Mean curvatures for certain ν-planes in quaternion Kählerian manifolds

By Shigeyoshi Fujimura
(Received February 25, 1980)

Introduction.

Let (M, g) be an n-dimensional Riemannian manifold with metric tensor g. We denote by $K(X, Y)$ the sectional curvature for a 2 -plane spanned by tangent vectors X and Y at $P \in M$, and by π a ν-plane at $P \in M$. Let $\left\{e_{1}, \cdots\right.$, $\left.e_{n}\right\}$ be an orthonormal base of the tangent space at P such that $\left\{e_{1}, \cdots, e_{\nu}\right\}$ spans π. S. Tachibana [3] defined the mean curvature $\rho(\pi)$ for π by

$$
\rho(\pi)=\frac{1}{\nu(n-\nu)} \sum_{b=\nu+1}^{n} \sum_{a=1}^{\nu} K\left(e_{a}, e_{b}\right),
$$

which is independent of the choice of an adapted base for π. He obtained the following

Theorem A (S. Tachibana [3]). In an $n(>2)$-dimensional Riemannian manifold (M, g), if the mean curvature for ν-plane is independent of the choice of ν-planes at each point, then
(i) for $\nu=1$ or $n-1,(M, g)$ is an Einstein space,
(ii) for $1<\nu<n-1$ and $2 \nu \neq n,(M, g)$ is of constant curvature,
(iii) for $2 \nu=n,(M, g)$ is conformally flat.

The converse is true.
Taking holomorphic 2λ-planes or antiholomorphic ν-planes, instead of ν-planes, analogous results in Kählerian manifolds are also obtained.

Theorem B (S. Tachibana [4] and S. Tanno [5]). In a Kählerian manifold (M, g, J) of dimension $n=2 l \geqq 4$, if the mean curvature for holomorphic 2 2 -plane is independent of the choice of holomorphic 2λ-planes at each point, then
(i) for $1 \leqq \lambda \leqq l-1$ and $2 \lambda \neq l,(M, g, J)$ is of constant holomorphic sectional curvature,
(ii) for $2 \lambda=l$, the Bochner curvature tensor vanishes. The converse is true.

Theorem C (K. Iwasaki and N. Ogitsu [2]). In a Kählerian manifold (M, g, J) of dimension $n=2 l \geqq 4$, if the mean curvature for antiholomorphic
ν-plane is independent of the choice of antiholomorphic v-planes at each point, then
(i) $\nu=1,(M, g, J)$ is an Einstein space,
(ii) $2 \leqq \nu \leqq l-1,(M, g, J)$ is of constant holomorphic sectional curvature,
(iii) $\nu=l$, the Bochner curvature tensor vanishes.

The converse is true.
L. Vanhecke ([6], [7]) generalized Theorems B and C.

The main purpose of this paper is to prove analogous results in quaternion Kählerian manifolds.
§ 1. Quaternion Kählerian manifolds (cf. [1]).
Let (M, V) be an almost quaternion manifold of dimension $n=4 m$, that is, a manifold M which admits a 3 -dimensional vector bundle V consisting of tensors of type $(1,1)$ over M satisfying the following condition: In any coordinate neighborhood U of M, there is a local base $\left\{J_{1}, J_{2}, J_{3}\right\}$ of V such that

$$
J_{p} J_{q}=-\delta_{p q} J_{0}+\sum_{r=1}^{3} \delta_{p q r} J_{r}
$$

for p and q in a set $\{1,2,3\}$, where J_{0} is the identity tensor of type (1,1) on $M, \delta_{p q}$ is the Kronecker's delta and $\delta_{p q r}$ is 1 or -1 according as (p, q, r) is even or odd permutation of $(1,2,3)$ and 0 otherwise. And it is well known that $\Lambda=\sum_{p=1}^{3} J_{p} \otimes J_{p}$ is a tensor of type $(2,2)$ defined globally on M.

If an almost quaternion manifold (M, V) admits the metric tensor g such that

$$
\begin{align*}
& g(X, \phi Y)+g(\phi X, Y)=0 \tag{1.1}\\
& \quad \nabla \Lambda=0
\end{align*}
$$

for any cross-section ϕ of V and any vectors X and $Y,(M, g, V)$ is called a quaternion Kählerian manifold, where V is the Riemanian connection induced from g. We have known that if $m \geqq 2,(M, g, V)$ is an Einstein space and satisfies

$$
\begin{align*}
& R(X, Y, Z, W)=R\left(X, Y, J_{p} Z, J_{p} W\right) \tag{1.2}\\
& \quad+\frac{S}{4 m(m+2)}\left\{g\left(X, J_{q} Y\right) g\left(J_{q} Z, W\right)+g\left(X, J_{r} Y\right) g\left(J_{r} Z, W\right)\right\}
\end{align*}
$$

where (p, q, r) is a permutation of $(1,2,3), R$ and S are the curvature tensor and the scalar curvature of (M, g, V), respectively, and we put

$$
R(X, Y, Z, W)=g(R(X, Y) Z, W)
$$

Throughout this paper, we assume that $m \geqq 2$, and indices p, q, r run over the range $\{1,2,3\}$ unless stated otherwise.

§ 2. Lemmas.

Let $T_{p}(M)$ be a tangent space at a point P of (M, g, V). The sectional curvature $K(X, Y)$ for a 2 -plane spanned by X, Y in $T_{P}(M)$ is defined by

$$
\begin{equation*}
K(X, Y)=-\frac{R(X, Y, X, Y)}{g(X, X) g(Y, Y)-(g(X, Y))^{2}} \tag{2.1}
\end{equation*}
$$

From (1.1), (1.2) and (2.1), we have

$$
\begin{equation*}
K\left(X, J_{p} X\right)=\frac{S}{4 m(m+2)}+\frac{R\left(X, J_{p} X, J_{q} X, J_{r} X\right)}{(g(X, X))^{2}} \tag{2.2}
\end{equation*}
$$

for an even permutation (p, q, r) of (1,2,3) (cf. [1]). From (2.2) and the first Bianchi identity, we have

Lemma 1. $\sum_{p=1}^{3} K\left(X, J_{p} X\right)=\frac{3 S}{4 m(m+2)}$.
Similarly, we get
Lemma 2. For a permutation (p, q, r) of $(1,2,3)$,

$$
\begin{aligned}
& K\left(J_{p} X, Y\right)=K\left(X, J_{p} Y\right), K\left(J_{p} X, J_{p} Y\right)=K(X, Y) \\
& K\left(J_{p} X, J_{q} Y\right)=K\left(X, J_{r} Y\right)
\end{aligned}
$$

Next, by $Q(X)$ we denote the 4 -plane spanned by $\left\{X, J_{1} X, J_{2} X, J_{3} X\right\}$ for $X \in T_{P}(M)$, and such a 4 -plane is called the Q-section determined by X. Now assume that two Q-sections $Q(X)$ and $Q(Y)$ are orthogonal to each other and $g(X, X)=g(Y, Y)=1$. Then we have

$$
\begin{aligned}
& R\left(X, J_{p} X, J_{q} Y, J_{r} Y\right)=R\left(X, J_{p} X, J_{p} Y, Y\right)-\frac{S}{4 m(m+2)} \\
& R\left(X, J_{p} Y, J_{q} Y, J_{r} X\right)=-R\left(X, J_{p} Y, X, J_{p} Y\right) \\
& R\left(X, J_{p} Y, J_{p} X, Y\right)=-R\left(X, J_{p} Y, X, J_{p} Y\right) \\
& R\left(X, Y, J_{p} Y, J_{p} X\right)=-R(X, Y, X, Y)
\end{aligned}
$$

for an even permutation (p, q, r) of $(1,2,3)$. Using these identities, we have

$$
\begin{aligned}
& K\left(X+Y, J_{p}(X+Y)\right)+K\left(X-Y, J_{p}(X-Y)\right) \\
&=\frac{1}{2}\left\{K\left(X, J_{p} X\right)+K\left(Y, J_{p} Y\right)\right.+4 K\left(X, J_{p} Y\right) \\
&\left.+2 R\left(X, J_{p} X, J_{p} Y, Y\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& K\left(X+J_{p} Y, J_{p} X-Y\right)+K\left(X-J_{p} Y, J_{p} X+Y\right) \\
& =\frac{1}{2}\left\{K\left(X, J_{p} X\right)+K\left(Y, J_{p} Y\right)+4 K(X, Y)\right. \\
& \left.\quad+2 R\left(X, J_{p} X, J_{p} Y, Y\right)\right\} \\
& K\left(X+J_{p} Y, J_{q}\left(X+J_{p} Y\right)\right)+K\left(X-J_{p} Y, J_{q}\left(X-J_{p} Y\right)\right) \\
& =\frac{1}{2}\left\{K\left(X, J_{q} X\right)+K\left(Y, J_{q} Y\right)+4 K\left(X, J_{r} Y\right)\right. \\
& \left.\quad-2 R\left(X, J_{q} X, J_{q} Y, Y\right)+\frac{S}{2 m(m+2)}\right\}
\end{aligned}
$$

for a permutation (p, q, r) of $(1,2,3)$, from which, we get
Lemma 3. For unit vectors X and Y in $T_{P}(M)$ whose Q-sections are orthogonal to each other,

$$
\begin{aligned}
6 \sum_{p=0}^{3} K\left(X, J_{p} Y\right)= & \sum_{p=0}^{3} \sum_{q=1}^{3}\left\{K\left(X+J_{p} Y, J_{q}\left(X+J_{p} Y\right)\right)\right. \\
& \left.+K\left(X-J_{p} Y, J_{q}\left(X-J_{p} Y\right)\right)\right\} \\
& -2 \sum_{p=1}^{3}\left\{K\left(X, J_{p} X\right)+K\left(Y, J_{p} Y\right)\right\}-\frac{3 S}{2 m(m+2)}
\end{aligned}
$$

By virtue of Lemmas 1 and 3, we obtain
Lemma 4. For the same X and Y as in Lemma 3,

$$
\sum_{p=0}^{3} K\left(X, J_{p} Y\right)=\frac{S}{4 m(m+2)}
$$

For the same X and Y as above, we have

$$
\begin{aligned}
& R\left(X, J_{p} X, X, J_{p} Y\right)=R\left(X, J_{p} X, Y, J_{p} X\right) \\
& R\left(X, J_{p} X, Y, J_{p} Y\right)=R(X, Y, X, Y)+R\left(X, J_{p} Y, X, J_{p} Y\right)
\end{aligned}
$$

from which, we get
Lemma 5. For the same X and Y as in Lemma 3,

$$
\begin{aligned}
K(X & \left.+Y, J_{p}(X-Y)\right) \\
& =\frac{1}{4}\left\{K\left(X, J_{p} X\right)+K\left(Y, J_{p} Y\right)-2 K(X, Y)-2 K\left(X, J_{p} Y\right)\right\}
\end{aligned}
$$

§ 3. Mean curvature for quaternionic 4μ-plane.

The 4μ-plane π in $T_{P}(M)$ is called a quaternionic 4μ-plane if $J_{P} \pi \subset \pi$ ($p=1,2,3$). Hence we can take the orthonormal base $\left\{\tilde{a}_{a} \mid \alpha=1, \cdots, 4 m\right\}$ of $T_{P}(M)$ such that

$$
\tilde{e}_{4 i+p-3}=J_{p} e_{i}, \quad i=1, \cdots, m ; p=0, \cdots, 3
$$

and $\left\{\tilde{e}_{\alpha} \mid \alpha=1, \cdots, 4 \mu\right\}$ spans π. Then, the mean curvature $\rho(\pi)$ for π is following:

$$
\begin{aligned}
\rho(\pi) & =\frac{1}{16 \mu(m-\mu)} \sum_{\beta=4 \mu+1}^{4 m} \sum_{\alpha=1}^{4 \mu} K\left(\tilde{e}_{\alpha}, \tilde{e}_{\beta}\right) \\
& =\frac{1}{16 \mu(m-\mu)} \sum_{j=\mu+1}^{m} \sum_{i=1}^{n} \sum_{p, q=0}^{3} K\left(J_{p} e_{i}, J_{q} e_{j}\right) .
\end{aligned}
$$

Using Lemmas 2 and 4 , we have

$$
\begin{aligned}
\rho(\pi) & =\frac{1}{4 \mu(m-\mu)} \sum_{j=\mu+1}^{m} \sum_{i=1}^{\mu} \sum_{p=0}^{3} K\left(e_{i}, J_{p} e_{j}\right) \\
& =\frac{S}{16 m(m+2)} .
\end{aligned}
$$

Therefore we can obtain
Theorem 1. In a quaternion Kählerian manifold of dimension $4 m \geqq 8$, the mean curvature for quaternionic 4μ-plane is always constant for $1 \leqq \mu \leqq$ $m-1$, and its value is equal to $\frac{S}{16 m(m+2)}$.

§ 4. Mean curvature for antiquaternionic ν-plane.

We now assume that the sectional curvature $K(X, Y)$ is independent of the choice of X and Y whose Q-sections are orthogonal to each other. Then, from Lemma 5, we get

$$
\begin{equation*}
K\left(X, J_{p} X\right)+K\left(Y, J_{p} Y\right)=8 k \tag{4.1}
\end{equation*}
$$

where we put $k=K(X, Y)$ and $g(X, X)=g(Y, Y)=1$. Similarly, for a unit $Z \in T_{P}(M)$ orthogonal to $Q(X)$, we have

$$
\begin{equation*}
K\left(X, J_{p} X\right)+K\left(Z, J_{p} Z\right)=8 k . \tag{4.2}
\end{equation*}
$$

On the other hand, from (1.2), we have

$$
\begin{aligned}
& R\left(J_{q} Y, J_{p} Y, J_{q} Y, J_{r} Y\right)=-R\left(Y, J_{p} Y, J_{q} Y, J_{p} Y\right), \\
& R\left(Y, J_{r} Y, J_{q} Y, J_{r} Y\right)=-R\left(Y, J_{r} Y, Y, J_{p} Y\right)
\end{aligned}
$$

for an even permutation (p, q, r) of $(1,2,3)$. Putting $Z=\left(Y+J_{q} Y\right) / \sqrt{2}$, from these identities and (2.2), we have

$$
\begin{equation*}
K\left(Z, J_{p} Z\right)=K\left(Y, J_{r} Y\right) \tag{4.3}
\end{equation*}
$$

From (4.1), (4.2) and (4.3), it follows that

$$
K\left(Y, J_{p} Y\right)=K\left(Y, J_{r} Y\right)
$$

Therefore we can obtain
Theorem 2. In a quaternion Kählerian manifold (M, g, V) of dimension $4 m \geqq 8$, if the sectional curvature $K(X, Y)$ is independent of the choice of X and Y at each point whose Q-sections are orthogonal to each other, (M, g, V) is of constant Q-sectional curvature. The converse is true.

The ν-plane π in $T_{P}(M)$ is called an antiquaternionic ν-plane if $J_{p} \pi$ ($p=1,2,3$) are orthogonal to π. Hence we can take the orthonormal base $\left\{\tilde{e}_{\alpha} \mid \alpha=1, \cdots, 4 m\right\}$ of $\mathrm{T}_{P}(M)$ such that

$$
\tilde{e}_{4 i+p-3}=J_{p} e_{i}, \quad i=1, \cdots, m ; p=0, \cdots, 3
$$

and $\left\{e_{1}, \cdots, e_{\nu}\right\}$ spans π. Then, the mean curvature $\rho(\pi)$ for π is following :

$$
\begin{align*}
\rho(\pi)= & \frac{1}{\nu(4 m-\nu)}\left\{\sum_{i, j=1}^{\nu} \sum_{p=1}^{3} K\left(e_{i}, J_{p} e_{j}\right)+\sum_{j=\nu+1}^{m} \sum_{i=1}^{\nu} \sum_{p=0}^{3} K\left(e_{i}, J_{p} e_{j}\right)\right\} \tag{4.4}\\
= & \frac{1}{\nu(4 m-\nu)}\left\{\sum_{i=1}^{\nu} \sum_{p=1}^{3} K\left(e_{i}, J_{p} e_{i}\right)-\sum_{\substack{i, j=1 \\
i \neq j}}^{\nu} K\left(e_{i}, e_{j}\right)\right. \\
& \left.+\sum_{\substack{i, j=1 \\
i \neq j}}^{\nu} \sum_{p=1}^{3} K\left(e_{i}, J_{p} e_{j}\right)+\sum_{j=\nu+1}^{m} \sum_{i=1}^{\nu} \sum_{p=0}^{3} K\left(e_{i}, J_{p} e_{j}\right)\right\} .
\end{align*}
$$

From (4.4) and Lemmas 1, 2 and 4, we have

$$
\begin{equation*}
\rho(\pi)=\frac{1}{\nu(4 m-\nu)}\left\{\frac{\nu}{4 m} S-2 \sum_{1 \leqq i<j \leqq \nu} K\left(e_{i}, e_{j}\right)\right\} . \tag{4.5}
\end{equation*}
$$

We now assume that the mean curvature for antiquaternionic ν-plane is independent of the choice of antiquaternionic ν-planes. Since a ν-plane π_{1} spanned by $\left\{e_{1}, J_{p} e_{2}, e_{3}, \cdots, e_{\nu}\right\}$ is also antiquaternionic, we have $\rho(\pi)=\rho\left(\pi_{1}\right)$, from which we have

$$
\begin{equation*}
K\left(e_{1}, e_{2}\right)+\sum_{i=3}^{\nu} K\left(e_{2}, e_{i}\right)=K\left(e_{1}, J_{p} e_{2}\right)+\sum_{i=3}^{\nu} K\left(J_{p} e_{2}, e_{i}\right) . \tag{4.6}
\end{equation*}
$$

Similarly, using antiquaternionic ν-planes spanned by $\left\{J_{p} e_{1}, e_{2}, \cdots, e_{\nu}\right\}$ and $\left\{J_{\mathrm{p}} e_{1}, J_{p} e_{2}, e_{3}, \cdots, e_{\nu}\right\}$, we have

$$
\begin{equation*}
K\left(J_{p} e_{1}, e_{2}\right)+\sum_{i=3}^{\nu} K\left(e_{2}, e_{i}\right)=K\left(J_{p} e_{1}, J_{p} e_{2}\right)+\sum_{i=3}^{\nu} K\left(J_{p} e_{2}, e_{i}\right) . \tag{4.7}
\end{equation*}
$$

From (4.6), (4.7) and Lemmas 2 and 4 , we know that $K\left(e_{1}, e_{2}\right)$ is constant.
Let X and Y be arbitrary unit tangent vectors at $P \in M$ whose Q sections are orthogonal to each other. Then we can take an orthonormal base $\left\{J_{p} e_{i} \mid i=1, \cdots, m ; p=0, \cdots, 3\right\}$ of $T_{P}(M)$ such that $e_{1}=X$ and $e_{2}=Y$.

Summing up the arguments developed above, by virtue of Theorem 2, we can obtain

Theorem 3. In a quaternion Kählerian manifold (M, g, V) of dimension $4 m \geqq 8$, if the mean curvature for antiquaternionic v-plane is independent of the choice of antiquaternionic ν-planes at each point for $2 \leqq \nu \leqq m$, (M, g, V) is of constant Q-sectional curvature. The converse is true.

References

[1] S. Ishihara: Quaternion Kählerian manifolds, J. Diff. Geom., 9 (1974), 483-500.
[2] K. Iwasaki and N. Ogitsu: On the mean curvature for antiholomorphic p plane in Kählerian spaces, Tôhoku Math. J., 27 (1975), 313-317.
[3] S. Tachibana: The mean curvature for p-plane, J. Diff. Geom., 8 (1973), 47-53.
[4] S. Tachibana: On the mean curvature for holomorphic $2 p$-planes in Kählerian spaces, Tôhoku Math. J., 25 (1973), 157-165.
[5] S. TANNO: Mean curvature for holomorphic $2 p$-planes in Kählerian manifolds, Tôhoku Math. J., 25 (1973), 417-423.
[6] L. VANHECKE: Mean curvature for holomorphic $2 p$-planes in some almost Hermitian manifolds, Tensor, N. S., 30 (1976), 193-197.
[7] L. VANHECKE: Mean curvatures for antiholomorphic p-planes in some almost Hermitian manifolds, Kōdai Math. Sem. Rep., 28 (1976), 51-58.

