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Mean curvatures for certain V-planes in

quaternion Kahlerian manifolds
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Introduction.

Let (M, g) be an n-dimensional Riemannian manifold with metric tensor
g. We denote by K(X, Y) the sectional curvature for a 2-plane spanned by
tangent vectors X and Y at PEM, and by 7 a v-plane at PEM. Let {e,, ---,
e») be an orthonormal base of the tangent space at P such that {e, -, e}
spans n. S. Tachibana defined the mean curvature p(z) for = by
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which is independent of the choice of an adapted base for n. He obtained
the following

THEOREM A (S. Tachibana [3]). In an n(>2)-dimensional Riemannian
manifold (M, g), if the mean curvature for v-plane is independent of the
choice of v-planes at each point, then

(i) for v=1 or n—1, (M, ) is an Einstein space,

(i) for 1<v<n—1 and 2v+#n, (M, q) is of constant curvature,

(i) for 2v=n, (M,q) is conformally flat.

The converse is true.

Taking holomorphic 24-planes or antiholomorphic v-planes, instead of

v-planes, analogous results in Kihlerian manifolds are also obtained.

THEOREM B (S. Tachibana and S. Tanno [5]). In a Kdhlerian
manifold (M, g, J) of dimension n=21=4, if the mean curvature for holo-
morphic 22-plane is independent of the choice of holomorphic 2A-planes at
each point, then

(i) for 1=2=1—-1 and 22#l, (M,q,J) is of constant holomorphic
sectional curvature,

(i) for 22=I, the Bochner curvature tensor vanishes.

The converse is true.

TueoreMm C (K. Iwasaki and N. Ogitsu [2]). In a Kdhlerian manifold
(M, g, J) of dimension n=21=4, if the mean curvature Jfor antiholomorphic
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v-plane is independent of the choice of antiholomorphic v-planes at each
point, then
(i) v=1, (M,q,dJ) is an Einstein space,
(il) 2=v<i-1, (M, g, J) is of constant holomorphic sectional curvature,
(i) v=I, the Bochner curvature tensor vanishes.
The converse s true.
L. Vanhecke ([6], [7]) generalized Theorems B and C.
The main purpose of this paper is to prove analogous results in qua-
ternion Kihlerian manifolds.

§ 1. Quaternion Kéhlerian manifolds (cf. [1]).

Let (M, V) be an almost quaternion manifold of dimension n=4m, that
is, a manifold M which admits a 3-dimensional vector bundle V consisting
of tensors of type (1,1) over M satisfying the following condition: In any
coordinate neighborhood U of M, there is a local base {J, J; Js} of V
such that

3
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for p and ¢ in a set {1,2, 3}, where J, is the identity tensor of type (1, 1)

on M, 6, is the Kronecker’s delta and d,4 is 1 or —1 according as (p, ¢, 7)

is even or odd permutation of (1,2,3) and 0 otherwise. And it is well
3

known that A=) J,&J, is a tensor of type (2,2) defined globally on M.
p=1
If an almost quaternion manifold (M, V) admits the metric tensor ¢ such
that
(1.1) 9(X, ¢Y)+9(X, Y) =0,
FA4=0
for any cross-section ¢ of V and any vectors X and Y, (M, g, V) is called
a quaternion Kihlerian manifold, where F is the Riemanian connection in-

duced from g. We have known that if m=2, (M, g, V) is an Einstein space
and satisfies

(1.2) R(X,Y,ZW)=R(X, Y,J,Z,J,W)
S
7y 906 T ) 9UZ W)+ 9(X, 0, Y) 00 2, W)},

where (p, g, 7) is a permutation of (1, 2, 3), R and S are the curvature tensor
and the scalar curvature of (M, g, V), respectively, and we put

R(X,Y,ZW)=g(R(X,Y)ZW).
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Throughout this paper, we assume that =2, and indices p, ¢, 7 run
over the range {1, 2,3} unless stated otherwise.

§ 2. Lemmas.

Let T,(M) be a tangent space at a point P of (M, g, V). The sectional
curvature K(X,Y) for a 2-plane spanned by X, Y in Tp(M) is defined by

RX Y, XY)
(2.1) KX Y)=— 3% %) g(Y, Y)—([g(X, Y))?

From (1.1), (1.2) and (2.1), we have

S R(X, J,X J X, J. X

for an even permutation (p,q,7) of (1,2,3) (cf. [I]). From (2.2) and the
first Bianchi identity, we have

3 35
LEmma 1. ;lK(X,JpX)Zm.

Similarly, we get

LEmMa 2. For a permutation (p,q,7) of (1,2,3),
KWJ,X, Y)=K(X,J,Y), K(J,X,J,Y)=K(X,Y),
K(J,X J,Y)=K(X, J,Y).

Next, by Q(X) we denote the 4-plane spanned by (X, , X, J: X, Js X}
for XeT»(M), and such a 4-plane is called the Q-section determined by
X Now assume that two Q-sections Q(X) and Q(Y) are orthogonal to
each other and ¢(X, X)=¢(Y,Y)=1. Then we have

R(X, JpX, JqY, JrY):R(X, Jan JpY’ Y)——En(’i::éj_’

R(X, J,Y,J,Y,J, X)=—R(X,J,Y, X, J,Y),
R(X, J,Y,J,X,Y)=—R(X, J,Y, X, J,Y),
R(X Y,J,Y,J,X)=—R(X,Y, X, Y)
for an even permutation (p, g,7) of (1,2,3). Using these identities, we have
K(X+Y, J,(X+Y))+K(X= Y, J,(X-Y))

1

=5 {K(X, J, X)+K(Y, J, Y)+4K(X, J, Y)

+2R(X, J, X, J,Y, Y)},
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K(X+J,Y, J,X=Y)+K(X—J,Y, J,X+Y)
— KX, J, X)+ K(Y, J, V) +4K(X, Y)
+2R(X, J, X, J,Y, Y)},

K(X+J,Y, J(X+J,Y))+K(X~J, Y, Jy(X~J, Y))
= KX 1, X) 4 K(Y, 0, Y) 14K (X, 0, Y)
S
—2R(X, J, X, J, Y, Y)+m}
for a permutation (p, g ) of (1,2,3), from which, we get

LEMMA 3. For unit vectors X and Y in Tp(M) whose Q-sections are
orthogonal to each other,

6 i:OK(X, 1,Y)=3 3 (K(X+,Y, J(X+J,Y)

»=0¢g=1

+K(X=J,Y, Jy(X—J, Y))}

_2;{1(()(, I, X)+K(Y,J, Y)}—~2—m(373+2)~.

By virtue of Lemmas 1 and 3, we obtain

LemMma 4. For the same X and Y as in Lemma 3,

S

pZ:“oK<X’ JpY)= dm(m+2) -

For the same X and Y as above, we have
R(X, J, X, X, J,Y)=R(X,J, X, Y, J, X),
R(X,J,X, Y, J,Y)=R(X, Y, X, Y)+R(X, ], Y, X, ], Y),
from which, we get

LEMMA 5. For the same X and Y as in Lemma 3,

K(X+Y,J,(X-Y))

_ %{K( X, J,X)+K(Y, J,Y)~2K(X, Y)~2K(X, J, Y)}.
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§3. Mean curvature for quaternidnic 4p-plane.

The 4p-plane 7 in T»(M) is called a quaternionic 4p-plane if JprCrx
(p=1,2,3). Hence we can take the orthonormal base {&|a=1, -, 4m} of

Tp(M) such that
é4i+p—3:Jpeis i:1,""m;P=0""’3

and {¢,|Ja=1, -+, 4y} spans m. Then, the mean curvature p(rx) for = is fol-
lowing :

1 4m dp

olm) = 16p(m—p) ﬁ:§+1 aZ=:1

Therefore we can obtain

THEOREM 1. In a quaternion Kdhlerian manifold of dimension 4m =S8,
the mean curvature for quaternionic 4p-plane is always constant for 1=p=

m—1, and its value is equal to T6mm+2)"

§4. Mean curvature for antiquaternionic v-plane.

We now assume that the sectional curvature K(X,Y) is independent of
the choice of X and Y whose Q-sections are orthogonal to each other.
Then, from Lemma 5, we get

(4.1) K(X, J,X)+K(Y,J,Y)=28k

where we put k=K(X,Y) and ¢(X, X)=¢(Y, Y)=1. Similarly, for a unit
Ze=Tp»(M) orthogonal to Q(X), we have

(4.2) K(X, J,X)+K(Z, J,Z)=8k.

On the other hand, from (1.2), we have
R(J,Y,J,Y,J,Y,J,Y)=—R(Y,J, Y, J, ¥, J,Y),
R(Y,J.Y,J,Y,J.Y)=—-R(Y, J.Y,Y,J,Y)
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for an even permutation (p, ¢, 7) of (1,2, 3). Putting Z=(Y+J,Y)/W 2, from
these identities and (2. 2), we have
4.3 K(ZJ,2)=K(Y,J,Y).
From (4.1), (4.2) and (4. 3), it follows that
K(Y,J,Y)=K(Y,J,Y).
Therefore we can obtain

THEOREM 2. In a quaternion Kdihlerian manifold (M, g, V) of dimen-
sion 4m=8, if the sectional curvature K(X,Y) is independent of the choice
of X and Y at each point whose Q-sections are orthogonal to each other,
(M, g, V) is of constant Q-sectional curvature. The converse is true.

The v-plane = in Tp(M) is called an antiquaternionic v-plane if Jm
(p=1,2,3) are orthogonal to . Hence we can take the orthonormal base
{¢.Ja=1, ---,4m} of Tp(M) such that

é4i+p—3:Jpei) 2:17'”,772;?:0""73

and {ey, -, e} spans m. Then, the mean curvature p(z) for r is following :

4.9 p<z>—7,;} S, DK de) + 555 Kie Jye))

. j=1p=1 J=v+li=1p=0
1 L4 3 v
~ vdm—y) {; Z:IK(% Jpes) — Z‘;:lK(ei, e;)
(e
v 3 m 3
1;1 }; (ev Jpej)+j:Z ; Z= (e,;, Jpej)}.
i#J

From (4.4) and Lemmas 1, 2 and 4, we have

45 o= gy {1 52T Klewel).

4dm 1Si<jsy
We now assume that the mean curvature for antiquaternionic v-plane
is independent of the choice of antiquaternionic y-planes. Since a v-plane
my spanned by {e;, Jye, €5, -+, ¢} is also antiquaternionic, we have p(m)=p(my),
from which we have

VY

(4. 6) m%@+§m%@=m%h@+§m@%@.

Similarly, using antiquaternionic y-planes spanned by {Jpes, €, -+, e} and
{Jpey, Jpes, €5 -++, 2.}, we have

(4.7) m@%@+§m%@:m%%@@+§mg%@.
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From (4.6), (4.7) and Lemmas 2 and 4, we know that K(e,, ¢,) is constant.
Let X and Y be arbitrary unit tangent vectors at PEM whose Q-

sections are orthogonal to each other. Then we can take an orthonormal

base {J,e;li=1, -, m; p=0,---,3} of Tp(M) such that =X and e,=Y.
Summing up the arguments developed above, by virtue of [Theorem 2,

we can obtain

THEOREM 3. In a quaternion Kdhlerian manifold (M, g, V) of dimen-
ston 4m=8, if the mean curvature for antiquaternionic v-plane is independ-
ent of the choice of antiquaternionic v-planes at each poini for 2<v<m,
(M, g, V) s of constant Q-sectional curvature. The converse is true.
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