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Reeb components of leafwise complex foliations

and their symmetries II
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Abstract. We study the group of leafwise holomorphic smooth automorphisms of 5-

dimensional Reeb components with leafwise complex structure which are obtained by

a certain Hopf construction. In particular, in the case where the boundary holonomy

is infinitely tangent to the identity, we completely determine the structure of the group

of leafwise holomorphic automorphisms of such foliations.
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1. Introduction

In this article, we continue the study on the symmetries of Reeb com-
ponents with leafwise complex structure, which we started in our previ-
ous paper [HM]. In particular, we proceed to study the symmetries of
5-dimensional Reeb components. Recall that a (p + 1)-dimensional Reeb
component is a compact manifold R = Dp × S1 with a (smooth) foliation
of codimension one, whose leaves are ∂R and the graphs of f + c (c ∈ R),
where f : intDp → R is a smooth function such that limz→∂Dp f(z) = +∞.
Here we identify R with Dp × R/Z.

In [HM], we studied the group of all leafwise holomorphic smooth auto-
morphisms of 3-dimensional Reeb components with leafwise complex struc-
ture and determined the structure of the group as follows.

Theorem ([HM]) Let R be a 3-dimensional leafwise complex Reeb com-
ponent obtained by the Hopf construction and ϕ ∈ Diff∞([0,∞)) be the
holonomy tangent to the identity to the infinite order at the boundary el-
liptic curve H. In particular, the modulus of H is (−1/2πi) log λ, where λ

is a complex number such that |λ| > 1. Then the group Aut R of leafwise
holomorphic automorphisms of R is isomorphic to the semi-direct product

(Zϕ,λ o Zϕ)oAut0 H
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where Zϕ,λ is the space of solutions to a certain functional equation (see
Section 3 for the detail), Zϕ is the centralizer of ϕ in Diff∞([0,∞)) and
Aut0 H is the identity component of the automorphism group of H.

In the case of complex leaf dimension 2, the boundary leaf of a Reeb
component is a primary Hopf surface. Kodaira [Ko1] classified the primary
Hopf surfaces into five types and gave a normal form in each case (see
Section 2). In this paper, we compute the group of leafwise holomorphic
automorphisms for each type of the boundary Hopf surface relying on the
normal form and obtain the following.

Main Theorem Let R be a 5-dimensional leafwise complex Reeb com-
ponent obtained by the Hopf construction and ϕ ∈ Diff∞([0,∞)) be the
holonomy tangent to the identity to the infinite order at the boundary Hopf
surface H. Then Aut R admits a following sequence of extensions.

1 → Aut (R, H) → Aut R → Aut H → 1,

0 → K → Aut (R, H) → Zϕ → 1

where Aut H is the automorphism group of H, Aut (R, H) is the kernel of
the restriction map from Aut R to Aut H and K is an infinite dimensional
vector space depending on the normal form of H (Theorem 4.9 and 4.10).

The author is very grateful to the members of Saturday Seminar at the
Tokyo Institute of Technology, especially to Yoshihiko Mitsumatsu and to
Takashi Inaba for valuable comments.

2. Preliminaries

2.1. Leafwise complex structure
Let M be a (2n + q)-dimensional smooth manifold, F be a smooth

foliation of codimension q on M , and p = 2n be the dimension of leaves. We
refer general basics for foliation theory to [CC].

Definition 2.1 (Leafwise complex structure, cf. [MV]) (M,F) is said to
be equipped with a leafwise complex structure if (M,F) is given by a foliation
atlas {(Uα, φα)} such that φα(Uα) is an open set of Cn×Rq and that in each
coordinate change φβ ◦ φ−1

α (z, x) = (w(z, x), y(x)) (z, w ∈ Cn ; x, y ∈ Rq),
w is holomorphic with respect to z.
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This definition is equivalent to that the foliation has complex structures
varying smoothly in transverse directions. It is eventually equivalent to
that the tangent bundle τF to the foliation F is equipped with a smooth
integrable almost complex structure J . We call (M,F , J) a leafwise complex
foliation.

2.2. Hopf surfaces
Let W be the domain C2\{O}. A compact complex surface is called a

Hopf surface if its universal covering is biholomorphic to W . Especially, a
Hopf surface whose fundamental group is infinite cyclic is called a primary
Hopf surface. Kodaira classified primary Hopf surfaces in [Ko1], [Ko2].

Theorem 2.2 (Kodaira [Ko1], [Ko2]) 1) Any primary Hopf surface is a
quotient space W/GZ of W with respect to an infinite cyclic group GZ = 〈G〉
generated by a complex analytic automorphism G : W → W of the form
G(z1, z2) = (λz1 + τzp

2 , µz2), where p is a positive integer and λ, µ, τ are
complex numbers satisfying |λ| ≥ |µ| > 1 and (λ− µp)τ = 0.

2) A compact complex surface S is biholomorphic to a primary Hopf
surface if and only if it is diffeomorphic to S3 × S1.

2.3. Reeb components by Hopf construction
Construction 2.3 (Hopf construction) Let R̃ be C2×[0,∞)\{(O, 0)} and
F̃ = {C2×{x} ; x > 0}t{W ×{0}} be the foliation on R̃ with the standard
leafwise complex structure Jstd. Let T be a diffeomorphism of R̃ given by

T (z1, z2, x) = (G× ϕ)(z1, z2, x) = (λz1 + τzp
2 , µz2, ϕ(x))

where p is a positive integer, λ, µ, τ are complex numbers as in Theorem
2.2 and ϕ ∈ Diff∞([0,∞)) is a diffeomorphism of the half line satisfying
ϕ(x) − x > 0 for x > 0, namely the origin is an expanding unique fixed
point. Then the quotient R = R̃/T Z has a foliation F with leafwise complex
structure induced by F̃ . The boundary H = W/GZ is a primary Hopf
surface, and the holonomy along H coincides with ϕ. We call (R,F , J) the
Reeb component with leafwise complex structure or the LC Reeb component.

3. Functional equations on flat functions

In this section, we review the result on the functional equations which
we proved in [HM] in order to determine the automorphism groups of an
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LC Reeb component.
Let ϕ ∈ Diff∞([0,∞)) be a diffeomorphism of the half line which is

tangent to the identity to the infinite order at x = 0 and satisfies ϕ(x) −
x > 0 for x > 0. Also we fix a complex number λ with |λ| > 1. Let
us consider the following (system of) functional equations on β, β1 and
β2 ∈ C∞([0,∞);C) concerning ϕ and λ. If λ is a real number, we can
consider the same equations for β2 ∈ C∞([0,∞);R).

Equation (I) : β(ϕ(x)) = λβ(x).
Equation (II) : β1(ϕ(x)) = λβ1(x) + β2(x), β2(ϕ(x)) = λβ2(x).

First consider these equations on (0,∞). Then, Equation (I) has a lot
of solutions. In fact, if we fix any solution β∗ ∈ C∞((0,∞);C) which never
vanishes, i.e. β∗(x) 6= 0 for x > 0, then each solution corresponds to a
smooth function on S1 = (0,∞)/ϕZ by taking β 7→ β/β∗. This gives a
bijective correspondence as vector spaces between the space Z = Zϕ,λ of
solutions to (I) on (0,∞) and C∞(S1;C).

Also take the space S = Sϕ,λ of solutions to Equation (II) on (0,∞). If
we assign β2 to a solution (β1, β2) ∈ S, we obtain the projection P2 : S → Z.
Here the kernel of P2 is nothing but Z. We also see that P2 is surjective
because for any β2 ∈ Z

β1(x) =
1

λ log λ
β2(x) log β∗(x)

gives a solution (β1, β2) ∈ S, where for log β∗(x) any smooth branch can be
taken. Therefore, as a vector space, S has a structure such that

0 → Z → S → Z → 0

is a short exact sequence.
We proved the flatness for β ∈ Z and (β1, β2) ∈ S in [HM]. Key points

of the proof are the infinite tangency of ϕ and the formula of Faá di Bruno.

Theorem 3.1 ([HM]) 1) Any solution β ∈ Z extends to [0,∞) so as to
be a smooth function which is flat at x = 0.

2) The same applies to any solution (β1, β2) ∈ S.

Remark 3.2 Let us consider the following system of functional equations
on β1 and β2 ∈ C∞([0,∞);C) concerning ϕ, λ and a non-zero constant c.
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Equation (IIc) : β1(ϕ(x)) = λβ1(x) + cβ2(x), β2(ϕ(x)) = λβ2(x).

Let us take the space S(c) = Sϕ,λ(c) of solutions to Equation (IIc) on
(0,∞). Then, by taking (β1, β2) 7→ (β1, cβ2), S(c) is in one-to-one corre-
spondence with S. In particular, any solution (β1, β2) ∈ S(c) extends to
[0,∞) so as to be smooth and flat at x = 0.

4. Symmetries of 5-dimensional Reeb component

In this section we compute the group of automorphisms of a Reeb com-
ponent of dimension 5 which is given by a Hopf construction.

Definition 4.1 Let (M,F , J) be a smooth foliated manifold with leafwise
complex structure. A diffeomorphism f : M → M is said to be a leaf-
wise holomorphic smooth automorphism if it preserves F and gives rise to
biholomorphic maps between leaves.

We denote by Aut (M,F , J), or Aut M for short, the group of leafwise
holomorphic smooth automorphisms of (M,F , J).

Let (R,F , J) be a 5-dimensional LC Reeb component with holonomy ϕ

tangent to the identity to the infinite order at the origin and satisfies ϕ(x)−
x > 0 for x > 0. Any element f ∈ Aut R has a lift f̃ ∈ Aut (R̃, F̃ , Jstd) (=
Aut R̃) which takes the form

f̃(z1, z2, x) = (ξ1(z1, z2, x), ξ2(z1, z2, x), η(x))

in C2 × R≥0-coordinate. A lift f̃ should commute with the covering trans-
formation T , because, T ◦ f̃ = f̃ ◦ T k for some k ∈ Z but it is easy to see
that k = 1 when it is restricted to the boundary. Therefore, an element in
Aut R̃ is a lift of some element in Aut R if and only if it commutes with T .
Let Aut (R̃;T ) denote the centralizer of T in Aut R̃, namely, the group of
all such lifts.

Proposition 4.2 Aut R is naturally isomorphic to Aut (R̃;T )/TZ.

4.1. Automorphism groups of Hopf surfaces
Let Aut H be the group of holomorphic automorphisms of a primary

Hopf surface H. For any element h ∈ Aut H, there is a lift h̃ ∈ Aut H̃ of h

such that it commutes with G because H̃ = W is the universal covering of
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H. Let Aut (H̃;G) denote the centralizer of G in Aut H̃. Then, Aut H is
naturally isomorphic to Aut (H̃;G)/GZ. Moreover, by Hartogs’ theorem, h̃

is extended to an element of the group Aut (C2, {O}) of all automorphisms of
C2 fixing the origin. The automorphism h̃×idR≥0 of R̃ clearly commutes with
T and defines an element in Aut R. Consequently, we obtain the following.

Proposition 4.3 The restriction map rH : Aut R → Aut H is surjective.

Let Aut (R, H) denote the kernel of rH . By this proposition, the study
of the structure of Aut R breaks into two parts, that of Aut (R, H) and
Aut H.

Namba [Na] determined the centralizer of G in Aut (C2, {O}) and the
automorphism group of H in the case where G is linear, namely in the cases
1)–4) below. The following classification 1)–5) easily follows from Kodaira’s
result (Theorem 2.2).

Theorem 4.4 An element F ∈ Aut H̃ belongs to Aut (H̃;G) if and only
if it is described in the following form.

1) If τ = 0 and λ = µ,

F (z1, z2) = (az1 + bz2, cz1 + dz2), a, b, c, d ∈ C, ad− bc 6= 0.

2) If τ = 0 and λ = µp for some integer p ≥ 2,

F (z1, z2) = (az1 + bzp
2 , dz2), a, b, d ∈ C, ad 6= 0.

3) If τ = 0 and λ 6= µm for any m ∈ N,

F (z1, z2) = (az1, dz2), a, d ∈ C, ad 6= 0.

4) If τ 6= 0 and λ = µ,

F (z1, z2) = (az1 + bz2, az2), a, b ∈ C, a 6= 0.

5) If τ 6= 0 and λ = µp for some integer p ≥ 2,

F (z1, z2) = (apz1 + bzp
2 , az2), a, b ∈ C, a 6= 0.

Remark 4.5 The case 5) is proven in the same way as the case 4). It is
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also obtained by computing Aut (R̃;T ) like Case 5 in Section 4.2.2.

Corollary 4.6 The group Aut (H̃;G) is isomorphic to the following.

1) If τ = 0 and λ = µ, Aut (H̃;G) ∼= GL(2;C).
2) If τ = 0 and λ = µp for some integer p ≥ 2, Aut (H̃;G) ∼= Co (C∗×C∗).
3) If τ = 0 and λ 6= µm for any m ∈ N, Aut (H̃;G) ∼= C∗ ×C∗ ⊂ GL(2;C).
4) If τ 6= 0 and λ = µ, Aut (H̃;G) ∼= Co C∗ ⊂ GL(2;C).
5) If τ 6= 0 and λ = µp for some integer p ≥ 2, Aut (H̃;G) ∼= Co C∗.
4.2. Structure of Aut (R,H)

Here we determine the kernel Aut (R, H) of the restriction map rH . Let
Aut (R̃, H̃;T ) be the subgroup of Aut (R̃;T ) which consists of all elements
which act trivially on the boundary H̃. Any element f ∈ Aut (R, H) has a
unique lift to an element in Aut (R̃, H̃;T ). Namely,

Proposition 4.7 Aut (R, H) is isomorphic to Aut (R̃, H̃;T ).

So from now on we compute Aut (R̃, H̃;T ) instead of Aut (R, H). Let
us present an element g ∈ Aut R̃ in the form

g(z1, z2, x) = (ξ1(z1, z2, x), ξ2(z1, z2, x), η(x))

where ξj : R̃ → C is holomorphic in zα’s (α = 1, 2) and smooth in x for
j = 1, 2, and η ∈ Diff∞([0,∞)). As noted in Proposition 4.2, Aut (R̃;T )
exactly consists of elements that commute with T . Hence, g belongs to
Aut (R̃;T ) if and only if it satisfies the following conditions.

Condition (L):

ξ1(λz1 + τzp
2 , µz2, ϕ(x)) = λξ1(z1, z2, x) + τξ2(z1, z2, x)p (L1)

ξ2(λz1 + τzp
2 , µz2, ϕ(x)) = µξ2(z1, z2, x) (L2)

Condition (T):

η ◦ ϕ = ϕ ◦ η, namely, η belongs to the centralizer Zϕ of ϕ

in Diff∞([0,∞)).

Furthermore, g belongs to Aut (R̃, H̃;T ) if and only if the above conditions
are satisfied with ξ1(z1, z2, 0) = z1 and ξ2(z1, z2, 0) = z2. For known facts on



324 T. Horiuchi

the structure of Zϕ, see [HM] and the references therein. By assigning η to an
element g ∈ Aut (R̃, H̃;T ), we obtain a projection P : Aut (R̃, H̃;T ) → Zϕ.
Then, we obtain a short exact sequence

0 → K → Aut (R̃, H̃;T ) P−→ Zϕ → 1

where K is the kernel of P .
If x = 0, for j = 1, 2, ξj(·, 0) is a holomorphic function on H̃ = C2\{O}.

Since the origin is a removable singularity, ξj(·, 0) is extended to the holo-
morphic function on C2 with ξj(O, 0) = 0. We expand ξj in the power series
of z1 and z2 at the origin:

ξj(z1, z2, x) =
∑

k+l≥0

aj
kl(x)zk

1zl
2 (j = 1, 2) (4.1)

where aj
kl ∈ C∞([0,∞);C) (k, l = 0, 1, 2, . . . ), and aj

00(0) = 0.
We can redescribe Condition (L) by using aj

kl’s. If g belongs to
Aut (R̃, H̃;T ), then we have

a1
10(0) = a2

01(0) = 1, a1
01(0) = a2

10(0) = 0,

aj
kl(0) = 0 (j = 1, 2, k + l ≥ 2). (4.2)

In the rest of this section, we devote to determining ξ1 and ξ2 satisfying
Condition (L).

4.2.1 Diagonal case (τ = 0)
Assume τ = 0. We consider three cases separately.

Case 1. τ = 0 and λ = µ.

In this case, Condition (L) is written as

(Lj) ξj(λz1, λz2, ϕ(x)) = λξj(z1, z2, x) (j = 1, 2)

By using the series expansion (4.1) of ξj , we rewirite (Lj) as

∑

k+l≥0

λk+laj
kl(ϕ(x))zk

1zl
2 =

∑

k+l≥0

λaj
kl(x)zk

1zl
2 (j = 1, 2).
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Comparing coefficients in both sides, we obtain

λk+l−1aj
kl(ϕ(x)) = aj

kl(x) (j = 1, 2). (4.3)

Proposition 4.8 Let ϕ be a C0-diffeomorphism of the half line which
satisfies ϕ(x)− x > 0 for every x > 0, a be a continuous C-valued function
on the half line, and ν be a complex number with |ν| > 1.

1) If a(ϕ(x)) = a(x) for all x ∈ [0,∞), a(x) = a(0) is constant.
2) If νa(ϕ(x)) = a(x) for all x ∈ [0,∞), a is identically equal to 0.

Proof. 1) For any x ≥ 0, a(x) = limn→∞ a(ϕ−n(x)) = a(0).
2) For any x ≥ 0, |a(x)| = limn→∞(1/|ν|n)|a(ϕ−n(x))| = 0. ¤

By (4.2), (4.3) and Proposition 4.8, we have

a1
10 = 1 and a1

kl = 0 for (k, l) 6= (1, 0);

a2
01 = 1 and a2

kl = 0 for (k, l) 6= (0, 1).

Therefore, g belongs to Aut (R̃, H̃;T ) iff it takes the following form.

g(z1, z2, x) = (z1 + a1
00(x), z2 + a2

00(x), η(x))

where a1
00, a2

00 ∈ Zϕ,λ (for the definition see Section 3) and η ∈ Zϕ (for the
definition see Condition (T)).

Case 2. τ = 0 and λ = µp for some integer p ≥ 2.

In this case, Condition (L) is written as

(L1) ξ1(µpz1, µz2, ϕ(x)) = µpξ1(z1, z2, x),

(L2) ξ2(µpz1, µz2, ϕ(x)) = µξ2(z1, z2, x).

In the same way as in Case 1, the above equations are reduced to

∑

k+l≥0

µpk+la1
kl(ϕ(x))zk

1zl
2 =

∑

k+l≥0

µpa1
kl(x)zk

1zl
2,

∑

k+l≥0

µpk+la2
kl(ϕ(x))zk

1zl
2 =

∑

k+l≥0

µa2
kl(x)zk

1zl
2.
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By comparing coefficients, we have

µp(k−1)+la1
kl(ϕ(x)) = a1

kl(x), (4.4)

µpk+l−1a2
kl(ϕ(x)) = a2

kl(x). (4.5)

By (4.2), (4.4), (4.5) and Proposition 4.8, we have

a1
10 = 1 and a1

kl = 0 for (k, l) 6= (1, 0), (0, j) (0 ≤ j ≤ p− 1);

a2
01 = 1 and a2

kl = 0 for (k, l) 6= (0, 1).

Therefore, g belongs to Aut (R̃, H̃;T ) iff it takes the following form.

g(z1, z2, x) =
(

z1 +
p−1∑

j=0

a1
0j(x)zj

2, z2 + a2
00(x), η(x)

)

where a1
0j ∈ Zϕ,µp−j (j = 0, 1, . . . , p− 1), a2

00 ∈ Zϕ,µ and η ∈ Zϕ.

Case 3. τ = 0 and λ 6= µm for any m ∈ N.

In this case, Condition (L) is written as

(L1) ξ1(λz1, µz2, ϕ(x)) = λξ1(z1, z2, x),

(L2) ξ2(λz1, µz2, ϕ(x)) = µξ2(z1, z2, x).

In the same way as in Case 1, the above equations are reduced to

∑

k+l≥0

λkµla1
kl(ϕ(x))zk

1zl
2 =

∑

k+l≥0

λa1
kl(x)zk

1zl
2,

∑

k+l≥0

λkµla2
kl(ϕ(x))zk

1zl
2 =

∑

k+l≥0

µa2
kl(x)zk

1zl
2.

By comparing coefficients, we have

λk−1µla1
kl(ϕ(x)) = a1

kl(x), (4.6)

λkµl−1a2
kl(ϕ(x)) = a2

kl(x). (4.7)
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By (4.2), (4.6), (4.7) and Proposition 4.8, we have

a1
kl = 0 (k + l ≥ 2, k ≥ 1), a2

kl = 0 (k + l ≥ 1, l ≥ 1).

Let us consider the functional equations (L1) and (L2) concerning a1
0l and

a2
k0. Since λ and µ satisfy the inequality |λ| ≥ |µ| > 1, they satisfy |λk| ≥ |µ|

for k ≥ 1. Then, the equation (L2) on a2
k0 is written as follows.

λk

µ
a2

k0(ϕ(x)) = a2
k0(x) (k ≥ 1)

If |λ| > |µ|, then a2
k0 is identically equal to 0 by Proposition 4.8 2) be-

cause |λk/µ| is greater than 1 for k ≥ 1. If |λ| = |µ| and k = 1, the
equation |a2

10(ϕ(x))| = |a2
10(x)| holds for x ≥ 0. Then, we have |a2

10(x)| =
limn→∞ |a2

10(ϕ
−n(x))| = |a2

10(0)| = 0. If |λ| = |µ| and k ≥ 2, then a2
k0 is

also equal to 0 in the same way as in the case |λ| > |µ|.
Next, we fix the positive integer p = [log |λ|/ log |µ|], where [ · ] is the

greatest integer function. Then, λ and µ satisfy |λ| ≥ |µl| for 0 ≤ l ≤ p and
|λ| < |µl| for l ≥ p + 1. The equation (L1) on a1

0l is written as follows.

µl

λ
a1
0l(ϕ(x)) = a1

0l(x)

If l ≥ p + 1, then a1
0l is identically equal to 0 by Proposition 4.8 2) because

|µl/λ| is greater than 1. If |λ| = |µp|, the equation |a1
0p(ϕ(x))| = |a1

0p(x)|
holds for x ≥ 0, then we have |a1

0p(x)| = limn→∞ |a1
0p(ϕ

−n(x))| = |a1
0p(0)| =

0.
Therefore, g belongs to Aut (R̃, H̃;T ) iff it takes the following form.

g(z1, z2, x) =
(

z1 +
p∑

j=0

a1
0j(x)zj

2, z2 + a2
00(x), η(x)

)

where a1
0j ∈ Zϕ,λµ−j (j = 0, 1, . . . , p), a2

00 ∈ Zϕ,µ and η ∈ Zϕ.

Consequently, we obtain the following theorem.

Theorem 4.9 1) If τ = 0 and λ = µ, then Aut(R, H) is isomorphic to a
semi-direct product
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(Zϕ,λ ×Zϕ,λ)o Zϕ

where η ∈ Zϕ acts on (β1, β2) ∈ Zϕ,λ × Zϕ,λ by (β1(x), β2(x)) 7→
(β1(η(x)), β2(η(x))).

2) If τ = 0 and λ 6= µ, then the kernel K of the surjective homomorphism
Aut (R, H) → Zϕ has the following structure:

i) If λ = µp for some integer p ≥ 2, K admits an extension

0 → Zϕ,µp ×Zϕ,µp−1 × · · · × Zϕ,µ → K → Zϕ,µ → 0.

ii) If λ 6= µm for any integer m ≥ 1, K admits an extension

0 → Zϕ,λ ×Zϕ,λµ−1 × · · · × Zϕ,λµ−p → K → Zϕ,µ → 0

where p = [log |λ|/log |µ|] ∈ N, where [ · ] is the greatest integer func-
tion.

Proof. K is regarded as the space of solutions to Condition (L). If τ = 0 and
λ = µ, K is the set of functions (a1

00, a
2
00) in Case 1, and if τ = 0 and λ 6= µ, it

is the set of functions (a1
00, . . . , a

1
0q, a

2
00) (q = p−1 or p) in Cases 2 and 3. By

assigning β2 to an element (β1,0, . . . , β1,q, β2) ∈ K, we obtain the projection
P2 : K → Zϕ,µ. Then, the kernel of P2 is Zϕ,µp × Zϕ,µp−1 × · · · × Zϕ,µ in
Case 2, and Zϕ,λ ×Zϕ,λµ−1 × · · · × Zϕ,λµ−p in Case 3. ¤

4.2.2 Nondiagonal case (τ 6= 0)
Assume τ 6= 0. This case is divided into two cases.

Case 4. τ 6= 0 and λ = µ.

Let S be the diffeomorphism of R̃ given by S(z1, z2, x) = (z1, τz2, x).
Then, for any (z1, z2, x) ∈ R̃,

S ◦ T ◦ S−1(z1, z2, x) = (λz1 + z2, λz2, ϕ(x)).

Therefore, the LC Reeb component R = R̃/T Z is leafwise holomorphic fo-
liated diffeomorphic to the LC Reeb component R′ = R̃/(S ◦ T ◦ S−1)Z, so
we may assume that τ is equal to 1.

If τ = 1 and λ = µ, Condition (L) is written as
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(L1) ξ1(λz1 + z2, λz2, ϕ(x)) = λξ1(z1, z2, x) + ξ2(z1, z2, x),

(L2) ξ2(λz1 + z2, λz2, ϕ(x)) = λξ2(z1, z2, x).

First, we determine the function ξ2 which satisfies (L2). By using the series
expansion (4.1) of ξ2, we rewrite (L2) as

∑

k+l≥0

a2
kl(ϕ(x))(λz1 + z2)k(λz2)l =

∑

k+l≥0

λa2
kl(x)zk

1zl
2.

Now, we compare coefficients of zk
1zl

2’s terms on both sides.
On z0

1z0
2 ’s term (k = l = 0), the equation is

a2
00(ϕ(x)) = λa2

00(x), i.e. a2
00 ∈ Zϕ,λ.

On z1
1z0

2 ’s term (k = 1, l = 0), the equation is

λa2
10(ϕ(x)) = λa2

10(x).

Then, by (4.2) and Proposition 4.8 1), a2
10(x) = a2

10(0) = 0. On z0
1z1

2 ’s term
(k = 0, l = 1), the equation is

a2
10(x) + λa2

01(ϕ(x)) = λa2
01(x).

Since a2
10 is equal to 0, this equation becomes

a2
01(ϕ(x)) = a2

01(x).

By (4.2) and Proposition 4.8 1), a2
01(x) = a2

01(0) = 1. If k + l ≥ 2, the
functional equation of zk

1zl
2’s term is

l∑

j=0

(
k + l − j

k

)
λk+ja2

k+l−j, j(ϕ(x)) = λa2
kl(x).

In particular, if k ≥ 2 and l = 0, this equation is

λka2
k0(ϕ(x)) = λa2

k0(x).

Then, by Proposition 4.8 2), a2
k0(x) = 0. Now, we use an induction. If
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a2
k+l,0, . . . , a

2
k+2,l−2 and a2

k+1,l−1 are identically equal to 0, then the equation
of zk

1zl
2’s term is

λk+la2
kl(ϕ(x)) = λa2

kl(x).

By Proposition 4.8 2), a2
kl(x) = 0. Thus, by induction on l, a2

kl is identically
equal to 0 for all k + l ≥ 2. Therefore, the function ξ2 satisfying (L2) takes
the form

ξ2(z1, z2, x) = z2 + a2
00(x), a2

00 ∈ Zϕ,λ.

Next, we determine the function ξ1 which satisfies (L1). By using the
series expansion (4.1) of ξ1, we rewrite (L1) as

∑

k+l≥0

a1
kl(ϕ(x))(λz1 + z2)k(λz2)l =

∑

k+l≥0

λa1
kl(x)zk

1zl
2 + (z2 + a2

00(x)).

On z0
1z0

2 ’s term (k = l = 0), the equation is

a1
00(ϕ(x)) = λa1

00(x) + a2
00(x).

On z1
1z0

2 ’s term (k = 1, l = 0), the equation is

λa1
10(ϕ(x)) = λa1

10(x).

By (4.2) and Proposition 4.8 1), a1
10(x) = a1

10(0) = 1. On z0
1z1

2 ’s term (k = 0,
l = 1), the equation is

a1
10(ϕ(x)) + λa1

01(ϕ(x)) = λa1
01(x) + 1.

Since a1
10 is identically equal to 1, this equation becomes

a1
01(ϕ(x)) = a1

01(x).

By (4.2) and Proposition 4.8 1), a1
01(x) = a1

01(0) = 0. If k + l ≥ 2, the
equation of zk

1zl
2’s term is

l∑

j=0

(
k + l − j

k

)
λk+ja1

k+l−j, j(ϕ(x)) = λa1
kl(x),
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which is the same as the equation of a2
kl for k+l ≥ 2, so that a1

kl is identically
equal to 0 for all k + l ≥ 2. Therefore, g belongs to Aut (R̃, H̃;T ) iff it takes
the following form.

g(z1, z2, x) =
(
z1 + a1

00(x), z2 + a2
00(x), η(x)

)
,

where a1
00, a2

00 ∈ C∞([0,∞);C) satisfy the functional equations

a1
00(ϕ(x)) = λa1

00(x) + a2
00(x), a2

00(ϕ(x)) = λa2
00(x)

i.e. (a1
00, a

2
00) ∈ Sϕ,λ (see Section 3) and η ∈ Zϕ.

Case 5. τ 6= 0 and λ = µp for some integer p ≥ 2.

Let S be the diffeomorphism of R̃ given by S(z1, z2, x) = (z1, τ
1/pz2, x).

Then, for any (z1, z2, x) ∈ R̃,

S ◦ T ◦ S−1(z1, z2, x) = (µpz1 + zp
2 , µz2, ϕ(x)).

Therefore, the LC Reeb component R = R̃/T Z is leafwise holomorphic fo-
liated diffeomorphic to the LC Reeb component R′ = R̃/(S ◦ T ◦ S−1)Z, so
we may assume that τ is equal to 1.

If τ = 1 and λ = µp, Condition (L) is written as

(L1) ξ1(µpz1 + zp
2 , µz2, ϕ(x)) = µpξ1(z1, z2, x) + ξ2(z1, z2, x)p,

(L2) ξ2(µpz1 + zp
2 , µz2, ϕ(x)) = µξ2(z1, z2, x).

First, we determine the function ξ2 which satisfies (L2). By using the series
expansion (4.1) of ξ2, we rewrite (L2) as

∑

k+l≥0

a2
kl(ϕ(x))(µpz1 + zp

2)k(µz2)l =
∑

k+l≥0

µa2
kl(x)zk

1zl
2.

Now, we compare coefficients zk
1zl

2’s terms on both sides.
Let p and r be the integers such that l = pq + r, q ≥ 0, 0 ≤ r ≤ q − 1.

If k ≥ 1 and l ≥ 0, then the functional equation of zk
1zl

2’s term is

q∑

j=0

(
k + j

j

)
µpkµp(q−j)+ra2

k+j,p(q−j)+r(ϕ(x)) = µa2
k,pq+r(x).
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In particular, if k ≥ 1 and q = 0 (l = r), then the above equation is

µpkµra2
kr(ϕ(x)) = µa2

kr(x).

Then, by Proposition 4.8 2), a2
kr(x) = 0 for k ≥ 1 and 0 ≤ r ≤ p− 1. Now,

we use an induction. For k ≥ 1 and q ≥ 1, if a2
k+q,r, a2

k+q−1,q+r, . . . and
a2

k+1,p(q−1)+r are identically equal to 0, then the equation of zk
1zpq+r

2 ’s term
is

µpkµpq+ra2
k,pq+r(ϕ(x)) = µa2

k,pq+r(x).

By Proposition 4.8 2), a2
k,pq+r(x) = 0. Thus, by induction on q, a2

kl is
identically equal to 0 for k ≥ 1 and l ≥ 0. If k = 0 and l ≥ 0, then the
equation of z0

1zl
2’s term is

q∑

j=0

µp(q−j)+ra2
j,p(q−j)+r(ϕ(x)) = µa2

0,pq+r(x).

If q = r = 0, then the above equation is

a2
00(ϕ(x)) = µa2

00(x), i.e. a2
00 ∈ Zϕ,µ.

If q = 0 and r 6= 0, then the equation of z0
1zr

2 ’s term is

µra2
0r(ϕ(x)) = µa2

0r(x).

If r = 1, then a2
01(x) = a2

01(0) = 1 by (4.2) and Proposition 4.8 1), and
if 2 ≤ r ≤ p − 1, then a2

0r(x) = 0 by Proposition 4.8 2). If q ≥ 1,
a2
1,p(q−1)+r, . . . , a

2
q−1,p+r and a2

qr are identically equal to 0, and so the equa-
tion of z0

1zpq+r
2 ’s term is

µpq+ra2
0,pq+r(ϕ(x)) = µa2

0,pq+r(x).

By Proposition 4.8 2), a2
0,pq+r(x) = 0. Thus, a2

0l is identically equal to 0 for
l ≥ 0. Therefore, the function ξ2 satisfying (L2) takes the form

ξ2(z1, z2, x) = z2 + a2
00(x), a2

00 ∈ Zϕ,µ.
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Next, we determine the function ξ1 satisfying (L1). By using the series
expansion (4.1) of ξ1, we rewrite (L1) as

∑

k+l≥0

a1
kl(ϕ(x))(µpz1 + zp

2)k(µz2)l =
∑

k+l≥0

µpa1
kl(x)zk

1zl
2 + (z2 + a2

00(x))p.

If k ≥ 1 and l ≥ 0, then the functional equation of zk
1zl

2’ term is

q∑

j=0

(
k + j

j

)
µpkµp(q−j)+ra1

k+j,p(q−j)+r(ϕ(x)) = µpa1
k,pq+r(x).

In particular, if k ≥ 1 and q = 0 (l = r), then the above equation is

µpkµra1
kr(ϕ(x)) = µpa1

kr(x).

Thus, if (k, r) = (1, 0), a1
10(x) = a1

10(0) = 1 by (4.2) and Proposition 4.8 1),
and if (k, r) 6= (1, 0), a1

kr(x) = 0 by Proposition 4.8 2). Now, we use an in-
duction. For k ≥ 1 and q ≥ 1, if a1

k+q,r, . . . , ak+2,p(q−2)+r and a1
k+1,p(q−1)+r

are identically equal to 0, then the equation of zk
1zpq+r

2 ’s term is

µpkµpq+ra1
k,pq+r(ϕ(x)) = µpa1

k,pq+r(x).

By Proposition 4.8 2), a1
k,pq+r(x) = 0. Thus, by induction on q, a1

kl is
identically equal to 0 for k ≥ 1, l ≥ 0 and k + l ≥ 2. If k = 0 and l ≥ 0,
then the functional equation of z0

1zl
2’s term is the following.

µla1
0l(ϕ(x)) = µpa1

0l(x) +
(

p
l

)
a2
00(x)p−l (if 0 ≤ l ≤ p− 1)

a1
10(ϕ(x)) + µpa1

0p(ϕ(x)) = µpa1
0p(x) + 1 (if l = p)

q∑

j=0

µp(q−j)+ra1
j,p(q−j)+r(ϕ(x)) = µpa2

0,pq+r(x) (if l ≥ p + 1)

If 0 ≤ l ≤ p− 1, by dividing both sides by µl, the equation is reduced to

a1
0l(ϕ(x)) = µp−la1

00(x) + cla
2
00(x)p−l, cl =

(
p
l

)
µ−l.
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If l = p, the equation is reduced to

a1
0p(ϕ(x)) = a1

0p(x),

because a1
10 is identically equal to 1. By (4.2) and Proposition 4.8 1),

a1
0p(x) = a1

0p(0) = 0. If l ≥ p + 1, q is not equal to 0. Then, a1
1,p(q−1)+r,

. . . , a1
q−1,p+r and a1

qr are identically equal to 0, and so the equation is re-
duced to

µpq+ra1
0,pq+r(ϕ(x)) = µpa1

0,pq+r(x).

By Proposition 4.8 2), a1
0,pq+r(x) = 0 for l = pq + r ≥ p + 1. Therefore, g

belongs to Aut (R̃, H̃;T ) iff it takes the following form.

g(z1, z2, x) =
(

z1 +
p−1∑

j=0

a1
0j(x)zj

2, z2 + a2
00(x), η(x)

)
,

where η ∈ Zϕ and a1
0j (j = 0, 1, . . . , p− 1), a2

00 ∈ C∞([0,∞);C) satisfy the
functional equations

a1
0j(ϕ(x)) = µp−ja1

0j(x) + cja
2
00(x)p−j , a2

00(ϕ(x)) = µa2
00(x),

where cj =
( p

j

)
µ−j .

Let us consider the following system of functional equations on β1,0, . . . ,

β1,p−1 and β2 ∈ C
∞

([0,∞);C) concerning ϕ and µ.

Equation (III) : β1,0(ϕ(x)) = µpβ1,0(x) + c0{β2(x)}p,

β1,1(ϕ(x)) = µp−1β1,1(x) + c1{β2(x)}p−1,

...
β1,p−1(ϕ(x)) = µβ1,p−1(x) + cp−1 β2(x),

β2(ϕ(x)) = µβ2(x).

where c0, . . . , cp−1 ∈ C are non-zero constants. Let us take the space Sϕ,µ(c)
of solutions to Equation (III) on (0,∞), where c = (c0, . . . , cp−1) ∈ Cp. If
we assign β2 to a solution (β1,0, . . . , β1,p−1, β2) ∈ Sϕ,µ(c), we obtain the



Reeb components of leafwise complex foliations and their symmetries 335

projection P2 : Sϕ,µ(c) → Zϕ,µ. Here the kernel of P2 is nothing but
Zϕ,µp × · · · × Zϕ,µ. If we fix any solution β∗ ∈ Zϕ,µ which never vanishes,
we also see that the projection P2 is surjective because for any β2 ∈ Zϕ,µ

β1,j(x) =
cj

µp−j log µp−j
β2(x)p−j log{β∗(x)p−j} (j = 0, 1, . . . , p− 1)

gives a solution (β1,0, . . . , β1,p−1, β2) ∈ Sϕ,µ(c), where for log{β∗(x)p−j} any
smooth branch can be taken. Therefore, as a vector space, Sϕ,µ(c) has a
structure such that

0 → Zϕ,µp × · · · × Zϕ,µ → Sϕ,µ(c) → Zϕ,µ → 0

is a short exact sequence.
Any solution (β1,0, . . . , β1,p−1, β2) ∈ Sϕ,µ(c) extends to [0,∞) so as to

be smooth functions which are flat at x = 0 because (β1,j , cjβ
p−j
2 ) ∈ Sϕ,µp−j

for j = 0, 1, . . . , p− 1 (see Theorem 3.1 in [HM]).

Consequently, we obtain the following theorem.

Theorem 4.10 1) If τ = 1 and λ = µ, then Aut (R, H) is isomorphic to
a semi-direct product

Sϕ,λ o Zϕ

where η ∈ Zϕ acts on (β1, β2) ∈ Sϕ,λ by (β1(x), β2(x)) 7→ (β1(η(x)),
β2(η(x))).

2) If τ = 1 and λ = µp for some integer p ≥ 2, then the kernel K of the
surjective homomorphism Aut (R, H) → Zϕ is isomorphic to the infinite di-
mensional vector space Sϕ,µ(c), where c = (c0, . . . , cp−1) ∈ Cp, cj =

( p
j

)
µ−j

(j = 0, . . . , p− 1).

5. Higher dimensional Reeb components

To close this article, we make some remarks on the automorphisms of
higher dimensional LC Reeb components. Let R̃ be Cn × [0,∞)\{(O, 0)}
and ϕ ∈ Diff∞([0,∞)) be a diffeomorphism which is tangent to the identity
to the infinite order at 0 and satisfies ϕ(x) − x > 0 for x > 0. Also take
an automorphism G ∈ Aut (Cn, {O}) which is expanding. Let T be a dif-
feomorphism given by T = G× ϕ. Then we obtain an LC Reeb component
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(R,F , J) = (R̃, F̃ , Jstd)/TZ as the quotient, as well as the boundary Hopf
manifold H = Cn\{O}/GZ.

Let Aut R be the group of leafwise holomorphic smooth automorphisms
of R and Aut H be the group of holomorphic automorphisms of the boundary
Hopf manifold H. Then, by the similar argument, we can obtain the claims
as Proposition 4.2, 4.3 and 4.7.

Proposition 5.1 For n ≥ 1, Aut R and Aut (R, H) are isomorphic to
Aut (R̃;T )/TZ and Aut (R̃, H̃;T ) respectively.

Proposition 5.2 For n ≥ 2, the restriction map rH : Aut R → Aut H is
surjective.

If G is in some normal forms like in Theorem 2.2, then we can most
probably compute the group Aut H and the kernel Aut (R, H) of the re-
striction map rH for n > 2. However, in order to determine these groups in
all cases, we need to classify Hopf manifolds and to give normal forms like
in Theorem 2.2.

Example 5.3 Let us look at the simplest case, where G is a diagonal
matrix λIn ∈ GL(n;C) with |λ| > 1. Then the automorphism group Aut R

admits the following sequence of extensions.

1 → Aut (R, H) → Aut R → Aut H ∼= GL(n;C)/{λIn}Z → 1,

0 → (Zϕ,λ)n → Aut (R, H) ∼= (Zϕ,λ)n o Zϕ → Zϕ → 1

where η ∈ Zϕ acts on (β1, . . . , βn) ∈ (Zϕ,λ)n by (β1(x), . . . , βn(x)) 7→
(β1(η(x)), . . . , βn(η(x))).
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