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The present paper is a continuation of the previous paper with title
“Analytic functions in a lacunary end of a Riemann surface”. We use
the same notions and terminologies in the previous one. Let G be an end
of a Riemann surface €0, (we denote by Og the class of Riemann surfaces
with null boundary) and G'=G—F be a lacunary end and let pe4,(M) be
a minimal boundary point relative to Martin’s topology M over G with
irregularity 6(p)=l§n G(z, po)>0, where G(z, po): PG’ is a Green’s func-

2-p

tion of G'. Then Theorems 2, 3 and 4 in the previous show that analytic
functions in G’ of some classes have similar behaviour at p as p is an
inner point of G'. We shall show these theoremes are valid not only for
the above domains but also for any Riemann surface €O The exten-
sions of Fatou and Beurling’s theorems express the behaviour of analytic
functions on almost all boundary points but have no effect on the small
set, {pedi(M): 6(p)>d}. The purpose of this paper is to study analytic
functions on the small set, to extend theorems in the previous one and
to show some examples. Let G be a domain in a Riemann surface R.
Through this paper we suppose dG consists of at most a countably infinite
number of analytic curves clustering nowhere in R. The following lemma
is useful.

LemMA 5. Let R be a Riemann surface €0, and let G be a domain
and Uy(z) (1=1,2, -, 1) be a harmonic function in G such that D(U,(z))
<oo. Then there exists a sequence of curves {I',} in R such that I', sepa-
rates a fixed point p, from the ideal boundary, I',—ideal boundary of R
and S aa_n U, (2)

r,ne

Generalized Gree’s function? (abbreviated by G.G.). Let R be a
Riemann surface with an exhaustion {R,} (=0, 1,2, ---) and G be a domain
in R. Let w, ,.(2) be a harmonic function in R,,;—(GN(R,+:—R.,)) such
that w, ,.;(2)=0 on 0R,,;—G and =1 on GN(R,;;—R,). We call li7£n

lim w,,,.:(2z) a H.M. (harmonic measure) of the boundary determined by G

ds—0 as n—oo for any i.
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and denote it by w(GNB,z). Let V(z) be a positive harmonic function in
R except at most a set of capacity zero where V(z)=co. If w(G;NB, =)
=0: for any 6>0 and D(min (M, V(2))SMa: a is a const. for any M, we
call V(2) a G.G,, where G,={2€R: V(2)=6}. Then it is known

LeMMA 6. 1) Let V(2) be a non const. G.G. Let G, be the symmetric
image of G, with respect to 0G, ={z€R: V(2)=0}. Identify 0G, with G,
Then we have a Riemann surface G; called a double of G,. Then G,€Q,.

2) By 1) and by Lemma 5, we see there exists a const. a such that

D(min (M, V(2)))=Ma and S _5%_ V(z)ds=a for any M and sup Viz)=

Gy
3) Let V(z) be a G.G. and let W(z) be a positive harmonic function
< V(). Then W(2) is a G.G.
4) A Green’s function of R is a G.G. with D(min (M, G(z, p,)))=2xM.
Let p, be a sequence such that G(z,p;)—>a non const. harmonic function
Gz, {p)). Then G(z,{p:}) is a G.G. with D(min (M, G(z, {p:})))<2zM.

G-Martin’s topology®”, GM. Let R be a Riemann surface ¢O, and
let G(z, po) be a Green’s function of R. Put R'={z€R:G(z, py)>0}:0>0.
Then the doubled surface R’ with respect to dR’ is in O, Let G'(z, ;)
be a Green’s function of R’ and let {p;} be a sequence such that p,—
boundary of R and G'(z,p,) converges to a harmonic function. Then we
say {p:} determines a boundary point p and put G'(2, p)=lim G'(z, ;). We
denote by B(R') the set of all boundary points. Then G-Martin’s topology
is introduced on R’'=R’'+ B(R') as usual with

. G'(z, G'( ,
dlSt (piypj)zsup 1+((;zl(£i)Pi) 1+G% fjp ' Pu PZER

z2€R,

where R, is a compact set in R'.

Then we see G'(z,p): pER’ is a G.G. and S 2 G'(z, p)ds=2rn : peR’.

aVM(m
0

Where Vy(p)={2€R :G'(z,p)>M}. Let p and geR. Then S G'(&, p) .

aVpla)

G'(C,q)dst as M—oo. We define the value of G'(z,p) at ¢ by 1im—1——
M=

w 2T
G (€, £) 2y G'(6,g) ds also the mass m(p) of G'(2) by 5= | =
WV y(a) -

G'(2,p)ds. Then

Lemma 7. 1) G (p, 9)=G"(q, p), G'(p, q) is lower semicontinuous on
R'xR', G'(p,p)=0, if G'(z,p)>0 and G'(z, p) is continuous on R'—p for
pPER’.
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2) m(p)=1 for peR’ and m(p)gz—”k for peG.NB(R)), G\={zeR':
G'(2, po)>1>0}, k=s;1p G'(z, po), where R, is a compact set with R,dp,.
zER,

Energy integral, capacities and transfinite diameters® Let F be
a closed set in R. Let {R,} be an exhaustion of R and let w,(z) be a
harmonic function in (R'NR,)—F such that w,(2)=1 on F except capacity

zero, =0 on dR'NR, and —g;—wn(z)=0 on (IR,NR)—F. If there exists

a const. M such that D(w,(z))<M for any 7, then w,(2) in mean— a
function w(F, 2) called C.P. (capacitary potential). Clearly w(F, z) has M.D.I.
(minimal Dirichlet integral) among all functions with value 1 on F, =0
on dR’' except capacity zero. In this case, R'(of R')€O,, o(F,z)=w(F,z).
HM. (harmonic measure of F). Let K be a compact set in R. Then
evidently there exists a uniquely determined mass gz on K of unity such

that the energy integral I(;z)=—417SG’ (p, Q) dp(p) dp(q) is minimal and its

potential U(z) has the following properties: U(z)=Mo(K, z2), I(z)=D(Mw
(K, 2))=2M. We define Cap(K) by 1/I(g)=1/2zM=D(w(K, 2))/4z%>. We
define Cap(F) of a closed set FCR' by sup Cap(K). Also we define trans-

finite diameter D(F) by 1/D(F)=lim inf i‘ G'(pi, p1)/.Co.  Put 1/DY(F)=lim
rj =1

inf 37 G™(ps, p,)/.C, and D*(F)=lim D*(F), where G"*(p;, p,)=min (M, G'(p,

Diegpd>t
p;EFi=1

?5))- Then clearly D(F)<D'(F).
Let peR". Then by Green’s formula and by we have

Glap)= 5 | GL oo CErds: geVaulp)

V(o)
1 0
M=oz S G'(L,q) 5,7 G'(C, p)ds; q€ Vaulp).
aVp(p)
1

Put dp, (@)= o WG'(C,?) ds on dVy(p). Then G"™(z, p)=Mw(Vy(p), 2)
=SG'(C, 2)dp,(C) and p,=0 on B(R). Let py, pn - pn Then G™z, py)

S G,M(z:' Pi) d.upj (z) és G’ (z: P'L) d#?j (z) = G’M(P.i’ Pl) .

Put p= Zn} Up,/n, then
i=1
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1 n
I(p )én—Z (i P1) - (1)
i=1
=1
LemMa 8. Let ACA be closed sets in R' and suppose there exists a
const. M such that —21;1_— S aaTG’ (2, p) ds=0,>0 for any peA. Then
wy(p)NA

1/D°(A)z1/D*(A)z8/Cap(4).
Proor. Let dp,, = Tan— G'(z, p))ds on aVy(p,)TR': p,€A and let p;, be

the restriction g, = i}ppi/n on ANR'. Then Sdﬂf,250>0 and by (1)
i=1

1) S =5 2 G™(po 1)

[0
...n—-

By the simmetry of G*(p,, p;)

n

2(Z G (pu £) = 2, G (b £ LG*(p,p)  and

UDKA)= inf 5 G pluCoz( 2

Py P €A 1<.7

I| “

[

n—1 "~

) e

Now ¢, is a mass only on ANR' with total mass >4d. By definition
1/Cap(A) is the infimum of energy integrals of all distributions on ANR
of mass unity. Hence I(¢,)=0/Cdp(A). Let n—>co. Then 1/D¥(A)=0d}/
Cap(A).

Capacity and transfinite diameters of irregular boundary points®
B(RYNG,: G,={2€R': G'(z,po)>n}. Put F,={2€R": G'(z, po)=n}. Then
F, is closed in R’. Let {R,} be an exhaustion of R(not of R'). Then

CiplF,N(B=Ry)) = lim Cap(F,n R N(Rovi — K.)) S - Dlo(F, ) S - D

(min (5, G' (2, po)))<%—<oo Let w,(z) be CP. of F,A(R'—R,. Then
®,(2) in mean— a harmonic function w(z). Now w(2)=0 on R’ and =1.
By ReO,, w(z)=0. Hence

Cap(F,N(R'—=R,)) | 0 as n—>oo. (2)

Tueorem 7. Let A=F.NB(R): £>0. Then D(A)SD’(A)=

Proor. Let v(p,) be a neighbourhood of p,. Then there exists a
const. £ such that G'(z,p)<k in R'—v(p,. By Green’s formula and by
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G | CEpl o CERE=Clp )~ 5 | G624

Wy mres BVM(p)—G~
’ 1 a ’ 1 a ’ ’

Put m'(p)=—_—\ 5,GCp)ds, then -\ 7-G'(( p)ds=1—m'(p).
Wy (PNGS Wy (p)-a5 (3)

Suppose p€eG,, then by (3) we have

m'(p)gTi— for any p€G, and for any M<co. (4)

Clearly max G'(z, p)=M,<co. Hence for any given number 7n there exists
z€dR,NR’
PEFNB(R)’

a number M, such that Vy,(p)CR'—R,: M>M,, peF.NB(R'). Hence we
have
ProposiTiON. Let & and n be numbers. Then there exists a number

1 )
M such that m(p)gzr— S WG’(C,p)dsgz—Ek for M=M, and for peF;

Wy(PNR~R,)NGS
N B(R').
Let ¢e>0 be a given positive number. Then by (2) there exists a
number 7 such that Cdp(F,N(R'—R,))<e: 7=. Let A=F,n(R'—R,)
and A=F,NB(R'). Then by the proposition there exists a number M’ such

that —2—17—; S ainG’(C,p)ds> z M=M' and peA. Hence by Lemma 8§
Wulnnd
1/DM(A)2<%>/5. Let M—oc and then e—0. Then we have
Let 2 be a domain in the z-sphere such that 2¢O, Let G(z,p) be
a Green’s function of 2. We shall extend the domain of the definition of
G(z,p) to 2x02 by G(p, q)=limlim G(&,7) for p,qel2x . Then we see
§-p 1q —
at once G(p,q)=G(g,p) and G(z,p)=G(z,p): 2€82, pef (in Lemma 4V
G(z, p): pef is deﬁned) Let F be a closed set on £2. Define D*(F) by

1/D*(F)=lim inf ZG(p,, 23)[nCe.

n  pi ijF i<

LEMMA 9. 1) Let 2 be a domain in the z-sphere such that 2¢0,.
Let G(z,2') be Green’s function of 2. Then there exist consts. M and &
depending on 2 such that

Gz, z')glogTz—_f?‘— +M,
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for any points z and 2’ with spherical distance <.
2) Let F be a closed set on Q such that D*(F)=0. Then F is a set
of (logarithmic) capacity zero.

Proor. By 2¢0,, CQ2 is a set of positive capacity. We can find two
closed sets E; and E, in C2 such that both E, and E, are of positive
capacity and spherical distance between E, and E,=d>0. We denote by
[2, 2'] the spherical distance betweed z and 2. Put C(49,2')={z: [z, 2']
<46): 6=d|8. We can find a finite number of points, 2, 2, ***, 2, such
that X C(4, z:)D z-sphere, and C(44, 2;) has common points at most one

of E, and E, Suppose [z,2]1<d. Then there exists C(44,2) such that
C(26, z;)5z and 2’ and C(49, )N E;=0(j=1 or 2). Let G(z, 2') be Green’s
function of CE;. Then G(z, 2)2G(z, #'), G(z, 2') is harmonic in C(49, z;)-2'

~ 1 . .
and G(z, z')—log—lz—_—z—,l— is continuous on C(44, 2;)x C(40, z;). Hence there

exists a const. M(z;) such that G(z, z’)glog——lz—_l;,T + M(z;). Hence we
have 1) by putting M=max M(z2;)
Proof of 2). Let F,=FNC(25,2,). Then it is sufficient to show F,

is a set of capacity zero. By a conformal mapping we can suppose z,c=0

and 6<1/4. Then we have lim inf Z log ————/.C,=00 by D*(F,)=

n 2i€F z<j IZZ l

(F)=0. Hence F, is a set of capac1ty zero.

Mass distribution of a generalized Green’s function Let R be a
Riemann surface €0, Let U(2) be a positive harmonic function in R and
let G be a domain. Let U, ..:(2) be a harmonic function in R,;—((R,4
—R,)NG) such that U, ,+:(2)=0 on 9R,.;—G, U, »+:(2)=Ul(2) on GN(R,,.+s
—R,). Put li?rzn lign U, n:(2)=5U(2). Let U, ,..:(2) be a harmonic function

in Rn+z—((Rn+t_Rn) n G) SuCh that ﬁn,n+i(z)=0 on (Rn+i_Rn) n G’ = U(z)
on oR,,;—G. Put limlim Unnsi(2)=5U(2). Then

LemMma 10¥. 1) &&URR))=8U(2) and §U(2)+5&U(2)=U(2).
2) Let U(z) be a harmonic function which is a G.G. with D(min (M,
U(2))SMkr and let G,={z€R: G(z, p)>0}. Then GU(2)<k6/2 at z=ps.

We suppose Martin’s top. M is defined on R=R+4(4=4,+4,). Let
G,(M) be the closure of G, relative to M-top. Let F,={2eR: M-dist(z,
G,(M))<1/n} and 5 U(2) be the lower envelope of superharmonic functions
larger than U(z) on F,. Put Uj(2)=lim 5 U(2). Then by Martin’s theory

U?(2) is represented by a canonical distribution g on G,(M)N4;. Clearly
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U; ()26 U(). (5)

LemMma 11. 1) Let U(z) be a positive harmonic function being a
G.G. in R. Then there exists a canonical distribution p on UG;(M)N 4,
>0

such that
Ule) = | K(z, p ().

2) If there exists a const. 6>0 such that G;(M)N4,=G,(M)N4, for
any §'<0, then there exists a canonical distribution p on G,(M)Nd4, such
that

U() = | Kz, p) dp(p).

Proof of 1) Since U(z) is a G.G. there exists a const. £ such that
D(min (M, U(z)))=%k M= for any M. By (5) and by

(U)-Ui(2)<ko)2  at z=p,. (6)
Let 6=0,>0,-- |0, UJ () and g, be a canonical mass of U} (2). Then
¢n?t and p,—p, ., is also canonical on G, (M)N4. Now Uj (2)=Uj(2)
+ é(U,;"i(z)—U,,";_l(z)) Hence by (6) U (z)zlim lim U} (2) and U(z) is repre-
sented by a canonical distribution ¢ on UG;(M)N4,. 2)is evident by 1).
Let DD D, be two domains. Let 5&) be a positive harmonic func-
tion in D;,. We denote by j{lU (z) the greatest subharmonic function in D,

vanishing on 9D, not larger than U(z). Let V(z) be a positive harmonic
function in D, vanishing on 9D, except at most a set of capacity zero.

Dl
We denoteby EV(z) the least positive superharmonic function in D, larger
D

than V(z). Then the following are well known.

D, D, D,
1{ U(z) and EV(z)(for EV(2)<o0) are harmonic and
2 D, D,

D,D,D, D, D,D.D, D,
TEIU(x)=IU(z) and EIEV(2)=EV(2)
D,p,D, D, D,D,D, D,

'Dl ‘DIDI 'Dl
Let U(z) be minimal in D,. Then if I1U(2)>0, EIU(2)=U(z) and 1U(2)
D, D,D, D,
D, DD,
ts minimal in D,. Let V(2) be minimal in D,. If EV(z)<oo, [EV(2)
D, D,D,
D,
=V(2) and EV(2) is minimal in D,.
>

2

If Ue)/Ule), 1U(@)=lim (1U, =)
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Correspondence between two minimal points Let R be a Riemann
surface §0, and R be a Riemann surface CR. Let {R,} be an exhaustion
of R and p be a boundary component of R. Suppose Martin’s topologies

M and M are defined over R and R respectively. If piip: a=M or M
and p;—p (considered in R), we say a point (relative to a-top.) lies over p.
We denote by 4(a)NF(p) and 4,(a)NF(p) sets of boundary points, minimal
boundary points over p respectively. In the present paper boundary com-
ponents are considered only for R (except special remark). Let G(z, po) be

a Green’s function of R. Let Fy(M)={zeR: lim G(L, po)=6) and F,(M)
i
={z€R: lim G({, p)=6}. Let A be a set relativLé to M-top.. We denote
{2
M

by AN4(M) the set of point p of A lying over 4(M), i.e. there exists

a sequence {z;} such that ziﬂp and z;— boundary of R. Then

THEOREM 8. 1 Let zt——»pe(R+A1( M))N F; (M) N 4(M) and G(zi, po)
>e&>0. Then zi—z\i a uniquely determined point qed,(M)NF;(M) and
K(z, q)=anjpf(z,p): a>0. We denote q by o(p).

2) Lethedl(M)ﬂF,,(M). Then there exists a point p€ R+ 4,(M) such
that K (2, p)=a EI_ZpK(z, q); a'>0, clearly p=¢~'(q). Further

4(M)NF(M)NT (p)=4(M)NF,(M)NT (b),
F,(M)N(R+4H(M)NAM)=H(M)NF,(M),
where = means the existence one to one mapping.

Proof of 1) 1) is proved by L. Naim. Let G(z, p,) be Green’s func-
tion of R and v(p,) be a neighbourhood of p, and put M= sup G (z, o).

2§ v(p,)

Let K(z,p) and K(z,q) be kernels in R and R respectively. Then if
G(Z, Po)>80>

6(2, Z,;) = G(Z, zi)
I =K(z,z)= Wi

—

G(z, zi) > GOK(zy zi)
M = M

soGJ(\;,Zzi) (7)

v

v

Let zz—l‘i p and let {z}} be a subsequence of {z:} such that zi—%q Then
by (7) I K (2, p)>0. By the minimality of I K (z,p) I K(z,p)=aK(z,q):
a>0 and ged,(M). Since {z}} is an arbltrary M-convergent subsequence

such point ¢ is uniquely determined. We denote it by ¢(p). If peF,(M M)
NP (p), evidently geF,(M)NV(p).
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Proof of 2) By 1) if peF,(M)N&4(M)NF(p), qeF,(M)N4(M)NV(p).
Conversely let gedi(M)NF,(M)NF(p). Then there exists a sequence {z,}
2G(2, 2,) _ 2G (2, 2,)

0 = )

such that z, —J\—l> q and G( "’p°)>5__}f and K(z, 2,)=<

for ~1—<— hence EK(z g)<oo. By the minimality of K(z,q), there

exists a uniquely determined point ped,(M) such that EK(z g)=aK(z,p):

a>0, clearly g=¢(p). We show peF,(M). Let Q, —{zER G(z, po)>06—2¢} :
3¢<d and let {2]} be a subsequence of {z,} such that G'(z, 2}) converges

to G'(z, {z}}), where G'(z, 2}) is a Green’s function of £,. Then E%fl

ZK(z, q)z—G_(i_M{zl}l>0 by G’ (P, 2.) =G (2., po)—(0—2¢)>¢ for % <e.

Hence
QII?(z,p)>O. (8)

Let U(z)=K(z,p). Let V,(z) be a harmonic function in 2,NR, such that
V.(2)=U(z) on 82,NR,, =0 on oR,NL2.. Then Vou(2)"caU(z) in .. Let
W.(z) be a harmonic function in Q‘nﬁn such that W,(z)=0 on 92.NR,,

=U(z) on aR,NR.. Then W,(2) I U(z). On the other hand, U(z)=V,(z)
- 2,

+U,(2), Ul2)=co U (z)+}2 U(z) and by (8) U(z)>¢e, U(z). Hence CQ, is thin
9‘

at p. Let vn(p)={z€§: M-dist(z, p)<—7lz~}. Then Cu,(p) is thin at p and
C(v,(p)NR2,) is thin at p, whence v,(p)N2.#0 for any n and ¢>0: <

g—. Let e>6>&- | 0. We choose z, in v,(p)N%2.,, where 2, ={z€R:

G(z, po)=6—2¢,}. Then zny—»p, lim G(z,, po)=06 and peF,(M). By the

assumption we can find a sequence {z,} subh that zn—]\iq, z,—Pp. G(z,, po)

>&>0. G(z, 2z,) and G(z, 2,) converge. Then _

K(z, q)é G(z;{zn}) é G(z;{zn}) , dK(z,P) — f,:K(z’ Q)é L’z;{i_z_”}_) ’ ﬂ>0
- 0 0 R 0

and K (2, p) is bounded outside of a neighbourhood b(p)(ab(p) is supposed

compact in R). Clearly p lies on a boundary component p’ of R. Assume

p#p. Then K(z,p) is bounded outside of b(p’) of p’ such that b(p)Nd(p’)
=0. This implies sup K (2, p)<oo. This is a contradiction. Hence p
z2€R

lies over p where ¢ lies. Thus we have 2). The latter part is proved
similarly.
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Let RCR¢0, be Riemann surfaces and let G(z, py) be a Green’s func-
tion of R. We suppose Martin’s topologies M and M are defined on R
and R. Let R'={2€R: G(z, py)>&} and suppose G-Martin’s top. GM is
defined on R'+B(R'). Let w=f(z): 2€R be an analytic function in R
whose value falls on the w-sphere. If the complementary set Cf(R) of
f(R) is of positive capacity, we call f(z) a bounded type in R. In this
paper we consider only functions of bounded type in R. Then

THEOREM 9. 1) Let zi-AiqéA(M), 2:€G,={2€R: G(2, py)>06}. Then
flz;)—one point denoted by f(q).

9) Let 2, pedi(M)+R, 2€G, Then flzi— flp).

) Let ziLPEB(R'): 2€Gsy.: €>0. Then f(zi)——»f(p)

4) Let A(4(M)+R,0)={f(p): pe(4(M)+R)nNG,(M)n4(M)}, A(4(M),
8)={f(p): pedM)NG,(M)} and A(B(R'),8)={f(p): peBRING:(GM)N
AM)y. Then A(4(M M)+ R, 5)C A(d(M), 8)=A(B(R’),d): 6>¢& and A(4(M), )

is. a closed set of capacity zero and 6l>JOA (4d(M), 8) is an F, set of capacity

zero.

_ Proor. Let 2,€G;: 0>¢& and let G'(z,2;) be a Green’s function of
R'. Then G(z, 2)=G'(z,2;). Let {zi} be a subsequence of {z;} such that
G(z, 20) and G'(z, 2}) converge. Then G(z, {z}})=G'(z, {})>0 and G'(z, {z}})
=0 on oR’' and is a G.G. in R’, whence sup G'(2, {=f})=00. Assume f(2)
does not converge as z,——q. Then there exists two subsequences {2z}
(=1, 2) of {z;} such that G(z, 2f)—U*(2), flzf)—w*: w'+w?’. Now

Gz, 2 Gz, z
G 2 Kis 2z TR M= gup Gl ) and

0K (2, 9) <U*(2) < MK(z, q).

On the other hand, U*(2)<G"”(f(2), w*), where G“(w,w*) is a Green’s
function Qf f(R) qnd not necessarily w*e f(R) but € f(R). Hence

II

K(z, ¢)< 5 min (G*(f(2), w), G*(f(z) w))  and by Lemma 4
oo =sup U*(2) < 1—‘54—

s sup min (G¥(w, w'), G*(w, w?))< oo .
z€

2E€R

This is a contradiction, hence f(z)— uniquely determined point denoted

by flg)

Proof of 2) By [Theorem 8§ 1) z———»pE(Al( M)+R): zeG,(M) implies
z—]\-{»qEAI(M) and we have 2). 3) is proved similarly as 1).
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Proof of 4) Let w,eA(4d(M), ) and w,—w*. Then there exists z,
such that z,ed(M)NG,(M): w,=f(z,). Let {R,} be an exhaustion of R.

For any 2z, we can find 2/, in (R—R,)NG,-1 such that M-dist (z,, z:,)§~712—,

1
| fzh) —w,| =-,, - Consider K(z, 27). Then we can find a subsequence {z/}
of {z,} such that K(z, 2!/} converges uniformly. This means there exists

a point 2¥€4(M)NG;(M) such that z;’%»z* and f(z//)—f(z*). Clearly
w* = f(z¥). Hence w*cA(4(M),5) and A(4(M),d) is closed. We can
choose & so that £<4. Since A(4(M),0)=A(B(R'), ) for §>¢& is proved
easily, it is sufficient to show A(B(R'),d) is a set of capacity zero. By
the transfinite diameter of B(R')NG,(GM) is zero. Since for
any point w€A(B(R'), §) there exists at least a point 2 in B(R')NG,(GM)
such that w=f(z) and since G*(f(2), f(2)))=G'(z, 2), transfinite diameter
D*(A(4(M), 8)) is zero and by A(4(M), 8) is a set of (logarithmic)
capacity zero.

We consider the behaviour of f(z) as =——d4(M) of RCR. We define
another Riemann surface R* as follows. We can find a segment S in R
such that f{2) is univalent in a neighbourhood v(S) of S. Put S*= f(S).
Let .# be a leaf such that .#=f(R) and let 3.# be its boundary. Let
S(#) be a slit in .# with S(.#)=8*. Connect .#—S(#) and R—S
crosswise on S“(=S). Then we have a Riemann surface R*=(R-JS)
+(F—-S5(2))+S. Put flz)=projection of 2 (as R and R* are considered
covering surfaces over the w-sphere) in # —S(%).. Then f(z) is analytic
in R*. In this case, we also denote by f(z): € R*. So long as we con-
sider f(z) near the boundary of R, we can use R* instead of R. Let u(z)
be a harmonic measure of 3.4 in R*. Then by R¢O, u(z) is non const..
Put Ulw)= X u(z): flz;))=w, 2,6 R*. Then by Theorem 1V

U(w)=<1 and U(w) is quasisubharmonic in f(R). (9)
Let {R,} be an exhaustion of R. Then for R, 3p,, there exist consts NV,
and N, such that
NG(z, p)sU(R)ISN;G(2, )  in (R—R,). (10)

Irregularity of minimal points Irregularity 6 of minimal points
relative to M and M top.s are defined by
8(p, M)=1im G(z, p,): peR+4(M), (g, M)=Tim G(z, po): gei(M).

2=p 2—q

¥74 M
Then by Theorem 8 d(p, M)=d(q, M): g=o0(p). Also put u(p, M)=1lim

Z-p
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u(2); peR+4,(M) and u(q, M)=lim u(2): ge4,(M). Then by 1)

z2—q

u(p, M)<ulg, M) Further u(p, M)=Ul(q, M) for peR and q=o¢(p)ed(M).
In fact let p€R and ge4,(M). Then by Brelot’s theorem on a point peR
there exists only one M-point ¢ which is minimal relative to M-top., i.e.

z——l‘ip(z——»p) is equivalent to zﬂq and we have u(p, M)=u(q, M). We
remark #(z) is not harmonic in R but harmonic in R—S and u(2) is the
least positive harmonic function in R—S with value #(2) on S. Hence

u(2)=cou(z) for any domain GCR—S. We define u(z) at S by u(z)=lim
{—z
u(Z).

TueoREM 10. 1) Let {z;} be a sequence such that zi-—M-—»qEA(M) with
lim G(zi, p))>0. Then f(z)—flq) (by Theorem 9): flg)e f(R) and for any
r there exists a uniquely determined connected piece w,(q) over C(r, f(q))
={|lw— flq)| <7}_such that z€w,(q) for iZi(r).

2) Let zi—l‘ipedlv(ﬂ) with lim G(z;, p))>0. Then for any r>O0, there
exists a uniquely determined connected piece w.(p) over C(r, f(p)) such that

z€w,(p) for i=i(r).
3) Let w, be a point. Then

Zu(qi)+2'u(qj, M)=1: q:€R, q;€4,(M), flg:)=f(q;) = wo
T u(p)+ T ulp, M)S1: peR, pe (M), fip)=fp)=w

Proof of 1) Case 1. f(g)¢S*. We can find »'<min (7, d) (where o
is the number defined in Lemma 9) such that any connected piece over
C(r', f(g)) has no common points with S,. We can also suppose z;€R,

G (24, po)>0'>0 and by (10) u(z;)=6" and lf(zi)—f(q)\<%’ for 1=1. Let

® be a connected piece containing 2;,. Then since @wNS=0, by Lemma 2
we have

ulz) =5 | w0 2 G 20 ds

9w

where G°({, z;) is a Green’s function of w and dw lies over aC(r, f(g)).
Let G°(w, w') be a Green’s function of C(r, f(q)). Then G°(f(2), f(z:))=0
on dw and G°(f(z), f(z:))=G"(2, 2;)=0, whence

:—nGC(f(z), flz ))>—a—G"’(z 2;)=0 on du. (11)

Now there exists a const. K such that



Analytic functions in a neighbourhood of irregular boundary points 109

05 -2 GPlw, w) <K o Golw, fig)
on  ACH,fla): lw'—fl@) < (12)

Suppose o:(k=1,2,,,,,, k) be a connected piece over C(r, f(g)) containing
at least one z; of {2;}. Then by (11), (12) and U'(w)=U(w)=1 by (9),
where U’(w)=§j] u(z;)2;€R and f(z;)=w. Then

k" S5 ZS ) gy G162 s Ty | w05 CUIC fled) o

+ = | wor L o o) s - | U@ 5 6 oy <K

oy i

IA

K ) .
and kog—a—,,—. Hence there exists at least one and at most a finite number

of connected pieces w; such that w, contains a subsequence of {z;}. Let
® be a connected piece containing a subsequence {z]} of {z;}. Since 7'<0g,

G”(w, w')=log Tw—l—# +M: w, w'eC(r, flg)).

— |
Hence there exists a const. L<oo such that G*(w, w')<L on aC(, f(qg))
for |w—f(g)| < ; . Let G(z, 2) be a Green’s function of R. Then
Glz, Z)ZG*(fl2), fIZ)<L on dw and <L in R—o and K(z, g)=lim K(z, zi)

L . i .
=5 in R—o by (7). Assume there exists another connected piece '

.. L .
containing a subsequence of 2. Then K(z,¢)<-— in R by oCR—0'"

/
On the other hond, K(z, q);g%z—"}l and sup K(z, g)=co, where {z}} is

zeR
a subsequence of {z;} such that G(z, 2))—G(z, {2}). This is a contradiction.

Hence there exists uniquely determined connected piece ,.(g) containing
z; for i=i(r").

Case 2. flg)eS®. Since f(z) is univalent in v(S), we can find 7/(<4)
such that there exists only a connected piece @* and connected pieces {w;}
over C(r, f(g)) such that 0*N.S=+0, o* is compact in R and ;N S=0 for
j=1,2, .. By z——qed(M), there exists a number 2 such that z;¢e0* for
i=i, Hence it is sufficient to consider only @;, Then we have the same
conclusion similarly as case 1. Now 7>7’, there exists only one connected
piece @ over C(r, flg)) containing @,.(q). Clearly w3z; for i=i(+'). Thus



110 Z. Kuramochi

we have 1. We denote it by w,.(g). We have 2) by 1) and by [Theorem 8

Proof of 3) Case 1. w,¢S”. In this case we can find 7' such that
any connected piece over C(r/, w,) has no common point with S. Let g;
(j=1,2, --) be points in UO((R+AI(M))H'G’,,(M)) such that flg,)=w, For

: >

any gq;€4,(M), there exists o,.(q;)=w; and by definition of w,(q,), there
M ’
exists a sequence {z;} such that z,—gq;, G(z;, po)>d'>0, | f(zi)——wol<%,

G®i(z, z;)— G (2, {z:}), u(z;)—ulg;, M)(clearly >0). Then by (11), (12)
and by Lebesgue’s theorem

0<ulgy M) =5 | w(0) - G(C, (2 ds (13)

amj

R
whence G/ (z, {2:})>0 and <MIK(z,q;) by (7. Hence G®i(z, {2;}) is
minimal in ®,(g,). !
Suppose ¢;€R, then we have at once

1 : 0 (19
ulg) =5 | wl0) 2 Gl gpas 13)

dug
and G®i(z, q;) is minimal in w;—gq;.
Let @ be a connected piece over C(r,f(g)) and let g, (k=1,2, ---) be
a subset of g; such that ,.(¢:)=w0. Then G“(z, {2;}*) of g; (or G*(z, q,))
is minimal in w—gq; and <G°(f(z), w,. Hence

2 G*(z, {z}")+ Z G°(2, @) SG°(f(2), wy) and

T ulge M)+ E ulg) S 5 | Utw)-2 Golaw, i) s

T
P
where U*(w)=7)] u(z,) and flz,)=w,, 2,€00.
z
Summing up all connected pieces over C(r,w,), we have by U'(W)<
. U(w)=1

% wlgs M)+ 3 ulg)<1,

where f(g))=fla)=wo» ¢:€R, ¢,€ U(LM)NG,(M)).

Case 2. w,eS¥. In this case, we use R* instead of R. We can
find 7' over C(r', w,) there exist at most two connected pieces w, in R¥,
which are compact in R* and @;NS*#+0 and there exist connected pieces
@, in R such that w,NS*=0. For v, G*(z, 2f) is minimal (f(2%)=1w,,
25€S) and (13’) holds, for w, (13)or (13') hold. Hence



Analytic functions in a neighbourhood of irregular boundary points 111

3 wl(eh)+ 2 wlg)+ L ulgy M)S1. Now wl(eh)+u(eh)Zulz) = lim u(z)

z-z,
2€R

for 2,€S. Put 2,=g, (considered as a point in R). Then

2 u(g)+ 2 ulg, M)<1.
The latter part is proved by 1).
Kindredness of points Let p,e4,(M)NG,(M)(or edM)NG,(M)). If
there exists a sequence of curves {I',} (n=1,2, ) with two endpoints

{8} (i=1,2) such that z';}l[»pi and inf G(z, po)>6,>0 (n=1,2,---) and

o~ z€ly,

I''—4(M), we say p, and p, are chained. If p; and p;,, (=1, 2, ---, m—1)
are chained, we say p, and p,, are kindred. We see at once p, and p,
lie on the same boundary component of R. Then

THEOREM 11. 1) Let q;ed(M)NG,(M) (j=1, 2) be kindred, then f(q,)
= flg.) and o.(q))=0,(¢,), where v,(q,) is a connected piece over C(r, f(q;)).

2) Let p,ed(M)NG,(M) be kindred. then f(p)=f(p,) and o.(p))=
w‘r(PZ)'

3) Let q, and q, be two points in A(M)NG,(M) such that there exists
a const. a>0 and that K(z,q)=aK(z,q,). Then f(q)=flq.) and o.(q)
=wr(q2)°

4) Let qiedy(M)NG;(M) (set of non minimal points) and p be its
canonical mass of K(z,q). If p has a positive mass a at q,€ 4,(M), then

fq)=flg,) and w.(q)=w,(q).

Proof of 1) Suppose ¢, and ¢, are chained. Let 6*=min (6, ,). Then
flg:) exists and €A(4(M), 6*%). Assume f(q,)# f(g). Since A(4(M), 6*) is
a closed set of capacity zero, we can find an analytic curve I' enclosing
only f(¢:) and I'NA(4(M), 6*)=0. Consider f(I',). Then since f(zi)—
), f(I',,) intersects I" at least one at £,. Let 7, such that f(n,)=¢&, p.€,.
Then 7,—4(M) and G (3, po)=06*. We can find a subsequence {7} of {»,}

such that f(y,)—&* and n;—A—{»nEA(M)ﬂ(—}',,*(M) and f(p)e A(4(M), 6*). This
contradicts §*¢I’. Hence f(q,)=f(g.). Also we see f(I'.)— flg)=f(q).
This implies o,(¢;)N®,(¢)D1I, and .(¢:)=o,(¢;) because dw,(q;) lies on
0C(r, f(¢;)). Hence we have f(qi)=f(g;) and o,(q;)=w,(g;) for two kindred
points ¢, and ¢, for any r>0.

Proof of 2) is evident by (1) and by Therem 8.

Proof of 3) By [Theorem 10 there exist connected pieces w,(q) and
0,(q;). Then (see the proof of [Theorem 10, 2)) sup K(z, ¢;)<o in R—
o,(q;): iF+1,2. Assume o,(¢;)Nw,(q)=0. Then sup K(z, ¢,)<o in R by
the assumption of this theorem. This is a contradiction. Hence ,(q)
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=w,(q,) for any >0, whence f(gi)= f(q.).
Proof of 4) Let ziﬂql. Then there exists a subsequence {7} of {z}
such that G(3, 2{)—G(z, {2}}), whence K(z, q)) < {z’} . By

K(z,¢q) is a G.G. in R and by there exxsts a const. ¢'>0
such that ¢,€4,(M)NG,(M). Hence by the assumption we have K(z, ¢,
=aK(z, q): a>0 and 4) by 3).

Application to lacunary domain Let R be an end of a Riemann
surface with relative boundary aR. Let F, (i=1,2, ---) be a compact con-
nected set such that F;NF,=0, F, clusters nowhere in R+dR and R=R
—F:F=3F,; is connected. Then we call R a lacunary end. Let p be an
ideal boundary component of R. Let {b,(p)} be a determining sequence of
p. If there exists b,(p) such that av,(p) is a dividing cut and inf G(z, p,)

€0,

>6>0 (n=1,2,.--), we say F is completely thin at p, where G(z, p,) is
a Green’s function of R. It is desirable to formulate the behaviour of
analytic functions of bounded type in R relative to M-top. M over R not
to M-top over R. It is easily seen if F is completely thin at p,5(p, M)
=5 for pedy(M)NV(p) and any points in 4,(M)NF(p) are chained.

THEOREM 12. Let w=f(2) be an analytic function of bounded type
in a lacunary end R of R. 1) If there exists a number >0 such that
4(M)NG,(M)NV (p)=24,(M)NGo.(MYNT (D) for any & <5, then

NG,
QUAGM)NG, ()= A ={w=1lp): pe&s()NG,M)NF (v)}
2) If U(AI(M)DG( M)N\V (p)) consists of a finite number of points p;

(i=1,2, =i, UNAGIND.B)= U fipd
3) If F is completely thin at p, then U(4L(M)NG.(M)NV(p)) consists

e>0

of a finite number of points p., p, -+, pi, and
U n(AG.M M)N9,(p) = f(p) = flpn) == f(ps,).-

REMARK. The former part of 3) is proved under the condition that
spherical area of f(R)<oco in the previous paper. Suppose the spherical
area of f{[R)<oo. Then we can find a neighbourhood 9(p) of p such that
f(z) is bounded type in b(p)NR. Hence 3) is an extension of the theo-
rem in the previous one.

Proof of 1) By zi—l‘z»ped( M)N G,(M) implies zt—z—waqedl
(M)NG,(M): g=9¢(p). By flz)—f(p) and—flg) we have f(p)=flo(p))
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Hence if A?Sf:A’ we have at once f(A)=f(A'). For simplicity put F;(a)
Nd(a)NP(p)=Fy(a): a=M or M and G,(a)N4(a)NV (p)=Gs(a). By defini-
tion we have

0

Gi—.(a) D Fy(a) D Gs(a) for 0<e< - -

By Gy(M)CF,(M)CG,_.(M)CF,_(M)CG,...(M)=G,(M)
(—;,,(M)=F,,(M)=F,,_.(M). (14)

By and
F.(M)~F,(M)=F,_.(M)~F,_.(M)>G,_.(M)> F,(M) and

I

G (M)=F(M), 0<e<—o. (15)

By and (15)
AGM))=fIF(M)) = f(G,-(M))=A .

Hence it is sufficient to study f(z) relative to M-top not M-top. Let
{z:} be a sequence such that z—p, G(z;, po)>e>0, G(z, z;) converges and
flz)—w, We show w,eA. We can find a subsequence {z}} of {z;} such

that z{ﬂqed(M)nG(M)ﬂV (p), K(z,q) is representable by a canonical
mass ¢ on 4,(M)NV(p'), where p’ is the ideal boundary component of R
(not of R) on which ¢ lies. Now R is a lacunary end. We can find
a determining sequence b,(p) of p such that av,(p)NF=0 and pg=0 except
on p. Hence p£>0 only on 4(M)NF(p). On the other hand, K(z,q)

_—G——(z’;{—é—}l and by K(z,q) is a G.G. in R. By and
by (15) g is a mass on 4 (M)NF,(M)NV(p)=4(M)NG,(M)NF(p) for any
0'<d. Let ted(M)NG, (M), then K(z,2)< Gw(f(;),f(t)) , where G”(w, w')
is a Green’s function of f(R) and ¢’ is a const. <d. Hence

<

Kiz, )55 | (10, Ao duti<oo by {dus1.

Since the mapping w= f(q) is continuous relative to M-top., there exists
a mass v such that

SG“’(f(z), f(t))dy(t)fSG“’(w, s)dy(s) and v>0 on A.

Let E* K(z,q) be the lower envelope of superharmonic functions larger
than K(z, ¢q) in f(R). Then E*K(z,q)=aG"(w, f(q)): a>0. Now by
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whence f(g)e A. Hence N f(G.)NDv,.(p))CA for any ¢>0 and we have 1).

Proof of 2) Let =min(3(p;, M)). Then 4,(M)NG,(M)NV (p)=4(M)
NG, (M)NF(p) for any '<é and A=3 f(p;). Thus we have 2).

Proof of 3) Let p; and p; in 4(M)NF(p). Then 8(p;, M)=6>0,
where 6 is the number such that G(z, p)=d on ab,(p) and p, and p, are
chained, hence f(p:)=f(p;) agd =f(p1)=-=fps,). By (10) there exists
a number N such that u(p,, M)=No(p,, M). Then by Theorem 10

%5([)1, Mv)ngv—. Hence iogNLB and by 2) we have 3).

SGw(w, s)dy(s), v has a point mass at f{q) by Lemma 4,

As a consequence of 3) we have following

CorROLLARLY. Let R be an end of a Riemann surface €O,. If F is
completely thin at a boundary component p of harmonic dimension= oco.
Then there exists no analytic function in R—F of bounded type in R—F.

We shall give some examples.

ExampLE 1. Let 1/2>a,>b,>a;>b,--- | 0. Let S} and S, (n=1,2, --+)
be slits as follows :

S;={1+angReé/gl+bn, Im z =0}
S;={—1—bn;Reég—1—an, Imz=0}.

Let .7, be a circle |2|<2 with slits f‘_,S;: + iS;. We suppose a,, b, are
1 1

chosen as

1) log—22 >e>0, n=1,2, -

Ans1

2) z==1 are irreguar points in .%,.
Let .7, be a whole z-plane with slits S} and S;. We shall construct an
end of a Riemann surface €0,. We connect -#, with ., (n=1,2,-:-) on
S++S: crosswise. Then we have an end denoted by R with relative
boundary 9R lying on |z|=2 on &, Let I't={z—1|=Va,.b,), I'; =
{lz+1|=Va,:6,} on &, and D,=F,—{|z—1|<Va,.0,} —{|z+ 1| EVa,1.D,}.
Put R,=D,+.#1++-+.%,. Then R, is an n+1 sheeted covering surface,
(R} (n=1,2,-) is an exhaustion of R, oR,=oR+TI't+I';, R has only
one ideal boundary component p and {R—R,} is an determining sequence
of p. Let F be a connceted closed set of positive capacity in |z|>3 and
let F, be a set on %, whose projection is F. Then R=R—YF, is
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a lacunary end. R and R have following properties.

1) R is an end of a Riemann surface €Q0,.
Let G(z o) be a Green’s function of R and put G,={2€R: G(z, p)> 6}
and M and M-top.s over R and R are defined. Then

2) 4(M)NP(p) consists of two points p; and p, and 6(M, p;)>O0.
Let w=f(z)=proj. z(z€R). Then f(z) is bounded type in R and f(p;)
exists : ] f(p))={z==+1} and p, and p, are not kindred.

3) Let {z,} be a sequence such that z,€ #,—F, and proj. |z,—1|>d
>0. Then hm G(2,, po)=0

Proof of 1) Let H}= {b >|z— ll>an+1} and H,=1{b,>|z+1|>a,.}
on .#,. Then H}+ Hj; separates p from 9R and by mod Hf =mod H,
Y. modH;}=c0 and R is a end of a Riemann surface €O,.

Proof of 2) Without loss of generality we can suppose p, lies on
z=3/2 in &%,. Let G'(z,p) be a Green’s function of .#,. Put U(z)
=G'(z, po) and consider U(z) in %, Then U(z)=0 on Y (Sf+S,) and
subharmonic in |2|<3/2. Let Cf={|lz—1|<¥a,..b,} and C,={z+1|<
Va,b, on 7, and let M,=max U(z). Then M,=max U(z) and M, .

2€Cr~ 2€3C,~
Assume M, | 0. Then U(2}—0 as z—1. This means z=1 is regular
and contradicts 2). Hence lim M,=§>0. By condition 1) and Harnack’s
theorem there exists a const. K for any positive harmonic function V(2)
in b,>|2|>a,;; such that max V(z)<K min V(z). Hence

2€3C,,~ 2€3C,H~
1 ’ 5 ’ 5
min G’ (2, p,) = — similarly min G'(z, py= — (1)
2€3C;, K 2€3C,; K

By Brelot’s theorem there exist only a point ¢; which is minimal on z=1
(=—1) relative to Martin’s top. M’ over %, and there exists a path 4(q,)
M'-tending to q.. A(q) intersects 3C;(n=n(4, ¢;). Hence there exists

(]
a sequence {z;} on Z] C; such that zn-J—waql' K'(z, 2,—K'(z,q,). By (1)
EK (2, g1)<oo and there exists a point p€4,(M)NV(p) corresponding to g

Hence 4,(MYNP(p) consists of at least two point p, and p,. Let ped(M)
NP ({p). Then A(p) corresponding to p must intersect dC;}+9C,. Then

I3
there exists a sequence zi—l—w—»p and z,€9C} or €dC,. Now gI K(z, p)=

lim G'(, 2;)
M

- R
a Green’s‘function of R and gI K(z, p1)=aK'(z, q,) or K'(2, q,): a>0. Hence

>0, where M=max G(z, p,) for |2|<1 on %, and G(z,py) is
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4(M)NP(p) consists of at most two points p and p,. Let G(z,p,) be
a Green’s function of R. Then by G(z, po)=G'(z, po), 6(M, pi)g%-. Hence

any analytic function of bounded type in R has limit as z—M—>p¢ in G,
={zeR: G(z,py)>0"}. The remaining part of 2) and 3) are the conse-
quence of [Theorem 11 and 12.

ExaMpPLE 2. Let 1/2>b,>a;>b>a,>b,---} 0 and S} and S, be
slits :

St= {bn=.<_Rez§a,,,Imz= 0}, S, = {—bngRez?__—-a,,, Imz——-O}

Let w(S;~, 2) be a harmonic measure of S}~ in |2|<2. We choose a,, b,
so that 1) and 2) may satisfied.
1) log (@/bns1)>€>0, (n=1,2, )
2) sup w(Si,2)=1/2",
Rmzo(clearly 2z=0 is an irregular point in {|z]<2}—2 S;7).
We shall construct an end R of a Riemann surface €0, and a lacunary

end R. Let .7, be a circle |2|<2 with slits 3 Si.
n=1

.7, be the whole z-plane with slits i ST+ Zo.j Sy (n = odd)
i=n i=n+l

.Z, be the whole z-plane with slits i ST+ }oi Sy (n = even)
i=n+l t=n

Connect .#, with .#; on X S} crosswise. Connect -#, and .#,,; on
n=1

i S7 (n=o0dd) on _ilS;" (n=even). Then we have a Riemann surface

i=n+l i=n+
R being a covering surface. Let F, (m=1,2,--:) the part of .#, over

|z|>1 and let R=R— ilFm. Then R is a lacunary end. Let I',={|z]
=va,1b,, H,={b.=|2| 2@} n=0,1,2,--:). Let I'’ be a circle in .7,

whose projection is I', and H™ be a ring in .#, whose projection is H,.
Let

D¢ be the part of .#, over 2> |z >a,.

D be the part of .#, over oog]z]>c;n: 1=m<n—1.
Put R,=D%+D.+ D%+, -+ D2, Then R, (an n-sheeted covering surface)

has relative boundary |z|=2 on -#, and {|2|=a,} over &1+ F,+ -+ F,,
and {R,} is an exhaustion of R, R has only one ideal boundary component
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p. R and R have the following properties.

1) R is an end of a Riemann surface €0,

2) 4(M)NP(p) consists of a countably infinite number of points p,
P2, -+ with positive irregularity.

3) p: and p,,, are chained: i=1,2, -

Proof of 1) H, is a ring with module log(a,/b,,,) and i}onﬁ sepa-

rates dR from p and I nil log ba,, =oco. Hence R is an end of a
n+1

Riemann surface €0, Let S(z) be a positive harmonic function in a,,,
<|2|<b,. Then by condition 1) there exists a const. K such that

max S(2)<K n;in S(z): I',= {!zl = Vanﬂb,,} .

z€l,,

Let G(z,p) be a Green’s function of R with pole p at 2=3/2 in .Z,.
Then there exists a const. M such that G(z, p)<M in R over |z|<1.

Let V(z) be a positive harmonic function in {Izl <%}— i ST — EZ ST
such that V(2)=N on |z|=1/2. Then

V()2 N1 — 3w/ (St, 2)— 5 w'(S7, 2)), (1)

where w'(S#7,2) is HM. of Sf~ relative to |2|<1/2 and w/'(S7-, 2)<
w(S77, 2). By max i (w(ST, 2)+w(S7, 2))<1/2™" we have
Re

2=0i=m
V()2 N(1—1/2*") for Rez=0 and V(2)z -X-(1—1/2"*) on 5T, (2)
i=1

Consider G(z, py) in %, over {|z]<1/2}. Then there exists a const. N,
such that G(z, po)=N,, on |2|=1/2. Hence by (2)

G(z,po)Z%(l—I/Z”‘*‘) for Rez=0 and on ZIF‘ (3)
Similarly we have

G(z, po)=K(M/2™*") for Rez=0 and on i}lﬂ. (4)

Let G,, be the part of ., on {Va,.b,<|z|<Va.b,_,, —r/2<arg=z<=/2}
G._1 be the part of .%,,_; on (Va,..0,<|2| <Va,b,-1, —n[2<argz=<n/2}

Then G,, and G,,_; are connected at S} and G,,+G,._: is bounded by two
boundary components B on %, and B on %,_, for n=m, where B is
the part of .#,, over (|z|=Va,b,_,, —n/2<arg 2<7/2)+ Van10.< 2| <Va,b,_
arg z=n/2)+(|2| =Va,nb,, —1/2= arg 2<7/2)+ (Wa,10.< 2| <Va,b,-, arg z=
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—x/2). and B’ is a set on -%,_; whose projection is that of B. Then by

(3) G(z, po)= N, (1 1/2™*) on B and = NI"&_I (1—1/2™*") on B'. Hence

Glz, p0)>—1—(1 1/2%) min (N,., Ny_y) and similarly G(z, p0)Z—5-(1—1/2"*)
min (N,,, N,.+,) in the part of .#, over ¥a,.b,>|z|>va.b,_;, n/2<argz<
| 3z/2. Hence G(z, po)= 1 (1 1/2"+Y min (Nu_1, Ny, Npps1) in Z,, over |2|

<Napbn_,. Now G, (for n<m) is bounded by only one boundary com-
ponent B on which G(z, po)g%(l—l/?”‘“). Thus

Glz, py =2 (N"*‘;;:Nm’ Nust (1 _1j9m11) in 7., over |2|<1/2. (5)

For m is even, the same result is obtained.
Similarly we have

G(z,po)§—1—<—{,\,—4— in %, over |z|<1. (6)

Let .#/,= #,,—F,, i.e unit circle with slits ZS+ + Z S;* according as

m+1
m=odd or even. Then there exists only one point g, at =0 which is

minimal relative to Martin’s top. over .#,. Let A4 be a curve tending
to ¢, Then A intersects I'?: n=n(4). There exists a sequence {z;} on
X I'y with K'(2, 2)—K'(z, g»), where K’ (2, ) is a kernel in .#7,. Let
G'(2, po) be a Green’s function of .#/,. Then by (1) it is easily seen lim

G'(2;, po)>0 and gg K'(z, g.)< and there exists apoint p, in 4,(M)NF(p)

= —~
with gIIE K'(z, ¢,)=aK(z, qm). Clearly by (5) 6(M, p,,)>0. By -#,,N %,=0,

GnFQm and PnFpn for m#m'. Hence there exist py, py, -+ in 4(M MYNF (p).
Conversely let pedi(M)NF(p) with 6(M, p)>0. Then there exists a path
A M-tending to p. By (6) there exists a number % and an endpart A’

of A such that A’ has no common points with % ,: k=k, Now X I},
i=1

ko
separates oR from p for any n and A intersects ) I'; for n>n(4) and there
i=1

—

exists a sequence {z;} and a number m such that {z;} C X Iy and zi_M,p.
n=1

y (5) lim G’(2;, po)>0, ? K(z,#)>0. Hence p, corresponds g, Hence
#h,

there exists no point with positive irregularity except py, po, ---. Let pa,
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—

Prn€A(M)NF(p). Then there exist sequences {27}, {z**'} such that {27}
C XD, {2 C NI, 2p—p,, 2 —ppi1. By (5) pn and p,., are

chained.
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