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P. J. Ryan [3] and T. Takahashi [4] has recently studied complex
hypersurfaces in a complex space form satisfying the condition
(0. 1) R(X, Y)S=0

for any vectors X and Y of the hypersurface, where R denotes the curva-
ture tensor, S is the Ricci tensor and R(X, Y) operates on the tensor
algebra as a derivation. Ryan proved that these hypersurfaces are Einstein
if the ambient space is not complex euclidean, which was generalized by
M. Kon [1] in the case of Kaehler submanifolds in a complex space form
of constant negative holomorphic sectional curvature. On the other hand,
Takahashi also verified that such hypersurfaces are cylindrical if the ambi-
ent space is complex euclidean.

The purpose of this note is to prove the following
THEOREM. Let M be an n-dimensional Kaehler submanifold immersed

in an (n+q)-dimensional complex projective space PC_{n+q} . If M satisfies the
condition (0. 1) and the codimension q is less than n-1, then M is Einstein.

\S 1. Kaehler submanifolds in PC_{n+q}

Let M be an n-dimensional Kaehler manifold and \iota an isometric and
holomorphic immersion of M into an (n+q)-dimensional complex projective
space P_{n+q}(c) of constant holomorphic sectional curvature c. We call such
\iota simply a Kaehler immersion. Throughout this note, M may be identified
with \iota(M), because the argument is local. Let e_{1} , \cdots , e_{n} , e_{n+1} , \cdots , e_{n+q} be
a unitary frame field in P_{n+q}(c) in such a way that, restricted to M, e_{1} ,
\ldots , e_{n} are tangent to M. Its dual coframe field \omega^{1} , \cdots , \omega^{n}, \omega^{n+i} , \cdots , \omega^{n+q}

consists of complex valued linear differential forms of type (1, 0) on M
such that
(1. 1) \omega^{\alpha}=0 ,

and \omega^{1} , \cdots , \omega^{n}, \omega_{\backslash }^{-1}

. \cdots , \omega^{-n} are linearly independent. Greek indices run over
the range n+1, \cdots , n+q. The induced Kaehler metric g on M is given



68 H. Nakagawa and R. Takagi

by g=2 \sum_{i}\omega^{i}\otimes\omega^{-i} , and e_{1} , \cdots , e_{n} is a unitary frame field of M and \omega^{1},
\ldots , \omega^{n} is a coframe field of e_{1} , \cdots , e_{n} . Associated to the frame e_{1} , \cdots , e_{n} ,

e_{n+1} , \cdots e_{n+q} , there exist complex valued differential forms \omega_{B}^{A}, which are
usually called connection forms on P_{n+q}(c), such that

(1. 2) d \omega^{A}+\sum_{B}\omega_{B}^{A}\Lambda\omega^{B}=0 , \omega_{B}^{A}+\overline{\omega}_{A}^{B}=0 ,

(1. 3) d \omega_{B}^{A}+\sum_{C}\omega_{C^{A}}\wedge\omega_{B}^{C}=\Omega_{B}^{A} ,
\Omega_{B}^{A}=\sum_{C.D}R_{BC\overline{D}}^{A}\omega^{C}\Lambda\overline{\omega}^{D}\neg

where \Omega_{B}^{A} denotes the curvature form and R_{BC\overline{D}}^{A} denotes the curvature
tensor on P_{n+q}(c), which are given by

(1. 4) R_{BC\overline{D}}^{A}= \frac{c}{2}(\delta_{B}^{A}\delta_{CD}+\delta_{C}^{A}\delta_{BD}) ,

because P_{n+q}(c) is of constant holomorphic sectional curvature c. Here the
capital letters run over the range 1, \cdots , n, n+1, \cdots , n+q.

It follows from (1. 2) and the Car\tan’s lemma that the exterior deriva-
tive of (1. 1) gives

(1. 5) \omega_{i}^{\alpha}=\sum_{f}h_{if}^{\alpha f}\omega , h_{if}^{\alpha}=h_{fi}^{\alpha} ,

where the small letters run over the range 1, \cdots , n . Then the quadratic
form \Sigma_{i,f}h_{if}^{\alpha}\omega^{i}\otimes\omega^{f} is called the second fundamental form of M in the
direction of e^{\alpha} . Since \omega^{\alpha}=0 again, (1. 2) and (1. 3) become

(1. 6) d_{\omega}^{i}+ \sum_{f}\omega_{f}^{i}\wedge\omega^{f}=0 ,

(1. 7) d_{\omega_{f}}^{i}+ \sum_{k}\omega_{k}^{i}\wedge\omega_{f}^{k}=\Omega_{f}^{i} ,
\Omega_{f}^{i}=\sum_{k,l}R_{fk\overline{l}}^{i}\omega^{k}\wedge\overline{\omega}^{l} ,

where \omega_{J^{i}} (resp. \Omega_{j}^{i} ) denotes the connection (resp. curvature) form on M,

and R_{fk}^{i}- denotes the curvature tensor on M. It follows form (1. 4), (1. 5)

and (1. 7) that we have the equation of Gauss

(1. 8) R_{2fk\overline{l}}= \frac{c}{2}(\delta_{if}\delta_{kl}+\delta_{ik}\delta_{fl})-\sum_{\alpha}h_{fk}^{\alpha}\overline{h}_{il}^{\alpha} .

Now, with respect to these frames, the Ricci form S can be expressed

S= \sum_{k,l}(R_{k\overline{l}}\omega^{k}\otimes\overline{\omega}^{l}+R_{\overline{l}l}^{k}\overline{\omega}\otimes\omega^{l}) ,

where the Ricci tensor R_{k\overline{l}} is defined by R_{k\overline{l}}= \sum_{i}R_{\overline{l}ik}-, and it satisfies
R_{k\overline{l}}=R_{\overline{l}k}=\overline{R}_{l} -. Because of (1. 8), R_{k}\overline, is given by

(1. 9) R_{k7}= \frac{n+1}{2}c\delta_{kl}-\sum_{\alpha,i}h_{ki}^{\alpha}\overline{h}_{il}^{\alpha} .
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\S 2. Proof of Theorem

In this section, let M be an n-dimensional kaehler submanifold im-
mersed holomorphically into P_{n+q}(c) . We assume that M satisfies the con-
dition (0. 1). In our notations, this condition is equivalent to

\sum_{k}R_{k\overline{f}}\Omega_{i}^{k}+\sum_{k}R_{i\overline{l}}\overline{\Omega}_{f}^{k}=0 .
Substituting (1. 7) and (1. 9) into the above equation, we have the equation

(2. 1) c \sum_{\alpha,r}(h_{ir}^{\alpha}\overline{h}_{rl}^{\alpha}\delta_{fk}-h_{kr}^{\alpha}\overline{h}_{rf}^{\alpha}\delta_{il})

+2 \sum_{\alpha,\beta,\gamma,s}(h_{ik}^{\beta}\overline{h}_{lr}^{\beta}h_{rs}^{\alpha}\overline{h}_{sf}^{\alpha}-h_{kr}^{\beta}\overline{h}_{rs}^{\alpha}h_{si}^{\alpha}\overline{\overline{h}}_{fl}^{\beta})=0 .
Let H^{\alpha} be an n\cross n matrix with its components (h_{if}^{\alpha}). Then, for a suitable
choice of the frame e_{1} , \cdots , e_{7l} , a matrix \sum_{\alpha}H^{\alpha}\overline{H}^{\alpha} can be orthogonalized as
follows :

\sum_{\alpha}H^{\alpha}\overline{H}^{\alpha}=\{\begin{array}{ll}\lambda_{1}. 00 \vee\lambda_{n}\end{array}\}

Since the matrix is a positive semi-definite Hermitian one, the eigenvalues
\lambda_{1} , \cdots , \lambda_{n} are non-negative real valued functions on M. Moreover, we have
(2. 2) \sum_{\alpha,i}h_{ki}^{\alpha}\overline{\overline{h}}_{il}^{\alpha}=\lambda_{k}\delta_{kl} .
From the above equation, (2. 1) becomes

(2. 3) c( \lambda_{i}-\lambda_{k})\delta_{il}\delta_{fk}+2(\lambda_{f}-\lambda_{i})\sum_{\alpha}h_{ik}^{\alpha}\overline{h}_{lf}^{\alpha}=0 .
It follows from this equation that the equations

(2. 4)
| ( \lambda_{i}-\lambda_{f})(\sum_{\alpha}h_{if}^{\alpha}\overline{\overline{h}}_{if}^{\alpha}-\frac{c}{2})=0 ,
’(

( \lambda_{i}-\lambda_{f})\sum_{\alpha}h_{ik}^{\alpha}\overline{h}_{lf}^{\alpha}=0 unless i=l and j=k .
are obtained.

We may suppose that \lambda_{1} , \cdots , \lambda_{p} are all distinct eigenvalues of \sum_{\alpha}H^{\alpha}\overline{H}^{\alpha}.
Let n_{1} , \cdots , n_{p} be the multiplicities of \lambda_{1} , \cdots , \lambda_{p} respectively, where p is
a function on M. If p=1 everywhere on M, then M is exactly Einstein.
Suppose that p\geqq 2 at a point x of M. Then it follows from (2. 4) that

(2. 5) \{

\sum_{\alpha}h_{tf}^{\alpha}\overline{h}_{if}^{\alpha}=\frac{c}{2} if \lambda_{i}\neq\lambda_{f} ,

\sum_{\alpha}h_{ik}^{\alpha}\overline{h}_{lf}^{\alpha}=0 if \lambda_{i}\neq\lambda_{f} , and (k, l)=(i,j) or (j, i) .
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Let h_{if} be a vector in C^{q} defined by h_{ij}=(h_{ij}^{n+1_{ }},\cdot\cdots, h_{if}^{n+q}). Consider the set

\{h_{ij} ; \lambda_{i}\neq\lambda_{f}\} consisting of \sum_{r<s}^{p}n_{r}n_{s} vectors in C^{q}. The equations (2. 5) mean

that they are linearly independent. Accordingly, because of \sum_{r=1}^{p}n_{r}=n , we

have
q \geqq\sum_{r<s}^{p}n_{r}n_{s}\geqq n-1 ,

where the second equality holds if p=2 and n_{1} is equal to 1 or n-1. This
completes the proof.

REMARK. As is well showed at Remark 3. 2 in [2], the product
manifold of P_{1}(c) and P_{n-1}(c) is an n-dimensional Kaehler manifold and it
is imbeddend into a (2n-1)-dimensional complex projective space P_{2n-1}(c) .
Then P_{1}(c)\cross P_{n-1}(c) satisfies the condition (0. 1), but if n\geqq 3 , then it is not

Einstein. Thes implies that the estimate of the codimension is best possible.

REMARK. The proof in this section can be discussed in the similar
manner, though the ambient space is a complex space form of constant
negative holomorphic sectional curvature. In this case, the first equation
of (2. 5) implies that M is Einstein. This is a brief proof of Kon’s result.
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