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Mean curvatures for certain \nu-planes in
quaternion K\"ahlerian manifolds
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Introduction.

Let (M, g) be an n-dimensional Riemannian manifold with metric tensor
g. We denote by K(X, Y) the sectional curvature for a 2-plane spanned by
tangent vectors X and Y at P\in M, and by \pi a \nu-plane at P\in M. Let \{e_{1} , \cdots ,
e_{n}\} be an orthonormal base of the tangent space at P such that \{e_{1}, \cdots, e_{\nu}\}

spans \pi . @. Tachibana [3] defined the mean curvature \rho(\pi) for \pi by

\rho(\pi)=\frac{1}{\nu(n-\nu)}\sum_{b=\nu+1}^{n}\sum_{a=1}^{v}K(e_{a}, e_{b})’.

which is independent of the choice of an adapted base for \pi . He obtained
the following

THEOREM A (S. Tachibana [3]). In an n(>2) -dimensional Riemannian
manifold (M, g) , if the mean curvature for \nu -plane is independent of the
choice of \nu-planes at each point, then

(i) for \nu=1 or n-1, (M, g) is an Einstein space,
(ii) for 1<\nu<n-1 and 2\nu\neq n , (M, g) is of constant curvature,
(iii) for 2\nu=n , (M, g) is conformally flat.

The converse is true.

Taking holomorphic 2\lambda-planes or antiholomorphic \nu-planes, instead of
\nu-planes, analogous results in K\"ahlerian manifolds are also obtained.

THEOREM B (S. Tachibana [4] and S. Tanno [5]). In a K\"ahlerian

manifold (M, g, J) of dimension n=2l\geqq 4 , if the mean curvature for holO-
morphic 2\lambda-plane is independent of the choice of holomorphic 2\lambda-planes at
each point, then

(i) for 1\leqq\lambda\leqq l-1 and 2\lambda\neq l, (M, g, \mathcal{J}) is of constant holomorphic
sectional curvature,

(ii) for 2\lambda=l, the Bochner curvature tensor vanishes.
The converse is true.

THEOREM C (K. Iwasaki and N. Ogitsu [2]). In a K\"ahlerian manifold
(M, g, J) of dimension n=2l\geqq 4 , if the mean curvature for antiholomorphic
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\nu -plane is independent of the choice of antiholomorphic \nu-planes at each
point, then

(i) \nu=1 , (M, g, J) is an Einstein space,
(ii) 2\leqq\nu\leqq l-1 , (M, g, J) is of constant holomorphic sectional curvature,
(iii) \nu=l, the Bochner curvature tensor vanishes.

The converse is true.
L. Vanhecke ([6], [7]) generalized Theorems B and C.
The main purpose of this paper is to prove analogous results in qua-

ternion K\"ahlerian manifolds.

\S 1. Quaternion K\"ahlerian manifolds (cf. [1]).

Let (M, V) be an almost quaternion manifold of dimension n=4m, that
is, a manifold M which admits a 3-dimensional vector bundle V consisting
of tensors of type (1, 1) over M satisfying the following condition: In any
coordinate neighborhood U of M, there is a local base \{J_{1}, J_{2}, J_{3}\} of V
such that

J_{p}J_{q}=- \delta_{pq}J_{0}+\sum_{r=1}^{3}\delta_{pqr}J_{r}

for p and q in a set {1, 2, 3}, where J_{0} is the identity tensor of type (1, 1)

on M, \delta_{pq} is the Kronecker’s delta and \delta_{pqr} is 1 or -1 according as (p, q, r)

is even or odd permutation of (1, 2, 3) and 0 otherwise. And it is well
known that \Lambda=\sum_{p=1}^{3}J_{p}\otimes J_{p} is a tensor of type (2, ^{2}) defined globally on M.

If an almost quaternion manifold (M, V) admits the metric tensor g such
that

(1. 1) g(X, \phi Y)+g(\phi X, Y)=0,\cdot

\nabla\Lambda=0

for any cross-section \phi of V and any vectors X and Y, (M, g, V) is called
a quaternion K\"ahlerian manifold, where \nabla is the Riemanian connection in-
duced from g. We have known that if m\geqq 2 , (M, g, V) is an Einstein space
and satisfies

(1. 2) R(X, Y, Z, W)=R(X, Y, J_{p}Z, J_{p}W)

+ \frac{S}{4m(m+2)}\{g(X, J_{q}Y)g(J_{q}Z, W)+g(X, J_{r}Y)g(J_{r} Z, W)\} ,

where (p, q, r) is a permutation of (1, 2, 3), R and S are the curvature tensor
and the scalar curvature of (M, g, V) , respectively, and we put

R(X, Y, Z, W)=g(R(X, Y)Z, W)t
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Throughout this paper, we assume that m\geqq 2 , and indices p, q, r run
over the range {1, 2, 3} unless stated otherwise.

\S 2. Lemmas.

Let T_{p}(M) be a tangent space at a point P of (M, g, V) . The sectional
curvature K(X, Y) for a 2-plane spanned by X, Y in T_{P}(M) is defined by

(2. 1) K(X, Y)=- \frac{R(X,Y,X,Y)}{g(X,X)g(Y,Y)-(g(X,Y))^{2}}

From (1. 1), (1. 2) and (2. 1), we have

(2. 2) K(X, J_{p}X)= \frac{S}{4m(m+2)}+\frac{R(X,J_{p}X,J_{q}}{(g(X,X}\frac{X,J_{r}X)}{))^{2}}

for an even permutation (p, q, r) of (1, 2, 3) (cf. [1]). From (2. 2) and the

first Bianchi identity, we have

Lemma 1. \sum_{p=1}^{3}K(X, J_{p} X)=\frac{3S}{4m(m+2)} .
Similarly, we get

Lemma 2. For a permutation (p, q, r) of (1, 2, 3),

K(J_{p}X, Y)=K(X, J_{p}Y) , K(J_{p}X, J_{p} Y)=K(X, Y) ,

K(J_{p}X, J_{q}Y)=K(X, \mathcal{J}_{r}Y) .

Next, by Q(X) we denote the 4-plane spanned by \{X, J_{1}X, J_{2}X, J_{3}X\}

for X\in T_{P}(M) , and such a 4-plane is called the Q-section determined by

X. Now assume that two Q-sections Q(X) and Q(Y) are orthogonal to

each other and g(X, X)=g(Y, Y)=1 . Then we have

R(X, J_{p}X, J_{q}Y, J_{r}Y)=R(X, J_{p}X, J_{p}Y, Y)- \frac{S}{4m(m+2\grave{)}} ,

R(X, J_{p}Y, J_{q}Y, J_{r}X)=-R(X, J_{p}Y, X, J_{p}Y) ,

R(X, J_{p}Y, J_{p}X, Y)=-R(X, J_{p}Y, X, J_{p}Y) ,

R(X, Y, J_{p}Y, J_{p}X)=-R(X, Y, X, Y)

for an even permutation (p, q, r) of (1, 2, 3). Using these identities, we have

K (X+Y, J_{p}(X+Y))+K(X-Y, J_{p}(X-Y))

= \frac{1}{2}\{K(X, J_{p}X)+K(Y, J_{p}Y)+4K(X, J_{p}Y)

+2R(X, _{J_{p}} _{X}, _{J_{p}} _{Y} ,
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K(X+J_{p}Y, J_{p}X-Y)+K(X-J_{p}Y, J_{p}X+Y)

= \frac{1}{2}\{K(X, J_{p}X)+K(Y, J_{p}Y)+4K(X, Y)

+2R(X, J_{p}X, J_{p}Y, Y)\} ,

K (X+J_{p}Y, J_{q}(X+J_{p}Y))+K(X-J_{p}Y, J_{q}(X-J_{p}Y))

= \frac{1}{2}\{K(X, J_{q}X)+K(Y, J_{q}Y)+4K(X, J_{r}Y)

-2R(X, J_{q}X, J_{q}Y, Y)+ \frac{S}{2m(m+2)}\}

for a permutation (p, q, r) of (1, 2, 3), from which, we get
Lemma 3. For unit vectors X and Y in T_{P}(M) whose Q-sections are

orthogonal to each other,

6 \sum_{p-0}^{3}K(X, J_{p}Y)=\sum_{p-0}^{3}\sum_{q=1}^{3}\{K(X+J_{p}Y, J_{q}(X+J_{p}Y))

+K (X-J_{p}Y, J_{q}(X-J_{p}Y)) \}

-2 \sum_{p=1}^{3}\{K(X, J_{p}X)+K(Y, J_{p}Y)\}-\frac{3S}{2m(m+2)} .
By virtue of Lemmas 1 and 3, we obtain
Lemma 4. For the same X and Y as in Lemma 3,

\sum_{p=0}^{3}K(X, J_{p}Y)=\frac{S}{4m(m+2)} .

For the same X and Y as above, we have
R(X, J_{p}X, X, J_{p}Y)=R(X, J_{p}X, Y, J_{p}X) ,

R(X, J_{p}X, Y, J_{p}Y)=R(X, Y, X, Y)+R(X, J_{p}Y, X, J_{p}Y) ,

from which, we get

Lemma 5. For the same X and Y as in Lemma 3,

K(X+Y, J_{p}(X-Y))

= \frac{1}{4}\{K(X, J_{p}X)+K(Y, J_{p}Y)-2K(X, Y)-2K(X, J_{p}Y)\}
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\S 3. Mean curvature for quaternionic 4\mu-plane.

The 4\mu-plane \pi in T_{P}(M) is called a quaternionic 4\mu-plane if J_{P}\pi\subset\pi

(p=1,2,3) . Hence we can take the orthonormal base \{\tilde{e}_{a}|\alpha=1, \cdots, 4m\} of
T_{P}(M) such that

\tilde{e}_{4i+p-3}=J_{p}e_{i\prime}. i=1, \cdots , m;p=0, \cdots , 3

and \{\tilde{e}_{\alpha}|\alpha=1, \cdots, 4\mu\} spans \pi . Then, the mean curvature \rho(\pi) for \pi is f01-
lowing:

\rho(\pi)=\frac{1}{16\mu(m-\mu)}\sum_{\beta=4\mu+1}^{4m}\sum_{\alpha=1}^{4\mu}K(\tilde{e}_{\alpha},\tilde{e}_{\beta})

= \frac{1}{16\mu(m-\mu)}\sum_{j=\mu+1}^{m}\sum_{i=1}^{\mu}\sum_{p,q=0}^{3}K(J_{p}e_{i}, J_{q}e_{j}) .

Using Lemmas 2 and 4, we have

\rho(\pi)=\frac{1}{4\mu(m-\mu)}\sum_{j=\mu+1}^{m}\sum_{i=1}^{\mu}\sum_{p=0}^{3}K(e_{i}, J_{p}e_{j})

= \frac{S}{16m(m+2)}

Therefore we can obtain
THEOREM 1. In a quaternion K\"ahlerian manifold of dimension 4m\geqq 8,

the mean curvature for quaternionic 4\mu-plane is always constant for 1\leqq\mu\leqq

m-1, and its value is equal to \frac{S}{16m(m+2)} .

\S 4. Mean curvature for antiquaternionic \nu-plane.

We now assume that the sectional curvature K(X, Y) is independent of
the choice of X and Y whose Q-sections are orthogonal to each other.
Then, from Lemma 5, we get

(4. 1) K(X, J_{p}X)+K(Y, J_{p}Y)=8k

where we put k=K(X, Y) and g(X, X)=g(Y, Y)=1 . Similarly, for a unit
Z\in T_{P}(M) orthogonal to Q(X), we have

(4. 2) K(X, J_{p}X)+K(Z, J_{p}Z)=8k .
On the other hand, from (1. 2), we have

R(J_{q}Y, J_{p}Y, J_{q}Y, J_{r}Y)=-R(Y, J_{p}Y, J_{q}Y, J_{p}Y) ,

R(Y, J_{r}Y, J_{q}Y, J_{r}Y)=-R(Y, J_{r}Y, Y, J_{p}Y)
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for an even permutation (p, q, r) of (1, 2, 3). Putting Z=(Y+J_{q}Y)/\sqrt{2} , from
these identities and (2. 2), we have

(4. 3) K(Z, J_{p}Z)=K(X, J_{r}Y) .

From (4. 1), (4. 2) and (4. 3), it follows that
K(Y, J_{p}Y)=K( Y, J_{r}Y) .

Therefore we can obtain
THEOREM 2. In a quaternion K\"ahlerian manifold (M, g, V) of dimen-

sion 4m\geqq 8 , if the sectional curvature K(X, Y) is independent of the choice
of X and Y at each point whose Q-sections are orthogonal to each other,
(M, g, V) is of constant Q-sectional curvature. The converse is true.

The \nu -plane \pi in T_{P}(M) is called an antiquaternionic \nu-plane if J_{p}\pi

(p=1,2,3) are orthogonal to \pi . Hence we can take the orthonormal base
\{\tilde{e}_{a}|\alpha=1, \cdots, 4m\} of T_{P}(M) such that

\tilde{e}_{4i+p-3}=J_{p}e_{i} , i=1 , \cdots , m;p=0, \cdots , 3

and \{e_{1^{ }},\cdots, e_{\nu}\} spans \pi . Then, the mean curvature \rho(\pi) for \pi is following:

(4. 4) \rho(\pi)=\frac{1}{\nu(4m-\nu)}\{\sum_{i,j=1}^{\nu}\sum_{p=1}^{3}K(e_{i}, J_{p}e_{j})+\sum_{j=\nu+1}^{m}\sum_{i=1}^{\nu}\sum_{p=0}^{3}K(e_{i}, J_{p}e_{j})\}

= \frac{1}{\nu(4m-\nu)}\{\sum_{i=1}^{\nu}\sum_{p=1}^{3}K(e_{i}, J_{p}e_{i})-\sum_{i,j=1}^{v}K(e_{i}, e_{j})

i\neq j

+ i,j-i \neq j\sum_{-,1}^{\nu}\sum_{p=1}^{3}K(e_{i}, J_{p}e_{j})+\sum_{j=\nu+1}^{m}\sum_{i=1}^{\nu}\sum_{p=0}^{3}K(e_{i}, J_{p}e_{j})\}

From (4. 4) and Lemmas 1, 2 and 4, we have

(4. 5) \rho(\pi)=\frac{1}{\nu(4m-\nu)}\{\frac{\nu}{4m}S-2\sum_{1\leqq i<j\leqq\nu}K(e_{i}, e_{j})\}\tau

We now assume that the mean curvature for antiquaternionic \nu-plane
is independent of the choice of antiquaternionic \nu-planes. Since a \nu-plane
\pi_{1} spanned by \{e_{1}, J_{p}e_{2}, e_{3}, \cdots, e_{\nu}\} is also antiquaternionic, we have \rho(\pi)=\rho(\pi_{1}) ,
from which we have

(4. 6) K(e_{1}, e_{2})+ \sum_{i=3}^{\nu}K(e_{2}, e_{i})=K(e_{1}, J_{p}e_{2})+\sum_{i=3}^{\nu}K(J_{p}e_{2}, e_{i})

Similarly, using antiquaternionic \nu-planes spanned by \{J_{p}e_{1}, e_{2}, \cdots, e_{\nu}\} and
\{J_{p}e_{1}, J_{p}e_{2}, e_{3}, \cdots, e_{\nu}\} , we have

(4. 7) K(J_{p}e_{1}, e_{2})+ \sum_{i=3}^{\nu}K(e_{2}, e_{i})=K(J_{p}e_{1}, J_{p}e_{2})+\sum_{i=3}^{\nu}K(J_{p}e_{2}, e_{i})
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From (4. 6), (4. 7) and Lemmas 2 and 4, we know that K(e_{1}, e_{2}) is constant.
Let X and Y be arbitrary unit tangent vectors at P\in M whose Q-

sections are orthogonal to each other. Then we can take an orthonormal
base \{J_{p}e_{i}|i=1, \cdots, m;p=0, \cdots, 3\} of T_{P}(M) such that e_{1}=X and e_{2}=Y.

Summing up the arguments developed above, by virtue of Theorem 2,
we can obtain

THEOREM 3. In a quaternion K\"ahlerian manifold (M, g, V) of dimen-
sion 4m\geqq 8 , if the mean curvature for antiquaternionic \nu-plane is independ-
ent of the choice of antiquaternionic \nu-planes at each point for 2\leqq\nu\leqq m,
(M, g, V) is of constant Q-sectional curvature. The converse is true.
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