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On measurable norms and abstract Wiener spaces

By Yasuji TAKAHASHI
(Received September 17, 1976)

§ 1. Introduction

In [4], H. Kuo has shown that the following:

TueoreM A. Let H be a real separable Hilbert space with norm
l|*|lz, and ||+|| be a continuous Hilbertian norm on H. Then the following
conditions are equivalent.

(1) ||+|| is measurable.

(2) There exists a one-to-one Hilbert-Schmidt operator T of H such
that ||z||=||Tx||g for x&H.

In general, if ||+|| be a measurable norm (not necessarily Hilbertian one),
there is a compact operator K of H such that ||z||<||Kz||g for z& H. The
above theorem shows that if a measurable norm ||+|| be a Hilbertian one,
then the operator K can be taken to be a Hilbert-Schmidt operator. How-
ever, if a measurable norm |||| be not a Hilbertian one, then this is not
necessarily true. The counterexample can be found in [4].

The purpose of the present paper is to show that under the suitable
conditions of the norm ||+||, Theorem A can be extended to a non-
Hilbertian case. Throughout the paper, we assume that linear spaces are
separable with real coefficients.

§ 2. Basic definitions and well known results

1°. p-absolutely summing operators and (*),~conditions (1=p< co)

Let E and F be Banach spaces.

A sequence {z;} with values in E is called weakly p-summable if for
all £* = E*, the sequence {x*(x)}<!,.

A sequence {z;} with values in E is called absolutely p-summable if
the sequence {||z;||} €/,.

DerFINITION 2.1.1. A linear operator T from E into F 1is called
p-absolutely summing if for each {x} CE which is weakly p-summable,
{T(x,)} CF is absolutely p-summable.

We shall say “absolutely summing” instead of “l-absolutely summing”.
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TueoreMm 2.1.1. (c.f. [7])

Let H be a Hilbert space, E be a Banach space and T be a continuous
linear operator from H into E. Then the following conditions are equiv-
alent.

(1) T is p-absolutely summing (1=p=2).

(2) There exists a Hilbert space G such that

H—G—EFE
u Vv

T=V-U where U is a Hilbert-Schmidt operator and V is a continuous
linear operator, respectively.

Recently, the author [9] has introduced the class of Banach spaces
which satisfy the (*),-conditions. That is the following:

DEFINITION 2.1.2. Let E be a Banach space and 1= p<oco. If the
following condition (¥), is satisfied, then we shall say that a Banach space
E satisfies the (¥),-conditions. The condition is as follows ;

(¥)p: For any {x}} CE* with ||x}|]|=1 (n=1,2, - )

N LT =1,

T L(F,E)
where the totality of continuous linear operators from F into E is denoted
by L(F,E), and F denoted by the following,

|l if p>1
l Cy Zf P = 1

" Here, we have some examples of Banach spaces which satisfy the (*),-

(1/p+1/p*=1).

conditions, and those are as follows;

From the above definition, it is easily seen that if E* is isomorphic to
a subspace of /,, then E satisfies the (¥),-conditions. And also, by
92.1.1., if E is isomorphic to a Hilbert space H, then E satisfies the (*),-
conditions (1<p<2). More generally, <, ;space (c.f. [5]) satisfies the
(¥),-conditions, and especially, every L,.(¢)-space satisfies the (*),-conditions
(for more details, see |9]).

TureoreMm 2.1.2. (c.f. [9])

Let E be a Banach space, and 1 <p < oco. Then the following condi-
tions are equivalent.

(1) E satisfies the (*)p-conditions.

(2) For any Banach space F, if T 1is a p-absolutely summing ope-
rator from E into F, then T* (adjoint of T) is a p-absolutely summing



278 Y. Takahashi

operator from F* into E*.

2°. measurable norms and abstract Wiener spaces

Let H be a real separable Hilbert space with norm |[|+||z. F(H) will
denote the partially ordered set of finite dimensional orthogonal projections

P of H (P>Q means P(H)>Q(H) for P, QeF(H)).

DEFINITION 2.2.1. The standard Gaussian measure in H is the cylin-
der set measure py defined as follows :

1
iulz)=exp(~ g llals) for z<H,

where fiy denote the Fourier-transform of py.

REMARK 2.2.1. The standard Gaussian measure pg is finitely addi-
tive, but py is not e-additive.

DeFINITION 2.2.2. A norm ||+|| in H is called measurable if for any
e>0, there exists Pye F(H) such that if PeF(H) and P 1 P, then
puf{||Pxl| >} <e.

REMARK 2.2.2. (c.f. [4])

(1) Let ||+|| be a measurable norm in H. Then ||+|| is continuous.

(2) Let T be a one-to-one Hilbert-Schmidt operator of H, and define
llz||=||Tx||g for x&H. Then ||+|| is a measurable norm.

(3) Let ||+|| be a norm in H. If there exists a measurable norm
which is stronger than ||+||, then ||+|| is a measurable norm.

Notation. Let ||-|| be a measurable norm in H, and B denote the
completion of H with respect to |[+||. And also 7 denote the inclusion map
from H into B. The triple (i, H, B) is called an abstract Wiener space.
Theorem A shows that if B is a Hilbert space, then (i, H, B) is an ab-
stract Wiener space iff 7 is a Hilbert-Schmidt operator.

THEOREM 2.2.1. (c.f. [1])

Let ||+|| be a continuous norm in Hilbert space H, and pg the standard
Gaussian measure in H. Let B denote the completion of H with respect
to ||+||. Then the following conditions are equivalent.

(1) ||+|| s a measurable norm.

(2) pg can be extended to a g-additive measure in B. .

§ 3. Main theorem and other results

1°. Main theorem
In this subsection, we shall prove the following main theorem which
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is a generalization of Theorem A for non-Hilbertian cases.

- TueoreM 3.1.1. Let H be a Hilbert space with norm ||+|lm and
1<p=<2. Let ||+|| be a continuous norm in H and B the completion of
H with respect to Then, if a Banach space B* (dual of B) satisfies

the (¥),-conditions, the following conditions are equivalent.

(1) ||+|| s a measurable norm.
(2) There exists a one-to-one Hilbert-Schmidt operator T of H such
that ||z||=||Tx||lg, x€ H.

To prove this theorem, the following lemma is very useful.

LeMMA 3.1.1. Let B be a Banach space, and p be a cylinder set
measure in B. Then, if p is o-additive, fi (Fourier-transform of p) is con-
tinuous relative to the absolutely summing topology.

The continuity of fi means the following: There exists the sequence
of continuous seminorms {p,} in B* (dual of B) such that the natural in-
jection from B¥ into (B¥), is absolutely summing, and fi is continuous
relative to the seminorms {p,}; namely, for any ¢>0 there exists n and
6>0, such that the inequality p,(x*) <8, x*& B* implies that |1—f(x*)| =e.

The proof can be done by the same way as lemma 3.1.1. in [10], and
so we omit it.

LEmMA 3.1.2. Let H be a Hilbert space with norm ||+||z, and |||
be a measurable norm in H. Let B denote the completion of H with res-
pect to and i the inclusion map from H into B. Then, we have that
the adjoint map i* from B* into H* is adsolutely summing.

ProoF. Since a norm ||+|| is measurable, by [Theorem 2.2.1], a stand-
dard Gaussian measure pz in H can be extended to a ¢-additive one in B.
Hence, by Lemma 3.1.1., fi(z*), ¥ B* is continuous relative to the abso-
lutely summing topology. Since

inla®) = exp (5 I 241),  wre B,

it is easily seen that there exists a positive constant C and 7z such that
l*a¥| |z = Cp,(x*), x*eB*.

From this, we have easily the assertion.

Next, using the above lemma, we shall prove the main theorem.
Proor of THEOREM 3. 1. 1.

(1) >(2): let ||+]| be a measurable norm. Then, by [Lemma 3.1.2,

the natural map from B* into H* is absolutely summing. Since a Banach
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space B* satisfies the (*),-conditions, and the natural map is also p-absolutely
summing (c.f. [7]), by [Theorem 2.1.2., the natural map from H** into B**
is p-absolutely summing. Here, H= H**, hence the natural map from H
into B is p-absolutely summing.
Thus, by [Theorem 2 1.1, there exists a Hilbert space G with norm
||*|l¢ such that
HcGcB

where the natural map from H into G is a Hilbert-Schmidt operator, and
the map from G into B is a continuous linear operator, respectively. Since
a norm [|+||¢g be Hilbertian, it is easily seen that there exists a one-to-one
continuous linear operator T of H such that ||z||¢=||Tx||m x=H.

Obviously, T is a Hilbert-Schmidt operator. Thus, we have easily the
assertion.

(2) =>(1): By Remark 2.2.2, it is obvious.

ReEMARK 3.1.1. In [Theorem 3.1.1., let i denote the inclusion map
Jrom H into B. Then, we can say that if a Banach space B* satisfies
the (¥),-conditions (1<p=2), (i, H, B) is an abstract Wiener space iff i is
a Hilbert-Schmidt operator. However, if p>2, then the above result is
not necessarily true. The counterexample can be found in the next sub-
section.

CoroLLARY 3.1.1. Let H be a Hilbert space with inner product (s, +)g,
and {e,} be a complete orthonormal system in H. We define a continuous
norm ||+|| in H by

ol =(S 2w ee)”,  zeH

where 0<2,<o0, and 1< p=<2. Let B denote the completion of H with
respect to , and i the inclusion map from H into B.

Then, we have that (i, H, B) is an abstract Wiener space iff i is a
Hilbert-Schmidt operator from H into B.

PrOOF. Since a Banach space B is isomorphic to Z,, therefore B* (dual
of B) satisfies the (*)p-conditions. Thus, by Theorem 3.1.1. we have the
assertion.

REMARK 3.1.2. In the above corollary, if p>2, then the above result
s not necessarily true. That case is discussed in the next subsection (see ;
Proposition 3.2.1.).

2°.  Other results
In this subsection, we shall discuss the cases of /,(1,) and L,(X, p).
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ProposITION 3.2.1. Let ||+|| be a continuous norm in Hilbert space
H defined by the same way as Corollary 3.1.1., namely;

el =(Z @ el?)”,  zeH

where 0< 4, <00, and 1=p<oo. Let B denote the completion of H with
respect to ||+||, and i the inclusion map from H into B.

Then, the following conditions are equivalent.

(1) (i, H, B) is an abstract Wiener space.

(2) The adjoint map i* from B* into H* is absolutely summing.

(3) 3 in<oo.

n=1

Proor.

(1) =>(2): By [Lemma 3. 1.2, it is obvious.

(2) >(3): Since H is linearly isometric to /,, and B is linearly iso-
metric to [, (4,), respectively, therefore, this is the particular case of Propo-
sition 4. 2. 1. in [8].

(3) =>(1): It is sufficient to show that if the condition (3) be satisfied,
(¢, L, 1,(2,)) is an abstract Wiener space. However, by Lemma 3.2.1. in
[10], the condition (3) implies that a standard Gaussian measure in /, can
be extended to a g-additive one in [,(,).

Thus, by Theorem 2.2.1., we have the assertion.

REMARK 3.2.1. In the above porposition, if 1= p=2, the conditions
(1), (2), (38) and (4) are equivalent (c.f. Corollary 3.1.1.); where the con-
dition (4) is the following :

(4) The map 1 from H into B is a Hilbert-Schmidt operator.

However, if p>2, the condition (4) is not necessarily equivalent to the
above equivalent conditions. Indeed, let the sequence 1, be taken as fol-
lows ;

3|

=00,

Y a<oo, and Y (%)
n=1 n=1

then, we have easily the counterexample.

Notation. Let (X,B, ) be a measure space. The p-measurable set
E of positive measure is called an atom whenever for any p-measurable
subset E; of E we have either pu(E;)=0 or pu(E—E)=0.

If (X,®B, ) be a o-finite measure space, then we may show that X=
X,+ X, uniquely, where neither X, nor any of its measurable subsets is an
atom, and X, is a union of an at most countable number of atoms of finite
measure. When this, we shall say X, non-atomic part of px.
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ProrosITION 3.2.2. Let (X, B, 1) be a non-trivial finite measure space,
and 1<p=<2. Let i denote the natural injection from L,(X, p) into L,(X, p).
Then the following conditions are equivalent.

(1) (4, Lo(X, 1)y Lp(X, p)) is an abstract Wiener space.

(2) The natural injection i from L, into L, is a Hilbert-Schmidt
operator.

(3) For any {X,} C X which is measurable and pairwise disjoint, we
have

1-2

> p(X,) Tt < oo

n=1

Proor. Since a Banach space (L,)* satisfies the (*),-conditions, and
1< p=2, by [Theorem 3.1. 1|, the equivalence of (1) and (2) be obvious. On
the other hand, by Lemma 3.1.2. and Theorem 4.2.1. in [8], (1) implies
(3). It suffices to show that (3) implies (2):

Suppose that the condition (3) be satisfied, then it is easily seen that the
non-atomic part of g has zero measure. Since p(X)<co, g is concentrated
on at most countable sets {z,} in X. When this, without loss of gener-
ality, we may assume that the sequence {z,} be an infinite one. Thus,

L,(X, ) is identified to l;(4,), and L,(X, #) be identified to /,(4,); where

12

m=plzs, and Y ()77 <oo.
n=1

Hence, it sufficies to show that the natural injection from /,(4,) into
l,(1,) is a Hilbert-Schmidt operator : but this can be proved by Proposition
4.1.1. in [8]. That completes the proof.

COoROLLARY 3.2.1. Let (X,B, ) be a finite measure space, and 1=
p=2. Let i denote the natural injection from Ly(X, ) into L,(X, ). If
the non-atomic part of p has a positive measure, then (i, Ly, L,) is not an
abstract Wiener space.

ExaMpPLE. Let p be a Lebesgue measure on ([a, b], B), and 1= p<2.
Let i denote the natural injection from L, into L,. Then, (i, L, L,) is
not an abstract Wiener space.
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