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On measurable norms and abstract Wiener spaces
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\S 1. Introduction

In [4], H. Kuo has shown that the following:

THEOREM A. Let H be a real separable Hilbert space with norm
||\cdot||_{H} , and ||\cdot|| be a continuous Hilbertian norm on H. Then the following
conditions are equivalent.

(1) ||\cdot|| is measurable.
(2) There exists a one-tO-One Hilbert-Schmidt operator T of H such

that ||x||=||Tx||_{H} for x\in H.
In general, if ||\cdot|| be a measurable norm (not necessarily Hilbertian one),

there is a compact operator K of H such that ||x||\leqq||Kx||_{H} for x\in H. The
above theorem shows that if a measurable norm ||\cdot|| be a Hilbertian one,
then the operator K can be taken to be a Hilbert-Schmidt operator. How-
ever, if a measurable norm ||\cdot|| be not a Hilbertian one, then this is not
necessarily true. The counterexample can be found in [4].

The purpose of the present paper is to show that under the suitable
conditions of the norm ||\cdot|| , Theorem A can be extended to a non-
Hilbertian case. Throughout the paper, we assume that linear spaces are
separable with real coefficients.

\S 2. Basic definitions and well known results

1\circ . p-absolutely summing operators and (^{*})_{p}-conditions (1\leqq p<\infty)

Let E and F be Banach spaces.
A sequence \{x_{i}\} with values in E is called weakly p-summable if for

all x^{*}\in E^{*} , the sequence \{x^{*}(x_{i})\}\in l_{p} .
A sequence \{x_{i}\} with values in E is called absolutely p-summable if

the sequence \{||x_{i}||\}\in l_{p} .

DEFINITION 2. 1. 1. A linear operator T from E into F is called
p-absolutely summing if for each \{x_{i}\}\subset E which is weakly p-summable,
\{T(x_{i})\}\subset F is absolutely p-summable.

We shall say “absolutely summing” instead of ee1 -absolutely summing”
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THEOREM 2. 1. 1. (c.f. [7])

Let H be a Hilbert space, E be a Banach space and T be a continuous
linear operator from H into E. Then the following conditions are equiv-
alent.

(1) T is p-absolutely summing (1\leqq p\leqq 2) .
(2) There exists a Hilbert space G such that

HGE\vec{U}\vec{V}

T=V\circ U where U is a Hilbert-Schmidt operator and V is a continuous
linear operator respectively.

Recently, the author [9] has introduced the class of Banach spaces
which satisfy the (^{*})_{p}-conditions. That is the following :

DEFINITION 2. 1. 2. Let E be a Banach space and 1\leqq p<\infty . If the
following condition (^{*})_{p} is satisfified, then we shall say that a Banach space
E satisfifies the (^{*})_{p}-conditions. The condition is as follows;

(^{*})_{p} : For any \{x_{n}^{*}\}\subset E^{*} with ||x_{n}^{*}||=1(n=1,2, \cdots\cdots) ,

\bigcap_{T\in L(F,E)}l_{p}(||T^{*}x_{n}^{*}||^{p})=l_{p}

where the totality of continuous linear operators from F into E is denoted
by L(F, E) , and F denoted by the following,

F=\{
l_{p^{*}} if p>1

(1/p+1/p^{*}=1)
c_{0} if p=1

Here, we have some examples of Banach spaces which satisfy the (^{*})_{p} -

conditions, and those are as follows;
From the above definition, it is easily seen that if E^{*} is isomorphic to

a subspace of l_{p} , then E satisfies the (^{*})_{p}-conditions. And also, by Theorem
2. 1. 1., if E is isomorphic to a Hilbert space H, then E satisfies the (^{*})_{p} -

conditions (1 \leqq p\leqq 2) . More generally, - \mathscr{L}_{p^{*},\lambda}-space (c. f. [5]) satisfies the
(^{*})_{p}-conditions, and especially, every L_{p*}(\mu) -space satisfies the (^{*})_{p} conditions
(for more details, see [9]).

THEOREM 2. 1. 2. (c. f. [9])

Let E be a Banach space and 1\leqq p<\infty . Then the following condi-
tions are equivalent.

(1) E satisfifies the (^{*})_{p} conditions
(2) For any Banach space F, if T is a p-absolutely summing ope-

rator from E into F, then T^{*} {adjoint of T) is a p-absolutely summing
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operator from F^{*} into E^{*} .
2\circ . measurable norms and abstract Wiener spaces
Let H be a real separable Hilbert space with norm ||\cdot||_{H} . F(H) will

denote the partially ordered set of finite dimensional orthogonal projections
P of H. (P>Q means P(H)\supset Q(H) for P, Q\in F(H) ).

DEFINITION 2. 2. 1. The standard Gaussian measure in H is the cylin-
der set measure \mu_{H} defifined as follows :

\hat{\mu}_{H}(x)=\exp(-\frac{1}{2}||x||_{H}^{2}) for x\in H ,

where \hat{\mu}_{H} denote the Fourier-transform of \mu_{H} .
REMARK 2. 2. 1. The standard Gaussian measure \mu_{H} is fifinitely addi-

tive, but \mu_{H} is not \sigma-additive.
DEFINITION 2. 2. 2. A norm ||\cdot|| in H is called measurable if for any

\epsilon>0 , there exists P_{0}\in F(H) such that if P\in F(H) and P\perp P_{0} then
\mu_{H}\{||Px||>\epsilon\}<\epsilon .

REMARK 2. 2. 2. (c. f. [4])
(1) Let ||\cdot|| be a measurable norm in H. Then ||\cdot|| is continuous.
(2) Let T be a one-tO-One Hilbert-Schmidt operator of H, and defifine

||x||=||Tx||_{H} for x\in H. Then ||\cdot|| is a measurable norm.
(3) Let ||\cdot|| be a norm in H. If there exists a measurable norm

which is stronger than ||\cdot|| , then ||\cdot|| is a measurable norm.
Notation. Let ||\cdot|| be a measurable norm in H, and B denote the

completion of H with respect to ||\cdot|| . And also i denote the inclusion map
from H into B. The triple (i, H, B) is called an abstract Wiener space.
Theorem A shows that if B is a Hilbert space, then (i, H, B) is an ab-
stract Wiener space iff i is a Hilbert-Schmidt operator.

THEOREM 2. 2. 1. (c. f. [1])
Let ||\cdot|| be a continuous norm in Hilbert space H, and \mu_{H} the standard

Gaussian measure in H. Let B denote the completion of H with respect
to ||\cdot|| . Then the following conditions are equivalent.

(1) ||\cdot|| is a measurable norm.
(2) \mu_{H} can be extended to a \sigma-additive measure in B.

\S 3. Main theorem and other results

1\circ . Main theorem
In this subsection, we shall prove the following main theorem which
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is a generalization of Theorem A for non-Hilbertian cases.

THEOREM 3. 1. 1. Let H be a Hilbert space with norm ||\cdot||_{H}, and
1\leqq p\leqq 2 . Let ||\cdot|| be a continuous norm in H and B the completion of
H with respect to ||\cdot|| . Then, if a Banach space B^{*} (dual of B) satisfifies
the (^{*})_{p}-conditions, the following conditions are equivalent.

(1) ||\cdot|| is a measurable norm.
(2) There exists a one-tO-One Hilbert-Schmidt operator T of H such

that ||x||\leqq||Tx||_{H}, x\in H.
To prove this theorem, the following lemma is very useful.

Lemma 3. 1. 1. Let B be a Banach space, and \mu be a cylinder set

measure in B. Then, if \mu is \sigma-additive, \hat{\mu} (Fourier-transform of \mu) is con-
tinuous relative to the absolutely summing topology.

The continuity of \hat{\mu} means the following: There exists the sequence
of continuous seminorms \{p_{n}\} in B^{*} (dual of B) such that the natural in-
jection from B^{*} into (B^{*})_{p_{n}} is absolutely summing, and \hat{\mu} is continuous
relative to the seminorms \{p_{n}\} ; namely, for any \epsilon>0 there exists n and
\delta>0 , such that the inequality p_{n}(x^{*})\leqq\delta , x^{*}\in B^{*} implies that |1-\hat{\mu}(x^{*})|\leqq\epsilon .

The proof can be done by the same way as lemma 3.1.1. in [10], and
so we omit it.

lemma 3. 1. 2. Let H be a Hilbert space with norm ||\cdot||_{H} , and ||\cdot||

be a measurable norm in H. Let B denote the completion of H with res-
pect to ||\cdot|| and i the inclusion map from H into B. Then, we have that
the adjoint map i^{*}from B^{*} into H^{*} is adsolutely summing.

PROOF. Since a norm ||\cdot|| is measurable, by Theorem 2. 2. 1., a stand-
dard Gaussian measure \mu_{H} in H can be extended to a \sigma-additive one in B.
Hence, by Lemma 3. 1. 1., \hat{\mu}(x^{*}) , x^{*}\in B^{*} is continuous relative to the abs0-
lutely summing topology. Since

\hat{\mu}_{H}(x^{*})=\exp(-\frac{1}{2}||i^{*}x^{*}||_{H}^{2}) , x^{*}\in B^{*}’.

it is easily seen that there exists a positive constant C and n such that

||i^{*}\prime x^{*}||_{H}\leqq Cp_{n}(x^{*}) , x^{*}\in B^{*}

From this, we have easily the assertion.
Next, using the above lemma, we shall prove the main theorem.
PROOF of THEOREM 3. 1. 1.
(1) z- (2): let ||\cdot|| be a measurable norm. Then, by Lemma 3. 1. 1.,

the natural map from B^{*} into H^{*} is absolutely summing. Since a Banach
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space B’* satisfies the (^{*})_{p}-conditions, and the natural map is also p-absolutely
summing (c.f. [7]) , by Theorem 2.1.2., the natural map from H^{**} into B^{**}

is p-absolutely summing. Here, H=H^{**} , hence the natural map from H
into B is p-absolutely summing.

Thus, by Theorem 2. 1. 1., there exists a Hilbert space G with norm
||\cdot||_{G} such that

H\subset G\subset B

where the natural map from H into G is a Hilbert-Schmidt operator, and
the map from G into B is a continuous linear operator, respectively. Since
a norm ||\cdot||_{G} be Hilbertian, it is easily seen that there exists a one-t0-0ne
continuous linear operator T of H such that ||x||_{G}=||Tx||_{H}, x\in H.

Obviously, T is a Hilbert-Schmidt operator. Thus, we have easily the
assertion.

(2)\Rightarrow(1) : By Remark 2. 2. 2., it is obvious.

REMARK 3. 1. 1. In Theorem 3. 1. 1., let i denote the inclusion map
from H into B. Then, we can say that if a Banach space B^{*} satisfifies
the (^{*})_{p}-conditions (1\leqq p\leqq 2) , (i, H, B) is an abstract Wiener space iff i is
a Hilbert-Schmidt operator, However, if p>2 , then the above result is
not necessarily true. The counterexample can be found in the next sub-
section.

COROLLARY 3. 1. 1. Let H be a Hilbert space with inner product (\cdot, \cdot)_{H},
and \{e_{n}\} be a complete orthonormal system in H. We defifine a continuous
norm ||\cdot|| in H by

||x||=( \sum_{n=1}^{\infty}\lambda_{n}|(x, e_{n})|^{p})^{1/p} , x\in H

where 0<\lambda_{n}<\infty , and 1\leqq p\leqq 2 . Let B denote the completion of H with
respect to ||\cdot|| , and i the inclusion map from H into B.

Then, we have that (i, H, B) is an abstract Wiener space iff i is a
Hilbert-Schmidt operator from H into B.

PROOF. Since a Banach space B is isomorphic to l_{p} , therefore B^{*} (dual
of B) satisfies the (^{*})_{p}-conditions. Thus, by Theorem 3. 1. 1., we have the
assertion.

REMARK 3. 1. 2. In the above corollary, if p>2 , then the above result
is not necessarily true. That case is discussed in the next subsection (see;
Proposition 3. 2. 1.).

2\circ . Other results
In this subsection, we shall discuss the cases of l_{p}(\lambda_{n}) and L_{p}(X, \mu) .
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PROPOSITION 3. 2. 1. Let ||\cdot|| be a continuous norm in Hilbert space
H defifined by the same way as Corollary 3. 1. 1., namely;

||x||=( \sum_{n=1}^{\infty}\lambda_{n}|(x, e_{n})|^{p})^{1/p}’- x\in H

where 0<\lambda_{n}<\infty , and 1\leqq p<\infty . Let B denote the completion of H with
respect to ||\cdot|| , and i the inclusion map from H into B.

Then, the following conditions are equivalent.
(1) (i, H, B) is an abstract Wiener space.
(2) The adjoint map i^{*}from B^{*} into H^{*} is absolutely summing.

(3) \sum_{n=1}^{\infty}\lambda_{n}<\infty .
PROOF.
(1)\Rightarrow(2) : By Lemma 3. 1. 2., it is obvious.
(2)\Rightarrow(3) : Since H is linearly isometric to l_{2} , and B is linearly is0-

metric to l_{p}(\lambda_{n}) , respectively, therefore, this is the particular case of PropO-
sition 4. 2. 1. in [8].

(3)\Rightarrow(1) : It is sufficient to show that if the condition (3) be satisfied,
(i, l_{2}, l_{p}(\lambda_{n})) is an abstract Wiener space. However, by Lemma 3. 2. 1. in
[10], the condition (3) implies that a standard Gaussian measure in l_{2} can
be extended to a \sigma-additive one in l_{p}(\lambda_{n}) .

Thus, by Theorem 2. 2. 1., we have the assertion.

REMARK 3. 2. 1. In the above porposition, if 1\leqq p\leqq 2 , the conditions
(1), (2), (3) and (4) are equivalent (c.f. Corollary 3. 1. 1.) ; where the con-
dition (4) is the following :

(4) The map i from H into B is a Hilbert-Schmidt operator.
However, if p>2 , the condition (4) is not necessarily equivalent to the

above equivalent conditions. Indeed, let the sequence \lambda_{n} be taken as fol-

lows;

\sum_{n=1}^{\infty}\lambda_{n}<\infty

,\cdot and \sum_{n=1}^{\infty}(\lambda_{n})^{\frac{2}{p}}=\infty ,

then, we have easily the counterexample.
Notation. Let (X, \mathfrak{B}, \mu) be a measure space. The \mu measurable set

E of positive measure is called an atom whenever for any \mu measurable
subset E_{1} of E we have either \mu(E_{1})=0 or \mu(E-E[J^{=\circ}\cdot

If (X, \mathfrak{B}, \mu) be a \sigma-finite measure space, then we may show that X=
X_{1}+X_{2} uniquely, where neither X_{1} nor any of its measurable subsets is an
atom, and X_{2} is a union of an at most countable number of atoms of finite
measure. When this, we shall say X_{1} non-atomic part of \mu .
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PROPOSITION 3. 2. 2. Let (X, \mathfrak{B}, \mu) be a non-trivial fifinite measure space,
and 1\leqq p\leqq 2 . Let i denote the natural injection from L_{2}(X, \mu) into L_{p}(X, \mu) .
Then the following conditions are equivalent.

(1) (i, L_{2}(X, \mu), L_{p}(X, \mu)) is an abstract Wiener space.
(2) The natural injection i from L_{2} into L_{p} is a Hilbert-Schmidt

operator.
(3) For any \{X_{n}\}\subset X which is measurable and pairwise disjoint, we

have

\sum_{n=1}^{\infty}\mu(X_{n})^{1-\frac{p}{2}}<\infty

PROOF. Since a Banach space (L_{p})^{*} satisfies the (^{*})_{p} conditions and
1\leqq p\leqq 2 , by Theorem 3. 1. 1., the equivalence of (1) and (2) be obvious. On
the other hand, by Lemma 3. 1. 2. and Theorem 4. 2. 1. in [8], (1) implies
(3). It suffices to show that (3) implies (2) :

Suppose that the condition (3) be satisfied, then it is easily seen that the
non-atomic part of \mu has zero measure. Since \mu(X)<\infty , \mu is concentrated
on at most countable sets \{x_{n}\} in X. When this, without loss of gener-
ality, we may assume that the sequence \{x_{n}\} be an infinite one. Thus,
L_{2}(X, \mu) is identified to l_{2}(\lambda_{n}) , and L_{p}(X, \mu) be identified to l_{p}(\lambda_{n}) , where

\lambda_{n}=\mu\{x_{n}\} , and \sum_{n=1}^{\infty}(\lambda_{n})^{1-\frac{p}{2}}<\infty

Hence, it sufficies to show that the natural injection from l_{2}(\lambda_{n}) into
l_{p}(\lambda_{n}) is a Hilbert-Schmidt operator: but this can be proved by Proposition
4. 1. 1. in [8]. That completes the proof.

COROLLARY 3. 2. 1. Let (X, \mathfrak{B}, \mu) be a fifinite measure space, and 1\leqq

p\leqq 2 . Let i denote the natural injection from L_{2}(X, \mu) into L_{p}(X, \mu) . If
the non-atomic part of \mu has a positive measure, then (i, L_{2}, L_{p}) is not an
abstract Wiener space.

EXAMPLE. Let \mu be a Lebesgue measure on ([a, b], \mathfrak{B}) , and 1\leqq p\leqq 2 .
Let i denote the natural injection from L_{2} into L_{p} . Then, (i, L_{2}, L_{p}) is
not an abstract Wiener space.
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