Mean curvatures for certain ν -planes in quaternion Kählerian manifolds

By Shigeyoshi FUJIMURA (Received February 25, 1980)

Introduction.

Let (M, g) be an *n*-dimensional Riemannian manifold with metric tensor g. We denote by K(X, Y) the sectional curvature for a 2-plane spanned by tangent vectors X and Y at $P \in M$, and by π a ν -plane at $P \in M$. Let $\{e_1, \dots, e_n\}$ be an orthonormal base of the tangent space at P such that $\{e_1, \dots, e_\nu\}$ spans π . S. Tachibana [3] defined the mean curvature $\rho(\pi)$ for π by

$$\rho(\pi) = \frac{1}{\nu(n-\nu)} \sum_{b=\nu+1}^{n} \sum_{a=1}^{\nu} K(e_a, e_b),$$

which is independent of the choice of an adapted base for π . He obtained the following

THEOREM A (S. Tachibana [3]). In an n(>2)-dimensional Riemannian manifold (M, g), if the mean curvature for ν -plane is independent of the choice of ν -planes at each point, then

(i) for v=1 or n-1, (M, g) is an Einstein space,

(ii) for $1 < \nu < n-1$ and $2\nu \neq n$, (M, g) is of constant curvature,

(iii) for $2\nu = n$, (M, g) is conformally flat.

The converse is true.

Taking holomorphic 2λ -planes or antiholomorphic ν -planes, instead of ν -planes, analogous results in Kählerian manifolds are also obtained.

THEOREM B (S. Tachibana [4] and S. Tanno [5]). In a Kählerian manifold (M, g, J) of dimension $n=2l\geq 4$, if the mean curvature for holomorphic 2λ -plane is independent of the choice of holomorphic 2λ -planes at each point, then

(i) for $1 \leq \lambda \leq l-1$ and $2\lambda \neq l$, (M, g, J) is of constant holomorphic sectional curvature,

(ii) for $2\lambda = l$, the Bochner curvature tensor vanishes. The converse is true.

THEOREM C (K. Iwasaki and N. Ogitsu [2]). In a Kählerian manifold (M, g, J) of dimension $n=2l\geq 4$, if the mean curvature for antiholomorphic

S. Fujimura

 ν -plane is independent of the choice of antiholomorphic ν -planes at each point, then

(i) $\nu=1$, (M, g, J) is an Einstein space,

(ii) $2 \leq \nu \leq l-1$, (M, g, J) is of constant holomorphic sectional curvature,

(iii) $\nu = l$, the Bochner curvature tensor vanishes.

The converse is true.

L. Vanhecke ([6], [7]) generalized Theorems B and C.

The main purpose of this paper is to prove analogous results in quaternion Kählerian manifolds.

§ 1. Quaternion Kählerian manifolds (cf. [1]).

Let (M, V) be an almost quaternion manifold of dimension n=4m, that is, a manifold M which admits a 3-dimensional vector bundle V consisting of tensors of type (1, 1) over M satisfying the following condition: In any coordinate neighborhood U of M, there is a local base $\{J_1, J_2, J_3\}$ of Vsuch that

$$J_p J_q = -\delta_{pq} J_0 + \sum_{r=1}^3 \delta_{pqr} J_r$$

for p and q in a set $\{1, 2, 3\}$, where J_0 is the identity tensor of type (1, 1)on M, δ_{pq} is the Kronecker's delta and δ_{pqr} is 1 or -1 according as (p, q, r)is even or odd permutation of (1, 2, 3) and 0 otherwise. And it is well known that $\Lambda = \sum_{p=1}^{3} J_p \otimes J_p$ is a tensor of type (2, 2) defined globally on M.

If an almost quaternion manifold (M, V) admits the metric tensor g such that

(1.1)
$$g(X, \phi Y) + g(\phi X, Y) = 0,$$
$$\nabla \Lambda = 0$$

for any cross-section ϕ of V and any vectors X and Y, (M, g, V) is called a quaternion Kählerian manifold, where \overline{V} is the Riemanian connection induced from g. We have known that if $m \ge 2$, (M, g, V) is an Einstein space and satisfies

(1.2)
$$R(X, Y, Z, W) = R(X, Y, J_p Z, J_p W) + \frac{S}{4m(m+2)} \{g(X, J_q Y) g(J_q Z, W) + g(X, J_r Y) g(J_r Z, W)\},\$$

where (p, q, r) is a permutation of (1, 2, 3), R and S are the curvature tensor and the scalar curvature of (M, g, V), respectively, and we put

$$R(X, Y, Z, W) = g(R(X, Y) Z, W).$$

Throughout this paper, we assume that $m \ge 2$, and indices p, q, r run over the range $\{1, 2, 3\}$ unless stated otherwise.

§ 2. Lemmas.

Let $T_p(M)$ be a tangent space at a point P of (M, g, V). The sectional curvature K(X, Y) for a 2-plane spanned by X, Y in $T_P(M)$ is defined by

(2.1)
$$K(X, Y) = -\frac{R(X, Y, X, Y)}{g(X, X) g(Y, Y) - (g(X, Y))^2}$$

From (1, 1), (1, 2) and (2, 1), we have

(2.2)
$$K(X, J_p X) = \frac{S}{4m(m+2)} + \frac{R(X, J_p X, J_q X, J_r X)}{(g(X, X))^2}$$

for an even permutation (p, q, r) of (1, 2, 3) (cf. [1]). From (2. 2) and the first Bianchi identity, we have

Lemma 1.
$$\sum_{p=1}^{3} K(X, J_p X) = \frac{3S}{4m(m+2)}$$
.

Similarly, we get

LEMMA 2. For a permutation (p, q, r) of (1, 2, 3), K(I, Y, Y) = K(Y, I, Y) = K(Y, Y)

$$K(J_{p}X, Y) = K(X, J_{p}Y), \ K(J_{p}X, J_{p}I) = K(X, I),$$

$$K(J_{p}X, J_{q}Y) = K(X, J_{r}Y).$$

Next, by Q(X) we denote the 4-plane spanned by $\{X, J_1X, J_2X, J_3X\}$ for $X \in T_P(M)$, and such a 4-plane is called the Q-section determined by X. Now assume that two Q-sections Q(X) and Q(Y) are orthogonal to each other and g(X, X) = g(Y, Y) = 1. Then we have

$$\begin{split} &R(X, J_p X, J_q Y, J_r Y) = R(X, J_p X, J_p Y, Y) - \frac{S}{4m(m+2)}, \\ &R(X, J_p Y, J_q Y, J_r X) = -R(X, J_p Y, X, J_p Y), \\ &R(X, J_p Y, J_p X, Y) = -R(X, J_p Y, X, J_p Y), \\ &R(X, Y, J_p Y, J_p X) = -R(X, Y, X, Y) \end{split}$$

for an even permutation (p, q, r) of (1, 2, 3). Using these identities, we have

$$\begin{split} K \Big(X + Y, J_p(X+Y) \Big) + K \Big(X - Y, J_p(X-Y) \Big) \\ &= \frac{1}{2} \Big\{ K(X, J_p X) + K(Y, J_p Y) + 4K(X, J_p Y) \\ &+ 2R(X, J_p X, J_p Y, Y) \Big\}, \end{split}$$

S. Fujimura

$$\begin{split} K(X+J_p Y, J_p X-Y) + K(X-J_p Y, J_p X+Y) \\ &= \frac{1}{2} \left\{ K(X, J_p X) + K(Y, J_p Y) + 4K(X, Y) \\ &+ 2R(X, J_p X, J_p Y, Y) \right\}, \\ K\left(X+J_p Y, J_q(X+J_p Y)\right) + K\left(X-J_p Y, J_q(X-J_p Y)\right) \\ &= \frac{1}{2} \left\{ K(X, J_q X) + K(Y, J_q Y) + 4K(X, J_r Y) \\ &- 2R(X, J_q X, J_q Y, Y) + \frac{S}{2m(m+2)} \right\} \end{split}$$

for a permutation (p, q, r) of (1, 2, 3), from which, we get

LEMMA 3. For unit vectors X and Y in $T_P(M)$ whose Q-sections are orthogonal to each other,

$$\begin{split} 6 \sum_{p=0}^{3} K(X, J_{p} Y) &= \sum_{p=0}^{3} \sum_{q=1}^{3} \left\{ K \left(X + J_{p} Y, J_{q} (X + J_{p} Y) \right) + K \left(X - J_{p} Y, J_{q} (X - J_{p} Y) \right) \right\} \\ &- 2 \sum_{p=1}^{3} \left\{ K(X, J_{p} X) + K(Y, J_{p} Y) \right\} - \frac{3S}{2m(m+2)} \,. \end{split}$$

By virtue of Lemmas 1 and 3, we obtain LEMMA 4. For the same X and Y as in Lemma 3,

$$\sum_{p=0}^{3} K(X, J_p Y) = \frac{S}{4m(m+2)}.$$

٠.,

For the same X and Y as above, we have

$$R(X, J_p X, X, J_p Y) = R(X, J_p X, Y, J_p X),$$

$$R(X, J_{p}X, Y, J_{p}Y) = R(X, Y, X, Y) + R(X, J_{p}Y, X, J_{p}Y),$$

from which, we get

LEMMA 5. For the same X and Y as in Lemma 3,

$$\begin{split} K \Big(X + Y, J_p(X - Y) \Big) \\ &= \frac{1}{4} \Big\{ K(X, J_p X) + K(Y, J_p Y) - 2K(X, Y) - 2K(X, J_p Y) \Big\} \,. \end{split}$$

§ 3. Mean curvature for quaternionic 4μ -plane.

The 4μ -plane π in $T_P(M)$ is called a quaternionic 4μ -plane if $J_P\pi \subset \pi$ (p=1, 2, 3). Hence we can take the orthonormal base $\{\tilde{e}_{\alpha} | \alpha = 1, \dots, 4m\}$ of $T_P(M)$ such that

$$\tilde{e}_{4i+p-3} = J_p e_i$$
, $i = 1, \dots, m; p = 0, \dots, 3$

and $\{\tilde{e}_{\alpha}|\alpha=1, \dots, 4\mu\}$ spans π . Then, the mean curvature $\rho(\pi)$ for π is following:

$$\rho(\pi) = \frac{1}{16\mu(m-\mu)} \sum_{\beta=4\mu+1}^{4m} \sum_{\alpha=1}^{4\mu} K(\tilde{e}_{\alpha}, \tilde{e}_{\beta})$$
$$= \frac{1}{16\mu(m-\mu)} \sum_{j=\mu+1}^{m} \sum_{i=1}^{\mu} \sum_{p,q=0}^{3} K(J_{p}e_{i}, J_{q}e_{j})$$

Using Lemmas 2 and 4, we have

$$\rho(\pi) = \frac{1}{4\mu(m-\mu)} \sum_{j=\mu+1}^{m} \sum_{i=1}^{\mu} \sum_{p=0}^{3} K(e_i, J_p e_j)$$
$$= \frac{S}{16m(m+2)}.$$

Therefore we can obtain

THEOREM 1. In a quaternion Kählerian manifold of dimension $4m \ge 8$, the mean curvature for quaternionic 4μ -plane is always constant for $1 \le \mu \le m-1$, and its value is equal to $\frac{S}{16m(m+2)}$.

§ 4. Mean curvature for antiquaternionic *v*-plane.

We now assume that the sectional curvature K(X, Y) is independent of the choice of X and Y whose Q-sections are orthogonal to each other. Then, from Lemma 5, we get

(4.1)
$$K(X, J_p X) + K(Y, J_p Y) = 8k$$

where we put k = K(X, Y) and g(X, X) = g(Y, Y) = 1. Similarly, for a unit $Z \in T_P(M)$ orthogonal to Q(X), we have

(4.2)
$$K(X, J_p X) + K(Z, J_p Z) = 8k$$
.

On the other hand, from (1.2), we have

$$R(J_{q}Y, J_{p}Y, J_{q}Y, J_{r}Y) = -R(Y, J_{p}Y, J_{q}Y, J_{p}Y),$$

$$R(Y, J_{r}Y, J_{q}Y, J_{r}Y) = -R(Y, J_{r}Y, Y, J_{p}Y)$$

S. Fujimura

for an even permutation (p, q, r) of (1, 2, 3). Putting $Z=(Y+J_qY)/\sqrt{2}$, from these identities and (2.2), we have

(4.3) $K(Z, J_p Z) = K(Y, J_r Y).$

From (4.1), (4.2) and (4.3), it follows that

$$K(Y, J_p Y) = K(Y, J_r Y).$$

Therefore we can obtain

THEOREM 2. In a quaternion Kählerian manifold (M, g, V) of dimension $4m \ge 8$, if the sectional curvature K(X, Y) is independent of the choice of X and Y at each point whose Q-sections are orthogonal to each other, (M, g, V) is of constant Q-sectional curvature. The converse is true.

The ν -plane π in $T_P(M)$ is called an antiquaternionic ν -plane if $J_p\pi$ (p=1, 2, 3) are orthogonal to π . Hence we can take the orthonormal base $\{\tilde{e}_{\alpha} | \alpha = 1, \dots, 4m\}$ of $T_P(M)$ such that

$$\tilde{e}_{4i+p-3} = J_p e_i$$
, $i = 1, \dots, m; p = 0, \dots, 3$

and $\{e_1, \dots, e_{\nu}\}$ spans π . Then, the mean curvature $\rho(\pi)$ for π is following:

$$(4.4) \qquad \rho(\pi) = \frac{1}{\nu(4m-\nu)} \left\{ \sum_{i,j=1}^{\nu} \sum_{p=1}^{3} K(e_i, J_p e_j) + \sum_{\substack{j=\nu+1 \ i=1}}^{m} \sum_{p=0}^{j} K(e_i, J_p e_j) \right\}$$
$$= \frac{1}{\nu(4m-\nu)} \left\{ \sum_{\substack{i=1 \ p=1}}^{\nu} \sum_{p=1}^{3} K(e_i, J_p e_i) - \sum_{\substack{i,j=1 \ i\neq j}}^{\nu} K(e_i, e_j) + \sum_{\substack{i,j=1 \ i\neq j}}^{m} \sum_{p=1}^{3} K(e_i, J_p e_j) + \sum_{\substack{i=1 \ p=1 \ i\neq j}}^{m} \sum_{p=0}^{3} K(e_i, J_p e_j) \right\}.$$

From (4.4) and Lemmas 1, 2 and 4, we have

(4.5)
$$\rho(\pi) = \frac{1}{\nu(4m-\nu)} \left\{ \frac{\nu}{4m} S - 2 \sum_{1 \le i < j \le \nu} K(e_i, e_j) \right\}.$$

We now assume that the mean curvature for antiquaternionic ν -plane is independent of the choice of antiquaternionic ν -planes. Since a ν -plane π_1 spanned by $\{e_1, J_p e_2, e_3, \dots, e_{\nu}\}$ is also antiquaternionic, we have $\rho(\pi) = \rho(\pi_1)$, from which we have

(4.6)
$$K(e_1, e_2) + \sum_{i=3}^{\nu} K(e_2, e_i) = K(e_1, J_p e_2) + \sum_{i=3}^{\nu} K(J_p e_2, e_i).$$

Similarly, using antiquaternionic ν -planes spanned by $\{J_p e_1, e_2, \dots, e_{\nu}\}$ and $\{J_p e_1, J_p e_2, e_3, \dots, e_{\nu}\}$, we have

(4.7)
$$K(J_p e_1, e_2) + \sum_{i=3}^{\nu} K(e_2, e_i) = K(J_p e_1, J_p e_2) + \sum_{i=3}^{\nu} K(J_p e_2, e_i).$$

From (4.6), (4.7) and Lemmas 2 and 4, we know that $K(e_1, e_2)$ is constant.

Let X and Y be arbitrary unit tangent vectors at $P \in M$ whose Q-sections are orthogonal to each other. Then we can take an orthonormal base $\{J_p e_i | i=1, \dots, m; p=0, \dots, 3\}$ of $T_P(M)$ such that $e_1 = X$ and $e_2 = Y$.

Summing up the arguments developed above, by virtue of Theorem 2, we can obtain

THEOREM 3. In a quaternion Kählerian manifold (M, g, V) of dimension $4m \ge 8$, if the mean curvature for antiquaternionic ν -plane is independent of the choice of antiquaternionic ν -planes at each point for $2 \le \nu \le m$, (M, g, V) is of constant Q-sectional curvature. The converse is true.

References

- [1] S. ISHIHARA: Quaternion Kählerian manifolds, J. Diff. Geom., 9 (1974), 483-500.
- [2] K. IWASAKI and N. OGITSU: On the mean curvature for antiholomorphic pplane in Kählerian spaces, Tôhoku Math. J., 27 (1975), 313-317.
- [3] S. TACHIBANA: The mean curvature for p-plane, J. Diff. Geom., 8 (1973), 47-53.
- [4] S. TACHIBANA: On the mean curvature for holomorphic 2p-planes in Kählerian spaces, Tôhoku Math. J., 25 (1973), 157-165.
- [5] S. TANNO: Mean curvature for holomorphic 2p-planes in Kählerian manifolds, Tôhoku Math. J., 25 (1973), 417–423.
- [6] L. VANHECKE: Mean curvature for holomorphic 2p-planes in some almost Hermitian manifolds, Tensor, N. S., 30 (1976), 193–197.
- [7] L. VANHECKE: Mean curvatures for antiholomorphic p-planes in some almost Hermitian manifolds, Ködai Math. Sem. Rep., 28 (1976), 51-58.

Department of Mathematics Ritsumeikan University