Semi-local units at p of a cyclotomic \mathbb{Z}_{p}-extension congruent to 1 modulo $\zeta_{p}-1$

Humio Ichimura

(Received May 29, 2013; Revised November 21, 2014)

Abstract

Let p be a prime number. Let K be an abelian number field with $p \nmid$ $[K: \mathbb{Q}]$ and $\zeta_{p} \in K, K_{\infty} / K$ the cyclotomic \mathbb{Z}_{p}-extension, and K_{n} the nth layer with $K_{0}=K$. Let \mathcal{U}_{n} be the group of semi-local principal units of K_{n} at the prime p, and $\mathcal{U}_{n}^{(1)}$ the elements u of \mathcal{U}_{n} satisfying the congruence $u \equiv 1$ modulo $\zeta_{p}-1$. The Galois module structure of \mathcal{U}_{n} is well understood. The purpose of this paper is to determine the Galois module structure of $\mathcal{U}_{n}^{(1)}$.

Key words: semi-local units, cyclotomic \mathbb{Z}_{p}-extension, Galois module structure.

1. Introduction

Let p be a prime number. Let K be an abelian number field with $p \nmid[K: \mathbb{Q}]$ and $\zeta_{p} \in K$, where ζ_{p} is a primitive p th root of unity. Let K_{∞} / K be the cyclotomic \mathbb{Z}_{p}-extension, and K_{n} the nth layer with $K_{0}=K$. We denote by \mathcal{U}_{n} the product of the groups of principal units of the completions of K_{n} at the primes over p. Namely, \mathcal{U}_{n} is the group of semi-local principal units of K_{n} at the prime p. Let $\mathcal{U}_{\infty}=\lim _{\mathcal{U}} \mathcal{U}_{n}$ be the projective limit with respect to the relative norms $\left.K_{m} \rightarrow K_{n} \overleftarrow{(m}>n\right)$, and \mathcal{V}_{n} the image of the projection $\mathcal{U}_{\infty} \rightarrow \mathcal{U}_{n}$. Denote by $\mathcal{U}_{n}^{(1)}$ the elements u of \mathcal{U}_{n} satisfying the congruence $u \equiv 1$ modulo $\zeta_{p}-1$, and put $\mathcal{V}_{n}^{(1)}=\mathcal{U}_{n}^{(1)} \cap \mathcal{V}_{n}$. We see that $\mathcal{U}_{0}^{(1)}=\mathcal{U}_{0}$ as $p \nmid[K: \mathbb{Q}]$. Let $\Delta=\operatorname{Gal}(K / \mathbb{Q})$ and $\Gamma=\operatorname{Gal}\left(K_{\infty} / K\right)$. We can regard these groups $\mathcal{U}_{n}, \mathcal{V}_{n}, \mathcal{U}_{n}^{(1)}, \mathcal{V}_{n}^{(1)}$ as modules over the Galois groups Δ and Γ. Let χ be a fixed $\overline{\mathbb{Q}}_{p}$-valued character of Δ, and $\mathcal{O}=\mathcal{O}_{\chi}$ the subring of $\overline{\mathbb{Q}}_{p}$ generated by the values of χ over \mathbb{Z}_{p}. Here, \mathbb{Z}_{p} is the ring of p-adic integers and $\overline{\mathbb{Q}}_{p}$ is a fixed algebraic closure of the p-adic rationals \mathbb{Q}_{p}. Choosing a generator γ of Γ, we identify as usual the completed group ring $\mathcal{O}[[\Gamma]]$ with the power series ring $\Lambda=\Lambda_{\chi}=\mathcal{O}[[s]]$ by the correspondence $\gamma \leftrightarrow 1+s$. Then we can naturally regard the χ-parts $\mathcal{U}_{\infty}(\chi), \mathcal{U}_{n}(\chi)$, etc. as modules over Λ. The Λ-module structures of the χ-parts $\mathcal{U}_{n}(\chi)$ and $\mathcal{V}_{n}(\chi)$
are well understood by some results in Iwasawa [8], Coleman [2] and Gillard [3]. Usually, $\mathcal{U}_{n}(\chi)=\mathcal{V}_{n}(\chi)$ and there is an isomorphism $\mathcal{V}_{n}(\chi) \cong \Lambda / w_{n}$ as Λ-modules where $w_{n}=w_{n}(s)=(1+s)^{p^{n}}-1$. In [4], we determined the ideal $J_{n, \chi}$ of Λ corresponding to the submodule $\mathcal{V}_{n}^{(1)}(\chi)$ via this isomorphism for the case $p \geq 3$ when p does not split in K and χ is even. Here, we say that χ is even when $\chi(-1)=1$ regarding χ as a primitive Dirichlet character. Further, in [4], [5], we applied this structure result for a normal integral basis problem on an unramified Kummer extension over K_{n} of degree p. In this paper, we determine the Λ-module structure of $\mathcal{V}_{n}^{(1)}(\chi)$ for the general case where $p \nmid[K: \mathbb{Q}]$ and χ is not necessarily even including the case $p=2$. The result will be used in our further study [7] on normal integral basis.

2. Theorem

To state the main theorem, we recall some fundamental facts on $\mathcal{U}_{n}(\chi)$ and $\mathcal{V}_{n}(\chi)$ mainly from $[3$, Section 2$]$. Here, χ is a fixed $\overline{\mathbb{Q}}_{p}$-valued character of Δ. Let

$$
e_{\chi}=\frac{1}{|\Delta|} \sum_{\sigma \in \Delta} \operatorname{Tr}\left(\chi\left(\sigma^{-1}\right)\right) \sigma
$$

be the idempotent of $\mathbb{Z}_{p}[\Delta]$ associated to χ. Here, Tr denotes the trace map from $\mathbb{Q}_{p}(\chi)$ to $\mathbb{Q}_{p}, \mathbb{Q}_{p}(\chi)$ being the quotient field of \mathcal{O}_{χ}. For a $\mathbb{Z}_{p}[\Delta]$ module M such as \mathcal{U}_{n} and \mathcal{V}_{n}, the χ-part $M(\chi)$ is defined to be $M^{e_{\chi}}$ (or $\left.e_{\chi} M\right)$. Let $\tilde{p}=2 p$ or p according as $p=2$ or $p \geq 3$. Denote by q the least common multiple of \tilde{p} and the conductor of χ. Identifying Γ with the Galois $\operatorname{group} \operatorname{Gal}\left(K_{\infty}\left(\zeta_{\tilde{p}}\right) / K\left(\zeta_{\tilde{p}}\right)\right)$ in a natural way, we choose and fix a generator γ of Γ so that $\zeta^{\gamma}=\zeta^{1+q}$ for all p-power-th roots ζ of unity. (Here, $\zeta_{\tilde{p}}$ is a primitive \tilde{p} th root of unity.) We identify the subring $e_{\chi} \mathbb{Z}_{p}[\Delta]=\mathbb{Z}_{p}[\Delta](\chi)$ of $\mathbb{Z}_{p}[\Delta]$ with $\mathcal{O}=\mathcal{O}_{\chi}$ via the mapping $\sigma \rightarrow \chi(\sigma)$, and regard the completed group ring $\mathcal{O}[[\Gamma]]$ as a subring of $\mathbb{Z}_{p}[\Delta][[\Gamma]]$. As in Section 1, we identify $\mathcal{O}[[\Gamma]]$ with the power series ring $\Lambda=\Lambda_{\chi}=\mathcal{O}[[s]]$ by the correspondence $\gamma \leftrightarrow 1+s$. Thus, the groups $\mathcal{U}_{\infty}(\chi), \mathcal{U}_{n}(\chi)$ etc. are regarded as Λ-modules. Let $\omega_{\tilde{p}}$ be the Teichmüller character of conductor \tilde{p}. We regard χ and its dual character $\chi^{*}=\omega_{\tilde{p}} \chi^{-1}$ also as primitive Dirichlet characters. We divide the character χ into the following three types:
(A) $\chi(p) \neq 1$ and $\chi^{*}(p) \neq 1$,
(B) $\chi^{*}(p)=1$,
(C) $\chi(p)=1$.

As $p \nmid[K: \mathbb{Q}]$, type (B) does not occur when $p=2$. It is known that

$$
\mathcal{U}_{n}(\chi)=\mathcal{V}_{n}(\chi) \text { for type }(\mathrm{A}) \text { or }(\mathrm{B}) .
$$

For type (C), it is known that

$$
\begin{equation*}
N_{n / 0} \mathcal{V}_{n}(\chi)=\mathcal{V}_{0}(\chi)=\operatorname{Tor}_{\mathbb{Z}} \mathcal{U}_{0}(\chi) \cong \mathcal{O} / 2 \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\mathcal{U}_{0}(\chi) / \mathcal{V}_{0}(\chi) \cong \mathcal{U}_{n}(\chi) / \mathcal{V}_{n}(\chi) \tag{2}
\end{equation*}
$$

In (1), $N_{n / 0}$ denotes the norm map from K_{n} to K_{0}, and $\operatorname{Tor}_{\mathbb{Z}}(*)$ the \mathbb{Z} torsion subgroup. Note that $\mathcal{O} / 2$ is trivial when $p \geq 3$. The isomorphism (2) is induced from the natural lifting map $\mathcal{U}_{0} \rightarrow \mathcal{U}_{n}$ (see [9, p. 695]). These are consequences of local class field theory. Even for type (C), it is enough to study $\mathcal{V}_{n}^{(1)}(\chi)$ for understanding $\mathcal{U}_{n}^{(1)}(\chi)$ because of (2) and $\mathcal{U}_{0}=\mathcal{U}_{0}^{(1)}$. It is known that for type (B), the Λ-torsion submodule \mathbb{T} of $\mathcal{U}_{\infty}(\chi)$ is isomorphic to $\Lambda /(\dot{s})$, where

$$
\dot{s}=(1+q)(1+s)^{-1}-1
$$

Let \mathbb{T}_{n} be the projection of \mathbb{T} to $\mathcal{U}_{n}(\chi)$. It is known that

$$
\mathcal{U}_{\infty}(\chi) \cong \begin{cases}\Lambda, & \text { for type }(\mathrm{A}) \text { or }(\mathrm{C}) \tag{3}\\ \Lambda \oplus \mathbb{T}, & \text { for type }(\mathrm{B})\end{cases}
$$

as Λ-modules. Let $\widetilde{\mathcal{V}}_{n}(\chi)=\mathcal{V}_{n}(\chi)$ for type (A) or (C), and $\widetilde{\mathcal{V}}_{n}(\chi)=$ $\mathcal{V}_{n}(\chi) / \mathbb{T}_{n}$ for type (B). It is known that the above isomorphism (3) induces

$$
\widetilde{\mathcal{V}}_{n}(\chi) \cong \begin{cases}\Lambda /\left(w_{n}\right), & \text { for type }(\mathrm{A}) \text { or }(\mathrm{B}) \tag{4}\\ \Lambda /\left(w_{n}, 2 w_{n} / s\right), & \text { for type }(\mathrm{C})\end{cases}
$$

For (3) and (4), see [3, Propositions 1, 2]. Let $\widetilde{\mathcal{V}}_{n}^{(1)}(\chi)=\mathcal{V}_{n}^{(1)}(\chi)$ for type (A) or (C), and $\widetilde{\mathcal{V}}_{n}^{(1)}(\chi)=\mathcal{V}_{n}^{(1)}(\chi) \mathbb{T}_{n} / \mathbb{T}_{n}$ for type (B). Now, we define the ideal $J_{n, \chi}$ of Λ containing w_{n} (resp. w_{n} and $\left.2 w_{n} / s\right)$) for type (A) or (B) (resp. type (C)) so that the above isomorphism (4) induces

$$
\tilde{\mathcal{V}}_{n}^{(1)}(\chi) \cong \begin{cases}J_{n, \chi} /\left(w_{n}\right), & \text { for type (A) or (B) } \tag{5}\\ J_{n, \chi} /\left(w_{n}, 2 w_{n} / s\right), & \text { for type (C) }\end{cases}
$$

We define the ideal $I_{n, \chi}$ of Λ by

$$
I_{n, \chi}= \begin{cases}\left\langle p^{n}, p^{n-1-k} s^{p^{k}} \mid 0 \leq k \leq n-1\right\rangle, & \text { for type (A) or (C) } \tag{6}\\ \left\langle p^{n-1-k} s^{p^{k}-1} \mid 0 \leq k \leq n-1\right\rangle, & \text { for type (B) }\end{cases}
$$

when $n \geq 1$. We put $I_{0, \chi}=\Lambda$. The following is the main result of this paper.
Theorem Under the above setting, we have $J_{n, \chi}=I_{n, \chi}$ for all $n \geq 0$ and χ.

In [4, Proposition 1], we proved this assertion for the case $p \geq 3$ when p does not split in K and χ is even, by showing both the inclusions $I_{n, \chi} \subseteq$ $J_{n, \chi}$ and $J_{n, \chi} \subseteq I_{n, \chi}$. The method in [4] can be applied also to the case where $p \geq 3, p \nmid[K: \mathbb{Q}]$ and χ is an even character of type (A). We showed the first inclusion $I_{n, \chi} \subseteq J_{n, \chi}$ in a direct way. However, to show the second one, we needed some subtle treatment of the twisted logarithm of the "Coleman power series" associated to each element of $\mathcal{U}_{\infty}(\chi)$ combined with the structure theorem ([3, Theorems 1, 2]) on semi-local units modulo cyclotomic units. Thus, the method in [4] is rather complicated, and in particular can not be applied for odd characters χ. In this paper, we show Theorem by showing (i) $I_{n, \chi} \subseteq J_{n, \chi}$ for each χ associated to K and (ii) that the product $\prod_{\chi}\left|\Lambda_{\chi} / I_{n, \chi}\right|$ equals $\prod_{\chi}\left|\Lambda_{\chi} / J_{n, \chi}\right|$ in quite an elementary way.

3. Proof

We denote by $B(m, n)={ }_{m} C_{n}$ the binomial coefficient. The following lemma is easy to show (see [4, Lemma 4]).
Lemma 1 The binomial coefficient $B\left(p^{n}, j\right)$ is divisible by p^{n-k} for any k and j with $0 \leq k \leq n-1$ and $p^{k} \leq j \leq p^{k+1}-1$.
Lemma 2 When $p \geq 3$ (resp. $p=2$), $B\left((1+q)^{p^{n}}, j\right)$ is divisible by p for $2 \leq j \leq p^{n+1}-1$ (resp. $2 \leq j \leq p^{n+2}-1$), but not divisible by p when $j=p^{n+1}\left(\right.$ resp. $\left.p^{n+2}\right)$.

Proof. When $p \geq 3$, the assertion was shown in [4, Lemma 7]. It is shown similarly for the case $p=2$.

We fix a prime divisor v of K_{∞} over p. We also denote by v the restriction of v to each subfield K_{n}. Let K_{n}^{v} be the completion of K_{n} at v, U_{n}^{v} the group of principal units of $K_{n}^{v}, U_{\infty}^{v}=\lim U_{n}^{v}$ the projective limit with respect to the relative norms $K_{m}^{v} \rightarrow K_{n}^{v}(m>n)$, and V_{n}^{v} the image of the projection $U_{\infty}^{v} \rightarrow U_{n}^{v}$. Let $D \subseteq \Delta$ be the decomposition group of the prime p in K / \mathbb{Q}, and $\chi_{\mid D}$ the restriction of χ to D. The groups U_{n}^{v} and V_{n}^{v} are naturally regarded as modules over $\mathbb{Z}_{p}[D \times \Gamma]$. We have an isomorphism

$$
\mathcal{U}_{n} \cong U_{n}^{v} \otimes_{\mathbb{Z}_{p}[D]} \mathbb{Z}_{p}[\Delta]
$$

of $\mathbb{Z}_{p}[\Delta \times \Gamma]$-modules. This induces isomorphisms

$$
\begin{equation*}
\mathcal{U}_{n}(\chi) \cong U_{n}^{v}\left(\chi_{\mid D}\right) \otimes \mathcal{O}_{\chi} \quad \text { and } \quad \mathcal{V}_{n}(\chi) \cong V_{n}^{v}\left(\chi_{\mid D}\right) \otimes \mathcal{O}_{\chi} \tag{7}
\end{equation*}
$$

of Λ-modules where the tensor products are taken over the ring \mathcal{O}_{ψ} with $\psi=\chi_{\mid D}$. By (3), we can choose and fix an element $\boldsymbol{u}=\left(\boldsymbol{u}_{n}\right)_{n \geq 0} \in \mathcal{U}_{\infty}(\chi)$ so that the correspondence

$$
\begin{equation*}
\boldsymbol{u}_{n}^{g} \leftrightarrow g \bmod \left(w_{n}\right) \text { or }\left(w_{n}, 2 w_{n} / s\right) \tag{8}
\end{equation*}
$$

induces the isomorphism (4). We denote by K_{-1} the maximal subextension of K / \mathbb{Q} unramified at p. Then we have $K=K_{-1}\left(\zeta_{p}\right)$ as $p \nmid[K: \mathbb{Q}]$. We naturally identify $\Delta_{-1}=\operatorname{Gal}\left(K_{-1} / \mathbb{Q}\right)$ with $\operatorname{Gal}\left(K / \mathbb{Q}\left(\zeta_{p}\right)\right)$. We put

$$
\mathcal{R}=\prod_{w} O_{w}
$$

where w runs over the prime divisors of K_{-1} over p, and O_{w} is the ring of integers of the completion of K_{-1} at w. We choose and fix a primitive p^{n+1} st root $\zeta_{p^{n+1}}$ of unity so that $\zeta_{p^{n+1}}^{p}=\zeta_{p^{n}}$ for all n, and put $\pi_{n}=\zeta_{p^{n+1}}-1$ or $\zeta_{p^{n+2}}-1$ according as $p \geq 3$ or $p=2$. Then $\pi_{n} \in K_{n}\left(\zeta_{\tilde{p}}\right)$, and $N_{n, n-1}\left(\pi_{n}\right)=$ π_{n-1} where $N_{n, n-1}$ is the norm map from $K_{n}\left(\zeta_{\tilde{p}}\right)$ to $K_{n-1}\left(\zeta_{\tilde{p}}\right)$. For each norm coherent system $u=\left(u_{n}\right)_{n \geq 0} \in \mathcal{U}_{\infty}$, there exists a unique power series $f_{u}(t)$ in $\mathcal{R}[[t]]$ with $f_{u}(0) \equiv 1 \bmod p$ such that $u_{n}^{\varphi^{n}}=f_{u}\left(\pi_{n}\right)$ for all n by Coleman [1]. Here, $\varphi \in \Delta_{-1}$ is the Frobenius automorphism at p, which naturally acts on \mathcal{U}_{n}. We denote by $\mathfrak{f}(t)=f_{\boldsymbol{u}}(t) \in \mathcal{R}[[t]]$ the Coleman
power series associated to the fixed element $\boldsymbol{u} \in \mathcal{U}_{\infty}(\chi)$. The Galois group $\Delta \times \Gamma$ naturally acts on \mathcal{R} through the surjection $\Delta \times \Gamma \rightarrow \Delta_{-1}$. The completed group ring $\mathbb{Z}_{p}[\Delta][[\Gamma]]$ acts on each power series $f \in \mathcal{R}[[t]]$ with $f(0) \equiv 1 \bmod p$ by

$$
f^{\sigma}(t)=f_{\sigma}\left((1+t)^{\kappa(\sigma)}-1\right) \quad(\sigma \in \Delta \times \Gamma)
$$

and \mathbb{Z}_{p}-linearlity. Here, f_{σ} is the power series obtained from f by the Galois action of σ on its coefficients, and $\kappa: \Delta \times \Gamma \rightarrow \mathbb{Z}_{p}^{\times}$denotes the character representing the Galois action on all the p-power-th roots of unity. In particular, we have

$$
f^{\gamma}(t)=f\left((1+t)^{1+q}-1\right) .
$$

We can easily show that

$$
\begin{equation*}
f^{\alpha}\left(\pi_{n}\right)=f\left(\pi_{n}\right)^{\alpha} \tag{9}
\end{equation*}
$$

for $\alpha \in \mathbb{Z}_{p}[\Delta][[\Gamma]]$.
Proof of Theorem for type (B). Putting $\psi=\chi^{*}$, we have $\chi=\omega_{p} \psi^{-1}$ and $\psi(p)=1$. As $\psi(p)=1$, we may as well assume that p splits completely in K_{-1} and that $\chi_{\mid D}=\omega_{p}$. In [6], we have shown Theorem when the base field is the p th cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$ for the character ω_{p} of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$. Therefore, the assertion for the general case follows from (7) since the completion K^{v} of $K=K_{-1}\left(\zeta_{p}\right)$ equals $\mathbb{Q}_{p}\left(\zeta_{p}\right)$.
Lemma 3 We have $I_{n, \chi} \subseteq J_{n, \chi}$ for any n and χ.
Proof. It suffices to deal with type (A) or (C). First, assume that $p \geq 3$. We have shown the assertion in [4, Lemma 8] using Lemmas 1 and 2, under the additional assumptions that p does not split in K and χ is even. The assertion is shown quite similarly without the additional assumptions.

We assume that $p=2$. We first show that

$$
\begin{equation*}
f^{s^{2^{m}}} \equiv 1 \bmod \left(2, t^{2^{m+2}}\right) \tag{10}
\end{equation*}
$$

holds for any $m \geq 0$. We easily see from Lemma 2 that

$$
(1+t)^{(1+q)^{2^{m}}}-1 \equiv t \bmod \left(2, t^{2^{m+2}}\right)
$$

for any $m \geq 0$. It follows that

$$
\begin{equation*}
\mathfrak{f}^{\gamma^{2^{m}}}(t)=\mathfrak{f}\left((1+t)^{(1+q)^{2^{m}}}-1\right) \equiv \mathfrak{f}(t) \bmod \left(2, t^{2^{m+2}}\right) \tag{11}
\end{equation*}
$$

Letting $m=0$, we have $\mathfrak{f}^{\gamma} \equiv \mathfrak{f} \bmod \left(2, t^{2^{2}}\right)$. Hence

$$
\mathfrak{f}^{s}=\mathfrak{f}^{\gamma-1} \equiv 1 \bmod \left(2, t^{2^{2}}\right)
$$

and (10) holds when $m=0$. Let $m \geq 1$. Assume that $\mathfrak{f}^{s^{2^{k}}} \equiv 1$ modulo $\left(2, t^{2^{k+2}}\right)$ for all k with $0 \leq k \leq m-1$. Raising to the 2^{m-k} th power, we obtain

$$
\begin{equation*}
\mathfrak{f}^{s^{2^{k}} \cdot 2^{m-k}} \equiv 1 \bmod \left(2, t^{2^{m+2}}\right) \tag{12}
\end{equation*}
$$

for $0 \leq k \leq m-1$. On the other hand,

$$
\begin{equation*}
\mathfrak{f}^{\gamma^{2^{m}}-1} \equiv 1 \bmod \left(2, t^{2^{m+2}}\right) \tag{13}
\end{equation*}
$$

holds by (11). Further, we have

$$
s^{2^{m}}=\left(\gamma^{2^{m}}-1\right)-\sum_{k=0}^{m-1}\left(\sum_{j=2^{k}}^{2^{k+1}-1} B\left(2^{m}, j\right) s^{j}\right)
$$

and $B\left(2^{m}, j\right)$ is divisible by 2^{m-k} when $2^{k} \leq j \leq 2^{k+1}-1$ by Lemma 1 . Therefore, we see from (12) and (13) that the assertion (10) holds also for m.

Now, let us show the lemma (for $p=2$). By (4), (8) and $\mathfrak{f}\left(\pi_{n}\right)=\boldsymbol{u}_{n}^{\varphi^{n}}$, we see that it suffices to show that $\mathfrak{f}\left(\pi_{n}\right)^{\alpha} \equiv 1 \bmod 2$ for $\alpha=2^{n}$ and $2^{n-1-k} s^{2^{k}}$ with $0 \leq k \leq n-1$. We note that $\pi_{n}=\zeta_{2^{n+2}}-1$ and $\left(\pi_{n}\right)^{2^{n+1}}=(2)$. As the abelian extension K / \mathbb{Q} is of odd degree, it is unramified at the prime 2 . It follows that

$$
\mathfrak{f}\left(\pi_{0}\right)=\mathfrak{f}\left(\zeta_{4}-1\right)=\boldsymbol{u}_{0} \equiv 1 \bmod 2
$$

This implies that $\mathfrak{f}(t) \equiv 1 \bmod \left(2, t^{2}\right)$. Therefore, $\mathfrak{f}\left(\pi_{n}\right) \equiv 1 \operatorname{modulo}\left(\pi_{n}\right)^{2}=$
$\left(\pi_{n-1}\right)$, and hence

$$
\mathfrak{f}\left(\pi_{n}\right)^{2^{n}} \equiv 1 \bmod \left(\pi_{n-1}\right)^{2^{n}}=(2)
$$

By (9) and (10), we have

$$
\mathfrak{f}\left(\pi_{n}\right)^{{2^{2^{k}}}=\mathfrak{f}^{s^{2^{k}}}\left(\pi_{n}\right) \equiv 1 \bmod \left(\pi_{n}\right)^{2^{k+2}}}
$$

Hence, we observe that

$$
\mathfrak{f}\left(\pi_{n}\right)^{2^{n-1-k} s^{2^{k}}} \equiv 1 \bmod \left(\pi_{n}\right)^{2^{n+1}}=(2)
$$

We denote by $\mathbb{Q}_{p}(\chi)$ the quotient field of $\mathcal{O}=\mathcal{O}_{\chi}$ and put $d_{\chi}=\left[\mathbb{Q}_{p}(\chi)\right.$: $\left.\mathbb{Q}_{p}\right]$. Let $\operatorname{ord}_{p}(*)$ be the additive valuation on \mathbb{Q}_{p} with $\operatorname{ord}_{p}(p)=1$.

Lemma 4 We have

$$
\operatorname{ord}_{p}\left(\left|\Lambda_{\chi} / I_{n, \chi}\right|\right)= \begin{cases}d_{\chi} \frac{p^{n}-1}{p-1}, & \text { for type (A) or (C) } \\ d_{\chi}\left(\frac{p^{n}-1}{p-1}-n\right), & \text { for type (B) }\end{cases}
$$

Proof. For type (A) or (C), we see from the definition of $I_{n, \chi}$ that

$$
\Lambda_{\chi} / I_{n, \chi} \cong \mathcal{O} / p^{n} \oplus \bigoplus_{k=0}^{n-2}\left(\mathcal{O} / p^{n-1-k}\right)^{\oplus p^{k}(p-1)}
$$

Hence, it follows that

$$
\frac{1}{d_{\chi}} \operatorname{ord}_{p}\left(\left|\Lambda_{\chi} / I_{n, \chi}\right|\right)=n+(p-1) \sum_{k=0}^{n-2}(n-1-k) p^{k}=\frac{p^{n}-1}{p-1} .
$$

The assertion follows similarly for type (B).
Lemma 5 We have

$$
\left|\mathcal{U}_{n}(\chi) / \mathcal{U}_{n}^{(1)}(\chi)\right|= \begin{cases}\left|\mathcal{V}_{n}(\chi) / \mathcal{V}_{n}^{(1)}(\chi)\right|, & \text { for type }(\mathrm{A}) \text { or }(\mathrm{C}) \\ \left|\widetilde{\mathcal{V}}_{n}(\chi) / \widetilde{\mathcal{V}}_{n}^{(1)}(\chi)\right| \times p^{n d_{\chi}}, & \text { for type }(\mathrm{B}) .\end{cases}
$$

Proof. The assertion is obvious for type (A). First, let us deal with type (B). We have a filtration

$$
\mathcal{U}_{n}(\chi) \supseteq \mathcal{U}_{n}^{(1)}(\chi) \mathbb{T}_{n} \supseteq \mathcal{U}_{n}^{(1)}(\chi)
$$

The natural map $\mathcal{U}_{n}(\chi) \rightarrow \widetilde{\mathcal{V}}_{n}(\chi) / \widetilde{\mathcal{V}}_{n}^{(1)}(\chi)$ induces an isomorphism

$$
\mathcal{U}_{n}(\chi) / \mathcal{U}_{n}^{(1)}(\chi) \mathbb{T}_{n} \cong \widetilde{\mathcal{V}}_{n}(\chi) / \widetilde{\mathcal{V}}_{n}^{(1)}(\chi)
$$

Further, we have

$$
\mathcal{U}_{n}^{(1)}(\chi) \mathbb{T}_{n} / \mathcal{U}_{n}^{(1)}(\chi) \cong \mathbb{T}_{n} /\left(\mathbb{T}_{n} \cap \mathcal{U}_{n}^{(1)}(\chi)\right)=\mathbb{T}_{n} / \mathbb{T}_{0}
$$

From these, we obtain the assertion.
Next, we deal with type (C). From (2), we see that

$$
\begin{align*}
\mathcal{U}_{n}(\chi) / \mathcal{U}_{n}^{(1)}(\chi) & =\left(\mathcal{V}_{n}(\chi) \mathcal{U}_{0}(\chi)\right) /\left(\mathcal{V}_{n}^{(1)}(\chi) \mathcal{U}_{0}(\chi)\right) \\
& \cong \mathcal{V}_{n}(\chi) /\left(\mathcal{V}_{n}(\chi) \cap\left(\mathcal{V}_{n}^{(1)}(\chi) \mathcal{U}_{0}(\chi)\right)\right) . \tag{14}
\end{align*}
$$

For $x \in \mathcal{V}_{n}^{(1)}(\chi)$ and $y \in \mathcal{U}_{0}(\chi)$, assume that $x y \in \mathcal{V}_{n}(\chi)$. Then, as $y \in$ $\mathcal{V}_{n}(\chi)$, it follows from (1) that $y^{2 p^{n}}=N_{n, 0}(y)^{2}=1$. Hence, y is contained in the \mathbb{Z}-torsion part $\operatorname{Tor}_{\mathbb{Z}} \mathcal{U}_{0}(\chi)$. By (1), we have $\operatorname{Tor}_{\mathbb{Z}} \mathcal{U}_{0}(\chi)=\mathcal{V}_{0}(\chi) \subseteq \mathcal{V}_{n}(\chi)$. Therefore, we see that $x y \in \mathcal{V}_{n}^{(1)}(\chi)$ as $\mathcal{U}_{0}=\mathcal{U}_{0}^{(1)}$, and hence

$$
\mathcal{V}_{n}(\chi) \cap\left(\mathcal{V}_{n}^{(1)}(\chi) \mathcal{U}_{0}(\chi)\right)=\mathcal{V}_{n}^{(1)}(\chi)
$$

Thus we obtain the assertion from (14).
Proof of Theorem. As $p \nmid[K: \mathbb{Q}]$, the ramification index of p in K equals $p-1$, and $\zeta_{p}-1$ is a local parameter of a prime ideal of K over p. Let $\left(\zeta_{p}-1\right)=\prod_{i=1}^{g} \mathfrak{P}_{i}$ be the prime decomposition of $\zeta_{p}-1$ in K, and let f be the residue class degree of \mathfrak{P}_{i}. We have $(p-1) f g=[K: \mathbb{Q}]$. Denote by $\mathfrak{P}_{i, n}$ the unique prime ideal of K_{n} over \mathfrak{P}_{i}, and \mathcal{O}_{n} the ring of integers of K_{n}. Letting $\mathfrak{A}_{n}=\prod_{i=1}^{g} \mathfrak{P}_{i, n}$, we see that $\mathcal{U}_{n} / \mathcal{U}_{n}^{(1)}$ is isomorphic to the group

$$
\left\{x \in \mathcal{O}_{n} \mid x \equiv 1 \bmod \mathfrak{A}_{n}\right\} /\left\{x \in \mathcal{O}_{n} \mid x \equiv 1 \bmod \mathfrak{A}_{n}^{p^{n}}\right\}
$$

The order of this group equals

$$
\prod_{i=1}^{g}\left|\mathfrak{P}_{i, n} / \mathfrak{P}_{i, n}^{p^{n}}\right|=\prod_{i=1}^{g}\left|\mathcal{O}_{n} / \mathfrak{P}_{i, n}^{p^{n}-1}\right|=p^{f g\left(p^{n}-1\right)}
$$

It follows that

$$
\operatorname{ord}_{p}\left(\left|\mathcal{U}_{n} / \mathcal{U}_{n}^{(1)}\right|\right)=[K: \mathbb{Q}] \times \frac{p^{n}-1}{p-1} .
$$

On the other hand, it follows from Lemma 5 that

$$
\left|\mathcal{U}_{n} / \mathcal{U}_{n}^{(1)}\right|=\prod_{\chi}\left|\Lambda_{\chi} / J_{n, \chi}\right| \times \prod_{\chi}{ }^{*} p^{n d_{\chi}} .
$$

Here, in the first product \prod_{χ} (resp. the second product $\left.\prod_{\chi}{ }^{*}\right), \chi$ runs over a complete set of representatives of the \mathbb{Q}_{p}-conjugacy classes of all the $\overline{\mathbb{Q}}_{p^{-}}$ valued characters of Δ (resp. of those of type (B)). Thus, we obtain

$$
\sum_{\chi} \operatorname{ord}_{p}\left(\left|\Lambda_{\chi} / J_{n, \chi}\right|\right)=[K: \mathbb{Q}] \times \frac{p^{n}-1}{p-1}-\sum_{\chi}^{*} n d_{\chi}
$$

We see from Lemma 4 that

$$
\sum_{\chi} \operatorname{ord}_{p}\left(\left|\Lambda_{\chi} / I_{n, \chi}\right|\right)=[K: \mathbb{Q}] \times \frac{p^{n}-1}{p-1}-\sum_{\chi}^{*} n d_{\chi} .
$$

by noting that $\sum_{\chi} d_{\chi}=[K: \mathbb{Q}]$. Now, we obtain Theorem from the above two formulas because we already know that $I_{n, \chi} \subseteq J_{n, \chi}$ by Lemma 3 .

References

[1] Coleman R., Division values in local fields. Invent. Math., 53 (1979), 91116.
[2] Coleman R., Local units modulo circular units. Proc. AMS., 89 (1983), 1-7.
[3] Gillard R., Unités cyclotomiqués, unités semi-locales et \mathbb{Z}_{ℓ}-extensions II. Ann. Fourier Inst., 29 (1979), 1-15.
[4] Ichimura H., On p-adic L-functions and normal bases of rings of integers. J. Reine Angew. Math., 462 (1995), 169-184.
[5] Ichimura H., On a normal integral basis problem over cyclotomic \mathbb{Z}_{p} extensions. J. Math. Soc. Japan, 48 (1996), 689-703.
[6] Ichimura H., On some congruences for units of local p-cyclotomic fields. Abh. Math. Semin. Univ. Hamburg, 66 (1996), 273-279.
[7] Ichimura H. and Sumida-Takahashi H., Normal integral basis of an unramified quadratic extension over a cyclotomic \mathbb{Z}_{2}-extension. J. Théor. Nombres Bordeaux, in press.
[8] Iwasawa K., On some modules in the theory of cyclotomic fields. J. Math. Soc. Japan, 16 (1964), 42-82.
[9] Sumida H., Greenberg's conjecture and the Iwasawa polynomial. J. Math. Soc. Japan, 49 (1997), 689-711.
[10] Washington L. C., Introduction to Cyclotomic Fields (2nd ed.). Springer, New York, 1997.

Faculty of Science
Ibaraki University
Bunkyo 2-1-1, Mito, 310-8512, Japan
E-mail: humio.ichimura.sci@vc.ibaraki.ac.jp

