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Bi-flows on a network
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Abstract. Flows on a network play an important role in the theory of discrete har-
monic functions. In the study of discrete bi-harmonic functions, we encounter a con-
cept of bi-flows. In this paper, we are concerned with minimization problems for
bi-flows which are analogous to those for flows.

Key words: discrete potential theory, bi-harmonic Green function, bi-flows on a net-
work.

1. Introduction

In the theory of discrete potential theory on networks, it is well-known
that flows have played an important role related to discrete harmonic func-
tions. For example, a minimizing problem related to flows from a node
to the ideal boundary with unit strength characterizes the harmonic Green
function. In this paper, we introduce an arc-arc incidence matrix b(y,y’) of
two arcs y and y’ and an operator B, related to it. We say that a function
w on arcs is a bi-flow if B,w is a flow. If w is a bi-harmonic function de-
fined on nodes, then we see that the discrete derivative w = du is a bi-flow.
We shall consider two minimizing problems related to bi-flows from a node
to the ideal boundary. The optimal solution of each minimizing problem
characterizes the bi-harmonic Green function.

We organize this paper as follows: Some properties of b and B, will be
given in Section 3. We define bi-flows as well as weak bi-flows in Section 4.
Two minimizing problems related to bi-flows are given in Sections 5 and 6.

2. Preliminaries

Let N = {X,Y,K,r} be an infinite network which is connected and
locally finite and has no self-loops. Here X is the set of nodes and Y is
the set of arcs. The node-arc incidence matrix K is a function on X x Y
and K(z,y) = —1 if = is the initial node z~(y) of y; K(x,y) = 1 if x
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is the terminal node z*(y) of y; otherwise K(z,y) = 0. The resistance r
is a strictly positive function on Y. Let L(X) be the set of all real valued
functions on X and let Lo(X) be the set of all u € L(X) with finite supports.
We define L(Y') and Lo(Y') similarly.

For u € L(X) and w € L(Y), we define du € L(Y') and dw € L(X) by

du(y) = —r(y)~" Y K(z,y)u(@)

zeX

= ZK(J;,y)w

yey

Also we define the Laplacian Au € L(X) and the bi-Laplacian A%*u € L(X)
for u € L(X) by

Au = 0(du), A?u = A(Au).

Fory € Y, let e(y) = {z € X; K(x,y) # 0} = {z*(y),2 (y)}. Fora € X,
denote by X(a) the set of nodes z € X such that K(a,y)K(z,y) # 0 for
some y € Y.

We shall study the bi-Laplacian and bi-flows on a network by using an
arc-arc incidence function bon Y x Y.

3. An arc-arc incidence function
An arc-arc incidence function b on Y x Y is defined by

= Z K(z,y)K(z,y’) = Z K(Z,y)K(Z,yl).

zeX z€e(y)Ne(y’)

Proposition 3.1  The arc-arc incidence function b has the following prop-
erties:

(i) b
(i) b

(v, )—b(y y) for ally,y' € Y;

(v, y) =

(iii) b(y,y") = K(x y)K(z,y") if y and y' meet only one node x, i.e.,
(y) Ne(y) ={z};

(iv) b(y,y") =0 ife(y) Ne(y') = 0;

In case e(y) =e(y’) and y # v/,

b
e
b
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(v) by, y') =2 ifat(y) =27 () and 2~ (y) = 2~ (v);
(vi) b(y,y') = =2 ifxt(y) =27 (y') and ™ (y) = 2 (y').

Define a linear operator B, from L(Y) to L(Y) by

Byw(y) =r(y) " D by, v)w(y).

y' ey
Lemma 3.1 B,w=—dow onY.

Proof. A simple calculation shows that

Baw(y) =r(y)~! Z < Z K(z, y)K(z,y’)>w(y’)

= T(y)fl Z K(z,y)< Z K(z,y')w(y'))
z€X y' ey

— ()" Y K(zy)du(z) = —dduw(y). -
zeX

Define ¢(x, z) for z,z € X by

c(w,2) =Y r(y) 'K (z,y)K(z,y).

yey

Lemma 3.2 (i) ¢(z,2) #0 if and only if z € X(z).
(1) Yoex cla.2) = 0.
(ili) Au(x) = =3 cxc(, 2)u(z).

Proof. (i) It is trivial that z ¢ X (z) implies ¢(z,2) = 0. If z = 2, then
K(z,y)K(z,y) € {0,1} forally € Y and K(z,y)K(z,y) = 1 forsomey € Y.
Therefore ¢(z,z) > 0. Let z € X(x) \ {z}. Then K(z,y)K(z,y) € {0,—1}
forally € Y and K(z,y)K(z,y) = —1 for some y € Y. Therefore c¢(z, z) <
0.

(ii) Since ),y K(z,y) = 0 for every y € Y, we have

D e z) =) ry) ' K(z,y) Y K(z,y) =0.

zeX yey zeX
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(i) > el 2)u(z) =YY r(y) 'K(z,y)K(z y)u(z)

zeX zeX yey
= r(y) ' K(z,y) Y K(zy)u(2)
yey zeX
=— Z K(z,y)du(y) = —0du(x) = —Au(z). O
yey
4. Bi-flows

Let a,b € X. We say that w € L(Y) is a flow from a to b of strength
I[w] if the following condition is fulfilled:

dw(x) = (ep(x) — €a())Iw],

where e,(x) = 0 if z # a and €,(a) = 1. Denote by F(a,b) the set of all
flows from a to b.

Lemma 4.1 B,w(y) =r(y) (K (b,y) — K(a,y))I[w] for w € F(a,b).

Proof. We have by Lemma 3.1

Byw(y) = —dow(y Y K(zy)(e(2) — cal2)I[w]
z€X
=r(y) " (K(b,y) — K(a,y)I[w]. O

We say that w € L(Y) is a bi-flow from a to b of strength J[w] if
B,w € F(a,b) and J[w]| = I[B,w], i.e

OB, w(z) = (ep(x) — €a(x))J[w)].

Denote by BF(a,b) the set of all bi-flows from a to b.
Assume that X (a) N X(b) = 0. We say that w € L(Y') is a weak bi-flow
from a to b of strength J[w] if

OB,w(z) =0 forallz e X\ {X(a)UX(b)},

Z OB, w(z) = Z OB, w(x).

IEX(G) IEX(b)
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Denote by WBF (a, b) the set of all weak bi-flows from a to b.
Denote by C and Cp the set of cycles on N and the set of bicycles on
N,

C={weLY);0w=0}, Cp={weL(Y);0Bw=0}.

Denote by K and H the kernel of B, and the set of all harmonic functions
on X,

Kp={weLY);Bw=0}, H={ueL(X);Au=0}.

Lemma 4.2 {dh;he H} Cc CC Kp C Cp.

Proof. Let h € H. Then 0(dh) = Ah = 0, so that dh € C. Let w € C.
Then by Lemma 3.1 B,w = —ddw = 0, so that w € Kg. The inclusion
Kp C Cg is trivial. O

) C C F(a,b) and Cp C BF(a,b) fora,be X.
=0} = C and {w € BF(a,b); J[w] = 0} = Cp for

Proposition 4.1 (i
(ii) {w € F(a,b); Tfu] = 0}
a,be X.
(iii) F(a,a) = C and BF(a,a) = Cp fora € X.
(iV) F(al,bl)ﬁF(ag,bg) =C and BF(al,bl)ﬂBF(ag,bg) = CB fOT’ ai,az,
bl,bg € X with {al,bl} 75 {ag,bg}.

Proof.  'We shall show the assertions for F(a, b); the assertions for BF(a, b)
can be similarly proved. We easily have (i) and (ii).

To prove (iii), it suffices to show that F(a,a) C C. Let w € F(a,a).
Then 0w = (¢4 — €4)I[w] = 0, so that w € C.

We shall prove (iv). We need to show that F(ai,b1) N F(az,be) C C.
We may assume ay ¢ {a2,bs}. Using (iii) we may also assume that a; # by
and az # by. Let w € F(ay,b1) N F(ag,b2). Then dw(a;) = —I[w] from
w € F(a1,b1) and dw(ay) = 0 from w € F(ag,by). We have I[w] = 0, so

that Ow = 0. g
Theorem 4.1  Assume that X (a) N X (b) = 0.
(i) BF(a,b) ¢ WBF(a,b) and J[w] = J[w] for w € BF(a,b).

(ii) F(a,b) € WBF(a,b) and J[w] = 0 for w € F(a,b).
(iii) F(a,b) N BF(a,b) = C.
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Proof. 1t is easy to see that (i) holds. We shall prove (ii). Let w € F(a,b).
By Lemma 4.1

OB w(x) = Y K(z,y)r(y) " (K(b,y) — K(a,y))I[w]

= (c(z,b) — c(x,a))Iw]. (1)

For z € X \ (X(a) U X (b)) we have 0B, w(z) = 0 by Lemma 3.2 (i). Also
Lemma 3.2 (i) and (ii) show that }° ¢ v (o) 0Brw(z) = = 3, c x (o) (2, a) I [w]
= 0. Similarly }_, ¢ v,y 0Brw(z) = 0.

Next we prove (iii). Lemma 4.2 and Proposition 4.1 (i) show that C C
F(a,b) N BF(a,b). We shall show the converse. Let w € F(a,b) N BF(a,b).
Let x € X(a) \ {a}. Then the equation (1) shows that 0 = dB,w(x) =
—c(z,a)I[w]. Lemma 3.2 (i) implies I[w] = 0, which means dw = 0. O

Theorem 4.2  Suppose that X (a) U X (b) # (X (a) N X (b)) U{a,b}. Then
F(a,b) NBF(a,b) C CNKgp.

Proof. 1t is clear that (X(a) N X (b)) U {a,b} C X(a)U X(b). By our
assumption, there exists xg € X (a)U X (b) such that z¢ ¢ (X (a) N X (b)) U
{a,b}. We may assume that zo € X(a),z9 ¢ X(b) and xg # a. Let
w € F(a,b) N BF(a,b). Since K(zg,y)K (b,y) =0 for all y € Y, we have by
Lemma 4.1

0 = 90B,w(xp) = Z K(zo,y)Brw(y)
yey

= —T[w] Z r(y) K (z0,y) K (a,y) = —I[w]c(zo, a).

Lemma 3.2 (i) shows that ¢(zg,a) # 0, and that I[w] = 0. Thus dw = 0 on
X. Lemma 4.1 shows that B,w =0on Y. Il

5. Bi-flows to the ideal boundary

Now we recall some definitions related to the energy H[w] of w € L(Y)
and the Dirichlet sum Dlu] of u € L(X):
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Lo(Yir) ={w € L(Y); H[w] < oo},

Dlu, ] = (du,du’) = > r(y)du(y)du/ (y),

yey
Dl[u) = Dlu,u] = H[du] = Y _ r(y)(du(y))?,
yey
D(N) ={u € L(X); D[u] < co}.

Lemma 5.1 (du,du’) = - v u(z)Au'(z) for u € Lo(X) and for v’ €
D(N).

Proof.
(du, du’y =" r(y)du(y)du'(y) = =Y Y K(z,y)ul(z)du' (y)
yey y€Y z€X
==Y @) Y Kyl () = — 3 ula)od ()
=— Z u(z)Au' (). O
zeX

It is known that D(N) (L2(Y';r) resp.) is a Hilbert space with respect
to the norm ||ulls = (D[u] + u(x)?)/? (H[w]'/? resp.) with a fixed node
xo € X. Denote by Dg(N) the closure of Ly(X) in the Hilbert space D(V)
(see [3]).

The Green function g, € L(X) with pole at a € X is defined as the
unique function satisfying the conditions:

go € Do(N) and Ag, = —¢, on X.

We know that g, exists for every a if and only if N is hyperbolic, i.e.,

Dy(N) # D(N) (see [2]). Denote by HD(N) the set of all u € D(NN) such
that Au = 0.
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Lemma 5.2 Dy(N)NHD(N) = {0} if and only if N is hyperbolic.

Proof. If N is parabolic, then 1 € D(N) = Dy (), which is also harmonic.
This means 1 € Do(N) N HD(N).

Conversely, we assume that NV is hyperbolic. Let u € Do(N) "HD(N).
Then both v = u 4+ 0 and v = 0 4+ v are the Royden decompositions. The
uniqueness of the Royden decomposition implies that u = 0. O

We say that w € L(Y) is a flow from a € X to the ideal boundary with
strength I[w] if

ow(z) = —eq(x)I[w].

Let F(a,00) be the set of all flows w from a to the ideal boundary. It is
well-known that dg, is characterized as the unique optimal solution to the
following extremal problem:

d*(a,o0) = inf{H[w];w € F(a,0), I[w] =1}.

We say that w € L(Y) is a bi-flow from a € X to the ideal boundary
with strength J{w] if

OB, w(z) = —egq4(x)J[w].
Notice that
Jw] = Adw(a).

Denote by BF(a, c0) the set of all bi-flows from a to the ideal boundary of
N.

Analogous to d*(a, 00), we consider the following extremal problem:
dp(a,00) = inf{H[w|;w € BF(a,o0), ow € Do(N), Jw|] =1} (%)

The bi-harmonic Green function q, € L(X) with pole at a is defined by

Ga(®) = Y ga(2)g:(x)

ze€X

if the sum converges (see [1], [4]). Notice that
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Agy = —g, and A2qa =g, on X,

and that dg, is a feasible solution to the problem (x).
We proved the following lemma in [6, Theorem 4.2]:

Lemma 5.3 Let N be parabolic and v € D(N). If > -« |Au(z)| < oo,
then Y. cx Au(z) = 0.

Corollary 5.1 If dj(a,00) < oo, then N is hyperbolic and Ow = —g, for
all feasible solution w to the problem (x).

Proof. Let w be a feasible solution to the problem (x). Then u = dw €
Dy(N) and Au(z) = —0B,w(x) = €4(x). By the above lemma, N must be
hyperbolic and u = —g,. (]

The next theorem is an extension of [4, Theorem 3.1], which shows that
da € D(N) is equivalent to g, € Do(V).

Theorem 5.1  The following are equivalent:

(1) g € D(N);
(ii) ¢a € Do(NV);
(iii) dj(a,00) < oo.

In this case dq, is a unique optimal solution to the problem (x).

Proof. 1t is obvious that (ii) implies (i). Suppose that ¢, € D(N). Since
dg, is a feasible solution to the problem (%), it follows that d};(a,00) < cc.
This shows that (i) implies (iii).

We shall show that (iii) implies (ii). We assume that d};(a,c0) < .
First we shall prove that there exists an optimal solution to the problem (x).
Let {w,} be a minimizing sequence of (x). Then (w,, + w,,)/2 is a feasible
solution to the problem (%), so that we have

di(a,00) < H{(wy, + wy,)/2] < H[(wy, + wi) /2] + H[(w, — Wi, ) /2]
= (Hwy] + H[wm])/2 — dp(a, 00)

as n,m — oo. Thus H[w, — w,] — 0 as n,m — oo. There exists w* €
Ly(Y;7r) such that H[w, — w*] — 0 as n — oo. Since {w,} converges
pointwise to w* and N is locally finite, we obtain w* € BF(a,00) and
Jw*] = 1. Also dw,, = —g, implies that
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ow* = lim Ow, = —g, € Do(N).

n—oo

Therefore w* is an optimal solution to the problem (x).
To prove the uniqueness of an optimal solution to the problem (x), let
w’ be another optimal solution to the problem (). Then

dy(a,00) < H[(w* +w")/2] < H[(w* +w")/2] + H[(w* —w")/2]
= (H[w"] + H[w'])/2 = d}(a, 00),
so that H[w* —w'] = 0. Hence w* = w’.

For any w € Lo(Y) N C(N) and any ¢ € R, we see that w* + tw is a
feasible solution to the problem (x). Thus

dy(a,00) < Hlw* + tw] = H[w*] + 2t{w*,w) + t*H[w)|,

so that (w*,w) = 0. By the usual way, we see that there exists u* € L(X)
such that w* = du* (see the proof of [6, Theorem 3.2] for details).

Since D[u*] = H[w*] < oo, it follows that u* € D(N). Let u* = v* + h
be the Royden decomposition with v* € Dg(N) and h € HD(N). Let
w’ = dv*. Then w' is a feasible solution to the problem (%), so that

D[v*] + D[h] = D[u*] = H[w*] < H[w'] = D[v*].

This means that D[h] = 0 and H[w*| = H[w'], i.e., h is a constant function
and w* = w' = dv*.

Let {N,,} be an exhaustion of N and g((ln) the Green function of NV,, with
pole at a. We have

Y 9a(2)9V(2) = = Y (Av*(2))gt™ (2) = D", o).

zeX zeX

Since {g;(pn)}n converges to g, (see [3, Section 3]), it follows that

Z 9a(2)gz(2) < hm mf Z Ja( (”) = lim D[v ,g:(vn)]

n—oo
zeX zeX

= D[v*, g.] < D[v*]*/2D][g,]'/? < .
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In particular, we obtain Y .y ga(2)* < o0, so that ¢, € L(X) by [4, Theo-
rem 2.3].
Define f(x), fn(x) and h,(z) by

f(ﬂj) = Z gx(Z)AU*(Z) = _Qa(x) € L(X)

ze€X
fal@) = g™ (x)Av"(2)
zeX
hp =0 + fn.

Notice that h,, is harmonic on X,, and

Dit, ful = = 3 (Ahy (@) fu (@) = 0,

reX

so that D[v*] = D[hy]|+D][f,]. We see by Lebesgue’s dominated convergence

theorem that {f,(z)} converges pointwise to f(x) for all x € X. Since

{D|[fn]} is bounded, we see by [5, Theorem 4.1] that ¢, = —f € Dg(N).
Let f’ = g, — v*. Then

Af'=Ag — Av" = —g, + ga =0,
so that f* € Do(N) NHD(N). Lemma 5.2 shows f’ = 0. Therefore g, =
v* € Do(N) and dv* = dq,. O
6. Another extremal problem

Analogous to d*(a,00) and dj(a,00), we consider the following ex-
tremum problem:

dy (a,00) = inf{H[w|; w € BF(a, ), Jjw] = 1}. (xx)

Clearly d3; (a,00) < dj(a, 00).

Theorem 6.1  Assume that dij (a,00) < co. Then there exists a unique
optimal solution w** to the problem (xx). Also there exists v** € Dgy(N)
such that w** = dv**.
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Proof.  Let {w,} be a minimizing sequence of (xx). Then (w, + wy,)/2 is
a feasible solution to the problem (xx), so that we have

g (a,00) < H[(wn +wm)/2] < H[(wn + wm)/2] + H[(wn — wi)/2]
= (H[wn] + H[wn])/2 — dF (a, 0)

as n,m — oo. Thus H[w, — w,] — 0 as n,m — oo. There exists w** €
Ly(Y;7) such that H[w, — w**] — 0 as n — oo. Since {w,} converges
pointwise to w** and N is locally finite, we obtain w** € BF(a,o0) and
J[w**] = 1. Therefore w** is an optimal solution to the problem (k).

To prove the uniqueness let w’ be another optimal solution to the prob-
lem (*x). Then

dy (a,00) < H{(w™ +w')/2] < H[(w"™ + w")/2] + H[(w™ —w")/2]
= (H[w™]+ H[w'])/2 = dF (a, ),

so that H[w** —w'] = 0. Hence w** = w'.
For any w € Lo(Y) N C(N) and any ¢t € R, we see that w** + tw is a
feasible solution to the problem (xx). Thus

d3 (a,00) < H[w** + tw] = Hw**] + 2t{w**, w) + t* H[w],

so that (w**,w) = 0. By the usual way, we see that there exists u** € L(X)
such that w** = du**. Since D[u**] = H[w**] < oo, u™* € D(N).

If N is hyperbolic type, then we let u** = v** + h be the Royden
decomposition with v** € Dy(N) and h € HD(N); otherwise let v** =
u** € D(N) =Dg(N). Let w’ = dv**. Then w’ is a feasible solution to the
problem (%), so that

D[v**] + D[h] = D[u**] = H[w**] < H[w'] = D[v**].
This means that D[h] = 0 and H[w**] = H[w'], i.e., h is a constant function
and w** = w' = dv**. O

We say that a network N satisfies the condition (LD) if there exists
a constant ¢ such that D[Au] < ¢DJu| for all u € Ly(X). We say that a
network NV is of bounded degree if sup,cx >, cy [ K (2, y)| < co.
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Next proposition provides a sufficient condition for the condition (LD).

Proposition 6.1 Assume that r = 1 and that N is of bounded degree.
Then D[Au] < 8¢D[u] for all u € D(N), where vy = sup,cx Doy
|K(x,y)|. Especially N satisfies the condition (LD).

Proof. First note that a simple calculation shows that
n 2 n
(Xa) =nXel
j=1 j=1

for ag,...,a, € R.
Let w = du and v = Au. Then

do(y) ==Y by y)w(y) == > > K(z,y)K(z,y)wy).

y'ey y'eY zeX

Since the number of y' € Y with Y K(z,y)K(z,y")w(y’) # 0 is at most
2 for each y, it follows that

(do(y))? = (Z T K(x,ym(w,y')w(y'))

y' €Y zeX

<2 Y (Z K(x,y)K(x,y’)w(y’)y

y' ey xeX

Since the number of z € X with K(z,y)K(z,y’) # 0 is at most two for each

y,y' €Y, we have (30, K(z,y)K(z,y)? < 23, c x(K(2,y)K(2,9))*.
Using |K (z,y) K (z,y')]* = |K(2,y) K (z,y')| we obtain

(do(@))? < 40 3 (Z \K(x,y>K<x,y'>\)w<y'>2.

y' €Y ‘xeX

Let Y(z) ={y € Y; K(z,y) # 0} forx € X. Then }_ x> ey () w(y')? =
2> ey w(y)?. By the above estimation, we have

D[Au] = H[dv] = ) (dv(y))*
yey
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<an Y Y (X 1K K] ot

yeY y’eY rzreX

=i Y- (X (X 1)) /)ty

y'eY ‘zeX ‘yevY

<dvg Y Y K (@ y)|w(y)?

y' ey zeX
=45y D wy) =85 w(y)’
zeX y' €Y (x) yey
= 83 D[ul. O

Lemma 6.1 Assume that N satisfies the condition (LD). If u € Do(N),
then Au € Do(N).

Proof. Let {f,} be a sequence in Lo(X) such that ||f, — ull2 — 0 as
n — oo. Then ||fn — fmll2 — 0 as n,m — oo and {D[f,]} is bounded. By
the condition (LD) there exists a constant ¢ > 0 such that

D[Afn — Afm] < eD[fn — fmu] =0 (n,m — o0).

Thus ||Afn, — Afmll2 — 0 as n,m — oo. Therefore {Af,} is a Cauchy
sequence in Do(N). We can find ¢ € Do(NV) such that ||Af, — |2 — 0 as
n — oo. Since { f,(x)} converges pointwise to u(x), it follows that {A f,(x)}
converges pointwise to Au(x). Since {Af,(x)} also converges pointwise to
o(z) and {D(Af,)} is bounded, we see that Au = ¢ € Dy(N) by [5,
Theorem 4.1]. O

Theorem 6.2  Assume that N satisfies the condition (LD). Then
dif(a,00) = d(a,00). If d3(a,00) < oo, then dq, is a unique optimal
solution to the problem (kx).

Proof.  Since dif(a,00) < dij(a,00), we shall show that dij(a,oc0) >
di(a,00). We may assume that d}j (a,00) < co. Let w** and v** be the
same as in Theorem 6.1. By Lemma 6.1, we see that Av** € Do(N). This
means that w** = dv** is a feasible solution to the problem (). We have
dy(a,00) < Hw**| = dj(a, 00).
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Assume that d}(a,00) < co. Then N is hyperbolic by Corollary 5.1.
Let f' = g, — v**. Since q, € Do(N) by Theorem 5.1, it follows that f’ €
Do(N)and Af' = Aq,—Av*™* = —ga+9g, = 0, so that f' € Do(N)NHD(N).
Hence f’ = 0. This means that dg, = dv** is a unique optimal solution to
the problem (xx). g

7. An example

We show an example of w € BF(a, 00) for the following network:

Example 7.1 Let X ={z,;n>0},Y = {yp;n > 1}, e(yn) = {zn_1, 20}
for n > 1. Let K(zp,yn) =1, K(xy—1,yn) = —1 for n > 1 and K(z,y) =0
for any other pairs. For a strictly positive function ron Y, N = {X,Y, K, r}
is an infinite network.

Let r,, = 7(yn), Rn = ZZin+1 re and p, = > p_, s We assume that
p:=Y " ry <oc. Then it is easy to see that

Gxy, (xn) =R, (0 <k< n), 9z, (-Tn) = Ry (k? > TL)

Let w be a feasible solution to the problem (xx) with a = z¢ and let
v =0w. Let w, = w(y,) for n > 1. Let v, = v(x,,) for n > 0. We have

Baw(ya) = (;) > Kl ya)due) = (0~ va-1),
" ozex n
0B,w(wg) = Z K(xo,y)Brw(y) = —Brw(y1) = :1(711 — ),
yey

aBrw(l'n) = Z K(:Eﬂv y)Brw(y) = Brw(yﬂ) - B’rw(yn—l-l)

yey
1 1
= E(Un - Un—l) - m(vn—i—l - Un)~

Since OB, w(xg) = —1 and dB,w(z,) = 0 for n > 1, it follows that r, (v, —
vp—1) = 1. Thus

Up = Pn + V0.
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From

- Z K(-"En,y)w(y) = Wp — Wn+1 (n > 1)) Vg = —Wq,
yeyY

it follows that w, — wy4+1 = pn + vo, and that

wy, :lek—n—lvo—l—wl Zpk—nvg
=
Let
An::i:ipk, a—inrn, ann - ’y—z:l nA2.
Then

Hlw] = Z ani = Z Tn(—Ap — nv0)2 = 010(2) + 2Bvg + 7. (2)

Now let w’ be a feasible solution to the problem (x). In a similar way
we let w), = w'(y,) and v}, = v'(z,,) = Ow'(z,) and obtain

/U’:“l, = pn + v(lJﬂ
— Zpk — v, = — A, — nvy.
Since v' € Dg(N), we have lim,,_,o v}, = 0, or v = —p. Therefore

wh, = —A, +np. (3)

Since p = Rg and pi = Ry — R for k > 1, we have

n—1 n—1
w), = (Ro — Ri) + nRy = Z Ry. (4)
k=1 k=0

Notice that this is a unique feasible solution to the problem (k). By (3)
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dp(a,o0) Z (—A, +np)? = ap® —28p + 1.

(a) Assume that all of «, 3,7 converge. First we note that ap > (.
Indeed,

n—1 n—1 n—1 n
A, = Pk = er =>» (n—j)r; <an] nPn,
k=1 k=1 j=1 j=1 j=1
and that
0= Z nrp A, < Z 21, pn < Z n’r,p = ap.
n=1 n=1 n=1
Now (2) is minimized at vg = —f/a, so that
62
d** _ =
B (a,00) =7 o

It follows that
52 6 2
dp(a,00) = d (a,00) = ap” = 2Bp+ — = a<P - a) > 0.

Theorem 6.2 implies that N does not satisfy the condition (LD).

(b) Taking r,, = n=%/3 for n > 1, since R,, = O(n~%/3), by (4) we have
w!, = O(n'/?), and that H[w'] = O(3_>  n=%/3(n'/?)?) = co. This means
dy(a,00) = oco. On the other hand the bi-harmonic Green function g, is
given by

Zga xk gxk xn ZRkR + Z R2 _1/3).

k=n+1

Thus ¢, € L(X) does not imply d};(a,o0) < oo.
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