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Large-time behavior of solutions to a tumor invasion model

of Chaplain—Anderson type with quasi-variational structure
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Abstract. We treat 2D and 3D tumor invasion models with quasi-variational struc-
tures, which are composed of two PDEs, one ODE and certain constraint conditions.
Although the original model was proposed by M. R. A. Chaplain and A. R. A. Ander-
son in 2003, the difference between their original model and ours is that the constraint
conditions for the distributions of tumor cells and the extracellular matrix are imposed
in our model, which give a quasi-variational structure. For 2D and 3D tumor invasion
models with quasi-variational structures, we show the existence of global-in-time solu-
tions and consider their large-time behaviors. Especially, for the large-time behaviors,
we show that there exists at least one global-in-time solution such that it converges to
a constant steady state in an appropriate function space as time goes to oo.
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1. Introduction

In this paper, we consider the following tumor invasion model with
constraint conditions denoted by (P)={(1.1)-(1.7)}, of which the original
model was proposed in [3]:

ng=V-(diVn—=Xf)nVf)+pn(l —n—f)—pgn in Q, (1.1)
f, = —amf inQ, (1.2)

my = deAm +bn — em in Q, (1.3)

n>0, f>0,n+f<a inQ, (1.4)

iV —Af)nVf)-v=0 ons, (1.5)

Vm-v=0 on, (1.6)

n(0) = no, f(0) = fo, m(0) =mg in Q, (1.7)

where Q is a bounded domain in RY, N = 2,3, with a smooth boundary
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0 and Q = Q x (0,00), X = 92 x (0,00); v is an outer unit normal vector
on dQ;a>0,b6>0,¢c>0,d; >0, dy >0and o > 1 are constants; A is a
non-negative smooth function on R; p1), and g are non-negative continuous
functions on €2 x [0,00); ng, fo and mg are prescribed initial data.

The unknown functions n, f and m describe the distributions of tumor
cells, extracellular matrix and enzyme degrading extracellular matrix, re-
spectively. Of course we know that a lot of mathematical models for tumor
invasion phenomena are proposed and analyzed mathematically, for exam-
ple, [1], [2], [3], [4], [5], [6], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], but we do not say anything here and trust them to Introduction
in [7], [13].

Next, we explain a quasi-variational structure of (P) following [7], [8],
[9], [10], [11]. Such structure comes from the constraint conditions (1.4),
which is not imposed in the original model proposed in [3], and makes
it difficult to analyze (P) mathematically. In order to make the quasi-
variational structure of (P) clear, for each T' > 0 we prepare two opera-
tors A1(T') and A5(T) by the following ways. The operator A;(T) assigns
each function v € WH2(0,T; L?(Q)) N L>°(0,T; H*(£2)) to a unique solution
m = A (T)v € WH2(0,T; L*Q)) N L*(0,T; HX(Q)) N L?(0,T; H2(Q)) to
(S1), which really comes from {(1.3), (1.6), (1.7)} of (P):

my =doAm+bv—cm in Qr =Q x (0,7),
(SHVm-v=0 on Xp =00 x (0,T),

m(0) = myg in ,

whenever mg € H'(Q). By using m = A1 (T)v, we define the operator Ay (7T')
by

[Ao(T)v](z,t) = fo(x)exp <—a/0 m(x, s)d3> for all (z,t) € Qr = Qx[0,T).

Then, we easily see that f = A2(T")v also is a unique solution to (S2), which
comes from {(1.2), (1.7)} of (P):

(s2) {ft = —amf = —a[A(T)v]f ?D Qr,
f(0) = fo in Q.
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By using the operators A1 (7)) and A2(T"), (P) can be formally rewritten into
(S):
(e =V - (dyVn = AV ) + pyn(l—n— f) = pan - in Qr,

0<n<a-f in Qr,
(S) S (d1Vn = A(f)nVf) - v=0 on X,
n(0) = ng in Q,

f=A(T)n, m=A(T)n.

From the formal expression (S) we see that the constraint condition 0 < n <
a — f for n depends upon n itself because of the relation f = Ay(T)n. We
call this property of (P) “a quasi-variational structure”, which was exactly
used in [7]. More precisely, for each T > 0 and v € W2(0,T; L3(2)) N
Le°(0,T; H(Q)) we consider a family {¢f(v;-);t € [0,T]} of time-dependent
proper ls.c. convex functions ¢!(v;-) on L?(£2), which is defined by

h 2_ v z o(T)v if 2z V;
= 43 IV [ NI itz € D
00 if L2(Q)\ D(v,t),
where the effective domain D(v;t) of ¢f(v;-) is given by
D(v;t) ={z € H'(92);0 < z < a — [Ao(T)v](t) a.e. in Q}.

Then, (S) is equivalent to the evolution inclusion (E) in L2(f2) associated
with the time-dependent subdifferentials of a family {¢*(v;-);t € [0,T]}:

n'(t) + 0ot (n;n(t)) 3 ppn(l —n — f) — pgn  in L?(Q), a.a. t € (0,7),
(E) < n(0) = ng in L?(Q),
f=MA(T)n, m=A(T)n,

where “/” implies the derivative with respect to the variable t and 9! (n; -) is
the subdifferential operator of !(n;-) on L?(Q2). Now we can directly apply
the theory of a quasi-variational inequality to (E), which was established in
[12]. Actually, by using the general theory in [12], we have already seen that
for each fixed T' > 0 (E) has at least one solution n € W12(0,T; L?(Q)) N
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L0, T; H'(Q2)). Since the solutions to (E) on [0, 7] is possibly not unique
in general, we cannot show whether n; coincides with ny on [0,7}] or not
whenever 77 < T, and n;, ¢ = 1,2, are solutions to (E) on [0, 7;]. Hence, until
now we cannot consider the large-time behaviors of global-in-time solutions
to (E), hence, (P).

Recently, in [7] we succeeded in considering the large-time behaviors
of global-in-time solutions to (P) for the case that the space dimension N
is equal to 1. As far as we know, this is the first result about the large-
time behaviors of global-in-time solutions to the system which has a quasi-
variational structure. Hence, the main purpose of this paper is to extend the
results obtained in [7] to the 2D and 3D tumor invasion models of Chaplain—
Anderson type with quasi-variational structures.

In the rest of this section, we clearly state our results in this paper.
First of all, we impose the following assumptions for the prescribed data in

(P).

(A1) A : R — R is a non-negative and globally Lipschitz continuous func-
tion. We denote by L its Lipschitz constant and put Ao = A(0).

(A2) pp + Q2 x [0,00) — R is a non-negative and continuous function.
Moreover, there exist constants p1 > 0 and pue > 0 such that

p1 < pip(x,t) < po  for all (z,t) € Q x [0,00).

(A3) pg : 2 x [0,00) — R is a non-negative and continuous function.
Moreover, there exists a constant ps > 0 such that

0 < pg(x,t) < pg forall (z,t) € Q x [0,00).
(Ad) ng € HY(Q) and the following constraint condition is satisfied:
0<nyg<a ae. inf.
(A5) fo € W1°(Q) and the following constraint condition is satisfied:
0< fo<a—ng a.e. in ,

where ng is the same initial datum that has already been given in (A4).

(A6) mg € WH(Q) and mg > 0 a.e. in Q.
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The first result stated in Theorem 1.1 guarantees the existence of global-
in-time solutions to (P), which enable us to consider their large-time behav-
iors.

Theorem 1.1  Assume that (A1)-(A6) are satisfied. Then, (P) has at
least one global-in-time solution (n, f,m) satisfying the following properties
for any T € (0,00) :

(1) n e WH2(0,T; L2(Q))NL>(0,T; HY(Q)) and (1.1) with (1.5) is satisfied
in the sense of the following quasi-variational inequality in L?(0,T; L?(2)) :

//Tntn— +d1/QTvn Vin-n /QTA )nV f-V(n—mn)
S//QTMpn(l—n—f)(n—n)—//QTudn(n—ﬁ) (1)

for any n € L*(0,T; H'(Q)) with 0 <n < a— f a.e. in Qr.
(2) f is given by the following expression:
t —
f(x,t) = fo(z)exp ( - a/ m(x, s)ds> for all (x,t) € Qp. (1.9)
0
(3) m is given by the following variation-of-constants formula for all t > 0:
t
m(t) = e!d22=mq 4 b/ et=9) A28~y (5Yds in L=(Q). (1.10)
0

td22 ¢ > 0} is the homogeneous Neumann heat semigroup which is

clearly defined at the end of this section.

where {e

(4) The following constraint conditions are satisfied:
n>0, 0<n+f<a ae inQr.

(5) (n(0), f(0),m(0)) = (no, fo,mo) in H'(Q) x WH>(Q) x W(Q).

For the large-time behaviors of global-in-time solutions to (P), we have
Theorem 1.2 as the main result of this paper. You note that we cannot con-
sider the large-time behaviors of all global-in-time solutions to (P). Roughly
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speaking, we can construct at least one global-in-times solutions to (P),
which converges to a constant steady state as time goes to co, by consider-
ing appropriate approximate systems of (P).

Theorem 1.2 Assume that (A7)—(A10) are satisfied as well as (A1)—(A6):
(A7) pg =0 on Q.

(A8) 0 <mng <1— fyin .

(A9) There exists a constant n, > 0 such that ng > n, a.e. in Q.

(A10) There exists a constant m, > 0 such that mo > m, a.e. in Q.

Then, there exists at least one global-in-time solution (n, f,m) such that
(n(t), f(t),m(t)) — (1,0,b/c) in L*(Q) x (L=(Q)N H'(Q)) x L*(Q)

ast — oo.

As we consider the large-time behavior of global-in-time solutions to
(P), it is important and essential to derive the global-in-time boundedness
of n (cf. Lemma 2.6). For this, we mainly use two tools. One is the following
Sobolev’s embedding (1.11):

lollrr) < Cr(p)lellri) for all ¢ € H' (), (1.11)

instead of H(2) C C°(Q) if N = 1, which is used in [7]. Moreover, although
in [9] we showed the existence of global-in-time solutions to (P) in which the
homogeneous Dirichlet boundary condition n = 0 on 92 x (0, co) is imposed,
we could not derive any results about its large-time behavior. Actually, the
theory of quasi-variational inequalities, which was established in [12] and
used in [9], cannot be applied in order to consider a large-time behaviors of
global-in-time solutions to (P).

The other is the LP — L4 estimate for the homogeneous Neumann heat
semigroup, which was obtained in [25, Lemma 1.3]. For each d > 0 and p €
[1, 00] we define the homogeneous Neumann heat semigroup {e*?*;¢ > 0} on
LP(£2) by the following way: for each ¢ € LP(£) the function 1 (t) = e!¥®¢
from [0, 00) into LP()) is a unique solution to (H):
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Y =dAY  in Q,
(H){Vyp-vr=0 onx,

P(0)=¢ in .
Then, we have already obtained the following lemma.

Lemma 1.1 The homogeneous Neumann heat semigroup {etdA;t > 0}
satisfies the following estimates (1)—(3).

(1) Let 1 < p < q < oo. Then, there exists a constant Co(d,p,q) > 0 such
that

€' 0| o) < Col(d,p,q) (1 +t=N/DEP=HDY 0] 1)

for any ¢ € LP(Q) and any t > 0.

(2) Let 1 < p < q < oo. Then, there exists a constant Cs(d,p,q) > 0 such
that

Vel ooy < Cs(d, p, g) (1 + /2= N/DO/2=1/D) g
for any ¢ € LP(Q) and for t > 0.

(3) Let 2 < p < oo. Then, there exists a constant Cy(d,p) > 0 such that

e ollwin) < Cald,p)|l@llwin) for any p € WHP(Q) and t > 0.

These tools play important roles to derive the uniform boundedness
of global-in-time solutions to suitable approximate systems to (P), which
enables us to construct a global-in-time solution to (P) by using the limit
procedure argument in Section 2.

2. Existence of global-in-time solutions

We devote this section to show Theorem 1.1 by using a similar argu-
ment, which was originally and essentially given in [13] and slightly modified
in [7, Sections 2 and 3|. Actually, the argument in [13] is modified in [7] for
applying it to one-dimensional tumor invasion model of Chaplain—Anderson
type with a quasi-variational structure, which is clearly stated in Introduc-
tion. Throughout this section, for each ¢ € (0,1) and f € R we define an
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increasing and globally Lipschitz continuous function (.(f;-), whose Lips-
chitz constant is equal to 1/e, by

r —max{0,a — f}

- if r € (max{0,a — f}, 00),

ﬂe(f’ T) = 07 if re [O,max{(),a - f}]v
g, if r € (—00,0),

and consider (P)_ as the approximate system of (P):

ng =V (dVn® = A(f)n°V ) + ge(n, f) inQ,

fi = —am®f* in @,

) m; = daAm® 4+ bn® — cm® in Q,
) (diVnE = A(fE)nEVfE) v =0 on %,
Vm® -v =20 on X,

n#(0) =no, f(0) = fo, m*(0) = mo in Q,

where g (n, f) = =B:(f;n) + ppn(l —n — f) — pan.
Moreover, we consider a change of variables, which was used in [7], [13]:

w = nz, z:exp<— dll/of)\(r)dr) (2.1)

Then, (P),_ is rewritten into (Q).:

wi = diAw® + A(f9)Vw -V +ge(ws, f,m®) inQ,
f& = —am® f* in Q,
m; = daAm® 4 bw®z® — cm® in Q,
@40 o
Vme-v=0 on X,
(w®(0) = wo, f5(0) = fo, m*(0) =mpo in ,

where w® and 2° are given by (2.1), in which (w,n,z, f) is replaced by
(w€7n87ze7f6)7 and
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ge(w, fym) = —zB:(frwe™") + ppw(l —wz™" = f) — pgw + aAlfywmf
1

We note that (Q), is equivalent to (P)_ whenever wy is given by

wo = ng exp < - dll /0 . )\(r)dr>. (2.2)

In order to show Theorem 1.1, first of all we show the existence and unique-
ness of non-negative global-in-time solutions to (Q)_, which is clearly stated
in Proposition 2.1 and directly implies those of non-negative global-in-time
solutions to (P)_.
Proposition 2.1  Assume that (A1)—(A6) are satisfied and wy is given by
(2.2). Then, for each ¢ € (0,1) (Q). has one and only one non-negative
global-in-time solution (w®, f¢,m®) satisfying the following properties:

(1) w® is given by the variation-of-constants formula for all t > 0:
t

we (t) = ' P wy + / e=hAG (e (s), f5(s),mS(s))ds in L=(Q). (2.3)
0

where g-(w, f,m) = A(f)Vw - Vf + g-(w, f,m).
(2) f¢ is given by (1.9), in which (f,m) is replaced by (f<,m?).

(3) m® is given by the variation-of-constants formula for all t > 0:

¢
me(t) = 22~ mg + b/ e(t=3)(d28=0) 2 (6)(25) " (s)ds  in L=(R).
0
(2.4)
Remark 2.1 Let (w®, f¢,m®) be a non-negative global-in-time solution
to (Q). and denote by —Ay : L?(€2) — L?*(12) the single-valued maximal

monotone operator associated with the homogeneous Neumann boundary
condition whose domain D(Ay) is given by

D(AN) ={p € H*(Q);Vyp-v=0 ae. onl}.

Then, we see that w® and m* are unique solutions to (E1) and (E2), respec-
tively:
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(D) {(ws)’(t) — dy Anwe (t) = go(we (t), f(t), me(t)) in L3(Q), a.a. t >0,
w®(0) = wo in L?(Q),

(E2) in L?(Q), a.a. t > 0,
me(0) = my in L?(9).

These expressions as the evolution equations in (E1) and (E2) are used when
we have the uniform boundedness of the approximate solutions (w®, f€, m®)

to (Q)..

As a direct consequence of Proposition 2.1, we derive the existence and
uniqueness results of non-negative global-in-time solutions (n®, f¢,m*®) to
(P)s
Proposition 2.2  Assume that (A1)-(A6) are satisfied. Then, for each
e € (0,1) (P). has one and only one non-negative global-in-time solution
(n®, f€,m®) satisfying the following properties: for each T > 0
(1) n® € WH2(0,T; L2(2)) N C°([0,T]; HY(Q)) with n®(0) = ng in H(Q).
Moreover, the first equation and the forth condition in (P)_ are satisfied in
the following sense:

£

/n?(t)CJr/{lenE(t)—A(fe(t))ne(t)vfs(t)}-VC+/ﬁe(fg(t);ns(t))é'
Q Q Q

= /Q{Mp(t)ne(t)(l —no(t) = f5(1)) = pa(t)n®(8)}C
for any ¢ € HY(Q) and a.a. t € (0,T). (2.5)
(2) f¢ is the same function that is given in (2) of Proposition 2.1.
(3) m® is given by (2.4), in which w®(2°)~" is replaced by n®.

First of all, we mainly devote ourselves to show Proposition 2.1 by using
the methods similar to those in [6], [7]. For each 7 € (0,1) we prepare a
Banach space X7 defined by

X7 = C([0,7]; L (QNH Q) x CO([0, 7]; W2 () x CO([0, 7); W2 (Q2)),

whose norm |[|(w, f,m)| x- is given by
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max. (lw®l Lo @) + lw®ll @) + 1 (O llwie @) + M) lwie@))-

Furthermore, for each ¢ € (0,1) we define a mapping ®° on X" by the
following way: for each (w, f,m) € X7

T

(@5 (w, f,m))(t)
(CI)g(w, s m))(t) = ((I)g(wv 7m))<t)
(5 (w, f,m))(t)

t
= fO — a/ m(s)f(s)ds for all t € [O,T].
0
t

eld2A=C)m o+ b/ e(t_s)(dQA_C)w(s)z_l(s)ds
0

For any p > 0 we consider a ball B™(p) = {(w, f,m) € X7; |[(w, f,m)| x- <

p} in Lemma 2.1 in order to apply Banach’s fixed point theorem. In the

following argument, we assume that (A1)—(A6) are satisfied unless otherwise

mentioned.

Lemma 2.1  There ezists a constant py > 0 such that for each € € (0,1)
there exists 7. € (0,1) such that the following properties are satisfied:

(1) @ (B™(p1)) C B™ (o).
(2) ®° is a contraction mapping on B™=(p1).

Proof. By using the similar argument in [7, Section 2] and (1.11) with
p = 4, we see that there exist constants C; > 0 (i = 5,7,9), Cg(e,p) > 0
and C;(p) > 0 (i = 8,10) such that the following estimates are satisfied for
all (w, f,m) € B™(p):

max [[(®5(w,m, ))(O)llm@) < Cs + Cole,p)(r+2772), (26)

max [|(@5(w,m, ) (Ollwr<@) < Cr + Cx(p)7, (2.7
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max [[(®5(w,m, £)()llwr ) < Co+ Crolp)(r+277). (28)

Moreover, for the mapping ®] we see from Lemma 1.1 and the maximal
principle that there exists a constant C11(g, p) > 0 such that

(@5 (w, f,m)) ()]l L ()

t
< |le"" R wg|| o< () +/O [e=) NG (w(s), f(s), m(s))|| = (0yds

t
< ”onLoc(Q) + Ca(dy, 2, OO)/ (1+(t— s)_N/4)
0
N|ge(w(s), f(s), m(s)) || L2 () ds
< a+ Caldh,2,00) guax 92 (0(5), £(5): (Do [ (140 V)i
SUST 0
hence,

) 4 (4-N) /2
it (@5 (w, f,m))(#)||L= ) < a+ Cri(e, p) <T + 4—N> (2.9)

We choose p; > 0 and 71 . € (0,1) satisfying p1 > C5 +C7 +Cy+a = Ry
and

(4—=N)/4
-
{Cs(e, p1)+Cs(p1)+C1r0(p1)+Craile, p1)} <717E+2711’/€2+i€—]\f> < pi—Ri.
Then, we see from (2.6)—(2.9) that for any 7 € (0,71 ]
||(I)5(w7m’f)”X" Spl for any (wufvm) GBT(pl)v (210)

which implies ®(B"(p1)) C B7(p1) whenever 7 € (0,7 .|,

Next, let 7 € (0,71,c]. Then, we see that there exists constants Ci2(e) >
0 and C; > 0 (i = 13,14) such that the following estimates are satisfied
for any (wg, fx, mr) € B"(p1), k = 1,2, where p; > 0 is the same constant
obtained in the above argument:

qmax [[(2(wr,my, f1))(8) — (P (w2, f2,m2)) ()| 12 (@)

< 012(8)(7— + 271/2)”(wl7f17m1) - (w27f27m2)HX"a (211)
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max |[[(®5(wy,m1, f1))(t) — (P5(w2, f2,m2))(t)|lwr. (@)

0<t<r
< Cya7||(wy, f1,m1) — (wa, fa,m2)| x-, (2.12)
Jax (@3 (w1, ma, f1))(t) — (P5(w2, f2,m2)) (L) |lw1. ()
< Cha(7 + 27| (w1, f1,m1) — (wa, fa, ma)||x+ (2.13)

Moreover, by using Lemma 1.1 and repeating the same method to derive
(2.9), we see that there exists a constant Cy5(g) > 0 such that

max. (05 (w1, ma, 1))(2) — (D5 (wa, fa, ma))(B)]| Lo ()

Ar(4=N)/4

<
_015(5)<T+ 4— N

)||<w1,f1,m1> ~(wm fooma) e (2.14)

At last, we choose 7. € (0, 71 ] satisfying

(4—N)/4
41e
{C12(e) + C13 + Cra + Ci5(e) } <T€ +272/% + T4_N> < b

Then, we see from (2.11)—(2.14) that

@€ (w1, f1,m1) — (w2, f2, m2)||x < |[(w1, f1,m1) — (w2, f2,m2)||x7

for any (wk7fkamk) € B’ (Pl), k= 172a

which implies that ®¢ is contraction on B (p1). O

As a direct consequence of applying Banach’s fixed point theorem to
¢, we have the existence of local-in-time solutions to (Q)_, which is stated
in Lemma 2.2.

Lemma 2.2 For each € € (0,1) there exists T. € (0,00] (Q). has at least
one solution (we, f€,m¢) on [0,T.). Moreover, if T. < co, then we have

Jdim ([l (@)l ) Hlw® Ol @ HIF @ lwr= @+ Im® @)llwr= ) = oo.

From Lemma 2.2 we have Lemma 2.3, which gives the existence and
uniqueness of non-negative local-in-time solutions to (P)_. Since its proof is
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the same to that of [7, Theorem 2.1], we omit the detail one in this paper
and trust it to [7].

Lemma 2.3 For each ¢ € (0,1) (P)_ has one and only one non-negative
solution (n®, f¢,m®) on [0,T.), where T. is the same number that is obtained
in Lemma 2.2.

Proof. Let (w®, f¢,m®) be a solution to (Q). on [0,7). Defining n® by

el
n® = w exp (d/ A(r)dr) in Qr., (2.15)
1Jo

we can show that (n®, f¢,m®) is a unique non-negative solution to (P)_ on

[0, T%). O

Remark 2.2 Since from Lemma 2.3 a local-in-time solution (w®, f¢, m®)
to (Q). always gives a unique non-negative local-in-time solution (n®, f, m?)
to (P)_, we see that local-in-time solutions to (Q)
mined and non-negative.

. must be uniquely deter-

Now, we prepare the boundedness of local-in-time solutions to (Q), and
(P).. At first, we give the boundedness of (n®, f€) in L>(0,7.; L*(2)) x
L>(0,T.; L>°(2)), whose proofs are similar to those of [7, Section 3]. So,
we omit them in this paper.

Lemma 2.4 For each € € (0,1) let (n®, f¢,m®) be a non-negative local-
in-time solution to (P)_.. Then, the following boundedness are satisfied:

(1) [[n®|| Lo 0,7501 () < IQImaX{a, Z?}

(2) I1f< Lo o,1m5m () < .

) Il om o < 1 16 o mamiay < exo (- [ Awar ).
(4) (2°)7Y(t) > 1 a.e. in Q for allt €[0,T).

(5) 2°(t) > exp ( - dll/oa )\(r)dr) a.e. in Q for allt € [0,T;),

where 2z is given by (2.1), in which (f, z) is replaced by (¢, z°).
Next, we give the boundedness of m® in L>°(0, T;; L1(2)) for some g > 1.
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Lemma 2.5 For each € € (0,1) let (n®, f¢,m) be a non-negative local-
in-time solution to (P)_ and q be any number satisfying

[17 OO) if N =2,
q¢€ _ (2.16)
[1,3) i N=3.
Then, there exists a constant C16(q) > 0 such that
HmEHL‘”(O,TE;LQ(Q)) < Ci6(q). (2.17)

Proof. By using (2.4), Lemma 1.1 and the maximal principle, we have
[m= ()| La )
t
< |2V mg|| ooy + b/ =)A= (5) || Ly ds
0
1
< [Qf7[[mo| L~ (o)
t
#80aa) [ €01 (¢ = ) VRN 5) 13 g ds
0

< (Mmoo

bC: nE|| 1,00 . T: —(N/2)(1-1/q)
n 2(@) 7% || L 0,752 () / e“’{l N <a> }da,
0

C C

where Cy(q) = Cs(d2,2,q). Since we have

'y=T(1+ N_NY_ /OO e 7o~ WUV g5 < o0,
2g 2 0

when ¢ satisfies (2.16), by using (1) of Lemma 2.4 and taking

bC: Q
Co(a) = 190 m ey + 2O

(14 WN/DA=YOD ) max {oz, Mz}7
231

we see that (2.17) holds. O

Next, we give the boundedness of w® in L>(0,7;; L*°(2)). The proof of
Lemma 2.6 is essentially same as that of [7, Lemma 3.3], whose original one
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was given in [13]. But we cannot use Sobolev’s embedding H'(D) C C(D)
for a bounded domain D C R, which plays an important role in [7]. So, it
must be modified in the proof of Lemma 2.6.

Lemma 2.6 For each € € (0,1) let (w®, f¢,m®) be a non-negative local-
in-time solution to (P)_. Then, there exists a constant Ci7 > 0 such that

lwE || Lo (0,752 (2)) < Ci7- (2.18)

Proof. Throughout this proof, for simplicity we skip the index ¢ of func-
tions w® and z°. Let p be any number in [2,00). We multiply the first
equation in (Q)_ by pwP~1z~1 and integrate its result over 2. Then, we see
that there exists a constant Cig > 0 such that

d 1 p 4d1 P/
& Letun < 2= g
+ Cuap /Q W (t) + Crs(p — 1) /Q (wPm)(t)
aa. te(0,7). (2.19)

By using (1.11) with p = 6, we have

4
/Q (wPm) () < [lw?/2 ()| P I 2 @)1 o Im ()| /2 )

8/25 42/25
< Ca(6)2/2% |/ (1) 3128, Il 2O /2 ()] 3 20y,

hence, by using Young’s inequality and Lemma 2.5 with ¢ = 5/2, we see
that there exists a constant Ci9 > 0 such that for any § > 0

P ody wP/2(t p—1 e P/2(4)]12
/Q(w m)(t) < m“ )11 () + Cio 5 [P = ()21 (0)-

(2.20)

Moreover, by using (1.11) with p = 3 again, we have

1/2 3/2
/Q wh (1) < w2 (@)]| 5o 1> )75
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< LB [wP ()] e I @) g

Ci(3)8 7 3\°
< Sllw(t) 3 o) + 151) <45> (6171

hence,

/Q /IV PI2(p)2 4 o Ci(3 ))<;>3pr/2(t)||%l(m (2.21)

By substituting (2.20), (2.21) into (2.19) and using (3), (4) in Lemma 2.4,
we have

& [+ (-1 [ [

C1(3)%(Casp +26d1) (( 3\ CisCho(p — 1)*/4 24\112
= { 4(1 - 96) 46 521/4 [P’ O ()

+d1{6+ &S(Céfp +25> - ‘“Z}‘D}/S)ywp/?(t)\?. (2.22)

Here, we choose constants Cog > 1 and Co; > d; satisfying

1 d C1sp > 4(p-1)
§— P 25, ) > ,
P Cylp+1) p+1_5p< di )= D

C1(3)%(Cisp + 26,d1) 3 ’ n Ci15Cho(p — 1)%/4
1(1-0,) 16 52173

< Co(p+1)*

Then, we see that the following inequality is satisfied:

& [ saen (-1 [0 [Eune

< Cor(p+ 1) |[wP? (1|70 aa.t € (0,TL). (2.23)

By applying Gronwall’s lemma to (2.23) and using (3), (4) in Lemma 2.4,
we have
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13 a 1/p
max Hw(t)HLp(Q) S {2020021(p + ]-) exp (1/ )\(T)dT’)}

0<t<T-
1/
X max {mr Pa, max uw<t>rm2<m}
By using the same argument in [13, Proposition 4.2], we see that this lemma

holds. O

By wusing Lemma 2.6 and the argument in [7], we have the
boundedness of (w®, f¢,m®) in L°(0,T.; H*()) x L>(0,T.; W1>(Q)) x
L0, T.; W2 (Q)). We omit their proofs in this paper and trust them to
(7], [13].

Lemma 2.7 For each ¢ € (0,1) let (w®, f¢,m®) be a non-negative local-
in-time solution to (Q).. Then, the following boundedness are satisfied:

(1) There exists a constant Caa > 0 such that
M || Lo (0,7 ;w10 () < Caz, (2.24)
IV £ () Loo (0,152 ())v) < Coz(t + 1) for allt € [0,Ty). (2.25)
(2) There ezists a constant Cas(e) > 0 such that
||| Loe 0,72 11 (02)) < C23(e). (2.26)
Now, we complete the proof of Proposition 2.1

Proof of Proposition 2.1. We assume T, < oo. Then, we see from Lemmas
2.4, 2.6 and 2.7 that there exists a constant Ca4(e,T.) > 0 such that

[w* ()| Lo @) + W (@Ol ) + 117 Ollwree @) + [m* () [lw. @)
< Coy(e, Ty), for all t € [0,T%),
which contradicts the condition for 7 in Lemma 2.2. Hence T, = oo must
holds. O

In the rest of this section, we construct a global-in-time solution to (P)
by using the limit procedure for the sequence {(n®, f¢,m®);e € (0,1)} of
non-negative global-in-time solutions to (P)_. For this, we note that we
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have already obtained some boundedness of {(n®, f¢,m®);e € (0,1)}, which
is clearly stated in the next lemma again.

Lemma 2.8 For each € € (0,1) let (n®, f¢,m®) be a non-negative global-
in-time solution to (P)_.. Then, there exist constants Cas > 0, which is
independent of € € (0,1), such that

sup |[n% Lo 0,00z () + SUP [|m®|| Lo (0,00,w1. () < Chs,
ec(0,1) e€(0,

SUP) IV £l Loe (0,520 )~y < Cos(T'+ 1) for all T >0

€€(0,1
as well as
sup || ¥l Loe (0,002 () < @,
€€(0,1)
1 1 [«
sup |[(2%)7 || Loe (0,00, (02)) < €XD (d/ A(r)dr),
£€(0,1) 1Jo

1 «
inf 2°(t) > exp ( — / A(r)dr) a.e. inQ  for a.a. t>0.
c€(0,1) di Jo

Next, we give the boundedness of n° in W2(0,T; L*(2)) N L>(0, T
H'(Q)) because the boundedness of w® in L>(0, 00; H'(2)), which is ob-
tained in (2) of Lemma 2.7, depends upon ¢.

Lemma 2.9 For each ¢ € (0,1) let (n®, f¢,m®) be a non-negative global-
in-time solution to (P).. Then, for each T > 0 there exists a constant
Ca6(T) > 0, which is independent of € € (0,1), such that

sup {||nf|L2(o,T;L2(Q)) + 10| Loe (0,511 () +/ Be(fs(t)mg(t))}
€€(0,1) Q

S 026 (T)a

where BE s a non-negative primitive function of B satisfying BE(O) =0.

Proof. We define w® by (2.1), in which (w,n, f, z) is replaced by (w®,n¢,
f€,2%). Then, we see from Remark 2.2 that (w®, f¢,m®) is a non-negative
global-in-time solution to (Q).. In the following argument, for simplicity we
skip the index €. By using Remark 2.1, we take the inner product between
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the evolution equation in (E1) and w;(t). Then, we have
Ol + G5 [ 1V0OF + [ (@)@ 0z )0)
< [ A @ITe@VEO+ [ 16000, 50, mle)] o)
Q Q
=1 (t) + [Q(t) a.a.t > 0, (227)
where
aA(f)wmf'

Le(w, f,m) = (1 — w2t = f) = pgw + 2L
1

By using Lemma 2.8, we see that the following estimates for I (¢) and I5(t)
are satisfied for a.a. t € (0,7'):

1/2
L) < (LI Lo @) + M) IV F (O (poe @)y lwe ()] 2(0) (/Q !Vw(t)!2>

IN

1
@) Z20) + (L + X0)*Co5(T + 1)2/Q [Vuw(t)|?

and

[u—y

(1) < Swe(®) 2200 + / 0 (w(t), £(2),m(t))

S

a’a?(al + X\)?C2
< u®)3ac +5c§5\9|{u§ T
1

[a—

o

2 «
+5M§C§5\Q]{l+a + O35 exp <d / A(r)dr)}.
1

Moreover, from [7, Lemma 4.2] we have

a [ 2050 w27 (0) < /Q (=) (BB (F(8); (wz ) (1) (2.28)

By substituting the estimates for I;(¢), i = 1,2, and (2.28) into (2.27), we
easily see that there exist constants Co7 > 0 and Cag > 0 such that
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ey + g (@ [ 190OF +2 [ 20500 we0)
< d1Cor (T + 1)2/ |Vw(t)|? + Cog  a.a. t € (0,7T). (2.29)
Q

By applying Gronwall’s lemma to (2.29) and using Ba(fo; ng) = 0 (cf. (A5)),
we have

leel20.4.2cy) + /Q Tw()? +2 / 205 (F(1): (w1)(1))

< CrT(T+1)° (d1 / |V |* + 2,28> for all t € [0, T]. (2.30)
Q 27

Since we have

fo
Vwy = exp < — / )\(T’)dr> Vng — woA(fo)V fo,
0

ng = 2z~ Hw — aX(flumf}, Vn= z_l{Vw + )\(CJ;ﬁUVf},
1

we see from (2.30) and Lemma 2.8 that this lemma holds. O

Moreover, we have the boundedness of m® in WY2(0,T; L?(Q)) N
L2(0,T; H*(Q)) in the next lemma.

Lemma 2.10 For each e € (0,1) let (n®, f¢,m®) be a non-negative global-
in-time solution to (P)_.. Then, there exists a constant Ca9 > 0, which is
independent of € € (0,1), such that

Sz)pl) (Hmi||%2(0’T;L2(Q))+||Am6||%2(O’T;L2(Q))) < 029(T+1) fOT allT > 0.
e€(0,

Proof. By using Remark 2.1, we take the inner products between the evolu-
tion equation in (E2) and m5(t) in L?(f2), and use Lemma 2.8. Throughout
this argument, we skip the index € of m®. Then, we have

d

I (Ol + 55 (2 [ [9m@ + clm(©le) ) <

@ a.a. t>0
C b
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which implies that the following boundedness is satisfied for all T' > 0:

sup [lme|[ 720 7i22()) < +max{c,da}{lmol7 (). (2:31)

bC2:|QT
e€(0,1) c

By going back to the evolution equation in (E2), we have
|AM(t)]|220) < Ime(t)||L2) + (b + ¢)Cos|QY? a.a. t > 0. (2.32)

Hence, we see from (2.31) and (2.32) that this lemma holds. O

Now, we are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. We see from the uniform boundedness of {(n®, m®);
e € (0,1)} that for each ¢ € N there exist a sequence {¢;,} C (0,1) and a
pair (n;, m;) such that ¢; ; — 0 as k — oo and the following convergences
are satisfied as k — oo:

in C°([0,4]; L*(2)),
weakly in W12(0,4; L?(Q)),
s-weakly in L>(0,4; H'(2)),

c;
ntk — ny

(2.33)

a.e. in @,

in CO([0, i) CO(@) 1 L2(0, 5 H(©),

meik — m; weakly in W12(0,4; L2(Q)) N L?(0,i; H?(Q2)), (2.34)
| +-weakly in L>(0,4; Wh>(Q)).

In order to derive (2.34) we use the following Gagliardo—Nirenberg’s inequal-
ity: there exists a constant C3g > 0 such that

||<PHCO(Q) < CSOH‘P”?/{/VLNH(Q)||<PH};;(€§V);
N(N +1) 1
Oy = —————— for all ().
N= Ty N ora p e WH>(Q)

Now, we consider {(n®*, m*); k € N}, which is derived in the above
argument, and use Lemmas 2.8-2.10. Then, there exist a subsequence
{etttF} < {e%*} and a pair (n;11,my1) such that the following conver-
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gences are satisfied as k — oo:

in C°([0,1 + 1]; L*(2)),
weakly in W12(0,7 + 1; L2(2)),
x-weakly in L>(0,i + 1; HY(Q)),

a.e. in QZ‘+1,

n6i+1,k N1

in CY([0,i + 1];C°(Q)) N L2(0,4 + 1; H(2)),
meiHtE — my < weakly in WH2(0,4 4+ 1; L2(Q)) N L2(0,4 + 1; H2()),
x-weakly in L>°(0,i + 1; W1>(Q)).

We repeat the above operation inductively and put €; = ¢;; for all ¢ € N.
Moreover, we define a pair (n, m) by the following way: for each T' > 0

(n(t),m(t)) = (nyr)41(t), mir41(t)) for all t € [0,T]. (2.35)

Then, we easily see from the construction method of (n,m) that ¢, — 0 as

1 — oo as well as for any 7' > 0 the following convergences are also satisfied
as 1 — oo:

in CO([0, T7; L*(92)),
weakly in W12(0,T; L?(Q2)),
nt —n (2.36)
x-weakly in L>(0,T; H*()),
La.e. in Qr,
in C°([0, T7; C°(Q)) N L*(0, T3 H'(Q)),
m —m weakly in W12(0,T; L2()) N L?(0,T; H*(Q)), (2.37)
s-weakly in L>(0,7T; W1 (Q)).

Next, we define a function f by (1.9), where m in (1.9) is the same func-
tion defined by (2.35). By using Lemma 2.8 and the following inequalities:

[(f5 = P, 1)]

exp ( o f e, s)ds) —exp ( o f (e s)ds> ‘

< fo(z)
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< aovexp <a /Ot(ms + m)(x,s)ds) /Ot ((m — m)(x, 5)|ds.
and

V(= ), t)|

2)| exp(—a/otmf(g;,s)ds) —exp(—a/otm(x,s)dsﬂ

+a|(f€—f)(x,t)y/0 |vm6(x,s)\ds+aa/0 IV (mE — m)(x, 5)|ds,

< Vol

we have
1/5() = FO)ll ooy < aaTe** > |[m® —m)copo,r)c0a))
and

IV(FE = )2

<o [ ([ v —m)(s)\ds)2
#3220 = DOy [ ([ 19mis |ds)

t 2
#3100 ol o ([ 10m =)o) enords)
<30T (o + | C55T + || follfy1.e o Te**>T)
X (||m6 - mH%Q(O,T;Hl(Q)) +1f° = f||éo([07T];CO(Q))
+ [lm® = mlléo o, ryo0@)):
hence,
e — f inC°%0,T);C°Q))NL>®(0,T; H'(Q)) as i—oco. (2.38)

Then, we immediately see from Lemma 2.8 that the triplet (n, f,m) is non-
negative on () and satisfies the following boundedness, which are used in the
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rest of this proof:

72| £.o% (0,005 2.5 (©2)) F 12| o0 (0,00, 12 (2)) < Clas, (2.39)

||f||L°°(O,oo;L°°(Q)) <a, (240)

Since we see from (Al), Lemma 2.8 and (2.39) that there exists a constant
C31 > 0 such that the following inequality is satisfied for a.a. t € (0,7):

N ()RS (O £2(8) — A(F IOV £(0)22 0
<312 / I (DT £ ORI~ D)
Q

+3/Q(L|f(t)| + 202V (P (n = n)()]?

+3 [ (O] + 0RO IV = DO

< Ca1([(n° = n) (D220 + 1(F° = HOEo@y + (£ = HOFn @),
we derive that the following convergences are satisfied as ¢ — oo:
M fEnEV e — X(f)nVf in L=(0,T; (L*(Q)N) (2.41)
as well as
pn® (L= n® = %) — ppn(L—n — ) in L®(0,T:L2(Q),  (242)
pan® — pgn in L>=(0,T; L*(92)). (2.43)

Now, we are in a position to show (1.8). Let n be any function in
L?(0,T; H'(Q)) satisfying 0 < n < a — f ae. in Qr. By using the
same argument in [7, Lemma 4.5], we can choose a sequence {n;;i € N} C
L?(0,T; H'(Q)) so that the following properties are satisfied:

0<m <a-—f% ae inQr forallieN, (2.44)
ni —n in L*(0,T; HY(Q)) asi— oo. (2.45)

We substitute ¢ = n® (t) —n;(t) in (2.5), integrate its result on (0,7") and use
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the monotonicity of 5., (f%;-) with S, (f%;m;) = 0 a.e. in Qp (cf. (2.44)):

/ Be, (ff;n)(n* —n;) >0 forall i € N.
Qr

Then, we have the following inequalities are satisfied for all ¢ € N:

//T ngt (n® —mn;) + /QT{d1Vn5i ISV - V(nE — )

< (L )0 ) - I ). (240

By taking the limit ¢ — oo in (2.46) and using all convergences in (2.36)—
(2.38), (2.41)—(2.43) and (2.45), we see that (1.8) holds.

Finally, we show 0 <n < a — f a.e. in Qp in (4) of Theorem 1.1. For
cach (z,t) € Qr satisfying f(z,t) < a (cf. (2.40)) we denote by B(f(z,t);-)
the indicator function on the compact interval [0, « — f(z,t)]. By using the
similar argument in [7, Proposition 4.2], we have

B(f(x,t);n(x,t)) < liminf 8., (f5 (x,8);n% (x,1))  a.a. (z,t) € Qp. (2.47)

71— 00

By using Lemma 2.9 and applying Fatou’s lemma with (2.47), we have

/ B(f;n) < liminf / Boy(f54;n%) < TCas(T), / B(fsm) =0,
Qr oo Qr Qr

which implies that the constraint condition 0 < n < a — f a.e. in Qr is
satisfied. 0

3. Large-time behavior of global-in-time solutions

We devote this section to show Theorem 1.2 by using the argument
similar to that in [7, Section 4]. Throughout this section, we assume that
(A1)-(A10) are satisfied and let (n, f, m) the same triplet that is a global-in-
time solution to (P) obtained by the limit procedure in the proof of Theorem
1.1.

At first, we show Lemma 3.1, which gives the uniform positivity of n
and enables us to consider the large-time behavior of global-in-time solutions
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(n, f,m) to (P).
Lemma 3.1 There exists a constant C3o > 0 such that n > C39 a.e. in

Q.

Proof. Let {(n®, f¢,m®);i € N} be the same sequence that is obtained
in the proof of Theorem 1.1. We consider a sequence {(w;, fi,m;) =
(n®i 2%, f¢*,m®);i € N} of non-negative global-in-time solutions to (Q),,
where 2% is given by (2.1) in which (z, f) are replaced by (2%, f¢), and
take C3o > 0 by

where n, is the constant in (A9). By putting (w; — Cs2)— = —min{0, w; —
C32}, we multiply the first equation in (Q)_, by 27 M) (wi(t) — Cs2)—, and
integrate its result over ). Since we see from the second equation and the

boundary condition for w; in (Q),, that the following equalities are satisfied:

[ w0 @) wi(t) - Caa)-
Q

1d -1 2
=5 in ()| (wi(t) — Cs2)—|

- % 27 NN ()ma () fi (1) (wi () — Csz) -
1JQ

and
dl/ zi_l(wi — 032),Awi
Q
= —d1 / (’LUZ - 032)_Vzi_1 . le - dl/ Z:1V(w2 - 032)_) : va
Q Q
=~y [ SN s~ o)V Ty [ 29w~ Coa) )P,
Q Q

by using the non-negativity of (w;, f;, m;) we see that the following inequal-
ity is satisfied for a.a. ¢ > 0:



60 A. Tto

&‘Q‘

[ Olwi®) - Caa)- P

N | =

Q 2
S/@MNHW%WWW@—@ﬂ
Q

- /Qup(t)(zi_lwi)(t){l = (wiz; (1) = fi()}(wi(t) — Ca2)—.  (3.1)

For each t > 0 we put Q;(t) = {z € Q; wx,t) < Csz}. Since fi(x,t) is
decreasing with respect to ¢t € [0, 00) for any fixed x € Q, we see from (A8)

that
|l Lo
exp ( - / A(r)dr) > exp ( — / A(r)dr),
dl 0 dl 0

Caazy H(w,t) <nu < 1— fo(z) <1 — fi(x,t) aa. (2,t) € Q. (3.2)

hence,

We see from (3.2) that the following estimate is satisfied:

1= (wiz; )(x,t) = file,t) <0 aa. (x,t) € BE= Q) x {t}, (3.3)
t>0

which implies

/ﬂ(upzi_lwi)(t){l—(wizi_l)(t)—fi(t)}(wi(t)—C32)_ >0 aa.t>0.(3.4)

Moreover, since (., (fi(z,t);-) is an increasing function on R for any fixed
(z,t) € Q, we see from S, (fi(x,t); C3az; '(x,t)) = 0 and (3.2) that the
following estimate is satisfied:
Be, (f (x,0); (wizg ) (@, 1)) (wi(z, t) — Csa) -
= —zi(, ), (filw, ); (wizy ) (@, 0)){(wizg ) (2,t) — Csa2; ' (1)}
<0 aa. (z,t) €FE. (3.5)

Finally, we derive from (3.1), (3.4) and (3.5) that the following inequality is
satisfied:
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d

— [ 27 )| (wi(t) — C32)-|> <0 aa.t >0, (3.6)
dt Jq

By using (3.6) and

fo
wo = Mg exp ( — dll/ A(T)dr) > Cso,
0

we have w; > (39, hence, n®* > (35 a.e. in (). Hence, by taking the limit
i — oo and using (2.36), for any 7" > 0 we have n > C39 a.e. in Qp. Since
T > 0 is arbitrary, we see that this lemma holds. O

Next, we give the positivity as well as the upper boundedness of m.
Since we can show this lemma by using the same argument that is given in
[7, Lemma 5.2], we omit its proof in this paper.

Lemma 3.2 m satisfies the following estimates:

b
(1) mey <m < maX{”mOHLoo(Q), a} a.e. in Q, where m, is the constant
c

in (A10).
(2) There exists a constant Csz > 0 such that

// |Vm|? < Cs3(T +1)  for all T > 0.
Qr

In the rest of this section, we show Theorem 1.2. First of all, we give
the large-time behavior of f in Lemma 3.3. Since its proof is also the same
to [7, Lemma 5.3], we omit it in this paper. Actually, by using Lemma 3.2
and (1.9), we can easily show this lemma.

Lemma 3.3 [ satisfies the following estimates:
) 1F0)l ey < e < 1 for all ¢ > 0.
(2) There exists a constant Csq > 0 and Css5 > 0 such that

HVf(t)H(LQ(Q))N < 034(t + 1)e—am*t < (U35 forallt>D0.

Finally, we give the large-time behaviors of n and m in Lemmas 3.4 and
3.5, respectively. Although their proofs are similar to those of [7, Lemmas
5.4 and 5.5], we give the detail ones in this paper. Actually, the proofs in
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[7] are not so clear and complete that some readers cannot follow our ideas.

Lemma 3.4 n satisfies the following estimates:

(1) There exists a constant Csg > 0 such that

[ im0+ 56 = 13 oyt < Can

(2) There exists a constant Cs37 > 0 such that

{ In(t) + f(t) = U[72(q) = In(t = h) + f(t = h) = 12 }
sup< sup
t>1 \ he(0,1] h

< Csr7.

Proof.  Since we can show (1) by using the argument similar to that of [7,
Lemma 5.3], we omit it and only give the proof of (2) in this paper. For
simplicity, throughout this section we put ¥ (t) = ||n(t) + f(t) — 1||%2(Q).
For any T'> 1 and h € (0, 1] we define 7, by
n(t) ift €0, T —h),
nn(t) = _
1—f(t) ifte[T—hT],

which is in L?(0,T; H*(2)) and satisfies 0 < n, < a — f a.e. in Q7. By
substituting 7 = n, in (1.8) and using (1.2), we have

D(T) = (T—h) di [T 2
‘ + 5 [ IOl vt

d1 T 9 T
< 2/T_hHVf(t)!(Lz(g))thJr/T_h </th(t)(n(t)+f(t) _ 1)>dt

+/T </Q/\(f(t))n(t)vf(t)-V(n(t) —|-f(t))) .

T—h

By using Lemmas 3.2 and 3.3, (1.2) and the non-negativity of (n, f,m), we
have

V1(T) — (T — h) < Cs7h for any T > 1 and any h € (0,1],
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where C37 > 0 is given by

by d a?(L+ X\g)?
037—2[a|Q!maX{Hm0”L°°(ﬂ)» }+C35{ 3 relltho)+ (2le)H

Hence, we see that (2) holds. O

Lemma 3.5 n satisfies the following estimates:

(1) There exists a constant Csg > 0 such that

2
dt < Css.

Hmof) L
12(0)

C

(2) There exists a constant Csg > 0 such that

Proof.  Since we can also show (1) by using the argument similar to that
of [7, Lemma 5.4], we omit it and only give the proof of (2) in this paper.
We note that m is a unique solution to the evolution equation

<(Cs39 a.a.t>0.

L2(Q)

m/(t) — dy Axm(t) + em(t) = bn(t) in L*(Q), a.a. t >0 (3.7)

with m(0) = mg in L2(Q). (cf. (E2))

In the following argument, for simplicity we put a(t) = |m(t) —
b/cH%Q(Q). Then, we take the inner product between (3.7) and m(t) —b/c to
have

;;ltwg(t)—l—dg/ﬂ\Vm(t)2+C¢2(t):b/9 <m(t)—lc)>(n(t)—1) a.a.t > 0.

By using (2.39) and the estimate

'b/ﬂ <m(t> - i><n<t> - 1>‘ < ety b (a +261)2|m,

we have



64 A. Tto

b*(a +1)%|Q

C

d
dt%(t)‘ < 2d2/Q [Vm(8)[? + 3ciba(t) +

b2 {3+ (a+1)2}]Q|

< C§5|Q| max{2dy,3c} + .

which implies that (2) holds. O

Now, we are in a position to show Theorem 1.2
Proof of Theorem 1.2. We easily see from Lemma 3.3 that
f(t) — 0 in L®(Q)NHY Q) ast— oo. (3.8)

Next, we assume lim;_, o, 11(t) # 0. Then, we can take a sequence
{tn;n € N} and ¢; > 0 such that lim,_,~ ¥1(t) = ¢1 and t,,41 > t,, + 1 for
all n € N. By taking

4
p— 1 1
hq mln{ 72(0374—1)},

and using Lemma 3.4, where C37 is the same constant that is obtained in
(2) of Lemma 3.4, we see that there exists ny € N such that

4 4

—1(t) < [Pa(tn) — bl + 1 (tn) — () < m%—&w(%—t) <5
that is,

P (t) > % for any n > ny and any t € [t, — hy,t,). (3.9)

We see from (3.9) that

/ Py (t dt>Z/ 11/;1 dt>Z/ dt>§:€12hl:oo,

n=ni tn— n=ni n=ni

which contradicts (1) of Lemma 3.4. Hence, we have n(t) + f(t) — 1 in
L?(f2), so, by using (3.8) n(t) — 1 in L?(Q) as t — oco.

Finally, we assume lim; .., 1¥o(t) # 0. Then, we take a sequence
{sn;n € N} and ¢y > 0 such that lim,, o ©¥1(8,) = 2 and s,41 > s, + So
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for all n € N, where sop = £5/2(C39 + 1) and C3g is the same constant that
is obtained in (2) of Lemma 3.5. Then, we see that there exists no € N such
that

sn lo ls
_ < _ ! .. —g) < =
o= (5) < ia(sw) =+ | W5(ldr < g+ Chnls =) <
that is,
2
Pa(t) > 5 for any n > ny and any s € [s, — S, S (3.10)

We see from (3.10) that

/ Yot dt>Z/S_S dt>z —dt

n=ni n=n, Y Sn—50

Z 4Cgs+ -

which contradicts (1) of Lemma 3.5, hence, m(t) — b/cin L?*(2) as t — oo.
U
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