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The present paper is a continuation of the previous paper with title
“Analytic functions in a lacunary end of a Riemann surface”1). We use
the same notions and terminologies in the previous one. Let G be an end
of a Riemann surface\in O_{g} (we denote by O_{G} the class of Riemann surfaces
with null boundary) and G’=G-F be a lacunary end and let p\in\Delta_{1}(M) be
a minimal boundary point relative to Martin’s topology M over G with
irregularity \delta(p)=\varlimsup_{M}G(z,p_{0})>0 , where G(z,p_{0}) : p_{0}\in G’ is a Green’s func-

tion of G’. Then Theorems 2, 3 and 4 in the previous show that analytic
functions in G’ of some classes have similar behaviour at p as p is an
inner point of G’. We shall show these theoremes are valid not only for
the above domains but also for any Riemann surface \not\subset O_{G}. The exten-
sions of Fatou and Beurling’s theorems express the behaviour of analytic
functions on almost all boundary points but have no effect on the small
set, \{p\in\Delta_{1}(M):\delta(p)>\delta\} . The purpose of this paper is to study analytic
functions on the small set, to extend theorems in the previous one and
to show some examples. Let G be a domain in a Riemann surface R.
Through this paper we suppose \partial G consists of at most a countably infinite
number of analytic curves clustering nowhere in R. The following lemma
is useful.

Lemma 52). Let R be a Riemann surface\in O_{g} and let G be a domain
and U_{i}(z)(i=1,2, \cdots, i_{0}) be a harmonic function in G such that D(U_{i}(z))

<\infty . Then there exists a sequence of curves \{\Gamma_{n}\} in R such that \Gamma_{n} sepa-
rates a fixed point p_{0} from the ideal boundary, \Gamma_{n}arrow ideal boundary of R

and \int_{r_{n}qG}|\frac{\partial}{\partial n}U_{i}(z)|dsarrow 0 as narrow\infty for any i.

Generalized Gree’s function^{2)} (abbreviated by G.G.). Let R be a
Riemann surface with an exhaustion \{R_{n}\}(n=0,1,2, \cdots) and G be a domain
in R. Let w_{n,n+i}(z) be a harmonic function in R_{n+i}-(G\cap(R_{n+i}-R_{n})) such
that w_{n,n+i}(z)=0 on \partial R_{n+i}-G and =1 on G\cap(R_{n+i}-R_{n}) . We call \lim

\lim_{i}w_{n,n+i}(z) a H.M. (harmonic measure) of the boundary determined by nG
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and denote it by w(G\cap B, z) . Let V(z) be a positive harmonic function in
R except at most a set of capacity zero where V(z)=\infty . If w(G_{\delta}\cap B, z)

=0 for any \delta>0 and D( \min(M, V(z))\leqq M\alpha:\alpha is a const. for any M, we
call V(z) a G.G., where G_{\delta}=\{z\in R:V(z)\geqq\delta\} . Then it is known

LEMMA 6. 1)^{3)} Let V(z) be a non const. G.G. Let \hat{G}_{\delta} be the symmetric
image of G_{\delta} with respect to \partial G_{\delta}=\{z\in R:V(z)=\delta\} . Identify \partial G_{\delta} with \partial\tilde{G}_{\delta}.
Then we have a Rimann surface \tilde{G}_{\delta} called a double of \tilde{G}_{\delta}. Then \tilde{G}_{\delta}\in O_{g}.

2) By 1) and by Lemma 5, we see there exists a const. \alpha such that

D( \min(M, V(z)))=M\alpha and\int_{\partial G_{M}}\frac{\partial}{\partial n}V(z)ds=\alpha for any M and \sup_{z\in R}V(z)=\infty .

3) Let V(z) be a G.G. and let W(z) be a positive harmonic function
\leqq V(z)^{4)} . Then W(z) is a G. G.

4) A Green’s function of R is a G.G. with D( \min(M, G(z,p_{0})))=2\pi M.
Let p_{i} be a sequence such that G(z,p_{i})arrow a non const. harmonic function
G(z, \{p_{i}\}) . Then G(z, \{p_{i}\}) is a G.G. with D( \min(M, G(z, \{p_{i}\})))\leqq 2\pi M.

G\prime Martin’ s topologV^{5)}, GM. Let R be a Riemann surface\not\subset.O_{g} and
let G(z,p_{0}) be a Green’s function of R. Put R’=\{z\in R:G(z,p_{0})>\delta\}:\delta>0 .
Then the doubled surface \tilde{R}’ with respect to \partial R’ is in O_{g} . Let G’(z,p_{i})

be a Green’s function of R’ and let \{p_{i}\} be a sequence such that p_{i}arrow

boundary of R and G’(z,p_{i}) converges to a harmonic function. Then we
say \{p_{i}\} determines a boundary point p and put G’(z,p)= \lim G’(z,p_{i}). We
denote by B(R’) the set of all boundary points. Then G-Martin’s topology
is introduced on \overline{R}’=R’+B(R’) as usual with

dist (p_{i},p_{f})= \sup_{l\epsilon R_{0}}|\frac{G’(z,p_{i})}{1+G(z,p_{i})},-\frac{G’(z,p_{f})}{1+G(z,p_{f})},|:p_{i} , p_{i}\in\overline{R}’

where R_{0} is a compact set in R’.
Then we see G’(z,p):p\in\overline{R} ’ is a G.G. and\int_{\partial V_{M}(p)}\frac{\partial}{\partial n}G’(z,p)ds=2\pi:p\in R’ .

Where V_{M}(p)=\{z\in R^{\prime }:^{G’(z,p)>M\}} . Let p and q\in\overline{R} . Then\int_{\partial V_{M}(q)}G’(\zeta,p)\frac{\partial}{\partial n}

G’(\zeta, q)ds\uparrow asMarrow\infty . We define the value of G’(z,p) at q by \lim\frac{1}{2\pi}

\int_{\partial V_{M}(q)}G’(\zeta, p)\frac{\partial}{\partial n}G’(\zeta, q)ds also the mass m(p) of G’(z,p) by \frac{1}{2\pi}\int_{\partial V_{M}(p)}^{M=\infty}\frac{\partial}{\partial n}

G’(z,p)ds. Then
LEMMA 7. 1) G’(p, q)=G’(q,p), G’(p, q) is lower semicontinuous on

\overline{R}’\cross\overline{R} ’, G’(p,p)=\infty , if G’(z,p)>0 and G’(z,p) is continuous on \overline{R}’-p for
p\in R’ .
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2) m(p)=1 for p\in R’ and m(p) \geqq\frac{\eta}{2k} for p\in\overline{G}_{\eta}’\cap B(R’), G_{\eta}’=\{z\in R’ :
G’(z,p_{0})>\eta>0\} , k= \sup_{z\not\in R_{0}}G’(z,p_{0}), where R_{0} is a compact set with R_{0}\ni p_{0} .

Energy integral, capacities and transfinite diameters^{5)} Let F be
a closed set in R’. Let \{R_{n}\} be an exhaustion of R and let \omega_{n}(z) be a
harmonic function in (R’\cap R_{n})-F such that \omega_{n}(z)=1 on F except capacity
zero, =0 on \partial R’\cap R_{n} and \frac{\partial}{\partial n}\omega_{n}(z)=0 on (\partial R_{n}\cap R’)-F. If there exists
a const. M such that D(\omega_{n}(z))<M for any n, then \omega_{n}(z) in mean- a
function \omega(F, z) called C.P. (capacitary potential). Clearly \omega(F, z) has M.D.I.
(minimal Dirichlet integral) among all functions with value 1 on F, =0
on \partial R’ except capacity zero. In this case, R\sim’(ofR’)\in O_{g} , \omega(F, z)=w(F, z).
H.M. (harmonic measure of F). Let K be a compact set in R’. Then
evidently there exists a uniquely determined mass \mu on K of unity such
that the energy integral I( \mu)=\frac{1}{4_{\pi}^{2}}\int G’(p, q)d\mu(p)d\mu(q) is minimal and its
potential U(z) has the following properties: U(z)=M\omega(K, z), I(\mu)=D(M\omega

(K, z))=2M. We define Cap {K) by 1/I(\mu)=1/2\pi M=D(\omega(K, z))/4\pi 2 . We
define Cap(F) of a closed set F\subset\overline{\overline{R}} ’ by

\sup_{K\subset F}

Cap(K). Also we define trans-

finite diameter D(F) by 1/D(F)= \lim_{np_{i}}\inf_{\in F}\sum_{f>i}^{n}G’(p_{i},p_{f})/_{n}C_{2}. Put 1/D^{M}(F)= \lim_{n}

p_{f} i=1

\inf_{p_{i}\in F}\sum_{f>i}^{n}G^{\prime M}(p_{i},p_{f})/_{n}C_{2} and D^{0}(F)= \lim_{M}D^{M}(F), where G^{\prime M}(p_{i},p_{j})= \min(M, G’(p_{l} ,
p_{f} i=1
p_{f})) . Then clearly D(F)\leqq D^{0}(F) .

Let p\in\overline{R} ’. Then by Green’s formula and by Lemma 5 we have

G’(q,p)= \frac{1}{2\pi}\int_{\partial V_{H}(p)}G’(\zeta, q)\frac{\partial}{\partial n}G’(\zeta,p)ds : q\not\subset. \overline{V}_{M}(p)

M= \frac{1}{2\pi_{\partial}}\int_{V_{M}(p)}G’(\zeta, q)\frac{\partial}{\partial n}G’(\zeta,p)ds;q\in V_{M}(p) .

Put d\mu_{p}(\zeta)=\frac{1}{2\pi}\frac{\partial}{\partial n}G’(\zeta,p)ds on \partial V_{M}(p) . Then G^{\prime M}(z,p)=M\omega(V_{M}(p), z)

= \int G’(\zeta, z)d\mu_{p}(\zeta) and \mu_{p}=0 on B(R’). Let p_{1},p_{2}, \cdots,p_{n} . Then G^{\prime M}(z,p_{i})

= \int G’(z, \zeta)d\mu_{p_{i}}(\zeta) and

\int G^{\prime M}(z,p_{i})d\mu_{p_{f}}(z)\leqq\int G’(z,p_{i})d\mu_{p_{f}}(z)=G^{\prime M}(p_{f},p_{i}) .

Put \mu=\sum_{i=1}^{n}\mu_{p_{i}}/n , then
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I( \mu)\leqq\frac{1}{n^{2}}i=1\sum_{=1}^{n},G^{\prime M}(p_{i},p_{f}) . (1)

f

Lemma 8. Let A\subset\tilde{A} be closed sets in \overline{\overline{R}} ’ and suppose there exists a

const. M such that \frac{1}{2\pi,\partial V},\int_{M^{(p})\cap X}\frac{\partial}{\partial n}G’(z,p)ds\geqq\delta_{0}>0 for any p\in A . Thm

1/D^{o}(A)\geqq 1/D^{M}(A)\geqq\delta_{0}^{2}/C^{Q}ap(\tilde{A}) .

PROOF. Let d \mu_{p_{i}}=\frac{\partial}{\partial n}G’(z,p_{i})ds on \partial V_{M}(p_{i})\subset R’ : p_{i}\in A and let \mu_{n}’ be

the restriction \mu_{n}=\sum_{i=1}^{n}\mu_{p_{i}}/n on \tilde{A}\cap R’ . Then \int d\mu_{\iota},\geqq’\delta_{0}>0 and by (1)

I( \mu_{n}’)\leqq\frac{1}{n^{2}}if=1\sum_{=1}^{n},
G^{\prime M}(p_{i},p_{f}) .

By the simmetry of G^{M}(p_{i}, p_{j})

2 (i=1 \sum_{i<J}^{n},G^{\prime M}(p_{i},p_{f}))=\sum_{J=1}^{n}G^{\prime M}(p_{i},p_{f})-\sum_{ii=1=1}^{n}G^{\prime M}(p_{i},p_{i})
and

1/D_{n}^{M}(A)= \inf_{p_{i},p_{f}\in Ai}i=1\sum_{<j}^{n},G^{\prime M}(p_{i},p_{f})/_{n}C_{2}\geqq(\frac{n}{n-1})I(\mu_{n}’)-\frac{M}{n-1}

Now \mu_{n}’ is a mass only on \tilde{A}\cap R’ with total mass \geq\delta_{0} . By definition
1/C[mathring]_{a}p(\tilde{A}) is the infimum of energy integrals of all distributions on \tilde{A}\cap R’

of mass unity. Hence I(\mu_{n}’)\geqq\delta_{0}^{2}/C[mathring]_{a}p(\tilde{A}) . Let narrow\infty . Then 1/D^{M}(A)\geqq\delta_{0}^{2}/

C[mathring]_{a}p(\tilde{A}) .
Capacity and transfinite diameters of irregular boundary points6)

B(R’)\cap\overline{G}_{\eta} : G_{r},=\{z\in R’ : G’(z,p_{0})>\eta\} . Put F_{\eta}=\{z\in\overline{R}’ : G’(z,p_{0})\geqq\eta\} . Then
F_{\eta} is closed in \overline{R} ’, Let \{R_{n}\} be an exhaustion of R(not of R’). Then
C[mathring]_{a}p(F_{\eta} \cap(\overline{R’-R_{n}}))=\lim_{i=\infty}Cap(F_{\eta}\cap\overline{R}’\cap(\overline{R_{7\iota+i}-R_{n}}))\leqq\frac{1}{4\pi^{2}}D(\omega(F_{\eta}, z))\leqq\frac{1}{\eta^{2}}D

\langlemin ( \eta, G’(z,p_{0})))\leqq\frac{2\pi}{\eta}<\infty . Let \omega_{n}(z) be C.P. of F_{\eta}\cap(R’-R_{n}) . Then
\omega_{n}(z) in meanarrow a harmonic function \omega(z). Now \omega(z)=0 on \partial R’ and \leqq 1 .
By \tilde{R}\in O_{g}, \omega(z)=0 . Hence

C[mathring]_{a}p(F_{\eta}\cap(R’-R_{n}))\downarrow 0 as narrow\infty . (2)

THEOREM 7. Let A=F_{\xi}\cap B(R’):\xi>0 . Then D(A)\leqq D^{o}(A)=0 .
PROOF. Let v(p_{0}) be a neighbourhood of p_{0} . Then there exists a

const. k such that G’(z,p_{0})\leqq k in R’-v(p_{0}) . By Green’s formula and by
Lemma 5
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\frac{1}{2\pi_{M},\partial V},\int G’(\zeta,p_{0})\frac{\partial}{\partial n}G’(\zeta,p)ds=G’(p,p_{0})-\frac{1}{2\pi,\partial V_{M}(},\int G’(\zeta,p_{0})\frac{\partial}{\partial n}G’(\zeta,p)ds(p)\cap G\frac{\xi}{2}p)-G\frac{\xi}{2}
.

Put
m’(p)= \frac{1}{2\pi,\partial V},\int_{M^{(p)}}\frac{\partial}{\cap G\frac{n\xi}{2}\partial}G’(\zeta,p)ds

, then
\frac{1}{2\pi_{M},\partial V},\int\frac{\partial}{n}G’(\zeta,p)ds=1-m’(p)(p)-G\frac{\partial\xi}{2}(3)

.

Suppose p\in\overline{G}_{\xi}, then by (3) we have

m’(p) \geqq\frac{\xi}{2k} for any p\in\overline{G}_{\xi} and for any M<\infty (4)

Clearly
\max,G’(z,’ p, )=M_{n}<\infty z\in\partial R_{n^{\cap R}}p\in P_{\xi}\bigcap_{1}B(R)

. Hence for any given number n there exists

a number M_{n} such that V_{M}(p)\subset R’-R_{n} : M>M_{n} , p\in F_{\xi}\cap B(R’). Hence we
have

PROPOSITION. Let \xi and n be numbers. Then there exists a number

M such that
m(p) \geqq\frac{1}{u^{(p)\cap}2\pi}\int_{(\partial\gamma R},\frac{\partial}{\partial n,n^{)}},G’(\zeta,p)ds\geqq\frac{\xi}{2k}-R\cap G\frac{\xi}{2} for M\geqq M_{n} and for p\in F_{\xi}

\cap B(R’).
Let \epsilon>0 be a given positive number. Then by (2) there exists a

number n such that C[mathring]_{a}p(F_{\eta} \cap(R’-R_{n}))<\epsilon:\eta=\frac{\xi}{2} . Let \tilde{A}=F_{q}\cap(\overline{R’-R_{n}}\rangle

and A=F_{\xi}\cap B(R’) . Then by the proposition there exists a number M’ such

that \frac{1}{2\pi_{\partial V}}\int_{M^{(p)\cap}}\frac{\partial}{\tilde{A}\partial n}G’(\zeta, p)ds\geqq\frac{\eta}{k} : M\geqq M’ and p\in A . Hence by Lemma 8

1/D^{M}(A) \geqq(\frac{\eta}{k})^{2}/\epsilon . Let Marrow\infty and then \epsilonarrow 0 . Then we have Theorem 7.
Let \Omega be a domain in the z-sphere such that \Omega\not\in O_{g}. Let G(z,p) be

a Green’s function of i2. We shall extend the domain of the definition of
G(z,p) to \overline{\Omega}\cross\overline{\Omega} by G(p, q)=\varlimsup\varlimsup G(\xi, \eta) for p, q\in\overline{\Omega}\cross\overline{\Omega} . Then we see
at once G(p, q)=G(q,p) and \xiarrow p\eta qG(z,p)=G(z,p) : z\in\Omega, p\in\overline{\Omega} (in Lemma 4^{1)}

G(z,p):p\in\overline{\Omega} is defined). Let F be a closed set on \overline{\Omega} . Define D^{*}(F) by

1/D^{*}(F)= \lim_{n}\inf_{p_{i},p_{f}\in F} i=1 \sum_{i<f}^{n},G(p_{i},p_{j})/_{n}C_{2} .

LEMMA 9. 1) Let f2 be a domain in the z-sphere such that \Omega\not\in O_{g}.
Let G(z, z’) be Green’s function of \Omega . Then there exist consts. M and \delta

depending on fl such that

G(z, z’) \leqq\log\frac{1}{|z-z’|}+M ,
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for any points z and z’ with spherical distance <\delta .
2) Let F be a closed set on \overline{\Omega} such that D^{*}(F)=0 . Thm F is a set

of [logarithmic) capacity zero.

PROOF. By \Omega\not\in O_{g}, C\Omega is a set of positive capacity. We can find two

closed sets E_{1} and E_{2} in C\Omega such that both E_{1} and E_{2} are of positive
capacity and spherical distance between E_{1} and E_{2}=d>0 . We denote by
[z, z’] the spherical distance betweed z and z’ . Put C(4\delta, z’)=\{z:[z, z’]

\leqq 4\delta\rangle : \delta\leqq d/8 . We can find a finite number of points, z_{1} , z_{2}, \cdots , z_{i_{0}} such
that \sum_{i}C(\delta, z_{i})\supset z-sphere, and C(4\delta, z_{i}) has common points at most one

of E_{1} and E_{2} . Suppose [z, z’]<\delta . Then there exists C(4\delta, z) such that
C(2\delta, z_{i})\ni z and z’ and C(4\delta, z_{i})\cap E_{f}=0 (j=1 or 2). Let \tilde{G}(z, z’) be Green’s
function of CE_{f} . Then \tilde{G}(z, z’)\geqq G(z, z’),\tilde{G}(z, z’) is harmonic in C(4\delta, z_{i})- z’

and \hat{\dot{G}}(z, z’)-\log\frac{1}{\lfloor z-z|}, is continuous on C(4\dot{0}, z_{i})\cross C(4\delta, z_{i}) . Hence there

exists a const. M(z_{i}) such that \tilde{G}(z, z’)\leqq\log\frac{1}{|z-z|},+M(z_{i}) . Hence we

have 1) by putting M= \max_{l}M(z_{i})

Proof of 2). Let F_{k}=F\cap C(2\delta, z_{k}) . Then it is sufficient to show F_{k}

is a set of capacity zero. By a conformal mapping we can suppose z_{k}=0

and \delta\leqq 1/4 . Then we have \lim_{n}\inf_{z_{i}\in F} i=1 \sum_{i<f}^{n},\log\frac{1}{|z_{i}-z_{f}|}/_{n}C_{2}=\infty by D^{*}(F_{k})=D^{*}

(F)=0. Hence F_{k} is a set of capacity zero.

Mass distribution of a generalized Green’s function Let R be a
Riemann surface l\overline{\overline{*}}O_{g}f . Let U(z) be a positive harmonic function in R and
let G be a domain. Let U_{n,n+i}(z) be a harmonic function in R_{n+i}-((R_{n+i}

-R_{n})\cap G) such that U_{n,n+i}(z)=0 on \partial R_{n+i}-G, U_{n,n+i}(z)=U(z) on G\cap(R_{n,n+i}

-R_{n}) . Put \lim_{n}\lim_{i}U_{n,n+i}(z)=_{G}^{\alpha}U(z) . Let \tilde{U}_{n,n+i}(z) be a harmonic function

in R_{n+i}-((R_{n+i}-R_{n})\cap G) such that \tilde{U}_{n,n+i}(z)=0 on (R_{n+i}-R_{n})\cap G, =U(z)

on \partial R_{n+i}-G . Put \lim_{n}\lim_{i}\tilde{U}_{n.n+i}(z)=_{G}^{\beta}U(z) . Then

Lemma 103). 1) G\alpha(_{G}^{a}U(z))=_{G}^{\alpha}U(z) and \alpha eU(z)+_{G}^{\rho}U(z)=U(z) .
2) Let U(z) be a harmonic function which is a G.G. with D( \min(M,

U(z))\leqq Mk\pi and let G_{\delta}=\{z\in R : G(z,p_{0})>\delta\} . Then G_{\delta}\theta U(z)\leqq k\delta/2 at z=p_{0} .

We suppose Martin’s top. M is defined on \overline{\overline{R}}=R+\Delta(\Delta=\Delta_{1}+\Delta_{0}) . Let
\overline{G}_{\delta}(M) be the closure of G_{\delta} relative to M top. Let F_{n}=\{z\in\overline{R} : M-dist(z,
\overline{G}_{\delta}(M))\leqq 1/n\} and F_{n}U(z) be the lower envelope of superharmonic functions
larger than U(z) on F_{n} . Put U_{\delta}^{*}(z)= \lim_{n}F_{n}U(z) . Then by Martin’s theory
U_{\delta}^{*}(z) is represented by a canonical distribution \mu on \overline{G}_{\delta}(M)\cap\Delta_{1} . Clearly
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U_{\delta}^{*}(z)\geqq_{G_{\delta}}^{a}U(z) . (5)

Lemma 11. 1) Let U(z) be a positive harmonic function being a
G.G. in R. Then there exists a canonical distribution \mu on \bigcup_{\delta>0}\overline{G}_{\delta}(M)\cap\Delta_{1}

such that

U(z)= \int K(z,p)d\mu(p)r

2) If there exists a const. \delta>0 such that \overline{G}_{\delta}(M)\cap\Delta_{1}=\overline{G}_{\delta},(M)\cap\Delta_{1} for
any \delta’\leqq\delta, then there exists a canonical distribution \mu on \overline{G}_{\delta}(M)\cap\Delta_{1} such
that

U(z)= \int K(z,p)d\mu(p) .

Proof of 1) Since U(z) is a G.G. there exists a const. k such that
D( \min(M, U(z)))=kM\pi for any M. By (5) and by Lemma 10

(U(z)-U_{\delta}^{*}(z))\leqq k\delta/2 at z=p_{0} . (6)

Let \delta=\delta_{1}>\delta_{2}\cdots\downarrow 0, U_{\delta_{n}}^{*}(z) and \mu_{n} be a canonical mass of U_{\delta_{n}}^{*}(z) . Then
\mu_{n}\uparrow and \mu_{n}-\mu_{n-1} is also canonical on \overline{G}_{\delta_{n}}(M)\cap\Delta_{1} . Now U_{\delta_{n}}^{*}(z)=U_{\delta_{1}}^{*}(z)

+ \sum_{i=2}^{n}(U_{\delta_{i}}^{*}(z)-U_{\delta_{i-1}}^{*}(z)) . Hence by (6) U(z)= \lim lim U_{n}^{*}(z) and U(z) is repre-

sented by a canonical distribution \mu on \cup\overline{G}_{\delta}(M)n\cap\Delta_{1} . 2) is evident by 1).
\delta>0

Let D_{1}\supset D_{2} be two domains. Let U(z) be a positive harmonic func-

tion in D_{1} . We denote by DI^{1}U(z) the greatest subharmonic function in D_{2}

vanishing on \partial D_{2} not 1argerthanD_{2}U(z) . Let V(z) be a positive harmonic
function in D_{2} vanishing on \partial D_{2} except at most a set of capacity zero.

We denoteby E^{1}V(z)D the least positive superharmonic function in D_{1} larger

than V(z). ThenD_{2} the following are well known.

DD_{2}I^{1}U(z) and DE^{1}V(z)D_{2} (for D_{2}DE^{1}V(z)<\infty ) are harmonic and

D_{2}D_{2}D_{Z}D_{2}DDDDI^{1}E^{1}I^{1}U(z)=I^{1}U(z) and DDDDD_{2}D_{2}D_{2}D_{2}E^{1}I^{1}E^{1}V(z)=E^{1}V(z)

Let U(z) be minimal in D_{1} . Then if DD_{2}I^{1}U(z)>0 , E^{1}I^{1}U(z)=U(z)D_{2}D_{2}DD and DI^{1}U(z)

is minimal in D_{2} . Let V(z) be minimal in D_{2} . If E^{1}V(z)<\infty D ,
DDI^{1}E^{1}V(z)D_{2}

D_{2} D_{2}D_{2}

=V(z) and D_{2}DE^{1}V(z) is minimal in D_{1} .

If U_{n}(z)\nearrow U(z), DD_{2}I^{1}U(z)= \lim_{n}(I^{1}U_{n}(z))DD_{2}^{\cdot}
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Correspondence between two minimal points Let \tilde{R} be a Riemann
surface\not\in O_{g} and R be a Riemann surface\subset\tilde{R} . Let \{\tilde{R}_{n}\} be an exhaustion
of \tilde{R} and \mathfrak{p} be a boundary component of \tilde{R} . Suppose Martin’s topologies
\overline{M} and M are defined over \tilde{R} and R respectively. If p_{i^{arrow}}^{\alpha}p:\alpha=\overline{M} or M
and p_{i}arrow \mathfrak{p} (considered in \tilde{R}), we say a point (relative to \alpha-top.) lies over \mathfrak{p} .
We denote by \Delta(\alpha)\cap\nabla(\mathfrak{p}) and \Delta_{1}(\alpha)\cap\nabla(\mathfrak{p}) sets of boundary points, minimal
boundary points over \mathfrak{p} respectively. In the present paper boundary com-
ponents are considered only for \tilde{R} (except special remark). Let G(z,p_{0}) be

a Green’s function of R. Let
F_{\delta}(\overline{M})=\{z\in\overline{R}

:
^{\varlimsup_{\tilde{M}}G(\zeta,p_{0})\geqq\delta\}}\zetaarrow x

,

and F_{\delta}(M)

=\{z\in\overline{\overline{R}} : _{\sigmaarrow z}^{\varlimsup_{M}}, G(\zeta,p_{0})\geqq\delta\} . Let A be a set relative to \overline{M}-top.. We denote

by A\cap\Delta(M) the set of
poin_{\frac{t}{M}}p

of A lying over \Delta(M), i.e. there exists

a sequence \{z_{i}\} such that z_{i}arrow p and z_{i}arrow boundary of R. Then
\overline{M}

THEOREM 8. 1)^{6)} Let z_{i}-p\in(\tilde{R}+\Delta_{1}(\overline{M}))\cap F_{\delta}(\overline{M}))\cap\Delta(M) and G(z_{i},p_{0})

M
>\epsilon_{0}>0 . Then z_{i}arrow a uniquely determined point q\in\Delta_{1}(M)\cap F_{\delta}(M) and
K(z, q)=aI\overline{K}(z,p):\overline{R}-pRa>0 . We denote q by \varphi(p) .

2) Let q\in\Delta_{1}(M)\cap F_{\delta}(M) . Then there exists a point p\in\tilde{R}+\Delta_{1}(\overline{M}) such

that \overline{K}(z,p)=a’EK(z, q)\tilde{R}-pR ; a’>0, clearly p=\varphi^{-1}(q) . Further

\Delta_{1}(\overline{M})\cap F_{\delta}(\overline{M})\cap\nabla(\mathfrak{p})\simeq\Delta_{1}(M)\cap F_{\delta}(M)\cap\nabla(\mathfrak{p}) ,

F_{\delta}(\overline{M})\cap(\tilde{R}+\Delta_{1}(M))\cap\Delta(M)\approx\Delta_{1}(M)\cap F_{\delta}(M) ,

where\simeq means the existence one to one mapping.
Proof of 1) 1) is proved by L. Naim. Let \tilde{G}(z,p_{0}) be Green’s fun\dot{c}-

tion of \tilde{R} and v(p_{0}) be a neighbourhood of p_{0} and put M= \sup_{z\not\in v(p_{0})}\tilde{G}(z, p_{0}) .
Let \overline{K}(z,p) and K(z, q) be kernels in \tilde{R} and R respectively. Then if
G(z,p_{0})>\epsilon_{0} ,

\frac{\tilde{G}(z,z_{i})}{\epsilon_{0}}\geqq\overline{K}(z, z_{i})\geqq\frac{\hat{G}(z,z_{i})}{M}\geqq\frac{G(z,z_{i})}{M}\geqq\frac{\epsilon_{0}K(z,z_{i})}{M}\geqq\frac{\epsilon_{0}G(z,z_{i})}{M^{2}} (7)

Let z_{i}arrow p\overline{M} and let \{z_{i}’\} be a subsequence of \{z_{i}\} such that z_{i}’q\underline{M}. Then

by (7) \overline{R}-pRI\overline{K}(z,p)>0 . By the minimality of \overline{R}-pRI\overline{K}(z,p)\tilde{R}-pRI\overline{K}(z,p)=aK(z, q) :

a>0 and q\in\Delta_{1}(M) . Since \{z_{i}’\} is an arbitrary M-convergent subsequence,
such point q is uniquely determined. We denote it by \varphi(p) . If p\in F_{\delta}(\overline{M})

\cap\nabla(\mathfrak{p}), evidently q\in F_{\delta}(M)\cap\nabla(\mathfrak{p}) .
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Proof of 2) By 1) if p\in F_{\delta}(\overline{M})\cap\Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) , q\in F_{\delta}(M)\cap\Delta_{1}(M)\cap\nabla(\mathfrak{p}) .
Conversely let q\in\Delta_{1}(M)\cap F_{\delta}(M)\cap\nabla(\mathfrak{p}) . Then there exists a sequence \{z_{n}\}

such that z_{n}arrow Mq and G(z_{n},p_{0}) \geqq\delta^{-}\frac{1}{n} and K(z, z_{n}) \leqq\frac{2G(z,z_{n})}{\delta}\leqq\frac{2\tilde{G}(z,z_{n})}{\delta}

for \frac{1}{n}\leqq\frac{\delta}{2} , hence EK(z, q)<\infty\overline{RR} . By the minimality of K(z, q), there

exists a uniquely determined point p\in\Delta_{1}(\overline{M}) such that EK(z, q)=a\overline{K}(z,p):\tilde{R}

R

a>0, clearly q=\varphi(p) . We show p\in F_{\delta}(\overline{M}) . Let \Omega_{\epsilon}=\{z\in R : G(z,p_{0})>\delta-2\epsilon\} :
3\epsilon<\delta and let \{z_{n}’\} be a subsequence of \{z_{n}\} such that G’(z, z_{n}’) converges

to G’(z, \{z_{n}’\}) , where G’(z, z_{n}’) is a Green’s function of \Omega_{\epsilon} . Then \frac{\overline{K}(z,p)}{a}

\geqq K(z, q)\geqq\frac{G’(z,\{z_{n}’\})}{M}>0 by G’(p_{0}, z_{n})=G(z_{n},p_{0})-(\delta-2\epsilon)>\epsilon for \frac{1}{n} <\’e.

Hence

\Omega I‘\overline{K}(z,p)>0\tilde{R} . (8)

Let U(z)=\overline{K}(z,p) . Let V_{n}(z) be a harmonic function in \Omega_{*}\cap\tilde{R}_{n} such that
V_{n}(z)=U(z) on \partial\Omega_{\epsilon}\cap\tilde{R}_{n} , =0 on \partial\tilde{R}_{n}\cap\Omega_{\epsilon} . Then V_{n}(z)\nearrow_{C\Omega_{\epsilon}}U(z) in \Omega.. Let
W_{n}(z) be a harmonic function in \Omega_{\epsilon}\cap\tilde{R}_{n} such that W_{n}(z)=0 on \partial\Omega_{\epsilon}\cap\tilde{R}_{n},

\overline{R}

=U(z) on \partial\tilde{R}_{n}\cap\Omega. . Then W_{n}(z)\downarrow\Omega_{5}IU(z) . On the other hand, U(z)=V_{n}(z)

+U_{n}(z) , U(z)=_{C\Omega_{\epsilon}}U(z)+I^{\overline{R}}U(z)\Omega_{\text{\’{e}}} and by (8) U(z)>_{C\Omega_{\epsilon}}U(z) . Hence CO, is thin

at p. Let v_{n}(p)=\{z\in\tilde{R} : \overline{M} -dist(z, p) < \frac{1}{n}\} . Then Cv_{n}(p) is thin at p and
C(v_{n}(p)\cap\Omega_{\text{\’{e}}}) is thin at p, whence v_{n}(p)\cap\Omega_{\epsilon}\neq_{-}0 for any n and \epsilon>0:\epsilon<

\frac{\delta}{3} . Let \epsilon>\epsilon_{1}>\epsilon_{2}\cdots\downarrow 0 . We choose z_{n} in v_{n}(p)\cap\Omega.n
’ where \Omega.=n\{z\in R :

G(z,p_{0})\geqq\delta-2\epsilon_{n}\} . Then z_{n}arrow p\overline{M}

, \varlimsup_{n}G(z_{n}, p_{0})\geqq\delta and p\in F_{\dot{o}}(\overline{M}) . By the
Massumption we can find a sequence \{z_{n}\} such that z_{n}arrow q, z_{n}-\mathfrak{p} . G(z_{n},p_{0})

>\epsilon_{0}>0 . G(z, z_{n}) and \tilde{G}(z, z_{n}) converge. Then
K(z, q) \leqq\frac{G(z,\{z_{n}\})}{\epsilon_{0}}\leqq\frac{\tilde{G}(z,\{z_{n}\})}{\epsilon_{0}} , a \overline{K}(z,p)=EK(z, q)\leqq\frac{\tilde{G}(z,\{z_{n}\})}{6_{0}}\overline{RR} ; a>0
and \overline{K}(z,p) is bounded outside of a neighbourhood \mathfrak{v}(\mathfrak{p})(\partial \mathfrak{v}(\mathfrak{p}) is supposed
compact in \tilde{R}). Clearly p lies on a boundary component \mathfrak{p}’ of \tilde{R} . Assume
\mathfrak{p}\neq \mathfrak{p}’ . Then \overline{K}(z,p) is bounded outside of \mathfrak{v}(\mathfrak{p}’) of \mathfrak{p}’ such that \mathfrak{v}(\mathfrak{p})\cap \mathfrak{v}(\mathfrak{p}’)

=0. This implies \sup_{z\in R}\overline{K}(z,p)<\infty . This is a contradiction. Hence p

lies over \mathfrak{p} where q lies. Thus we have 2). The latter part is proved
similarly.
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Let R\subset\tilde{R}\not\subset O_{g} be Riemann surfac\’es and let G(z,p_{0}) be a Green’s func-
tion of R. We suppose Martin’s topologies .\overline{M} and M are defined on \tilde{R}

and R. Let R’=\{z\in R:G(z,p_{0})>\xi\} and suppose G-Martin’s top. GM is
defined on R’+B(R’). Let w=f(z):z\in R be an analytic function in R
whose value falls on the w-sphere. If the complementary set Cf(R) of
f(R) is of positive capacity, we call f(z) a bounded type in R. In this
paper we consider only functions of bounded type in R. Then

THEOREM 9. 1) Let z_{i}arrow q\in\Delta(M)M, z_{i}\in G_{\delta}=\{z\in R:G(z,p_{0})>\delta\} . Then
f(z_{i})arrow one point dmoted by f(q).

2) Let z_{i}\underline{.}p\in\Delta_{1}(\overline{M})+\tilde{R}\overline{M}

, z\in G_{\delta} . Then f(z_{i})– f(p).
3) Let z_{i}p\in B(R’):\underline{GM}z\in G_{\delta+\text{\’{e}}} : \epsilon>0 . Thm f(z_{i})arrow f(p) .
4) Let A(\Delta_{1}(\overline{M})+\tilde{R}, \delta)=\{f(p):p\in(\Delta_{1}(\overline{M})+\tilde{R})\cap\overline{G}_{\delta}(\overline{M})\cap\Delta(M)\} , A(\Delta(M) ,

\delta)=\{f(p):p\in\Delta(M)\cap\overline{G}_{\delta}(M)\} and A(B(R’), \delta)=\{f(p):p\in B(R’)\cap\overline{G}_{\delta}(GM)\cap

\Delta(M)\} . Then A(\Delta_{1}(\overline{M})+\tilde{R}, \delta)\subset A(\Delta(M), \delta)=A(B(R’), \delta) : \delta>\xi and A(\Delta(M), \delta)

is a closed set of capacity zero and \bigcup_{\delta>0}A(\Delta(M), \delta) is an F_{\sigma} set of capacity
zero.

PROOF. Let z_{i}\in G_{\delta} : \delta>\xi and let G’(z, z_{i}) be a Green’s function of
R’. Then G(z, z_{i})\geqq G’(z, z_{i}) . Let \{z_{i}’\} be a subsequence of \{z_{i}\} such that
G(z, z_{i}’) and G’(z, z_{i}’) converge. Then G(z, \{z_{i}’\})\geqq G’(z, \{z_{i}’\})>0 and G’(z, \{z_{i}’\})

=0 on \partial R’ and is a G.G. in R’, whence
\sup_{z\in R},

G’(z, \{z_{i}’\})=\infty . Assume f(z)

does not converge as z_{i}arrow q. Then there exists two subsequences \{z_{i}^{k}\}

(k=1,2) of \langle z_{i}\} such that G(z, z_{i}^{k})arrow U^{k}(z) , f(z_{i}^{k})arrow w^{k} : w^{1}\neq w^{2} . Now
\frac{G(z,z_{i})}{\delta}\geqq K(z, z_{i})\geqq\frac{G(z,z_{i})}{M} : M= \sup_{z\not\in v(p_{0})}G(z,p_{0}) and

\delta K(z, q)\leqq U^{k}(z)\leqq MK(z, q) .
On the other hand, U^{k}(z)\leqq G^{w}(f(z), w^{k}), where G^{w}(w, w^{k}) is a Green’s
function of f(R) and not necessarily w^{k}\in f(R) but \in\overline{f(R)}. Hence

K(z, q) \leqq\frac{1}{\delta} min (G^{w}(f(z), w^{1}), G^{w}(f(z), w^{2})) and by Lemma 4

\infty=\sup_{z\in R}U^{k}(z)\leqq\frac{M}{\delta}\sup_{z\in R} min (G^{w}(w, w^{1}), G^{w}(w, w^{2}))<\infty 1

This is a
. contradic\acute{t}ion , hence f(z)arrow uniquely determined point denoted

by f(q).

Proof of 2) By Theorem 8, 1) zarrow p\in\overline{M}(\Delta_{1}(\overline{M})+\tilde{R}) : z\in\overline{G}_{\delta}(\overline{M}) implies
M

zarrow q\in\Delta_{1}(M) and we have 2). 3) is proved similarly as 1).
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Proof of 4) Let w_{n}\in A(\Delta(M), \delta) and w_{n}arrow w^{*} . Then there exists z_{n}

such that z_{n}\in\Delta(M)\cap\overline{G}_{\delta}(M):w_{n}=f(z_{n}) . Let \{R_{n}\} be an exhaustion of R.
For any z_{n} we can find z_{n}’ in (R-R_{n})\cap G_{\delta-\frac{1}{n}} such that M-dist (z_{n}, z_{n}’) \leqq\frac{1}{n},

|f(z_{n}’)-w_{n}| \leqq\frac{1}{n} . Consider K(z, z_{n}’) . Then we can find a subsequence \{d_{n}’\rangle

of \{z_{n}’\} such that K(z, z_{n}’ } converges uniformly. This means there exists
a point z^{*}\in\Delta(M)\cap\overline{G}_{\delta}(M) such that z_{n}’arrow z^{*}M and f(z_{n}’)arrow f(z^{*}) . Clearly
w^{*}=f(z^{*}) . Hence w^{*}\in A(\Delta(M), \delta) and A(\Delta(M), \delta) is closed. We can
choose \xi so that \xi<\delta . Since A(\Delta(M), \delta)=A(B(R’), \delta) for \delta>\xi is proved
easily, it is sufficient to show A(B(R’), \delta) is a set of capacity zero. By
Theorem 7 the transfinite diameter of B(R’)\cap\overline{G}_{\delta}(GM) is zero. Since for
any point w\in A(B(R’), \delta) there exists at least a point z in B(R’)\cap\overline{G}_{\delta}(GM)

such that w=f(z) and since G^{w}(f(z),f(z’))\geqq G’(z, z’), transfinite diameter
D^{*}(A(\Delta(M), \delta)) is zero and by Lemma 9 A(\Delta(M), \delta) is a set of (logarithmic)
capacity zero.

We consider the behaviour of f(z) as z– \Delta(M) of R\subset\tilde{R} . We define
another Riemann surface R^{*} as follows. We can find a segment S in R
such that f(z) is univalent in a neighbourhood v(S) of S. Put S^{w}=f(S).
Let ,\mathscr{T}, be a leaf such that ,\mathscr{F}=f(R) and let \partial- \mathscr{F} be its boundary. Let
S(- \mathscr{F}) be a slit in ,\mathscr{F}, with S(- \mathscr{F})=S^{w} . Connect -\mathscr{F}-S(,\mathscr{F}) and R–S
crosswise on S^{w}(=S) . Then we have a Riemann surface R^{*}=(R-S)
+(\mathscr{F}-S(-\mathscr{F}))+S. Put f(z)=projection of z (as R and R^{*} are considered
covering surfaces over the w-sphere) in \mathscr{F}, -S(\mathscr{F}) . Then f(z) is analytic
in R^{*} . In this case, we also denote by f(z):z\in R^{*} . So long as we con-
sider f(z) near the boundary of R, we can use R^{*} instead of R. Let u(z)
be a harmonic measure of \partial \mathscr{F} in R^{*} . Then by R - O_{g}u(z) is non const..
Put U(w)= \sum_{i}u(z_{i}) : f(z_{i})=w, z_{i}\in R^{*} . Then by Theorem 1^{1)}

U(w)\leqq 1 and U(w) is quasisubharmonic in f(R)t (9)

Let \{R_{n}\} be an exhaustion of R. Then for R_{n_{0}}\ni p_{0} , there exist const.s N_{1}

and N_{2} such that
N_{1}G(z,p_{0})\leqq U(z)\leqq N_{2}G(z,p_{0}) in (R-R_{n_{0}})1 (10)

Irregularity of minimal points Irregularity \delta of minimal points
relative to -\overline{M} and M top.s are defined by

\delta(p,\overline{M})=\varlimsup_{\tilde{M}}G(z,p_{0}):zarrow pp\in\overline{R}+\Delta_{1}(\overline{M})
,

\delta(q, M)=\varlimsup_{zarrow q,M}G(z,p_{0}):q\in\Delta_{1}(M)
.

Then by Theorem 8 \delta(p,\overline{M})=\delta(q, M):q=\varphi(p) . Also put
u(p,\overline{M})=\overline{\lim_{\tilde{M}}zarrow p}
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u(z);p\in\tilde{R}+\tilde{\Delta}_{1}(M) and u(q, M)=\varlimsup u(z):q\in\Delta_{1}(M) . Then by Theorem 8, 1)

u(p,\overline{M})\leqq u(q, M) . Further
u(p,\overline{M})=U(q, M)zarrow qM for p\in\tilde{R} and q=\varphi(p)\in\Delta_{1}(M) .

In fact let p\in\tilde{R} and q\in\Delta_{1}(M) . Then by Brelot’s theorem on a point p\in\tilde{R}

there exists only one M point q which is minimal relative to M-top., i.e.
\overline{M} M

zarrow p(zarrow p) is equivalent to zarrow q and we have u(p,\overline{M})=u(q, M) . We
remark u(z) is not harmonic in R but harmonic in R–S and u(z) is the
least positive harmonic function in R–S with value u(z) on S. Hence
u(z)=_{CG}u(z) for any domain G\subset R–S. We define u(z) at S by u(z)=\varlimsup_{\zetaarrow z}

u(\zeta) .
THEOREM 10. 1) Let \{z_{i}\} be a sequence such that z_{i}arrow q\in\Delta(M)M with

\varliminf G(z_{i},p_{0})>0 . Then f(z_{i})arrow f(q) (by Theorem 9) : f(q)\in\overline{f(R}) and for any
r there exists a uniquely determined connected piece \omega_{r}(q) over C(r,f(q))

=\{|w-f(q)|<r_{\frac{\}}{M}}
such that z_{i}\in\omega_{r}(q) for i\geqq i(r) .

2) Let z_{i}arrow p\in\Delta_{1}(\overline{M}) with \varliminf G(z_{i},p_{0})>0 . Then for any r>0 , there
exists a uniquely determined connected piece \omega_{r}(p) over C(r,f(p)) such that
z_{i}\in\omega_{r}(p) for i\geqq i(r) .

3) Let w_{0} be a point. Then
\sum u(q_{i})+\sum u(q_{J}, M)\leqq 1 : q_{i}\in R, q_{f}\in\Delta_{1}(M), f(q_{i})=f(q_{J})=w_{0} .
\sum u(p_{i})+\sum u(p_{f},\overline{M})\leqq 1 : p_{i}\in R, p_{f}\in\Delta_{1}(\overline{M}), f(p_{i})=f(p_{f})=w_{0} .

Proof of 1) Case 1. f(q)|\not\in^{-}S^{w} . We can find r’< \min(r, \delta) (where \delta

is the number defined in Lemma 9) such that any connected piece over
C(r’,f(q)) has no common points with S_{w} . We can also suppose z_{i}\in R,

G(z_{i},p_{0})>\delta’>0 and by (10) u(z_{i})\geqq\delta’ and |f(z_{i})-f(q)|< \frac{r’}{2} for i\geqq 1 . Let
\omega be a connected piece containing z_{i} . Then since \omega\cap S=0 , by Lemma 2
we have

u(z_{i})= \frac{1}{2\pi}\int_{\partial\omega}u(\zeta)\frac{\partial}{\partial n}G^{\omega}(\zeta, z_{i})ds ,

where G^{\omega}(\zeta, z_{i}) is a Green’s function of \omega and \partial\omega lies over \partial C(r’,f(q)) .
Let G^{C}(w, w’) be a Green’s function of C(r’,f(q)). Then G^{C}(f(z),f(z_{i}))=0

on \partial\omega and G^{C^{v}}(f(z),f(z_{i}))\geqq G^{\omega}(z, z_{i})\geqq 0 , whence

\frac{\partial}{\partial n}G^{c}(f(z), f(z_{i}))\geqq\frac{\partial}{\partial n}G^{\omega}(z, z_{i})\geqq 0 on \partial\omega . (11)

Now there exists a const. K such that
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0 \leqq\frac{\partial}{\partial n}G^{C}(w, w’)\leqq K\frac{\partial}{\partial n}G_{C}(w,f(q))

on \partial C(r’,f(q)):|w’-f(q)|<\frac{r’}{2} (12)

Suppose \omega_{k}(k=1,2, . , ’ , ’ k_{0}) be a connected piece over C(r’,f(q)) containing
at least one z_{i} of \{z_{i}\} . Then by (11), (12) and U’(w)\leqq U(w)\leqq 1 by (9),

where U’(w)= \sum_{f}u(z_{f})z_{j}\in R and f(z_{f})=w . Then

k_{0} \delta’\leqq\frac{1}{2\pi}\sum_{k=1}^{k_{0}}\int_{\partial\omega_{k}}u(\zeta)\frac{\partial}{\partial n}G^{\omega_{k}}(\zeta, z_{i})ds\leqq\Sigma\frac{1}{2\pi}\int_{\partial\omega_{k}}u(\zeta)\frac{\partial}{\partial n}G^{C}(f(\zeta),f(z_{i}))ds

\leqq\frac{1}{2\pi}\sum\int_{\partial\omega_{k}}u(\zeta)K\frac{\partial}{\partial n}G^{c}(f(\zeta), f(q))ds\leqq\frac{K}{2\pi}\int_{\partial C}U’(\xi)\frac{\partial}{\partial n}G^{c}(\xi,f(q))ds\leqq K

and k_{0} \leqq\frac{K}{\delta},, . Hence there exists at least one and at most a finite number

of connected pieces \omega_{k} such that \omega_{k} contains a subsequence of \{z_{i}\} . Let
\omega be a connected piece containing a subsequence \{z_{i}’\} of \{z_{i}\} . Since r’<\delta,

G^{w}(w, w’) \leqq\log\frac{1}{|w-w’|}+M:w , w’\in C(r’,f(q)) .

Hence there exists a const. L<\infty such that G^{w}(w, w’)<L on \partial C(r’,f(q))

for |w-f(q)|< \frac{r’}{2} . Let G(z, z_{i}’) be a Green’s function of R. Then
G(z, z_{i}’)_{=}^{<’}\sim G^{w}(f(z),f(z_{i}’))\leqq L on \partial\omega and \leqq L in R-\omega and K(z, q)= \lim_{i}K(z, z_{i}’)

\leqq\frac{L}{\delta}, in R-\omega by (7). Assume there exists another connected piece \omega’

containing a subsequence of z_{i} . Then K(z, q) \leqq\frac{L}{\delta}, in R by \omega\subset R-\omega’ .

On the other hond, K(z, q) \geqq\frac{G(z,\{z_{i}’\})}{M} and \sup_{z\epsilon R}K(z, q)=\infty , where \{z_{i}’\} is

a subsequence of \{z_{i}\} such that G(z, z_{i}’)arrow G(z, \{z_{i}’\}) . This is a contradiction.
Hence there exists uniquely determined connected piece \omega_{r’}(q) containing
z_{i} for i\geqq i(r’) .

Case 2. f(q)\in S^{w} . Since f(z) is univalent in v(S), we can find r’(<\delta)

such that there exists only a connected piece \omega^{*} and connected pieces \{\omega_{f}\}

over C(r’,f(q)) such that \omega^{*}\cap S\neq 0 , \omega^{*} is compact in R and \omega_{f}\cap S=0 for
j=1,2, \cdots . By z_{i}arrow q\in\Delta(M) , there exists a number i_{0} such that z_{i}\not\in\omega^{*} for
i\geqq i_{0}. Hence it is sufficient to consider only \omega_{f} . Then we have the same
conclusion similarly as case 1. Now r>r’ , there exists only one connected
piece \omega over C(r,f(q)) containing \omega_{r’}(q) . Clearly \omega\ni z_{i} for i\geqq i(r’) . Thus
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we have 1). We denote it by \omega_{r}(q) . We have 2) by 1) and by Theorem 8.
Proof of 3) Case 1. w_{0}\not\in S^{w} . In this case we can find r’ such that

any connected piece over C(r’, w_{0}) has no common point with S. Let q_{J}

(j=1,2, \cdots) be points in \bigcup_{\delta>0}((R+\Delta_{1}(M))\cap\overline{G}_{\delta}(M)) such that f(q_{d})=w_{0}. For
any q_{f}\in\Delta_{1}(M), there exists \omega_{r’}(q_{J})=\omega_{j} and by definition of \omega_{r’}(q_{J}) , there
exists a sequence { z_{t}\rangle such that z_{i}arrow q_{J}M, G(z_{i},p_{0})>\delta’>0, |f(z_{i})-w_{0}|< \frac{r’}{2} ,
G^{\omega_{f}}(z, z_{i})arrow G^{\omega_{f}}(z, \{z_{i}\}) , u(z_{i})arrow u(q_{J}, M) (clearly >0). Then by (11), (12)
and by Lebesgue’s theorem

0<u(q_{f}, M)= \frac{1}{2\pi}\int_{\partial\omega_{f}}u(\zeta)\frac{\partial}{\partial n}G^{\prime u_{f}}(\zeta, \{z_{i}\})ds, (13)

whence G^{\omega_{f}}(z, \{z_{i}\})>0 and \leqq MIK(z, q_{J})\omega_{f}R by (7). Hence G^{\omega_{f}}(z, \{z_{i}\}) is
minimal in \omega_{r’}(q_{J}) .
Suppose q_{J}\in R, then we have at once

u(q_{j})= \frac{1}{2\pi}\int_{\partial\omega_{f}}u(\zeta)\frac{\partial}{\partial n}G^{\omega_{f}}(\zeta, q_{j})ds
(1\prime 3’)

and G^{\omega_{f}}(z, q_{J}) is minimal in \omega_{j’}-q_{J} .
Let \omega be a connected piece over C(r’,f(q)) and let q_{k}(k=1,2, \cdots) be
a subset of q_{J} such that \omega_{r’}(q_{k})=\omega . Then G^{\omega}(z, \{z_{i}\}^{k}) of q_{k} (or G^{\omega} (z, q_{k}))
is minimal in \omega-q_{k} and \leqq G^{C}(f(z), w_{0}) . Hence

\sum G^{\omega}(z, \{z_{i}\rangle^{k})+\sum G^{\omega}(z, q_{k})\leqq G^{c}(f(z), w_{0}) and

\sum u(q_{k}, M)+\sum u(q_{k})\leqq\frac{1}{2\pi}\int_{\partial C}U^{\omega}(w)\frac{\partial}{\partial n}G^{C}(w, w_{0})ds,

where U^{\omega}(w)= \sum_{t}u(z_{t}) and f(z_{t})=w_{0}, z_{t}\in\partial\omega .
Summing up all connected pieces over C(r’, w_{0}), we have by U’(W)\leqq

U(W)\leqq 1

\sum_{f}u(q_{J}, M)+\sum_{i}u(q_{i})\leqq 1 ,\cdot

where f(q_{i})=f(q_{f})=w_{0}, q_{i}\in R, q_{f} \in\bigcup_{\delta>0}(\Delta_{1}(M)\cap G_{\delta}(M)) .
Case 2. w_{0}\in S^{w} . In this case, we use R^{*} instead of R. We can

find r’ over C(r’, w_{0}) there exist at most two connected pieces \omega_{k} in R^{*} ,
which are compact in R^{*} and \omega_{k}\cap S^{w}\neq 0 and there exist connected pieces
\omega_{m} in R such that \omega_{m}\cap S^{w}=0 . For \omega_{k}, G^{\omega k}(z, z_{0}^{k}) is minimal (f(z_{0}^{k})=w_{0},
z_{0}^{k}\in S) and (13’) holds, for \omega_{m}(13)or(13’) hold. Hence
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\sum_{k=1}^{2}u(z_{0}^{k})+\sum u(q_{i})+\sum u(q_{J}, M)\leqq 1 . Now
u(z_{0}^{1})+u(z_{0}^{2}) \geqq u(z_{0})=\lim_{zz_{0},z\in R’}u(z)

for z_{0}\in S. Put z_{0}=q_{0} (considered as a point in R). Then
\sum u(q_{i})+\sum u(q_{J}, M)\leqq 1 .

The latter part is proved by Theorem 8. 1).

Kindredness of points Let p_{i}\in\Delta_{1}(\overline{M})\cap\overline{G}_{\delta}(\overline{M})(or\in\Delta(M)\cap\overline{G}_{\delta}(M)) . If
there exists a sequence of curves \{\Gamma_{n}\}(n=1,2, \cdots) with two endpoints

\overline{N1}

\{z_{n}^{i}\}(i=1,2) such that z_{n}^{i}arrow p_{i} and inf G(z,p_{0})>\delta_{1}>0(n=1,2, \cdots) and
\Gamma_{n}arrow\Delta(\overline{M}) , we say p_{1} and p_{2} are chained^{n}z\in\Gamma. If p_{i} and p_{i+1}(i=1,2, \cdots, m-- 1)

are chained, we say p_{1} and p_{m} are kindred. We see at once p_{1} and p_{m}

lie on the same boundary component of R. Then
THEOREM 11. 1) Let q_{f}\in\Delta(M)\cap\overline{G}_{\delta}(M)(j=1,2) be kindred, thm f(q_{1})

=f(q_{2}) and \omega_{r}(q_{1})=\omega_{r}(q_{2}), where \omega_{r}(q_{f}) is a connected piece over C(r,f(q_{J})) .
2) Let p_{j}\in\Delta_{1}(\overline{M})\cap\overline{G}_{\delta}(\overline{M}) be kindred. then f(p_{1})=f(p_{2}) and \omega_{r}(p_{1})=

\omega_{r}(p_{2}) .
3) Let q_{1} and q_{2} be two points in \Delta(M)\cap\overline{G}_{\delta}(M) such that there exists

a const. \alpha>0 and that K(z, q_{1})\geqq\alpha K(z, q_{2}) . Then f(q_{1})=f(q_{2}) and \omega,.(q_{1})

=\omega_{r}(q_{2}) .
4) Let q_{1}\in\Delta_{0}(M)\cap\overline{G}_{\delta}(M) (set of non minimal points) and \mu be its

canonical mass of K(z, q). If \mu has a positive mass \alpha at q_{2}\in\Delta_{1}(M), thm
f(q_{1})=f(q_{2}) and \omega_{r}(q_{1})=\omega_{r}(q_{2}) .

Proof of 1) Suppose q_{1} and q_{2} are chained. Let \delta^{*}=\min(\delta, \delta_{1}) . Then
f(q_{i}) exists and \in A(\Delta(M), \delta^{*}) . Assume f(q_{1})\neq f(q_{2}) . Since A(\Delta(M), \delta^{*}) is
a closed set of capacity zero, we can find an analytic curve \Gamma enclosing
only f(q_{1}) and \Gamma\cap A(\Delta(M), \delta^{*})=0 . Consider f(\Gamma_{n}) . Then since f(z_{n}^{i})arrow

f(q_{i}),f(\Gamma_{n}) intersects \Gamma at least one at \xi_{n} . Let \eta_{n} such that f(\eta_{n})=\xi_{n}\eta_{n}\in\Gamma_{n} .
Then \eta_{n}arrow\Delta(M) and G(\eta_{n},p_{0})\geqq\delta^{*} . We can find a subsequence \{\eta_{n}’\} of \{\eta_{n}\}

such that f(\eta_{n}’)arrow\xi^{*} and \eta_{n}’arrow\eta\in\Delta(M)M\cap\overline{G}_{\delta^{*}}(M) and f(\eta)\in A(\Delta(M), \delta^{*}) . This
contradicts \xi^{*}\in\Gamma- Hence f(q_{1})=f(q_{2}) . Also we see f(\Gamma_{n})arrow f(q_{1})=f(q_{2}) .
This implies \omega_{r}(q_{1})\cap\omega_{r}(q_{2})\supset\Gamma_{n} and \omega_{r}(q_{1})=\omega_{r}(q_{2},) because \partial\omega_{r}(q_{i}) lies on
\partial C(r,f(q_{i})) . Hence we have f(q_{1})=f(q_{2}) and \omega_{r}(q_{1})=\omega_{r}(q_{2}) for two kindred
points q_{1} and q_{2} for any r>0 .

Proof of 2) is evident by (1) and by Therem 8.
Proof of 3) By Theorem 10 there exist connected pieces \omega_{r}(q_{1}) and

\omega_{r}(q_{2}) . Then (see the proof of Theorem 10, 2) ) sup K(z, q_{i})<\infty in R-
\omega_{r}(q_{i}) : i\neq 1,2 . Assume \omega_{r}(q_{1})\cap\omega_{r}(q_{2})=0 . Then sup K(z, q_{2})<\infty in R by
the assumption of this theorem. This is a contradiction. Hence \omega_{r}(q_{1})
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=\omega_{r}(q_{2}) for any r>0 , whence f(q_{1})=f(q_{2}) .
MProof of 4) Let z_{i}arrow q_{1} . Then there exists a subsequence \{z_{t}’\} of \{z_{i}\}

such that G(z, z_{i}’)-arrow G(z, \{z_{i}’\}), whence K(z, q_{1}) \leqq\frac{G(z,\{z_{i}’\})}{\delta} . By Lemma 6
K(z, q_{1}) is a G.G. in R and by Lemma 11 there exists a const. \delta’>0

such that q_{2}\in\Delta_{1}(M)\cap\overline{G}_{\delta’}(M) . Hence by the assumption we have K(z, q_{1})

\geqq\alpha K(z, q_{2}):\alpha>0 and 4) by 3).

Application to lacunary domain Let \tilde{R} be an end of a Riemann
surface with relative boundary \partial\tilde{R} . Let F_{i}(i=1,2, \cdots) be a compact con-
nected set such that F_{i}\cap F_{f}=0 , F_{i} clusters nowhere in \tilde{R}+\partial R and R=\tilde{R}

-F:F= \sum F_{i} is connected. Then we call R a lacunary end. Let \mathfrak{p} be an
ideal boundary component of \tilde{R} . Let \langle \mathfrak{v}_{n}(\mathfrak{p})\} be a determining sequence of
\mathfrak{p} . If there exists \mathfrak{v}_{n}(\mathfrak{p}) such that \partial \mathfrak{v}_{n}(\mathfrak{p}) is a dividing cut and inf G(z,p_{0})

>\delta>0(n=1,2, \cdots), we say F is completely thin at \mathfrak{p} , whereG^{n}(z,p_{0})z\in\partial b is
a Green’s function of R. It is desirable to formulate the behaviour of
analytic functions of bounded type in R relative to M-top. \overline{M} over \tilde{R} not
to \Lambda f-top over R. It is easily seen if F is completely thin at \mathfrak{p}, \delta(p,\overline{M})

\geqq\delta for p\in\Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) and any points in \Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) are chained.
THEOREM 12. Let w=f(z) be an analytic function of bounded type

in a lacunary end R of \tilde{R} . 1) If there exists a number \delta>0 such that
\Delta_{1}(\overline{M})\cap\overline{G}_{\delta}(\overline{M})\cap\nabla(\mathfrak{p})=\Delta_{1}(\overline{M})\cap\overline{G}_{\delta},(\tilde{N\dot{1}})\cap\nabla(\mathfrak{p}) for any \delta’\leqq\delta, then

\bigcap_{\text{\’{e}}>0}\bigcup_{n}\overline{(f(G_{\epsilon}\overline{M})\cap \mathfrak{v}_{n}(\mathfrak{p}))}=A=\{w=f(p):p\in\Delta_{1}(\overline{M})\cap\overline{G}_{\delta}(\overline{M})\cap\nabla(\mathfrak{p})\}

2) If. \bigcup_{>0}(\Delta_{1}(\overline{M})\cap\overline{G}_{*}(\overline{M})\cap\nabla(\mathfrak{p})) consists of a finite number of points p_{i}

(i=1,2, \cdots, i_{0}), . \bigcup_{>0}\bigcap_{n}\overline{f(G_{*})\cap \mathfrak{v}_{n}(\mathfrak{p}))}=\bigcup_{i=1}^{i_{0}}f(p_{i})

3) If F is completely thin at \mathfrak{p}, then \bigcup_{\epsilon>0}(\Delta_{1}(\overline{M})\cap\overline{G}.(\overline{M})\cap\nabla(\mathfrak{p})) consists

of a finite number of points p_{1},p_{2}, \cdots , p_{i_{0}} and

. \bigcup_{>0}\bigcap_{n}(f(\overline{G}_{*}(\overline{M})\cap \mathfrak{v}_{n}(\mathfrak{p}))=f(p_{1})=f(p_{2})=\cdots=f(p_{i_{0}}) .

REMARK. The former part of 3) is proved under the condition that
spherical area of f(R)<\infty in the previous paper. Suppose the spherical
area of f(R)<\infty . Then we can find a neighbourhood \mathfrak{v}(\mathfrak{p}) of \mathfrak{p} such that
f(z) is bounded type in \mathfrak{v}(\mathfrak{p})\cap R . Hence 3) is an extension of the the0-
rem in the previous one.

Proof of 1) By Theorem 8 z_{i}arrow p\in\Delta_{I}(\overline{M})\overline{M}\cap\overline{G}_{\delta}(\overline{M}) implies z_{i}arrow q\in\Delta_{1}M

(M)\cap\overline{G}_{\delta}(M) : q=\varphi(p) . By f(z_{i})-arrow f(p)andarrow f(q) we have f(p)=f(\varphi(p)) .
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Hence if A=A’\varphi we have at once f(A)=f(A’). For simplicity put F_{\delta}(\alpha)

\cap\Delta_{1}(\alpha)\cap\nabla(\mathfrak{p})=F_{\delta}(\alpha):\alpha=\overline{M} or M and \overline{G}_{\delta}(\alpha)\cap\Delta_{1}(\alpha)\cap\nabla(\mathfrak{p})=\overline{G}_{\delta}(\alpha) . By defini-
tion we have

\overline{G}_{\delta-}.(\alpha)\supset F_{\delta}(\alpha)\supset\overline{\overline{G}}_{\delta}(\alpha) for 0< \epsilon<\frac{\delta}{2} .

By \overline{G}_{\delta}(\overline{M})\subset F_{\delta}(\overline{M})\subset\overline{G}_{\delta-}.(\overline{M})\subset F_{\delta-*}(\overline{M})\subset\overline{G}_{\delta-2}.(\overline{M})=\overline{G}_{\delta}(\overline{M})

\overline{G}_{\delta}(\overline{M})=F_{\delta}(\overline{M})=F_{\delta-}.(\overline{M}) . (14)

By (14) and Theorem 8
F_{\delta}(M)\simeq F_{\delta}(\overline{M})=F_{\delta-}‘(\overline{M})\approx F_{\delta-}.(M)\supset\overline{G}_{\delta-}.(M)\supset F_{\delta}(M) and

\overline{G}_{\delta-*}(M)=F_{\delta}(M) , 0< \epsilon<\frac{\delta}{2} (15)

By (14) and (15)

f(\overline{G}_{\delta}(\overline{M}))=f(F_{\delta}(M))=f(\overline{G}_{\delta-}.(M))=A

Hence it is sufficient to study f(z) relative to M-top not \overline{M}-top. Let
\{z_{i}\} be a sequence such that z_{i}arrow \mathfrak{p} , G(z_{i},p_{0})>\epsilon>0 , G(z, z_{i}) converges and
f(z_{i})arrow w_{0} . We show w_{0}\in A . We can find a subsequence \{z_{i}’\} of { z_{i}\rangle such

that z_{i}’arrow q\in\Delta(M)M\cap\overline{G}.(M)\cap\nabla(\mathfrak{p}) , K(z, q) is representable by a canonical
mass \mu on \Delta_{1}(M)\cap\nabla(\mathfrak{p}’), where \mathfrak{p}’ is the ideal boundary component of R
(not of \tilde{R} ) on which q lies. Now R is a lacunary end. We can find
a determining sequence \mathfrak{v}_{n}(\mathfrak{p}) of \mathfrak{p} such that \partial \mathfrak{v}_{n}(\mathfrak{p})\cap F=0 and \mu=0 except
on \mathfrak{p} . Hence \mu>0 only on \Delta_{1}(M)\cap\nabla(\mathfrak{p}) . On the other hand, K(z, q)

\leqq\frac{G(z,\{z_{i}’\})}{\epsilon} and by Lemma 6 K(z, q) is a G.G. in R.. By Lemma 11 and
by (15) \mu is a mass on \Delta_{1}(M)\cap F_{\delta}(M)\cap\nabla(\mathfrak{p})=\Delta_{1}(M)\cap\overline{G}_{\delta’}(M)\cap\nabla(\mathfrak{p}) for any

G^{w}(f(z),f(t))
\delta’<\delta . Let t\in\Delta_{1}(M)\cap\overline{G}_{\delta’}(M), then K(z, t)\leqq\overline{\delta’} , where G^{w}(w, w’)

is a Green’s function of f(R) and \delta’ is a const. <\delta . Hence

K(z, q) \leqq\frac{1}{\delta}, \int G^{w}(f(z),f(t))d\mu(t)<\infty by \int d\mu\leqq 1

Since the mapping w=f(q) is continuous relative to M-top., there exists
a mass \nu such that

\int G^{w}(f(z), f(t))d\mu(t)=\int G^{w}(w, s)d\nu(s) and \nu>0 on A .

Let E^{*}K(z, q) be the lower envelope of superharmonic functions larger
than K(z, q) in f(R). Then E^{*}K(z, q)=aG^{w}(w, f(q)) : a>0 . Now by
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E^{*}K(z, q) \leqq\frac{1}{\delta}, \int G^{w}(w, s)d\nu(s), \nu has a point mass at f(q) by Lemma 4,

whence f(q)\in A . Hence \cap\overline{f(G_{*})\cap \mathfrak{v}_{n}(\mathfrak{p})}) \subset A for any \epsilon>0 and we have 1).
n

Proof of 2) Let \delta=\min_{i}(\delta(p_{t},\overline{M})). Then \Delta_{1}(\overline{M})\cap\overline{G}_{\delta}(\overline{M})\cap\nabla(\mathfrak{p})=\Delta_{1}(\overline{M})

\cap G_{\delta’}(\overline{M})\cap\nabla(\mathfrak{p}) for any \delta’<\delta and A= \sum f(p_{i}) . Thus we have 2).
Proof of 3) Let p_{i} and p_{j} in \Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) . Then \delta(p_{i},\overline{M})\geqq\delta>0,

where \delta is the number such that G(z,p_{0})\geqq\delta on \partial \mathfrak{v}_{n}(\mathfrak{p}) and p_{i} and p_{f} are
chained, hence f(p_{i})=f(p_{f}) and =f(p_{1})=\cdots=f(p_{i_{0}}) . By (10) there exists
a number N such that u(p_{i},\overline{M})\geqq N\delta(p_{i},\overline{M}) . Then by Theorem 10

\sum\delta(p_{i},\overline{M})i_{0}\leqq\frac{1}{N} Hence i_{0} \leqq\frac{1}{N\delta} and by 2) we have 3).

As a consequence of 3) we have following

COROLLARLY. Let \tilde{R} be an end of a Riemann surface\in O_{g} . If F is
completely thin at a boundary component \mathfrak{p} of harmonic dimension =\infty .
Then there exists no analytic function in \tilde{R}-F of bounded type in \tilde{R}-F.
We shall give some examples.

EXAMPLE 1. Let 1/2>a_{1}>b_{1}>a_{2}>b_{2}\cdots\downarrow 0 . Let S_{n}^{+} and S_{n}^{-}(n=1,2, \cdots)

be slits as follows:

S_{n}^{+}=\{1+a_{n}\geqq Rez\geqq 1+b_{n} , Imz=0\}

S_{n}^{-}=\{-1-b_{n}\geqq Rez\geqq-1-a_{n} , Imz=0\}

Let \mathscr{F}_{0} be a circle |z|<2 with slits \sum_{1}^{\infty}S_{n}^{+}+\sum_{1}^{\infty}S_{n}^{-} . We suppose a_{n}, b_{n} are
chosen as

1) \log\frac{b_{n}}{a_{n+1}}>\text{\’{e}}_{0}>0.
, n=1,2, \cdots

2) z=\pm 1 are irreguar points in \mathscr{F}- 0 .
Let \mathscr{F}_{n} be a whole z-plane with slits S_{n}^{+} and S_{n}^{-} . We shall construct an
end of a Riemann surface\in O_{g} . We connect -F_{9}, with ,\mathscr{F}_{n}(n=1,2, \cdots) on
S_{n}^{+}+S_{n}^{-} crosswise. Then we have an end denoted by \tilde{R} with relative
boundary \partial\tilde{R} lying on |z|=2 on \mathscr{F}_{0} . Let \Gamma_{n}^{+}=\{|z-1|=\sqrt{a_{n+1}b}\}n

’
\Gamma_{n}^{-}=

\{|z+1|=\sqrt{a_{n+1}b_{n}}\} on ,\mathscr{T}_{0}, and D_{n}=\mathscr{F}_{0}-\{|z-1|\leqq\sqrt{a_{n+1}b_{n}}\}-\{|z+1|\leqq\sqrt{a_{n+1}b_{n}}\} .
Put \tilde{R}_{n}=D_{n}+\mathscr{F}_{1}+\cdots+\mathscr{F}_{n} . Then \tilde{R}_{n} is an n+1 sheeted covering surface,
\{\tilde{R}_{n}\}(n=1,2, \cdots) is an exhaustion of \tilde{R}, \partial\tilde{R}_{n}=\partial\tilde{R}+\Gamma_{n}^{+}+\Gamma_{n}^{-},\tilde{R} has only
one ideal boundary component \mathfrak{p} and \{\tilde{R}-\tilde{R}_{n}\} is an determining sequence
of \mathfrak{p}. Let F be a connceted closed set of positive capacity in |z|>3 and
let F_{n} be a set on \mathscr{F}_{n} whose projection is F. Then R= \tilde{R}-\sum F_{n} is
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a lacunary end. \tilde{R} and R have following properties.
1) \overline{R} is an end of a Riemann surface\in O_{g} .

Let G(z,p_{0}) be a Green’s function of R and put G_{\delta}=\langle z\in R:G(z, p_{0})>\delta\}

and \overline{M} and M-top.s over \tilde{R} and R are defined. Then
2) \Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) consists of two points p_{1} and p_{2} and \delta(\overline{M},p_{i})>0 .

Let w=f(z)=proj . z(z\in R) . Then f(z) is bounded type in R and f(p_{t})

exists: \sum f(p_{i})=\langle z=\pm 1 } and p_{1} and p_{2} are not kindred.
3) Let \{z_{n}\} be a sequence such that z_{n}\in \mathscr{T}_{n}’-F_{n} and proj. |z_{n}-1|>\delta’

>0 . Then \lim_{n}G(z_{n},p_{0})=0 .
Proof of 1) Let H_{n}^{+}=\{b_{n}>|z-1|>a_{n+1}\} and H_{n}^{-}=\{b_{n}>|z+1|>a_{n+1}\}

on \sim\swarrow _{0},. Then H_{n}^{+}+H_{n}^{-} separates \mathfrak{p} from \partial\tilde{R} and by mod H_{n}^{+}=mod H_{n}^{-} ,
\sum_{n} modH_{n}^{+}=\infty and \tilde{R} is a end of a Riemann surface\in O_{g}.

Proof of 2) Without loss of generality we can suppose p_{0} lies on
z=3/2 in \mathscr{T}\prime 0 . Let G’(z,p_{0}) be a Green’s function of ,\mathscr{T}_{0}, . Put U(z)
=G’(z,p_{0}) and consider U(z) in \mathscr{F}_{0} . Then U(z)=0 on \sum(S_{n}^{+}+S_{n}^{-}) and
subharmonic in |z|<3/2 . Let C_{n}^{+}=\{|z-1|<\sqrt{a_{n+1}b_{n}}\} and C_{n}^{-}=\{|z+1|<

\sqrt{a_{n+1}b_{n}} on \mathscr{F}_{0} and let M_{n}= \max U(z). Then M_{n}= \max U(z) and M_{n}\downarrow

z\in C_{n}^{+-} z\in\kappa_{n}^{\perp-}.
Assume M_{n}\downarrow 0 . Then U(z)arrow 0 as zarrow 1 . This means z=1 is regular
and contradicts 2). Hence lim M_{n}=\delta>0 . By condition 1) and Harnack’s
theorem there exists a const. K for any positive harmonic function V(z)
in b_{n}>|z|>a_{n+1} such that

\max_{z\in\partial C_{n}^{\star-}}V(z)\leqq K\min_{x\in\partial C_{n}^{+-}}V(z)
. Hence

\min_{x\in\partial C_{n}^{+}}G’(z, p_{0})\geqq\frac{\delta}{K} similarly \min_{z\in\partial C_{\overline{n}}}G’(z, p_{0}\geqq\frac{\delta}{K}. (1)

By Brelot’s theorem there exist only a point q_{1} which is minimal on z=1
(=-1) relative to Martin’s top. M’ over \mathscr{F}_{0} and there exists a path \Lambda(q_{1})

M’-tending to q_{1} . \Lambda(q_{1}) intersects \partial C_{n}^{+}(n\geqq n(\Lambda, q_{1})). Hence there exists
M’a sequence \{z_{i}\} on \sum_{n}C_{n}^{+} such that z_{n}-q_{1} : K’(z, z_{n})arrow K’(z, q_{1}) . By (1)

EK’(z, q_{1})<\infty\tilde{R} and there exists a point p_{1}\in\Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) corresponding to q_{1} .
H^{0}encez\Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) consists of at least two point p_{1} and p_{2} . Let p\in\Delta_{1}(\overline{M})

\cap\nabla(\mathfrak{p}) . Then \Lambda(p) corresponding to p must intersect \partial C_{n}^{+}+\partial C_{n}^{-} . Then

there exists a sequence z_{i}arrow p\overline{M} and z_{n}\in\partial C_{n}^{+} or \in\partial C_{n}^{-} . Now \mathscr{F}_{0}\overline{RI}K(z,p)\geqq

\frac{\lim G’(z,z_{i})}{M}>0 , where M= \max\tilde{G}(z,p_{0}) for |z|<1 on \mathscr{F}_{0} and \tilde{G}(z,p_{0}) is

a Green’s function of \tilde{R} and 5_{0}RIK(z,p_{1})=aK’(z, q_{1}) or K’(z, q_{2}):a>0 . Hence
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\Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) consists of at most two points p_{1} and p_{2} . Let G(z, p_{0}) be

a Green’s function of R. Then by G(z,p_{0})\geqq G’(z,p_{0}), \delta(\overline{M},p_{i})\geqq\frac{\delta}{K} . Hence
\overline{M}

any analytic function of bounded type in R has limit as zarrow p_{i} in G_{\delta} ,

=\{z\in R:G(z,p_{0})>\delta’\rangle . The remaining part of 2) and 3) are the conse-
quence of Theorem 11 and 12.

EXAMPLE 2. Let 1/2>b_{0}>a_{1}>b_{1}>a_{2}>b_{2}\cdots\downarrow 0 and S_{n}^{+} and S_{n}^{-} be
slits :

S_{n}^{+}=\{b_{n}\leqq Rez\leqq a_{n} , Imz=0\} . S_{n}^{-}=\{-b_{n}\geqq Rez\geqq-a_{n} , Imz=0\}

Let w(S_{n}^{+-}, z) be a harmonic measure of S_{n}^{+-} in |z|<2 . We choose a_{n}, b_{n}

so that 1) and 2) may satisfied.

1) log (a_{n}/b_{n+1})>\epsilon>0’. (n=1,2, \cdots)

2) \sup_{Rez=0}w(S_{n}^{+-}, z)\leqq 1/2^{n+3}

(clearly z=0 is an irregular point in \{|z|<2\}-\sum S_{n}^{+-} ).

We shall construct an end \tilde{R} of a Riemann surface \in O_{g} and a lacunary

end R. Let \mathscr{F}\prime 0 be a circle |z|<2 with slits \sum_{n-1}^{\infty}S_{n}^{+}-\cdot

,\mathscr{T}_{n}, be the whole z-plane with slits \sum_{i=n}^{\infty}S_{i}^{+}+\sum_{i=n+1}^{\infty}S_{i}^{-} (n=odd)

\prime \mathscr{F}_{n} be the whole z-plane with slits \sum_{i=n+1}^{\infty}S_{i}^{+}+\sum_{i=n}^{\infty}S_{i}^{-} (n=even)

Connect -\mathscr{T}_{0}, with - \mathscr{F}_{1}, on \sum_{n=1}^{\infty}S_{n}^{+} crosswise. Connect - \mathscr{F}_{n} and - \mathscr{F}_{n+1} on

\sum_{t=n+1}^{\infty}S_{i}^{-}(n=odd) on i= \sum_{n+1}^{\infty}S_{i}^{+}(n=even) . Then we have a Riemann surface
\tilde{R} being a covering surface. Let F_{m}(m=1,2, \cdots) the part of ,\mathscr{T}_{m}, over

|z|>1 and let R= \tilde{R}-\sum_{m=1}^{\infty}F_{m} . Then R is a lacunary end. Let \Gamma_{n}=\{|z|

=\sqrt{a_{n+1}b_{n}} , H_{n}=\{b_{n}\geqq|z|\geqq a_{n+1}\}(n=0,1,2, \cdots) . Let \Gamma_{n}^{m} be a circle in - \mathscr{T}_{m},

whose projection is \Gamma_{n} and H_{n}^{m} be a ring in ,\mathscr{F}_{m} whose projection is H_{n} .
Let

D_{n}^{0} be the part of ,\mathscr{T}_{0}, over 2>|z|>a_{n}\tau

D_{n}^{n} be the part of - \mathscr{F}_{m}, over \infty\geqq|z|>a_{n} : 1\leqq m\leqq n-1

Put \tilde{R}_{n}=D_{n}^{0}+D_{n}^{1}+D_{n}^{2}+ , \cdots+D_{n}^{n-1}, Then \tilde{R}_{n} (an n-sheeted covering surface)

has relative boundary |z|=2 on, \Psi_{0} and \{|z|=a_{n}\} over ,\mathscr{T}_{1},+\cdot \mathscr{F}_{2}^{-},+\cdots+\mathscr{F}_{n-1}

and \{\tilde{R}_{n}\} is an exhaustion of \tilde{R},\tilde{R} has only one ideal boundary component



Analytic functions in a neighbourhood of irregular boundary points 117

\mathfrak{p} . \tilde{R} and R have the following properties.
1) R is an end of a Riemann surface\in O_{g}.
2) \Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) consists of a countably infinite number of points p_{1} ,

p_{2} , \cdots with positive irregularity.
3) p_{i} and p_{i+1} are chained : i=1,2, \cdots

Proof of 1) H_{n} is a ring with module log (a_{n}/b_{n+1}) and \sum_{m=0}^{n}H_{n}^{m} sepa-

rates \partial\tilde{R} from \mathfrak{p} and \sum\frac{1}{n+1}\log\frac{a_{n}}{b_{n+1}}=\infty . Hence \tilde{R} is an end of a
Riemann surface \in O_{g}. Let S(z) be a positive harmonic function in a_{n+1}

<|z|<b_{n} . Then by condition 1) there exists a const. K such that

\max_{z\in\Gamma_{n}}S(z)\leqq K\min_{z\in\Gamma_{n}}S(z) : \Gamma_{n}=\{|z|=\sqrt{a_{n+1}b_{n}}\}t

Let G(z,p_{0}) be a Green’s function of R with pole p at z=3/2 in ,\mathscr{T}\prime 0 .
Then there exists a const. M such that G(z,p_{0})\leqq M in R over |z|<1 .
Let V(z) be a positive harmonic function in \{|z|<\frac{1}{2}\}-\sum_{i=m}^{\infty}S_{i}^{+}-\sum_{i=m}^{\infty}S_{i}^{-}

such that V(z)\geqq N on |z|=1/2 . Then

V(z) \geqq N(1-\sum_{n\iota}^{\infty}w’(S_{i}^{+}, z)-\sum_{m}^{\infty}w’(S_{t}^{-}, z)) , (1)

where w’(S_{i}^{+-},, z) is H.M. of S_{i}^{+-} relative to |z|\leqq 1/2 and w’(S_{i}^{+-}, z)\leqq

w(S_{i}^{+-}, z) . By R \max_{ez=0i}\sum_{=m}^{\infty}(w(S_{i}^{+}, z)+w(S_{i}^{-}, z))\leqq 1/2^{m+1} we have

V(z)\geqq N(1-1/2^{m+1}) for Rez=0 and V(z) \geqq\frac{N}{K}(1-1/2^{m+1}) on \sum_{i=1}^{\infty}\Gamma_{t} (2)

Consider G(z,p_{0}) in \mathscr{F}_{m}- over \{|z|<1/2\} . Then there exists a const. N_{m}

such that G(z,p_{0})\geqq N_{m} on |z|=1/2 . Hence by (2)

G(z,p_{0}) \geqq\frac{N_{m}}{K}(1-1/2^{m+1}) for Rez=0 and on \sum_{i=1}^{\infty}\Gamma_{i} (3)

Similarly we have

G(z,p_{0})\leqq K(M/2^{m+1}) for Rez=0 and on \sum_{i=1}^{\infty}\Gamma_{i} . (4)

Let G_{m} be the part of \mathscr{F}_{m} on \{\sqrt{a_{n+1}b_{n}}<|z|<\sqrt{a_{n}b_{n-1}}, -\pi/2\leqq\arg z\leqq\pi/2\}

G_{m-1} be the part of \mathscr{F}_{m-1} on \{\sqrt{a_{n+1}b_{n}}<|z|<\sqrt{a_{n}b_{n-1}}, -\pi/2\leqq\arg z\leqq\pi/2\}

Then G_{m} and G_{m-1} are connected at S_{n}^{+} and G_{m}+G_{m-1} is bounded by two
boundary components B on \mathscr{F}_{m} and B’ on \mathscr{F}_{m-1} for n\geqq m, where B is
the part of \mathscr{F}_{m} over (|z|=\sqrt{a_{n}b_{n-1}}, -\pi/2\leqq\arg z\leqq\pi/2)+(\sqrt{a_{n+1}b_{n}}<|z|<\sqrt{a_{n}b_{n-1}}

arg z=\pi/2) +(|z|=\sqrt{a_{n+1}b_{n}}, -\pi/2\leqq\arg z\leqq\pi/2)+(\sqrt{a_{n+1}b_{n}}<|z|<\sqrt{a_{n}b_{n-1}} \arg z=
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-\pi/2) . and B’ is a set on - \mathscr{F}_{m-1}, whose projection is that of B. Then by

(3) G(z,p_{0}) \geqq\frac{N_{m}}{K}(1-1/2^{m+1}) on B and \geqq\frac{N_{m-1}}{K}(1-1/2^{m+1}) on B’. Hence

G(z,p_{0}) \geqq\frac{1}{K}(1-1/2^{m+1}) min (N_{m}, N_{m-1}) and similarly G(z,p_{0}) \geqq\frac{1}{K}(1-1/2^{m+1})

min (N_{m}, N_{m+1}) in the part of - \mathscr{F}_{m}, over \sqrt{a_{n+1}b_{n}}>|z|>\sqrt{a_{n}b_{n-1}}, \pi/2\leqq\arg z\leqq

3\pi/2 . Hence G(z,p_{0}) \geqq\frac{1}{K}(1-1/2^{m+1}) min (N_{m-1}, N_{m}, N_{m+1}) in \mathscr{F}_{m} over |z|

<\sqrt{a_{m}b_{m-1}} . Now G_{m} (for n\leqq m) is bounded by only one boundary com-

p oint B on which G(z,p_{0}) \geqq\frac{N_{m}}{K}(1-1/2^{m+1}) . Thus

G(z,p_{0}) \geqq\frac{\min(N_{m-1},N_{m},N_{m+1}}{K}(1-1/2^{m+1}) in \mathscr{F}_{m} over |z|<1/2 . (5)

For m is even, the same result is obtained.
Similarly we have

G(z,p_{0}) \leqq\frac{KM}{2^{m}} in \mathscr{T}rm over |z|<1 . (6)

Let \mathscr{F}_{m}’=\mathscr{F}_{m}-F_{m} , i.e. unit circle with slits \sum_{m}^{\infty}S_{i}^{+-}+\sum_{m+1}^{\infty}S_{i}^{-+} according as

m=odd or even. Then there exists only one point q_{n} at z=0 which is
minimal relative to Martin’s top. over \mathscr{F}_{m}’ . Let \Lambda be a curve tending
to q_{m} . Then \Lambda intersects \Gamma_{n}^{m} : n\geqq n(\Lambda) . There exists a sequence \{z_{i}\} on
\sum_{i}\Gamma_{i}^{m} with K’(z, z_{i})arrow K’(z, q_{m}), where K’(z, q_{m}) is a kernel in \mathscr{F}_{m}’ . Let
G’(z,p_{0}) be a Green’s function of \mathscr{F}_{m}’ . Then by (1) it is easily seen lim

G’(z_{i}, p_{0})>0 and \mathscr{L}’ mEK’(z, q_{m})<\infty\tilde{R} and there exists apoint p_{m} in \Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p})

with P’ mEK’(z, q_{m})=aK(z, q_{m})\overline{R} . Clearly by (5) \delta(_{-}\overline{M},p_{m})>0 . By \mathscr{F}_{- m}’\cap \mathscr{F}_{m}’=0,

q_{m}\neq q_{m’} and p_{m}\neq p_{m’} for m\neq m’ . Hence there exist p_{1},p_{2}, \cdots in \Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) .
Conversely let p\in\Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) with \delta(\overline{M},p)>0 . Then there exists a path
\Lambda\overline{M}-tending to p. By (6) there exists a number k_{0} and an endpart \Lambda’

of \Lambda such that \Lambda’ has no common points with \mathscr{F}_{k} : k\geqq k_{0}. Now \sum_{i=1}^{n}\Gamma_{n}^{i}

separates \partial\tilde{R} from \mathfrak{p} for any n and \Lambda intersects \sum_{i=1}^{k_{0}}\Gamma_{n}^{i} for n>n(\Lambda) and there

exists a sequence \{z_{i}\} and a number m such that { z_{i} \rangle\subset\sum_{n=1}^{\infty}\Gamma_{n}^{m} and z_{iarrow p}^{\overline{M}}.

By (5) \lim G’(z_{i},p_{0})>0, t\pi_{m}\overline{IR,} K(z,p)>0 . Hence p_{m} corresponds q_{m} . Hence

there exists no point with positive irregularity except p_{1} , p_{2}, \cdots . Let p_{m} ,
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p_{m+1}\in\Delta_{1}(\overline{M})\cap\nabla(\mathfrak{p}) . Then there exist sequences \{z_{i}^{m}\} , \{z_{i}^{m+1}\} such that \{z_{i}^{m}\}

\subset\sum_{n}^{\infty}\Gamma_{n}^{m}, \{z_{i}^{m+1}\}\subset\sum_{n}^{\infty}\Gamma_{n}^{m+1}, z_{i}^{m}arrow p_{m} , z_{i}^{m+1}arrow p_{m+1} . By (5) p_{m} and p_{m+1} are
chained.
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