group
into SO(8,C), so into PSO(8,C), given by

(A,B, C, D) 7→ (A⊗Bt)⊕ (C ⊗Dt),

where by Bt and Dt we mean the transposed matrices of B and D, respec-
tively.

The kernel of this map is the group of diagonal scalars and the image of
(−1,−1,−1, 1) is an element of order 2, a, in the conjugacy class. Actually,
this group is a subgroup of Spin(8,C) and is the centralizer of a. Triality
acts on this subgroup as we have explained above.

Now, we will study fixed points in Spin(8,C) of triality automorphism.
We shall first establish some general notions which work for general semisim-
ple Lie groups. Let g be a semisimple complex Lie algebra. We have the
following exact sequence of groups

1 −→ Int(g) −→ Aut(g) −→ Out(g) −→ 1.

It is well-known that, if G is the simply connected complex Lie group
with Lie algebra g, then there is a natural isomorphism of short exact se-
quences of the form

1 // Int(G) //

²²

Aut(G) //

²²

Out(G) //

²²

1

1 // Int(g) // Aut(g) // Out(g) // 1.
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This says that we can speak, indistinctly, of automorphisms of G and auto-
morphisms of g.

The following equivalence relation on Aut(g) will also be relevant for us.

Definition 4.1 If α, β ∈ Aut(g), we say that α ∼i β if there exists
θ ∈ Int(g) such that α = θ ◦ β ◦ θ−1.

The relation defined above does not define outer automorphisms, but it
is easily seen that, for α, β ∈ Aut(g), if α ∼i β, then α and β define the
same element in Out(g) (for details, see [1]). This says that the obvious map

Aut(g)/ ∼i →Out(g) (5)

is well defined.
We consider now, for j ≥ 0, Autj(g) = {α ∈ Aut(g) : α is of order j}.

The definitions of Outj(g) and (Aut(g)/ ∼i)j are analogous. It is clear that
Autj(g)/ ∼i is sent onto Outj(g) ∪ {1} via the natural map if j ∈ {2, 3},
that is,

Autj(g)/ ∼i →Outj(g) ∪ {1}, j = 2, 3.

We will consider this map for j = 3, that is,

Aut3(g)/ ∼i →Out3(g) ∪ {1}. (6)

In our case, it will be g = so(n,C) and G = Spin(n,C), the simply
connected complex Lie group with Lie algebra g, with n ≡ 0 mod 8. In the
discussion after [1, Proposition 3.3] it is proved that, in this case, Out(g) ∼=
S3. So, there are two outer automorphisms of order three: the triality
automorphism, τ , and its inverse.

There are as many automorphisms of order three of g with the same
subgroup of fixed points as lifts of τ by the map (6). In order to count
them, in [1, Proposition 3.5] it is proved the following result:

Proposition 4.1 The number of elements in the pre-image of τ by the
map (6) is

2k if n = 4k2 + 4k,

1 otherwise.
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Proposition 4.1 says that the number of elements in the pre-image of τ

by the map (6) is equal to
√

n + 1 − 1 if n + 1 is a perfect square (which
occurs if and only if n = 4k2 + 4k for some k ∈ N) and 1 otherwise (always
if n ≡ 0 mod 8).

In the case in which n + 1 is not a perfect square, Proposition 4.1 says
that there is only one possibility for the subalgebra of fixed points of an
outer automorphism of order three of g. In [20, Theorem 4] it is proved
that the dimension of this subalgebra is 14 and it must be Fix(τ) ∼= g2.
In terms of the group, this says that Fix(τ) ∼= G2, where τ is seen as an
automorphism of G. If n + 1 is a perfect square, we obtain that one of the
2k lifts of τ by the map (6) has g2 as subalgebra of fixed points. So we have
the following result:

Proposition 4.2 There is an outer automorphism of order three of the
group G = Spin(n,C) with subgroup of fixed points isomorphic to G2. If
n+1 is not a perfect square, then G2 is the subgroup of fixed points of every
outer automorphism of order three of G.

In [25, Theorem 5.5], Wolf and Gray proved that in the case in which
n = 8 (that is, for G = Spin(8,C) and g = so(8,C)), the two lifts of the map
(6) have as subalgebras of fixed points g2 and a2 (with simply connected
subgroups G2 and PSL(3,C)).

5. Spin (n,C)-Higgs bundles and triality

From now on, the group G will be Spin(n,C), where n ≡ 0 mod 8.
In the case of the group SO(n,C), a maximal parabolic subgroup is the

stabilizer of an isotropic subspace. Then, it is easy to see that our notion
of stability turns to the following in the orthogonal case (for details, see [9,
Proposition 4.16 and Theorem 4.17]).

Lemma 5.1 A special orthogonal Higgs bundle (E, ϕ) is stable (resp.
semistable) if and only if for every isotropic subbundle E′ of E with
ϕ(E′) ⊆ E′ ⊗K we have deg E′ < 0 (resp. deg E′ ≤ 0).

A special orthogonal Higgs bundle (E, ϕ) is polystable if and only if it can
be written as the orthogonal direct sum of stable orthogonal Higgs bundles.

We now recall some facts about stability of principal SO(n,C) and
Spin(n,C)-bundles. A detailed explanation can be found in [1, Section 4].
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Let us express by π : Spin(n,C) → SO(n,C) the natural double cover. Since
both groups have the same Lie algebra and there is a bijection between
Borel subgroups and Borel subalgebras of the group, Borel subgroups of
Spin(n,C) correspond exactly to Borel subgroups of SO(n,C) via π. More-
over, kerπ is contained in every Borel subgroup of Spin(n,C), so the same
is true for parabolic subgroups. From this, it is not difficult to verify from
the notion of stability given for general reductive groups that a principal
Spin(n,C)-bundle E is stable (resp. semistable, polystable) if and only if
the corresponding SO(n,C)-bundle is so.

In the rest of the section, we will describe the subspace of fixed points
in M(Spin(n,C)) for the action of elements of order three in Out(G)× C∗,
following the spirit of [1] and generalizing some results given there to Higgs
bundles.

First of all, we study the fixed points in M(Spin(8,C)) for the action of
elements of order three of C∗. Here, we will only study stable fixed points.
We will need an auxiliary lemma. It generalizes results by Ramanan in [16]
for principal bundles to Higgs bundles.

Lemma 5.2 Let (E, ϕ) be a stable Spin(8,C)-Higgs bundle and let
(ESO, ϕ) be the associated SO(8,C)-Higgs bundle via the map π :
Spin(8,C) → SO(8,C). If (E, ϕ) admits a non trivial automorphism of
order two, then (ESO, ϕ) can be written as an orthogonal sum

(ESO, ϕ) = ((V1 ⊗ V ∗
2 ) ⊥ (V3 ⊗ V ∗

4 ), ϕ1 ⊗ ϕ∗2 ⊥ ϕ3 ⊗ ϕ∗4),

where (V1, ϕ1), (V2, ϕ2), (V3, ϕ3), (V4, ϕ4) are stable vector Higgs bundles of
rank 2 and with the same determinant bundle.

Proof. Let a be a nontrivial automorphism of (E, ϕ) of order two. The au-
tomorphism a acts, in some fibre, as the product by an element of Spin(8,C),
so a can be seen naturally as an element of Spin(8,C). Denote by Z(a) the
centralizer of a in Spin(8,C). Then the structure group of E can be reduced
to Z(a). To see it, consider

F = {ξ ∈ E : a(ξ) = ξa−1}.

The subvariety F of E is clearly invariant by the action of Z(a) and the
action of Z(a) on F is simply transitive. Take e1, e2 ∈ F in the same fibre.
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There exists a unique g ∈ Spin(8,C) such that e2 = e1g. Then,

a(e2) = a(e1g) = a(e1)g = e1a
−1g,

But, since e2 ∈ F , a(e2) = e2a
−1 = e1ga−1, so ga−1 = a−1g and g ∈ Z(a).

This proves that E admits a reduction of the structure group to Z(a).
Moreover, ϕ clearly takes values in the Lie algebra of Z(a) because, since a

is an automorphism of (E, ϕ), we have that Ad(a)(ϕ) = ϕ and then,

exp(ϕ) = exp(Ad(a)(ϕ)) = ia(exp(ϕ)),

where ia denotes the inner automorphism of Spin(8,C) given by a.
The automorphism a gives a decomposition of the vector bundle ESO

into the orthogonal direct sum of two vector bundles (in fact, orthogonal
bundles), V + and V −, that are the eigenspaces of a with eigenvalues 1 and
−1, respectively. The automorphism a acts in V − as a change of sign, and
this automorphism lifts to an automorphism of Spin-bundles in two ways.
If dim V − = m and s = e1, . . . , em is an orthogonal basis of V −, then the
action of the element of the Spin group e1 · · · em on an element x ∈ V is the
following

sxs−1 = e1 · · · emxem · · · e1.

Using that eiej = −ejei we have that sxs−1 = −x if and only if m is
even and, in this case, the elements of the Spin group ±e1 · · · em lift the
automorphism −1 in V −. Then we have proved that V + and V − are of
even dimension. Say m = 2r.

All this proves that π(Z(a)) = Z(a) = S(O(2,C)×O(6,C)) or π(Z(a)) =
Z(a) = S(O(4,C) × O(4,C)). An SO(2,C)-bundle cannot appear in this
decomposition, because it would be hyperbolic and hence not stable. Then
it must be

π(Z(a)) = Z(a) = S(O(4,C)×O(4,C)).

We now compute explicitly the inverse image of Z(a) in order to give an
explicit description of Z(a) (observe that, in this case, π−1π(Z(a)) = Z(a)
because, if g ∈ Z(a), then −g ∈ Z(a) and {g,−g} = π−1(g)).

The Clifford group Γ(4) is the quotient of the subgroup GL(2,C) ×
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GL(2,C) consisting of matrices (A,B) such that detA = det B by the mul-
tiplicative group {(λ, λ−1) : λ ∈ C∗}. From this, one deduces that Z(a) is
the quotient of the subgroup of GL(2,C)4 of quadruples of matrices all with
the same determinant by the group of diagonal scalars.

Since (E, ϕ) admits a reduction of its structure group to Z(a) and
Spin(8,C) restricts to GL(2,C)4 as gives the following representation

(A,B, C, D) 7→ A⊗Bt ⊥ C ⊗Dt,

it is clear that E decomposes as an orthogonal direct sum E = (V1⊗ V ∗
2 ) ⊥

(V3 ⊗ V ∗
4 ), where all the Vi are vector bundles of rank two with the same

determinant and we can write ϕ = (ϕ1, ϕ2) with ϕ1 ∈ H0(X, End(V1⊗V ∗
2 )⊗

K) and ϕ2 ∈ H0(X, End(V3⊗V ∗
4 )⊗K). Moreover, there exist sections ϕ11 ∈

H0(X, End(V1)⊗K), ϕ12 ∈ H0(End(V2)⊗K), ϕ21 ∈ H0(X, End(V3)⊗K)
and ϕ22 ∈ H0(End(V4)⊗K) such that ϕ1 = ϕ11 ⊗ϕ∗12 and ϕ2 = ϕ21 ⊗ϕ∗22.
Observe that V1⊗V ∗

2 and V3⊗V ∗
4 are both stable orthogonal bundles. This

concludes that (Vi, ϕi) is stable for all i as vector Higgs bundles, because
V1 ⊗ V ∗

2 and V3 ⊗ V ∗
4 are reductions of the structure group of orthogonal

groups to S(GL(2,C)×GL(2,C)). ¤

We now define the notion of cyclotomic Higgs bundle, which will be
useful for us.

Definition 5.1 Let (E, ϕ) a GL(n,C)-Higgs bundle. The Higgs bundle
(E, ϕ) is called cyclotomic of order r (r ≤ n) if E decomposes as a direct
sum of vector subbundles

E = E1 ⊕ · · · ⊕ Er

such that the image of the restriction of the Higgs field ϕ to Ei falls in
Ei+1 ⊗K for i = 1, 2, . . . , n − 1 and ϕ(Er) ⊆ E1 ⊗K, that is, ϕ is of the
form

ϕ =




0 ϕ1

0 ϕ2

. . .
0 ϕr−1

ϕr 0 0 0
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in terms of the decomposition E = E1 ⊕ · · · ⊕ Er.

We are now in position to describe the fixed points for the action of
the elements of order three of C∗. Let Mλ(Spin(8,C)) be the set of fixed
points in M(Spin(8,C)) for the action of λ for λ ∈ C∗ with λ3 = 1,
Ms(Spin(8,C)) be the moduli space of stable Spin(8,C))-Higgs bundles,
M∗(Spin(8,C)) be the open subset of stable and simple Spin(8,C))-Higgs
bundles, Mλ

∗(Spin(8,C)) be the subset of simple and stable fixed points in
M(Spin(8,C)) and Mλ

s (Spin(8,C)) be the subset of stable fixed points for
the action of λ.

Theorem 5.1 Let λ ∈ C∗ with λ3 = 1 and λ 6= 1. Let (E, ϕ) be a
stable and simple Spin(8,C)-Higgs bundle. Then (E, ϕ) ∈ Mλ

∗(Spin(8,C))
if and only if the vector Higgs bundle of rank 8 associated to (E, ϕ) via the
homomorphism Spin(8,C) → SO(8,C) ↪→ GL(8,C) is a cyclotomic Higgs
bundle of order three.

Let (E, ϕ) be a stable Spin(8,C)-Higgs bundle. Then (E, ϕ) ∈
Mλ

s (Spin(8,C)) if and only if ESO can be written as an orthogonal sum
of the form

ESO = (V1 ⊗ V ∗
2 ) ⊥ (V3 ⊗ V ∗

4 ),

where (V1, ϕ1), (V2, ϕ2), (V3, ϕ3) and (V4, ϕ4) are stable vector Higgs bundles
of rank 2 with the same determinant bundle and such that they admit a
trivialization, with respect of which the Higgs field ϕi admits the form

ϕi =
(

0 αi

βi 0

)

for each i = 1, 2, 3, 4. In terms of that decomposition, the Higgs field ϕ has
the form

ϕ =




0 0 0 ϕ1,4 0 0 0 0
0 0 ϕ3,2 0 0 0 0 0
0 ϕ2,3 0 0 0 0 0 0

ϕ4,1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ϕ5,8

0 0 0 0 0 0 ϕ6,7 0
0 0 0 0 0 ϕ7,6 0 0
0 0 0 0 ϕ8,5 0 0 0




.
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Proof. Let (E, ϕ) be a stable Spin(8,C)-Higgs bundle and suppose that
(E, ϕ) is a fixed point for the action of λ.

Suppose, as a first step, that (E, ϕ) is simple. Since (E, ϕ) is fixed by the
action of λ, there exists an automorphism of E, f0 : E → E, such that, if f0

is the corresponding automorphism of the adjoint bundle of E, E(so(8,C)),
and 1 : K → K is the identity, we have that

(f0 ⊗ 1) ◦ ϕ = λϕ. (7)

We consider the vector Higgs bundle of rank 8 associated to (E, ϕ) via
the homomorphism Spin(8,C) → SO(8,C) ↪→ GL(8,C), which we denote
by (EGL, ϕGL). The Higgs field ϕ is, then, a homomorphism ϕ : EGL →
EGL ⊗K. The isomorphism f0 satisfies that the diagram

EGL
ϕ //

ef0

²²

EGL ⊗K

ef0⊗1

²²
EGL

λϕ
// EGL ⊗K,

(8)

where f̃0 : EGL → EGL is the automorphism of EGL induced by f0, is
commutative.

Consider the isomorphism of (E, ϕ) given by f = f3
0 : (E, ϕ) → (E, ϕ).

Since (E, ϕ) is simple, we must have f ∈ Z(Spin(8,C)). Let (ESO, ϕSO)
be the SO(8,C)-Higgs bundle associated to (E, ϕ). Then if we see f as an
automorphism of (ESO, ϕSO), we have that f ∈ Z(SO(8,C)), so f = 1 or
f = −1. Suppose that f = 1 (the other case is similar). Then f induces
a decomposition of EGL of the form EGL = E1 ⊕ E2 ⊕ E3, where Ei is the
eigenbundle of EGL corresponding to the eigenvalue λi of f , for i = 1, 2, 3.
Moreover, if u ∈ Ei, thanks to (8) we have that

f(ϕ(u)) = λϕ(λiu) = λi+1ϕ(u),

so ϕ(u) ∈ Ei+1 if i = 1, 2 and ϕ(u) ∈ E1 if i = 3. This implies that ϕ is of
the form




0 ϕ1 0
0 0 ϕ2

ϕ3 0 0
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in terms of the decomposition EGL = E1 ⊕E2 ⊕E3. Therefore, (EGL, ϕGL)
is a cyclotomic bundle of order three.

For the converse, suppose that (E, ϕ) is a cyclotomic bundle with de-
composition E ∼= E1 ⊕ E2 ⊕ E3. It is easy to see that the isomorphism
f : E → E given by f(e1, e2, e3) = (λe1, e2, λ

2e3) gives an isomorphism
(E, ϕ) ∼= (E, λϕ).

Suppose now that (E, ϕ) is not simple. The bundle (E, ϕ) is fixed by the
action of λ, so, as before, there exists an automorphism of E, f : E → E,
such that (f ⊗ 1) ◦ ϕ = λϕ. If f is given by multiplication by an element
of Z(Spin(8,C)), then we proceed as in the preceding case. So suppose
that it is not the case. Since every automorphism of (E, ϕ) has order two,
applying Lemma 5.2 to f3, which is an automorphism of (E, ϕ), it induces
a decomposition of (EGL, ϕGL) of the form

E = (V1 ⊗ V ∗
2 ) ⊥ (V3 ⊗ V ∗

4 ), ϕGL = ϕ1 ⊗ ϕ∗2 ⊥ ϕ3 ⊗ ϕ∗4.

where (V1, ϕ1), (V2, ϕ2), (V3, ϕ3), (V4, ϕ4) are stable vector Higgs bundles of
rank 2. The bundles V1⊗V ∗

2 and V3⊗V ∗
4 are stable SO(4,C)-Higgs bundles.

In terms of this orthogonal direct sum decomposition, the automorphism f3,
seen as an automorphism of vector bundles, must be of the form

f3 =
(

aI 0
0 1

aI

)

for a ∈ C∗, because each (Vi, ϕi) is stable as a vector Higgs bundle and
hence simple.

Now, we will put our attention in V1 ⊗ V ∗
2 . For the other summand the

analysis is analogous.
Since (V1, ϕ1) is stable as a vector Higgs bundle, we have that f is of

the form f = αId. For the same reason, the restriction to V2 of f is of the
form f = βId for some β ∈ C∗. Then, the restriction of f to V1 ⊗ V ∗

2 is
multiplication by αβ.

Suppose now that the Higgs field for V1 has the form

ϕV1 =
(

ϕ1 ϕ2

ϕ3 ϕ4

)

and, for V ∗
2
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ϕV ∗2 =
(

ϕ′1 ϕ′2
ϕ′3 ϕ′4

)
.

Then imposing the condition fϕV1 = λϕV1f , that is,

(
α 0
0 α

)(
ϕ1 ϕ2

ϕ3 ϕ4

)
= λ

(
ϕ1 ϕ2

ϕ3 ϕ4

)(
α 0
0 α

)
,

we must have ϕ1 = 0 and ϕ4 = 0. Doing the same with ϕV ∗2 , we have that
ϕ′1 = 0, ϕ′4 = 0. Then computing ϕV1 ⊗ ϕV ∗2 , we have that it has to be of
the expected form




ϕ1,4

ϕ2,3

ϕ3,2

ϕ4,1


 .

Doing the same with V3 and V ∗
4 we obtain that the Higgs field for this

summand is of the form



ϕ5,8

ϕ6,7

ϕ7,6

ϕ8,5


 ,

and the result holds. ¤

We can now treat the general case. Let (E, ϕ) be a Spin(n,C)-Higgs
bundle fixed by the action of (τ, λ), that is, if A ∈ Aut(Spin(n,C)) repre-
sents τ , then (E, ϕ) ∼= (A(E), λdA(ϕ)). We may assume that A has order
three. To see this, observe that there are two automorphisms of order three
of Spin(n,C) not related by inner automorphisms, that are the triality au-
tomorphism and its inverse and each of them belongs to an element of order
three of Out(Spin(n,C)). We consider the subgroup Fix(A) of fixed points
of A. The differential of τ is an automorphism of order three of so(n,C).
We consider the corresponding decomposition of so(n,C) into eigenspaces
for dτ

so(n,C) = h1 ⊕ hµ ⊕ hµ2 , (9)
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where µ is a primitive third root of unity. The subspace h1 is the subal-
gebra of fixed points of dτ , so h1

∼= g2 if n + 1 is not a perfect square. It
is easily seen that the subalgebra h1 is represented in h1, hµ and hµ2 by
the restriction of the adjoint action of so(n,C) to h1. In other words, the
restriction of the adjoint representation of so(n,C) to h1 gives rise to the
following representations of h1:

ρ1 : h1 → gl(h1)

ρµ : h1 → gl(hµ)

ρµ2 : h1 → gl(hµ2).

Let H be the connected subgroup of Spin(n,C) with Lie algebra h1. We
have the corresponding representations of H (which we also denote ρ1, ρµ

and ρµ2 for simplicity).
Let Mλ(H) be the moduli space of polystable H-Higgs pairs of the form

(E, ϕ) where E is a principal H-bundle and ϕ ∈ H0(X, (E(hλ)⊗K). With
this notation, M1(H) coincides with the moduli space of H-Higgs bundles,
M(H).

The following statement is the main result of this section.

Theorem 5.2 Let (τ, λ) be an element of Out(Spin(n,C)) × C∗ of order
three with τ 6= 1. Let M(τ,λ)(Spin(n,C)) be the subset of fixed points in
M(Spin(n,C)) for the action induced by (τ, λ) and let Mτ

∗(Spin(n,C)) be
the subset of stable and simple fixed points in M(Spin(n,C)) for (τ, λ). Then

M(τ,λ)
∗ (Spin(n,C)) ⊆ ˜Mλ2(Fix(τ)) ⊆M(τ,λ)(Spin(n,C)),

Proof. Let A be a lifting of τ for the equivalence relation ∼i. Take (E, ϕ) ∈
M(τ,λ)

∗ (Spin(n,C)). We will see that (E, ϕ) ∈ ˜Mλ2(Fix(A)).
There exists an isomorphism f : E → A(E) such that f ◦ ϕ = ϕ.

Then the corresponding homomorphisms A(f) : A(E) → A2(E) and A2(f) :
A2(E) → A3(E) = E are isomorphisms. If we compose them, we obtain an
endomorphism

A2(f) ◦A(f) ◦ f : E → E

of (E, ϕ) and, since (E, ϕ) is simple, there exists z ∈ Z(Spin(n,C)) such



410 Á. A. Sancho

that

A2(f) ◦A(f) ◦ f = z. (10)

The arguments exposed in the proof of [1, Theorem 6.1] show that z = 1
and that f admits fixed points. We then may define

EH = {e ∈ E : f(e) = e} ⊆ E.

The subvariety EH of E is clearly invariant under the action of Fix(A), so
EH is a reduction of structure group of E to Fix(A) via the inclusion map
EH ↪→ E.

We will now study what happens with the Higgs field. It is clear that
(f ⊗ 1) ◦ ϕ = ϕ, where f is the automorphism of E(so(n,C)) induced by f .
Therefore, λdA(ϕ) = ϕ, so ϕ takes values in hλ2 . Then ϕ admits a reduction

ϕλ2 ∈ H0(X, EFix(A)(hλ2)⊗K)

so that (E, ϕ) is the image by the forgetful map Mλ2(Fix(A)) →
M(Spin(n,C)) of the element (EFix(A), ϕFix(A)) ∈ M(Fix(A)). This proves
that (EH , ϕ) is a reduction of the structure group of (E, ϕ) to H = Fix A.
Observe that if we had fixed λ2 in the beginning we had obtained that ϕ

reduces to hλ.
For the second contention of the theorem, suppose that (E, ϕ) ∈
˜Mλ2(Fix(A)). Then E admits a reduction of the structure group to

Fix(A), EFix(A), and (E, ϕ) is isomorphic to (A(E), λdA(ϕ)) via an iso-
morphism f : E → A(E) such that EFix(A) can be seen as the subva-
riety of E given by the fixed points of f . In fact, it is easily seen that
(E, ϕ) ∼= (EFix(A) ×Fix(A) Spin(n,C), ϕ) and f : E → A(E) is then given by
f([e, g]) = [e,A−1(g)], where the brackets denote the fiber product. ¤

In the case in which the rank n verifies that n+1 is not a perfect square,
the theorem says that

Mτ
s (Spin(n,C)) ⊆ M̃(G2) ⊆Mτ (Spin(n,C))

because G2 is the only possibility for the group Fix(A) where A is a lifting
of the triality automorphism. There is an infinite amount of possible ranks
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verifying the condition required for the rank n. For example, take n = 2m

for m ≥ 4. It is easily seen that 2m + 1 is a perfect square if and only if
m = 3, so this family gives rise to an infinite family of groups whose ranks
verify the preceding condition.

When we do not restrict the rank to those for which n+1 is not a perfect
square, we have more possibilities for the group Fix(A). The case in which
m = 3 (that is, when G = Spin(8,C)) is special because we have two lifts of
the triality automorphism (as it was seen in Proposition (4.1)) and we can
give a more precise description of the Spin(8,C)-bundles which will help us
deepen results. We will deal with this case in the next section.

6. The case of Spin (8,C)

From Theorem 5.2 and [25, Theorem 5.5], we have that

Mτ
∗(Spin(8,C)) ⊆ M̃(G2) ∪ ˜M(PSL(3,C)) ⊆Mτ (Spin(8,C)).

In this section we will give a complete characterization of the subvariety
of fixed points of the triality automorphism when the structure group is
Spin(8,C).

We will use the following auxiliary result, which is proved in [1, Propo-
sition 7.1]:

Proposition 6.1 Let τ ∈ Out(Spin(8,C)) be a non-trivial element of
order three and E be a principal Spin(8,C)-bundle with E ∼= τ(E) via an
isomorphism f0 : E → τ(E) such that f = τ2(f0) ◦ τ(f0) ◦ f0 : E → E is an
automorphism of E not coming from the centre of Spin(8,C). Then, there
exists an element a ∈ Spin(8,C) with a 6∈ Z(Spin(8,C)) such that E admits
a reduction of the structure group to the centralizer of a in Spin(8,C), Z(a).

We can now prove the main result of the section:

Theorem 6.1 Let (τ, λ) be an element of order three of Out(Spin(8,C))×
C∗ with τ 6= 1 (that is, τ is a non-trivial outer automorphism of order three
of Spin(8,C) and λ is a cubic root of unity). Let M(τ,λ)(Spin(8,C)) be
the subset of fixed points on M(Spin(8,C)) for the action induced by (τ, λ).
Then

M(τ,λ)(Spin(8,C)) = M̃λ2(G2) ∪ ˜Mλ2(PSL(3,C)).
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Proof. Take A a lifting of τ by ∼i. Let µ ∈ C∗ be a primitive cubic root
of unity. The automorphism A induces a decomposition of g = so(8,C) into
eigenspaces, so(8,C) = h1 ⊕ hµ ⊕ hµ2 , as in (9).

Let (E, ϕ) ∈ M(τ,λ)(Spin(8,C)). Suppose, as a first step that (E, ϕ) is
stable. Since (E, ϕ) is fixed by (τ, λ), there exists an automorphism of E,
f0 : E → A(E) such that

(f0 ⊗ 1) ◦ ϕ = λdA(ϕ). (11)

If f = f0 ◦A(f0) ◦A2(f0) is an automorphism of (E, ϕ) given by an element
of the centre of Spin(8,C), then we are in the situation of the preceding
proposition. Suppose this does not happen. Then fix x ∈ X and e0 ∈ Ex

and, for them, consider the inclusion of groups i : AutE → Spin(8,C). By
Proposition 6.1, the principal Spin(8,C)-bundle E admits a reduction of the
structure group to Z(i(f)), the centralizer in Spin(8,C) of the element i(f)
and, from the proof of that proposition, we have that this reduction is given
by

E0 = {e ∈ E : f(e) = ei(f)}.

Since we have that (f ⊗ 1) ◦ ϕ = ϕ and it is easy to see that, when
restricted to the fibre of x, (f⊗1)◦ϕ = Adi(f)(ϕ), we must have Adi(f)(ϕ) =
ϕ, that is, ϕ takes values in the Lie algebra of Z(i(f)).

We know that the reduction of (E, ϕ) to Z(i(f)) gives a decomposition of
(E, ϕ) of the form E = (V1⊗V ∗

2 ) ⊥ (V3⊗V ∗
4 ) for certain stable vector bundles

of rank 2. The bundles V1 ⊗ V ∗
2 and V3 ⊗ V ∗

4 are stable principal SO(4,C)-
bundles and the direct sum is orthogonal. The triality automorphism acts
on the subgroup GL(2,C)4 of Spin(8,C) by fixing one of the components and
interchanging the other three. This means that a stable fixed point for the
action of A, E is of the form (W⊗V ) ⊥ (V ⊗V ), that is, induces a reduction
of the structure group of E to Fix(A). And, since (f ⊗ 1) ◦ ϕ = ϕ, we have
λdA(ϕ) = ϕ and, then, ϕ admits a reduction ϕλ2 ∈ H0(X, EFix(A)(hλ2)⊗K).
This completes the case in which (E, ϕ) is stable.

The polystable case reduces to the stable case. To see this observe that
from the Jordan-H der reduction we have that a polystable Spin(8,C)-
Higgs bundle reduces to a stable H-Higgs bundle where H is the centralizer
of a torus of Spin(8,C). It is easy to see that the centralizer of a maximal
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torus of SO(8,C) is of the form S(O(2,C)4). This proves that the centralizer
of a torus of SO(8,C) is always a subgroup of S(O(4,C)×O(4,C)) and we
are in the preceding situation. ¤

7. G2 and PSL(3,C)-Higgs pairs

In this section we describe certain (G, ρ)-Higgs pairs which play a role
in the description of fixed points in M(Spin(8,C)) made in Theorem 6.1.
Here, we will deal with the groups G2 and PSL(3,C) and the representations
that we will consider come from the triality automorphism, τ .

We consider the decomposition of g = so(8,C), so(8,C) = h1⊕hµ⊕hµ2 ,
into eigenspaces of dτ , where µ is a primitive third root of unity, and the
representations ρ1, ρµ and ρµ2 , defined in (9).

Let H be the connected subgroup of Spin(8,C) with Lie algebra h1.
We know that it must be H = G2 or H = PSL(3,C). Suppose first that
H = G2. Then, hµ

∼= hµ2 ∼= C7 and we have ρµ = V7 and ρµ2 = V7, where
V7 is the fundamental 7-dimensional representation of G2 (see [4]).

If now H = PSL(3,C), we have dim hµ = dim hµ2 = 10 and then
ρµ = Sym3 C3 and ρµ2 = Sym3(C3)∗, where C3 is the fundamental 3-
dimensional representation of SL(3,C). This representation does not de-
scend to a representation of PSL(3,C), but the third symmetric power of it
and its dual does.

The aim of the section is to describe the stability conditions for (G2, V7)-
Higgs pairs and (PSL(3,C),Sym3 C3) and (PSL(3,C),Sym3(C3)∗)-Higgs
pairs.

We first describe (G2, V7)-Higgs pairs.
The group G2 is the group of automorphisms of V = C7 which preserve

a non-degenerate 3-form. Then, a (G2, V7)-Higgs pair is a pair consisting
of a rank 7 complex vector bundle, E, over X together with a holomorphic
global non-degenerate 3-form ω ∈ H0(X,

∧3
E∗) and a holomorphic global

section ϕ ∈ H0(X, E ⊗K).
A subbundle F of E is said to be isotropic if ω(F, F, F ) = 0.
We will need to stablish some facts about parabolic subgroups of G2

(a complete description can be found in [2]). We denote by t a Cartan
subalgebra of g2. If {α, β} ⊆ t∗ is a fundamental system of roots of g2, the
roots of G2 are
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{α, β, α + β, 2α + β, 3α + β, 3α + 2β,

− α,−β,−α− β,−2α− β,−3α− β,−3α− 2β}.

There are three parabolic subgroups in G2 (those corresponding to the
subsets of {α, β} given by {α}, denoted by pα, {β}, denoted by pβ and
{α, β}, denoted by pα,β , which is the intersection of the first two). The
parabolic subalgebra pα is the subalgebra of endomorphisms leaving certain
1-dimensional isotropic subspace of C7 invariant and the parabolic subal-
gebra pβ is the subalgebra that leaves a 2-dimensional isotropic subspace
containing the preceding 1-dimensional subspace.

The subalgebra pα is given by endomorphisms of V which leaves invari-
ant a filtration of the form L ⊆ W ⊆ V , where rk L = 1 and rkW = 6. The
same works for pβ but with rkL = 2 and rkW = 5.

Proposition 7.1 A (G2, V7)-Higgs pair is semistable (resp. stable) if and
only if for each rank one and rank two isotropic subbundle E′ of E for which

ϕ ∈ H0(X, E/E′ ⊗K)

we have deg E′ ≤ 0 (resp. deg E′ < 0).

Proof. Let χ be an antidominant character of the parabolic subalgebra pα

and sχ the induced element in ig2 (following [8]). If χ = 2nα/κ(α, α), where
κ is the Killing form and n ≤ 0, then sχ = nα/2. So if L ⊆ W ⊆ V is a
filtration with rkL = 1 preserved by α, isχ has the form

isχ =




λ
0

0
0

0
0
−λ




for some λ ∈ R, λ > 0, in a basis induced by the filtration. The condition
of semistability for this type of parabolic requires that ϕ ∈ H0(X, E(V −

χ )),
where V −

χ was defined in (1). Let e1 and e2 the eigenvectors of V of eigen-
values λ and −λ respectively for sχ and {u1, . . . , u5} a basis of the kernel of
sχ. Then, e1 is an isotropic vector (see [2]). If
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v = a1e1 + a2e2 +
5∑

j=1

bjuj

is a generic element of V , then v ∈ V −
χ if and only if

eλta1e1 + e−λta2e2 +
5∑

j=1

bjuj

satisfies a1 = 0. Finally, the numerical stability condition for this kind of
parabolic is that for the 1-dimensional isotropic subbundle E′ = 〈e1〉 for
which

ϕ ∈ H0(X, E/E′ ⊗K),

we have that deg E′ ≤ 0.
Similarly, if χ is an antidominant character of pβ , then in some basis

{e1, e
′
1, u1, u2, u3, e2, e

′
2}, isχ diagonalizes in the form

isχ =




λ
λ

0
0

0
−λ

−λ




for some λ ∈ R and λ > 0.
Here, we have that a generic element v of V is of the form

v = a1e1 + a′1e
′
1 + a2e2 + a′2e

′
2 +

3∑

j=1

bjuj ,

so

v ∈ V −
χ ⇔ eλta1e1 + eλta′1e

′
1 + e−λta2e2 + e−λta′2e

′
2 +

3∑

j=1

bjuj
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and should satisfy a1 = a′1 = 0. Then the condition of semistability states
in this case that for any 2-dimensional isotropic subbundle, E′, of E with
ϕ ∈ H0(X, E/E′ ⊗K), we have that deg E′ ≤ 0. ¤

From now on, we will deal with (PSL(3,C),Sym3 C3)-Higgs pairs
and (PSL(3,C),Sym3(C3)∗)-Higgs pairs. Here, we will consider principal
PSL(3,C)-bundles and we will develop in detail the results for those which
lift to principal SL(3,C)-bundles. All what we will do can be done for
PSL(3,C)-bundles that does not lift to a SL(3,C)-bundle and the results
and proofs are similar. We will only state the results for these cases.

Consider the fundamental 3-dimensional representation of SL(3,C).
Then, the representations of SL(3,C), Sym3 C3 and ρµ

∼= Sym3(C3)∗, de-
scend to give representations of PSL(3,C).

Let (E, ϕ) be a (SL(3,C), ρµ)-Higgs pair. Following the notation of [8],
if

E ≡ 0 ⊆ E1 ⊆ · · · ⊆ Ek = E (12)

for k = 2, 3 is a generic filtration of subbundles of E, we define

Λ(E) =
{

λ = (λ1, . . . , λk) ∈ Rk : λi ≤ λi+1 ∀i < k and
k∑

i=1

λi = 0
}

. (13)

Reductions of structure group of E to parabolic subgroups of SL(3,C) are
in bijective correspondence with the set of filtrations defined in (12) (for
details, see [9, Lemma 2.12]). Given any filtration E as in (12) and any
λ ∈ Λ(E), if P denotes the parabolic subgroup of SL(3,C) induced by E and
EP denotes the reduction of structure group of E to P which corresponds to
E , λ induces a character of P , χ, such that its dual by the Killing form, sχ,
diagonalizes with the eigenvalues given by λ. We may consider the subspace
V −

χ of C3 defined in (1). We then define

N(E , λ) =
{
ϕ ∈ H0(X, Sym3 E ⊗K) : ϕ ∈ H0(EP (V −

χ )⊗K)
}

(14)

and

deg(E , λ) = λk deg E +
k−1∑

i=1

(λi − λi+1) deg Ei. (15)
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We have the following (we denote by ⊗S the symmetric tensor).

Proposition 7.2 A (SL(3,C),Sym3 C3)-Higgs pair is semistable if and
only if the following conditions hold :

• For every rank one subbundle E′ of E with

ϕ ∈ H0
(
(Sym2 E ⊗S E′)⊗K

)
,

we have deg E′ ≤ 0.
• For every rank two subbundle E′ of E with

ϕ ∈ H0
(
(E ⊗S Sym2 E′)⊗K

)
,

we have deg E′ ≤ 0.

Proof. Suppose that (E, ϕ) is semistable. Let (P, χ) be a pair with P a
parabolic subgroup of SL(3,C) and χ an antidominant character of P . Then
in a certain basis, sχ will diagonalize in the form

isχ =




λ 0 0
0 µ 0
0 0 −λ− µ


 ,

where we can suppose λ ≥ µ ≥ −λ− µ.
If {e1, e2, e3} is a basis in which sχ diagonalizes in the previous form,

then

{e1e1e1, e1e1e2, e1e1e3, e1e2e2, e1e2e3, e1e3e3, e2e2e2, e2e2e3, e2e3e3, e3e3e3},

where the product is the symmetric product, is a basis of Sym3 C3 = V . If

v =
∑

i≤j≤k

aijkeiejek

is a generic element of V , then

ρ
(
etisχ

)
v = α111e

3λte1e1e1 + α112e
(2λ+µ)te1e1e2 + α113e

(λ−µ)te1e1e3

+ α122e
(λ+2µ)te1e2e2 + α123e1e2e3 + α133e

(−2µ−λ)te1e3e3
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+ α222e
3µte2e2e2 + α223e

(−λ+µ)te2e2e3 + α233e
(−2λ−µ)te2e2e3

+ α333e
−3(λ+µ)te3e3e3. (16)

For the case λ = µ > 0 > −λ−µ, associated to (P, χ) we have a filtration
of the form E ≡ 0 ⊆ E′ ⊆ E and vector of weights (−λ−µ, λ, λ) ∈ Λ(E). In
this case (16) shows that the condition on ϕ must be

ϕ ∈ H0
(
(E ⊗S Sym2 E′)⊗K

)
.

For the case λ ≥ 0 ≥ µ = −λ−µ, λ > µ, associated to (P, χ) we have a
filtration of the form E ≡ 0 ⊆ E′ ⊆ E and vector of weights (µ, µ, λ) ∈ Λ(E).
In this case, an observation over (16) shows that the condition on ϕ must
be

ϕ ∈ H0
(
(E ⊗S Sym2 E′ + Sym3 E′)⊗K

)
.

As we will now see, the rest of the cases are contained in these two cases.
For the case λ > µ ≥ 0 ≥ −λ− µ, µ > −λ− µ, associated to (P, χ) we

have a filtration of the form E ≡ 0 ⊆ E1 ⊆ E2 ⊆ E and vector of weights
(−λ−µ, µ, λ) ∈ Λ(E). In this case (16) shows that the condition on ϕ must
be

ϕ ∈ H0((E ⊗S E2 ⊗S E1)⊗K).

Finally, in the case in which λ ≥ 0 ≥ µ > −λ − µ, λ > µ (observe
that, in this case, it will be λ + 2µ > 0, 2λ + µ > 0 and λ + µ > 0), we
have a filtration of the form E ≡ 0 ⊆ E1 ⊆ E2 ⊆ E and vector of weights
(−λ− µ, µ, λ) ∈ Λ(E). In this case, an observation over (16) shows that the
condition on ϕ must be

ϕ ∈ H0((E ⊗S E2 ⊗S E1 + Sym3 E2)⊗K).

For the converse, consider a reduction of the bundle to a parabolic sub-
group of the third type (it is the only case we must consider). Associated
to the pair (P, χ) we have a filtration E and certain

L = (−λ− µ, µ, λ) ∈ Λ(E).
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We may suppose that

ϕ ∈ H0((E ⊗S E2 ⊗S E1)⊗K).

Then if

L1 = (−2, 1, 1), L2 = (−1,−1, 2),

we have that

L =
λ + 2µ

3
L1 +

λ− µ

3
L2.

With our hypothesis, the coefficients of the preceding linear combination are
positive numbers and we have that, from the definitions given in (14) and
(15),

deg(E , L) =
λ + 2µ

3
deg(E , L1) +

λ− µ

3
deg(E , L2)

and

N(E , L) ⊆ N(E , L1) ∩N(E , L2),

hence the result holds. ¤

We now consider the representation Sym3(C3)∗ of PSL(3,C). A
(SL(3,C),Sym3(C3)∗)-Higgs pair can be seen as a pair (E, ϕ) with V a
rank 3 vector bundle over X and ϕ ∈ H0(X, Sym3 E∗ ⊗K).

As before, if E ≡ 0 ⊆ E1 ⊆ · · · ⊆ Ek = E, for k = 2, 3, is a generic
filtration of subbundles of E, we define Λ(E) as in (13) and N(E , λ) as in
(14). We have the following result.

Proposition 7.3 A (SL(3,C),Sym3(C3)∗)-Higgs pair is semistable if and
only if the following conditions hold :

• For every rank one subbundle E′ of E with

ϕ ∈ H0
(
(Sym2 E∗ ⊗S E′∗)⊗K

)
,

we have deg E′ ≤ 0.
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• For every rank two subbundle E′ of E with

ϕ ∈ H0
(
(E∗ ⊗S Sym2 E′∗)⊗K

)
,

we have deg E′ ≤ 0.

The proof is the same as in the preceding case.
Let (E, ϕ) be a GL(3,C)-Higgs bundle with deg E = d, where d = 1 or

d = 2. Then, the same proof of Proposition 7.2 works to show the following.

Proposition 7.4 A (GL(3,C),Sym3 C3)-Higgs pair (E, ϕ) is semistable
if and only if the following conditions hold :

• For every rank one subbundle E′ of E with

ϕ ∈ H0
(
(Sym2 E ⊗S E′)⊗K

)
,

we have deg E′ ≤ d/3.
• For every rank two subbundle E′ of E with

ϕ ∈ H0
(
(E ⊗S Sym2 E′)⊗K

)
,

we have deg E′/2 ≤ d/3.

We have a similar result for the dual representation, Sym3(C3)∗.

Proposition 7.5 A (GL(3,C),Sym3(C3)∗)-Higgs pair (E, ϕ) is semistable
if and only if the following conditions hold :

• For every rank one subbundle E′ of E with

ϕ ∈ H0
(
(Sym2 E∗ ⊗S E′∗)⊗K

)
,

we have deg E′ ≤ d/3.
• For every rank two subbundle E′ of E with

ϕ ∈ H0
(
(E∗ ⊗S Sym2 E′∗)⊗K

)
,

we have deg E′/2 ≤ d/3.

Finally, we can give the result for PSL(3,C)-Higgs bundles.

Proposition 7.6 Let (E0, ϕ) be a (PSL(3,C),Sym3 C3)-Higgs pair which
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lifts to a (GL(3,C),Sym3 C3)-Higgs pair (E, ϕ) with deg E = d, d = 0, 1 or
2. The (PSL(3,C),Sym3 C3)-Higgs pair (E0, ϕ) is semistable if and only if
the following conditions hold :

• For every rank one subbundle E′ of E with

ϕ ∈ H0
(
(Sym2 E ⊗S E′)⊗K

)
,

we have deg E′ ≤ d/3.
• For every rank two subbundle E′ of E with

ϕ ∈ H0
(
(E ⊗S Sym2 E′)⊗K

)
,

we have deg E′/2 ≤ d/3.

The analogous result holds for the dual representation, Sym3(C3)∗.

Proposition 7.7 Let (E0, ϕ) be a (PSL(3,C),Sym3(C3)∗)-Higgs pair
which lifts to a (GL(3,C),Sym3(C3)∗)-Higgs pair (E, ϕ) with deg E = d,
d = 0, 1 or 2. The (PSL(3,C),Sym3(C3)∗)-Higgs pair (E0, ϕ) is semistable
if and only if the following conditions hold :

• For every rank one subbundle E′ of E with

ϕ ∈ H0
(
(Sym2 E∗ ⊗S E′∗)⊗K

)
,

we have deg E′ ≤ d/3.
• For every rank two subbundle E′ of E with

ϕ ∈ H0
(
(E∗ ⊗S Sym2 E′∗)⊗K

)
,

we have deg E′/2 ≤ d/3.

We have described the stability conditions for (G2, V7)-Higgs pairs and
for (PSL(3,C),Sym3 C3) and (PSL(3,C),Sym3(C3)∗)-Higgs pairs. We will
now describe the maps Mλ(G2) → M(Spin(8,C)) and Mλ(PSL(3,C)) →
M(Spin(8,C)) of Proposition 1.2, where λ is a primitive cubic root of unity.

In [3], the dimension of the moduli space of Higgs pairs is studied.
Applying their results to our cases, we obtain

dimMλ(G2) = (dimG2 + 7)(g − 1) = 21(g − 1)
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and

dimMλ(PSL(3,C)) = (dim PSL(3,C) + 10)(g − 1) = 18(g − 1),

while dimM(Spin(8,C)) = 56(g − 1).
Let iλ : hλ ↪→ so(8,C) be the natural inclusion. Let i : PSL(3,C) →

Spin(8,C) be the inclusion. Let (E, ϕ) ∈ Mλ(PSL(3,C)) be a polystable
PSL(3,C)-Higgs pair. The corresponding Spin(8,C)-Higgs bundle is
(ESpin, ϕSpin) where

ESpin = E ×i Spin(8,C)

and

ϕSpin = iλ(ϕ).

Recall that, as iλ is a Lie algebra homomorphism, it induces a homomor-
phism of vector bundles iλ : E(hλ) → E(so(8,C)), which gives a map

H0(X, E(hλ)⊗K) → H0(X, E(so(8,C))⊗K)

denoted also by iλ, so we denote by iλ(ϕ) the image of ϕ by this map.
We can associate to ESpin a holomorphic vector bundle in the following
way. Let j : SO(8,C) ↪→ SL(8,C) be the natural inclusion. Consider the
homomorphism of groups

j ◦ π : Spin(8,C) → SL(8,C).

Then we define

ESL = ESpin ×j◦π SL(8,C)

and, associated to this principal bundle, the vector bundle

E0 = ESL ×SL(8,C) C8.

Let {ϕij} be a family of transition functions of E. Then

ϕ̃ij = j ◦ π ◦ i ◦ ϕij .
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Now,

d(j ◦ π ◦ i) = dj ◦ di : sl(3,C) → sl(8,C).

If we consider the Killing form k on sl(3,C), then for each x ∈ sl(3,C),
adx ∈ so(sl(3,C)) and we have that

di : sl(3,C) → so(sl(3,C)) = so(8,C), di(x) = adx.

Then dj◦di coincides with the adjoint representation sl(3,C) → so(sl(3,C)).
Therefore,

j ◦ π ◦ i = Ad,

so ϕ̃ij = Ad ◦ϕij and, then, E0 is isomorphic to the adjoint bundle of E.
This also proves that the adjoint bundle of E, E0, is equipped with a special
orthogonal structure via the Killing form of sl(3,C), κ. Then the image of
the PSL(3,C)-Higgs bundle (E, ϕ) in M(Spin(8,C)) is a Spin(8,C)-Higgs
bundle whose associated orthogonal Higgs bundle is ((E0, κ), ϕSpin).

Now, we will see how the Higgs field ϕ is modified to obtain ϕSpin.
If λ = 1, then it is clear that

ϕSpin = adϕ .

This is, of course, an element of sl(8,C) and it satisfies that, for every
F, G ∈ E0(so(8,C)),

κ(adϕ(F ), G) + κ(F, adϕ(G)) = 0

thanks to the properties of ad-invariance of the Killing form.
Suppose, then, that λ is a primitive root of unity. As Sym3 C3 ↪→

sl(8,C), the Higgs field ϕ induce in a natural way an endomorphism of the
adjoint bundle E0. We denote this endomorphism also by ϕ. We define the
homomorphism of vector bundles

ϕ0 : E0 → E0 ⊗K

in the following way: if F ∈ E0,

ϕ0(F ) = [F, ϕ],
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where [, ] denotes the Lie algebra structure in the fibres of E0. This homo-
morphism satisfies

κ(ϕ0(F ), G) + κ(F, ϕ0(G)) = 0

for every F, G ∈ E0, thanks to the properties of κ, so it defines a holomorphic
global section of E0(so(8,C)). Finally, we have that

ϕSpin = ϕ0.

With similar arguments as in the preceding case, if i′ : G2 → Spin(8,C)
is an inclusion, then j ◦ π ◦ i′ : G2 → SL(8,C) is a faithful 8-dimensional
representation of G2, so it is the direct sum of the fundamental 7-dimensional
representation of G2 and the abelian 1-dimensional representation, G2 →
SL(7,C)⊕ C. This map admits a factorization through SO(7,C)⊕ C.

Let (E, ϕ) be a polystable G2-Higgs bundle and let {ϕij} be a family
of transition functions of E. Then similarly to the case of SL(3,C), the
transition functions of the vector bundle associated to E are j ◦ π ◦ i′ ◦
ϕij . This proves that the SO(8,C)-Higgs bundle associated to the image in
M(Spin(8,C)) of (E, ϕ) is

((E0 ⊕ O, Q⊕ 1), ϕSpin), (17)

where (E0, Q) is the orthogonal bundle associated to E via the homomor-
phism of groups G2 → SO(7,C) stated before and

ϕSpin = iλ(ϕ).
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