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Introduction
Let M be a riemannian manifold and g its riemannian metric. Then

M is called a C_{l} manifold and g a C_{l} Crmetric if all of its geodesies are periodic
and have the same length l. So far very few C_{l} -manifolds are known except

for the following famous examples: The spheres S^{n}(n\geqq 1) and the various
projective spaces, i. e. , the real projective spaces RP^{n}(n\geqq 2) , the complex
projective spaces CP^{n}(n\geqq 2) , the quaternion projective spaces HP^{n}(n\geqq 2) ,

and the Cayley projective plane CaP^{2} , all of these being equipped with the
standard metrics. In the case of S^{n} we know that there are non-standard
C_{l}-metrics, which are given by Zoll and Weinstein (cf. [1]). On the other
hand, for RP^{n} , the non-existence of such metrics was proved by Berger
(cf. [1] Appendix D). But it is not known whether there exist non-standard
C_{l} -metrics on any other projective space. For a historical reason, the con-
jecture of non-existence of such metrics on the projective spaces is called
the Blaschke conjecture.

The main purpose of the present paper is to study an infinitesimal
version of the Blaschke conjecture, the infinitesimal Blaschke conjecture,

and to give a partial affirmative answer to this conjecture.

Let M be one of the spaces CP^{n} , HP^{n}(n\geqq 2) , and CaP2, and g_{0} its
standard C_{\pi}-metric. Let us consider a deformation g_{t} of the riemannian
metric g_{0} which satisfies the following conditions:

1) Each g_{t} is a C_{\pi} metric ;
2) Each g_{t} is semi-conformal to g_{0} , i. e. , for any projective line N\subset M

there is a function h_{t} on N such that \iota^{*}g_{t}=h_{t}\iota^{*}g_{0}, where \iota denotes the
inclusion Narrow M.

Then we know that the linearization f= \frac{\partial g_{t}}{\partial t}|t=0 of g_{t} at t=0, being a

symmetric 2-form on M, satisfies the following conditions:

a) \int_{0}^{\pi}f(\dot{r}(t),\dot{r}(t))dt=0 for any geodesic \gamma(t) with ||\dot{\gamma}(t)||=1 ;

b) f is semi-conformal to g_{0}, i . e. , for any projective line N\subset M there
is a function h on N such that \iota^{*}f=h\iota^{*}g_{0} , where \iota denotes the inclusion



On the infifinitesimal Blaschke conjecture 125

Narrow M.
Now we say that a deformation g_{t} of g_{0} is a semi-conformal C_{\pi}-defor-

mation of g_{0} if it satisfies conditions 1) and 2), and correspondingly that
a symmetric 2-form f on M is an infinitesimal semi-conformal C_{\pi}-deforma-
tion of \mathcal{G}0 if it satisfies conditions a) and b). Then our result may be stated
as follows :

THEOREM A. Any infifinitesimal semi-conformal C_{\pi} deformation f of g_{0}

is trivial, that is, there is a vector fifield X on M such that f=\mathscr{L}_{X}g_{0} .

Here we make several remarks on the theorem:

(1) The theorem is not the case when M is CP^{1} or HP^{1} or CaP^{1}

(cf. Lemma 1. 2 and [5]).
(2) In case M=CP^{n} , condition b) means that f is hermitian with respect

to the standard complex structure I of CP^{n} . Thus the adjective “semi-
conformal” may be replaced by the adjective “hermitian”, and the theorem
asserts that any infinitesimal hermitian C_{\pi}-deformation of g_{0} is trivial.

(3) In case M=CP^{n} or HP^{n} , our theorem combined with the results
of Tanaka [6] and Kaneda-Tanaka [3] yields the finite dimensionality of the

space \tilde{\mathscr{S}}’ of infinitesimal semi-conformal C_{\pi}-deformations of g_{0} .
(4) Using these results, N. Tanaka has recently proved the following

THEOREM (Tanaka). Let M=CP^{n}, and let g_{t} be a k\"ahlerian C_{\pi}-defor-
motion of g_{0} . If g_{l} depends real analytically on the parameter t, then
there is a one-parameter family \psi_{t} of holomorphic transformations of CP^{n}

such that \psi_{0}=identity and g_{t}=\psi_{t}^{*}g_{0} .

This paper consists of four sections and an appendix. In \S 1 we reduce
the proof of Theorem A to the case M=CP^{2} . For this purpose we use
Michel’s result [5], which is also used in \S 4. \S \S 2-4 are devoted to the
proof of the case M=CP^{2}, i . e. , the following.

THEOREM A’ . On CP^{2}, any infifinitesimal hermitian C_{\pi} deformation f
of g_{0} is trivial.

In \S 2 we first define a space \mathscr{A}_{0} of hermitian 3-matrix valued functions
on the unit sphere S^{5} of C^{3}, and then show that there is a one-t0-0ne cor-
respondence between the space \mathscr{A}_{0} and the space \tilde{\mathscr{S}}’ of infinitesimal her-
mitian C_{\pi}-deformations of \mathcal{G}0 through the natural projection \pi_{0} : S^{5}arrow CP^{2}.
In \S 3 we define another space \mathscr{A}_{1} and study the property of its elements
in detail. Finally, in \S 4 we relate the space \mathscr{A}_{0} with the space \mathscr{A}_{1} and,

using the result in \S 3, complete the proof. In Appendix we give a proof

of Tanaka’s theorem stated above.
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Notations and preliminary remarks
1) In this paper we always assume the differetiability of class C^{\infty} unless

otherwise stated.
2) Let M be a compact symmetric space of rank one with the standard

C_{\pi}-metric g_{0} , and \mathscr{S}(M) be the space of symmetric 2-forms on M. Then
we define a subspace \mathscr{S}’(M) of \mathscr{S}(M,J by \mathscr{S}’(M)=\{f\in \mathscr{S}(M)|f satisfies
condition a) in Introduction}. In case M is one of the spaces CP^{n}, HP^{n}

(n\geqq 2) , and CaP^{2},\tilde{\mathscr{S}}’(M) denotes the space of infinitesimal semi-conformal
C_{\pi} deformations.

\S 1. Reduction of Theorem A to the case M=CP^{2}

In this section we shall show that we have only to prove Theorem A
in the case M=CP^{2} . For this purpose we need the following theorem due
to Michel [5].

THEOREM 1. 1. (Michel). Let M be one of the spaces RP^{n} , CP^{n}, HP^{n}

(n\geqq 2) , and CaP2, and let h\in \mathscr{S}’(M) . Assume that for each projective line
KP^{1} in M=KP^{n} , there is a vector fifield X on KP^{1} such that \mathscr{L}_{X}(\iota^{*}g_{0})=\iota^{*}h ,
\iota being the inclusion KP^{1}arrow M. Then there exists a vector fifield Y on M
satisfying \mathscr{L}_{Y}g_{0}=h .

We moreover need the following lemmas, which are well known (see
[4] for the former, and [7] for the latter).

LEMMA 1. 2. Let S^{n}= \{x\in R^{n+1}||x|=\frac{1}{2}\} and let g_{0} be the rieman-
nian metric on S^{n} induced from the standard metric on R^{n+1} . Let X be
a conformal vector fifield on S^{n} :

\mathscr{L}_{X}g_{0}=hg_{0} ,

h being a function on S^{n} . Then h is a linear function on S^{n}, i . e. , the
restriction of a linear function on R^{n+1} to S^{n} . Conversely, if h is a linear
function on S^{n}, there is a conformal vector fifield X on S^{n} such that \mathscr{L}_{X}g_{0}=

hg_{0} .
Lemma 1. 3. Let M be one of the spaces CP^{n} , HP^{n}(n_{-}\underline{\geq}2) , and CaP^{2}
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with the standard C_{\pi}-metric g_{0} . Then for each totally geodesic submanifold
S^{2} of M which is isometric to (S^{2}, g_{0}) , there is a totally geodesic submanifold
CP^{2} of M which is isometric to (CP^{2}, g_{0}) and contains the S^{2} .

From the above facts we can obtain the following

PROPOSITION 1. 4. If Theorem A is true in the case M=CP^{2}, then it
is also true for any other case, i . e. , M=CP^{n} , HP^{n}(n\geqq 2) , or CaP2.

PROOF. Let M be as in Lemma 1. 3. We put a=2,4, or 8 accordingly

as M=CP^{n} , HP^{Il} , or CaP^{2} respectively. Let f\in\tilde{\mathscr{S}}’(M) and fix a projective

line S^{a} in M. From the very definition of \overline{\mathscr{S}}’(M) we can find a function
h on S^{a} such that

i^{*}f=hi^{*}g_{0} ,

where i being the inclusion S^{a}arrow M. We now take a totally geodesic sub-
manifold S^{2} of S^{a} . Let i_{1} and i_{2} be the inclusions S^{2}arrow M and S^{2}arrow S^{a} re-
spectively. By Lemma 1. 3 there is a totally geodesic submanifold CP^{2} of
M containing the S^{2} . Let j_{1} and j_{2} be the inclusions CP^{2}arrow M and S^{2}arrow CP^{2}

respectively.
i_{2}\nearrow^{S^{a}}\backslash i

/ i_{1} \searrow

S^{2}-arrow M

\backslash /j^{2}\searrow_{CP^{2}}\swarrow j_{1}

Since for any line CP^{1} in CP^{2} there is a line S^{a} in M which contains the
CP^{1} (cf. [7]), we see j_{1^{*}}f\in\tilde{\mathscr{S}}’(CP^{2}) . Hence there is a vector field Y on
CP^{2} such that \mathscr{L}_{Y}(j_{1^{*}}g_{0})=j_{1}^{*}f by the assumption. We decompose Y on S^{2}

as follows: Y=Z+W, where Z is tangent to S^{2} and W is normal to S^{2} .
Then we can easily see that

i_{1}^{*}f=j_{2^{*}}(\mathscr{L}_{Y}(j_{1^{*}}g_{0}))

=\mathscr{L}_{Z}(i_{1^{*}}g_{0}) .

On the other hand, since i^{*}f=hi^{*}g_{0} , we obtain
i_{1}^{*}f=(i_{2}^{*}h)(i_{1^{*}}g_{0})

Hence by Lemma 1. 2 we see that i_{2}^{*}h is a linear function on S^{2} . Since
S^{2}arrow S^{a} is arbitrary, it follows that h is a linear function on S^{a} . Thus, again

by Lemma 1. 2, there is a vector field V on S^{a} such that \mathscr{L}_{V}(i^{*}g_{0})=hi^{*}g_{0} .
Therefore, by Theorem 1. 1 there is a vector field X on M such that

\mathscr{L}_{X}g_{0}=f q. e . d .
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\S 2. The spaces \tilde{\mathscr{S}}’ and \mathscr{A}_{0}

In this and subsequent sections we shall prove Theorem A’ , which,
combined with Proposition 1. 4, gives the proof of Theorem A.

Let S^{5} be the unit sphere of C^{3}, and \pi_{0} : S^{5}arrow CP^{2} be the natural pr0-
jection. Let \langle , \rangle be the canonical hermitian inner product of C^{3} :

\langle z, w\rangle=\sum_{i=1}^{3}z_{i}\overline{w}_{i}

where z=(z_{1}, z_{2}, z_{3}) , w=(w_{1}, w_{2}, w_{3})\in C^{3} . We define a submanifold T of
S^{5}\cross C^{3} by

T=\{(z, w)\in S^{5}\cross C^{3}|\langle z, w\rangle=0\} ,

and denote by \pi’ the natural projection Tarrow S^{5} ; \pi’(z, w)=z. Then we see
that T is a complex vector bundle over S^{5} with projection \pi’ and that it
can be naturally regarded as a subbundle of the tangent bundle TS^{5} of S^{5} .
Let \pi_{1} be the restriction of \pi_{0*} to T Then it is clear that \pi_{1} : Tarrow TCP^{2}

is a homomorphism as complex vector bundles.
Now let \tilde{\mathscr{S}} denote the space of hermitian (or semi-conformal) symmetric

2-forms on CP^{2}, i. e. ,

\hat{\mathscr{S}}=(f\in \mathscr{S}(CP^{2})|f(Iu, Iu)=f(u, u), u\in TCP^{2}\} ,

where I denotes the complex structure o^{*}nCP^{2} . Let f\in\tilde{\mathscr{S}} . Then it is clear
that \pi_{1^{*}}f is a hermitian symmetric 2-form on each fiber T_{z}(z\in S^{5}) of T, i. e. ,

(\pi_{1^{*}}f)((z, iv) , (z, iv))=(\pi_{1^{*}}f)((z, v) , (z, v)) , (z, v)\in T

Let H(3) be the space of hermitian matrices of degree 3. We now define
a vector space \mathscr{A} as follows :

H\in \mathscr{A} if and only if H is a H(3) -valued function on S^{5} which
satisfies the following conditions:

1) H(z)z=0, where z=(z_{1}, z_{2}, z_{3})\in S^{5} should be considered as a column
vector;

2) H is U(1) -invariant, i. e. , H(\alpha z)=H(z) for each \alpha\in C with |\alpha|=1 .
PROPOSITION 2. 1. There is a one-tO-One correspondence (frightarrow H) between

\tilde{\mathscr{S}} and \mathscr{A} , where f and H are related by

(*_{1}) (\pi_{1^{*}}f)((z, v), (z, v))=\langle H(z)v, v\rangle , (z, v)\in T

PROOF. First suppose f\in\tilde{\mathscr{S}} . Fix z\in S^{5}. Since
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(z, v)arrow(\pi_{1^{*}}f)((z, v) , (z, v))=f((\pi_{1}(z, v), \pi_{1}(z, v))

is a hermitian form on T_{z} , we see that there exists a unique element H(z)\in

H(3) satisfying (*_{1}) and H(z)z=0. For each \alpha\in U(1) , we define a H(3)-
valued function H^{\alpha} by H^{\alpha}(z)=H(\alpha z) . Then we have H^{\alpha}(z)z=0 because
H(\alpha z)\alpha z=0 . Moreover, since (z, v)\in T implies (\alpha z, \alpha v)\in T and \pi_{1}(\alpha z, \alpha v)=

\pi_{1}(z, v) , we have

\langle H^{a}(z)v, v\rangle=\langle H(\alpha z)\alpha v, \alpha v\rangle

=f(\pi_{1}(\alpha z, \alpha v), \pi_{1}(\alpha z, \alpha v))

=f(\pi_{1}(z, v), \pi_{1}(z, v))

Therefore H^{\alpha} also satisfies (*_{1}) and H^{a}(z)z=0 . By the uniqueness it follows
that H=H^{\alpha} , which implies that H is U(1) -invariant. Hence H\in \mathscr{A} . Con-
versely, suppose H\in \mathscr{A} . Then we have

\langle H(\alpha z)\alpha v , \alpha v^{\backslash })=\langle H(\alpha z)v , v\rangle=\langle H(z)v , v\rangle

for any (z, v)\in T and \alpha\in U(1) . Thus we see that there uniquely exists
f\in\hat{\acute{\mathscr{S}}} satisfying (*_{1}) . q . e . d .

Let \zeta_{l} be the geodesic flow on SCP^{2}, the unit tangent bundle of CP^{2}-

\zeta_{t} is characterized by the following property:

Let u\in SCP^{2} and \gamma(t) be the geodesic on CP^{2} with \dot{\gamma}(0)=u . Then
\zeta_{t}u=\dot{\mathcal{T}}(t) .

Lemma 2. 2. Let f\in\tilde{\mathscr{S}}’=\overline{\mathscr{S}}’(CP^{2}) . Then we have
f(\zeta_{\frac{\pi}{2}}u, \zeta_{\frac{\tau_{l}}{2}}u)=-f(u, u)

for any u\in SCP^{2} .
PROOF. Fix u\in SCP^{2} and a projective line CP^{1}\subset CP^{2} such that u\in SCP^{1} .

Let \iota : CP^{1}arrow CP^{2} be the inclusion. Since f\in\overline{\mathscr{S}}_{r}’ we see that there is a
function h on CP^{1} such that

\iota^{*}f=h\iota^{*}g_{0}

and

\int_{0}^{\pi}h(\gamma(t))dt=0

for any (closed) geodesic \gamma(t) in CP^{1} with ||\dot{\mathcal{T}}(t)||=1 . Let us now identify
CP^{1} with the sphere S^{2}\subset R^{3} of radius \frac{1}{2} as riemannian manifolds and let
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\tau be the antipodal map on S^{2}. Then it follows that h is an odd function,
i. e. ,

h\circ\tau=-h

(see [1] p. 123). Thus we have

f(\zeta_{\frac{\pi}{2}}u, \zeta_{\frac{\pi}{2}}u)=h(\pi(\zeta_{\frac{\pi}{2}}u))=h(\tau(\pi(u)))

=-h(\pi(u))=-f(u, u)t q. e . d .

We define a submanifold S of T by

S=\{(z, w)\in C^{3}\cross C^{3}||z|=|w|=1 , \langle z, w\rangle=0\} ;

which may be characterized as the unit sphere bundle of the vector bundle
T over S^{5} . We also define a subspace \mathscr{A}_{0} of \mathscr{A} by

\mathscr{A}_{0}=\{H\in \mathscr{A}|\langle H(z)v, v\rangle=-\langle H(v)z, z\rangle for any (z, v)\in S\}

Then we have

PROPOSITION 2. 3. The assignment farrow H given in Proposition 2. 1 also
gives a one-tO-One correspondence between \tilde{\mathscr{S}}’ and \mathscr{A}_{0} .

PROOF. Let f\in\tilde{\mathscr{S}}’ and let H be the corresponding element of \mathscr{A} .
Take any (z, v)\in S. Then we easily see that

\zeta_{t}\pi_{1}(z, v)=\pi_{1} (cost \cdot z+sint\cdot v , -sint \cdot z+cost\cdot v) :

especially,
\zeta_{\frac{f}{2}}

. \pi_{1}(z, v)=\pi_{1}(v, -z)

Since f(\zeta_{\frac{\pi}{2}}u, \zeta_{\frac{\pi}{2}}u)=-f(u, u) for any u\in SCP^{2} and ||\pi_{1}(z, v)||=||\pi_{1}(v, -z)||=1 ,

we have

f (\pi_{1}(v, -z) , \pi_{1}(v, -z))=f(\zeta_{\frac{\pi}{2}}\pi_{1}(z, v), \zeta_{\frac{\pi}{2}}\pi_{1}(z, v))

=-f(\pi_{1}(z, v), \pi_{1}(z, v))

Therefore

\langle H(v)z, z\rangle=-\langle H(z)v, v\rangle ,

which implies H\in \mathscr{A}_{0} . Conversely, let H\in \mathscr{A}_{0} and f be the corresponding

element of \overline{\mathscr{S}} . For any (z, v)\in S, we have



On the infifinitesimal Blaschke conjecture 131

f ( \zeta_{\frac{\pi}{2}}\pi_{1}(z, v) , \zeta_{\frac{\pi}{2}}\pi_{1}(z, v))=f(\pi_{1}(v, -z), \pi_{1}(v, -z))

=\langle H(v)z, z\rangle=-\langle H(z)v, v\rangle

=-f ( \pi_{1}\langle z, v), \pi_{1}(z, v)) .

Since tha map \pi_{1} : Sarrow SCP^{2} is surjective, it follows that f(\zeta_{\frac{\pi}{2}}u, \zeta_{\frac{\pi}{2}}u)=-f(u,
u)^{1} for any u\in SCP^{2} . Thne we have

\int_{0}^{\pi}f(\zeta_{t}u, \zeta_{t}u)dt=0 , u\in SCP^{2} ,

and hence f\in\tilde{\mathscr{S}}’- q. e . d .

\S 3. The space \mathscr{A}_{1}

First of all we define a subspace \mathscr{A}_{1} of \mathscr{A} as follows:
H\in \mathscr{A} belongs to \mathscr{A}_{1} if and only if for each (z, v)\in S, there exist

real constants a, b, c, d such that

\langle H(\alpha z+\beta v)(-\overline{\beta}z+\overline{\alpha}v), -\overline{\beta}z+\overline{\alpha}v\rangle

=a|\alpha|^{2}+b|\beta|^{2}+c{\rm Re}\overline{\alpha}\beta+d{\rm Im}\overline{\alpha}\beta

for any (\alpha, \beta)\in S^{3}, where S^{3} stands for the unit sphere in C^{2}, i. e. , S^{\}=\{(\alpha,
\beta)\in C^{2}||\alpha|^{2}+|\beta|^{2}=1\} .

Remark that the equality

\langle\alpha z+\beta v , -\overline{\beta}z+\overline{\alpha}v\rangle=0

always holds, provided (z, v)\in S.

We now study the property of elements of \mathscr{A}_{1} in detail. Consider the
canonical basis \{e_{1}, e_{2}, e_{3}\} of C^{3} :

e_{1}=(1,0,0) , e_{2}=(0,1,0) , e_{3}=(0,0,1)

Fix h\in \mathscr{A}_{1} and define a function h_{11} on S^{5} by

h_{11}(z)=\langle H(z)e_{1} , e_{1}\rangle

Furthermore define functions a, b, c, d on

S(e_{1}^{\perp})=\{v\in Ce_{2}\oplus Ce_{3}||v|=1\}

by
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\langle H(\alpha e_{1}+\beta v)(-\overline{\beta}e_{1}+\overline{\alpha}v) , -\overline{\beta}e_{1}+\overline{\alpha}v\rangle

=a(v)|\alpha|^{2}+b(v)|\beta|^{2}+c(v) Re \overline{\alpha}\beta+d(v) In \overline{\alpha}\beta ,

where (\alpha, \beta)\in S^{3} . Then we have

LEMMA 3. 1. For any v\in S(e_{1}^{\perp}) and any (\alpha, \beta)\in S^{3}, we have

h_{11}(\alpha e_{1}+\beta v)=|\beta|^{2} { a(v)|\alpha|^{2}+b(v)|\beta|^{2}+c(v) Re \overline{\alpha}\beta+d(v) Im \overline{\alpha}\beta}

PROOF We have

\langle H(\alpha e_{1}+\beta v)(-\overline{\beta}e_{1}+\overline{\alpha}v) , -\overline{\beta}e_{1}+\overline{\alpha}v\rangle

=a(v)|\alpha|^{2}+b(v)|\beta|^{2}+c(v) Re \overline{\alpha}\beta+d(v) Im \overline{\alpha}\beta

and
H(\alpha e_{1}+\beta v)(\alpha e_{1}+\beta v)=0 ,

from which follows easily the lemma. q. e . d .

Form the above lemma we know that the equality

(*_{2}) h_{11}(\alpha e_{1}+\beta v)(|\alpha|^{2}+|\beta|^{2})

=|\beta|^{2} { a(v)|\alpha|^{2}+b(v)|\beta|^{2}+c(v) Re \overline{\alpha}\beta+d(v) Im \overline{\alpha}\beta}

holds for any (\alpha, \beta)\in S^{3} . This being said, we extend h to a homogeneous

function of degree 2 on C^{3}\backslash \{0\} . Then we see that (*_{2}) holds for any (\alpha, \beta)\in

C^{2}\backslash \{0\} , because both sides of (*_{2}) are homogeneous functions of degree 4 in
(\alpha, \beta) .

Let (z_{1}, z_{2}, z_{3}) be the natural complex coordinates of C^{3} . We then put z_{j}=x_{j}

+\sqrt{-1}y_{j}(j=1,2,3) and take (x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}) as real coordinates of C^{3} .
We also put

\alpha=r_{1}+\sqrt{-1}s_{1} , \beta=r_{2}+\sqrt{-1}s_{2}

for (\alpha, \beta)\in C^{2} and take (r_{1}, s_{1}, r_{2}, .\sigma_{2}) as real coordinates of C^{2} .

Lemma 3. 2. Let H\in \mathscr{A}_{1} and v\in S(e_{1}^{\perp}) . Putting

D_{v}={\rm Re} v_{2} \frac{\partial}{\partial x_{2}}+{\rm Im} v_{2}\frac{\partial}{\partial y_{2}}+{\rm Re} v_{3}\frac{\partial}{\partial x_{3}}+{\rm Im} v_{3}\frac{\partial}{\partial y_{3}} ,

we have

h_{11}(v)= \frac{1}{2}((D_{v})^{2}h_{11})(e_{1})+\frac{1}{24}((D_{v})^{4}h_{11})(e_{1})

PROOF. We differentiate both sides of
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(*_{2}) h_{11}(\alpha e_{1}+\beta v)(|\alpha|^{2}+|\beta|^{2})

=|\beta|^{2}\{a(v)|\alpha|^{2}+b(v)|\beta|^{2}+c(v) Re \overline{\alpha}\beta+d(v) Im \overline{\alpha}\beta\}

4 times with respect to the variable r_{2} . Since the map (\alpha, \beta)- \alpha e_{1}+\beta v

(C^{2}\backslash \{0\}arrow C^{3}\backslash \{0\}) transforms \frac{\partial}{\partial r_{2}} to D_{v} , we obtain the following formula:

((D_{v})^{4}h_{11})(\alpha e_{1}+\beta v)\cdot(|\alpha|^{2}+|\beta|^{2})+8((D_{v}\rangle^{3}h_{11})(\alpha e_{1}+\beta v)r_{2}

+12((D_{v})^{2}h_{11})(\alpha e_{1}+\beta v)=24b(v)

Therefore putting \alpha=1 and \beta=0 , we have

b(v)= \frac{1}{2}((D_{v})^{2}h_{11})(e_{1})+\frac{1}{24}((D_{\uparrow},)^{4}h_{11})(e_{1}) .

On the other hand, putting \alpha=0 and \beta=1 in (*_{2}) , we have h_{11}(v)=b(v) .
q . e . d .

Here we notice that the right-hand side of the equality in Lemma 3. 2
is a sum of homogeneous polynomials in v of degrees 2 and 4. By exchang-
ing the basis of C^{3} we thereby obtain the following proposition:

PROPOSITION 3. 3. Let H\in \mathscr{A}_{1} and fifix a unitary basis \{v, w, z\} of
C^{3} . Then there exist U(1) -invariant homogeneous polynomials in (\alpha, \beta)\in C^{2}

of degrees 2 and 4, f_{2} and f_{4} , such that f_{2}(\alpha, \beta)\in R, f_{4}(\alpha, \beta)\in R and

\langle H(\alpha z+\beta w)v, v\rangle=f_{2}(\alpha, \beta)+f_{4}(\alpha, \beta)

for any (\alpha, \beta)\in S^{3} .

PROOF. The only part which is not clear is the U(1) -invariance of f_{2}

and f_{4} . To see this we first take f_{2} and f_{4} which are not necessarily U(1)-
invariant. Since H is U(1) -invariant, it follows that

f_{2}(e^{il}\alpha, e^{il}\beta)+f_{4}(e^{it}\alpha, e^{it}\beta)=f_{2}(\alpha, \beta)+f_{4}(\alpha, \beta)

for any t\in R . If we put

f_{j^{r}}’( \alpha, \beta)=\frac{1}{2\pi}\int_{0}^{2\pi}f_{j}(e^{il}\alpha, e^{it}\beta)dt (j=2,4) ,

we easily see that f_{2}’ and f_{4}’ are U(1) -invariant and satisfy

f_{2}’(\alpha, \beta)+f_{4}’(\alpha, \beta)=f_{2}(\alpha, \beta)+f_{4}(\alpha, \beta)

Therefore we have seen that f_{2}’ and f_{4}’ satisfy all the conditions in the pr0-

position. q. e . d .
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Lemma 3. 4. Let f_{2} and f_{4} be as in Proposition 3. 3. Then f_{2}(\alpha, \beta)-

-f_{2}(-\overline{\beta},\overline{\alpha}) is a linear combination of |\alpha|^{2}-|\beta|^{2}, {\rm Re}\overline{\alpha}\beta, {\rm Im}\overline{\alpha}\beta with real
coeffecients. And f_{4}(\alpha, \beta)-f_{4}(-\overline{\beta},\overline{\alpha}) is of the form:

(|\alpha|^{2}+|\beta|^{2}) {a linear combination of |\alpha|^{2}-|\beta|^{2}, {\rm Re}\overline{\alpha}\beta , {\rm Im}\overline{\alpha}\beta with real
coeffecients}.

PROOF. f_{2} , being a U(1)\cdot invariant quadratic form, is a hermitian form.
Therefore there are real constants a, b, c, d such that

f_{2}(\alpha, \beta)=a|\alpha|^{2}+b|\beta|^{2}+c{\rm Re}\overline{\alpha}\beta+d{\rm Im}\overline{\alpha}\beta r

Then we have
f_{2}(-\overline{\beta},\overline{\alpha}\rangle=a|\beta|^{2}+b|\alpha|^{2}-c{\rm Re}\overline{\alpha}\beta-d{\rm Im}\overline{\alpha}\beta ,

and hence
f_{2}(\alpha, \beta)-f_{2}(-\overline{\beta},\overline{\alpha})=(a-b)(|\alpha|^{2}-|\beta|^{2})+2c{\rm Re}\overline{\alpha}\beta+2d{\rm Im}\overline{\alpha}\overline{\beta}r

For f_{4} we first express it as
f_{4}( \alpha, \beta)=\sum a_{pqrs}\alpha^{p}\overline{\alpha}^{q}\beta^{r}\overline{\beta}^{s} , a_{pqrs}\in C ,

where the sum is taken over all 4-tuples of non-negative integers (p, q, r, s)
with p+q+r+s=4. We have

\frac{1}{2\pi}\int_{0}^{2\pi}f_{4}(e^{it}\alpha, e^{it}\beta)dt=f_{4}(\alpha, \beta)

and

\frac{1}{2\pi}\int_{0}^{l\pi}.(e^{it}\alpha)^{p}(\overline{e^{it}\alpha})^{q}(e^{it}\beta)^{r}(\overline{e^{il}\beta})^{s}dt

= \frac{1}{2\pi}\int_{0}^{2\pi}e^{tt(p-q+r-s)}dt\cdot\alpha^{p}\overline{\alpha}^{q}\beta^{r}\overline{\beta}^{s}

=\{
\alpha^{p}\overline{\alpha}^{q}\beta^{r}\overline{\beta}^{s}, p+r=q+s(=2)

0 , p+r\neq q+s1

Hence it follows that

f_{4}( \alpha, \beta)=\sum_{0\leqq p,q\leqq 2}b_{p,q}\alpha^{p}\overline{\alpha}^{q}\beta^{2-p}\overline{\beta}^{2-q} ,

where b_{p,q}=a_{p,q,2-p,2-q} . Thus we have
f_{4}(\alpha, \beta)-f_{4}(-\overline{\beta},\overline{\alpha})

= \sum_{0\leqq p,g\leqq 2}b_{p,q}\{\alpha^{p}\overline{\alpha}^{q}\beta^{2-p}\overline{\beta}^{2-q}-(-1)^{p+q}\overline{\beta}^{p}\beta^{q}\overline{\alpha}^{2-p}\alpha^{\succ q}\} .
On the other hand, we can easily see that
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\alpha^{p}\overline{\alpha}^{q}\beta^{2-p}\overline{\beta}^{2-q}-(-1)^{p+q}\overline{\beta}^{p}\beta^{q}\overline{\alpha}^{2-p}\alpha^{2-q}

is 0 or of one of the following forms for each (p, q) with \circ\leqq p, q\leqq 2 :

\pm(|\alpha|^{2}+|\beta|^{2})(|\alpha|^{2}-|\beta|^{2}) , \pm(|\alpha|^{2}+|\beta|^{2})\overline{\alpha}\beta , \pm(|\alpha|^{2}+|\beta|^{2})\alpha\overline{\beta} :

Consequently we have seen that there are constants a, b, c\in C such that
f_{4}(\alpha, \beta)-f_{4}(-\overline{\beta},\overline{\alpha})

=(|\alpha|^{2}+|\beta|^{2})\{a(|\alpha|^{2}-|\beta|^{2})+b{\rm Re}\overline{\alpha}\beta+c{\rm Im}\overline{\alpha}\beta\}

Since f_{4}(\alpha, \beta)\in R, it is clear that a, b, c are real numbers. q. e . d .
By Proposition 3. 3 and Lemma 3. 4, we have proved the following

PROPOSITION 3. 5. Let H\in \mathscr{A}_{1} . Fix a unitary basis \{v, w, z\} of C^{3}.
Then there are real constants a, b, c such that

\langle H(\alpha z+\beta w)v, v\rangle-\langle H(-\overline{\beta}z+\overline{\alpha}w)v, v\rangle

=a(|\alpha|^{2}-|\beta|^{2})+b Re \overline{\alpha}\beta+c{\rm Im} a\beta

for any (\alpha, \beta)\in S^{3} .

\S 4. Proof of Theorem A’

Let f\in\hat{\acute{\mathscr{S}}}’(CP^{2}) . By Proposition 2. 3 there uniquely exists H’\in \mathscr{A}_{0} such
that

\langle H’(z)w, w\rangle=f(\pi_{1}(z, w), \pi_{1}(z, w)) , (z, w)\in T

Lemma 4. 1. There is H\in \mathscr{A}_{1} such that

\langle H’(z)w, w\rangle=\langle H(z)v, v\rangle-\langle H(w)v, v\rangle

for any unitary basis \{v, w, z\} of C^{3} .
PROOF. Fix z\in S^{r}\partial and a unitary basis \{e_{1}, e_{2}\} of T_{z} . Then we define

a R-linear transformation \sigma of T_{z} by

\sigma(\alpha e_{1}+\beta e_{2})=-\overline{\beta}e_{1}+\overline{\alpha}e_{2} , (\alpha, \beta)\in C^{2} .
Since the function

w arrow\frac{1}{2}\langle H’(z)\sigma(w) , \sigma(w)\rangle , w\in T_{z}

is a hermitian form on T_{z}, we see that there uniquely exists a hermitian
matrix H(z) of degree 3 such that H(z)z=0 and

\langle H(z)w, w \rangle=\frac{1}{2}\langle H’(z)\sigma(w) , \sigma(w)\rangle , w\in T_{z} .
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Since \{z, w, \sigma(w)\} is a unitary basis of C^{3}, it follows that

\langle H(z)w, w \rangle=\frac{1}{2}\langle H’(z)v, v\rangle

for any unitary basis \{z, w, v\} of C^{3} . Clearly the map zarrow H(z) is U(1)-
invariant, and hence H\in \mathscr{A} . Furthermore we have

\langle H(z)v, v \rangle=\frac{1}{2}\langle H’(z)w, w\rangle

and

\langle H(w)v, v \rangle=\frac{1}{2}\langle H’(w)z, z \rangle=-\frac{1}{2}\langle H’(z)w, w\rangle .

whence

\langle H(z)v, v\rangle-\langle H(w)v, v\rangle=\langle H’(z)w, w\rangle

for any unitary basis \{z, v, w\} of C^{3} . On the other hand, since \{\alpha z+\beta w,
-\overline{\beta}z+\overline{\alpha}w, v\} is a unitary basis for any (\alpha, \beta)\in S^{3}, it follows that

\langle H(\alpha z+\beta w)(-\overline{\beta}z+\overline{\alpha}w) , -\overline{\beta}z+\overline{\alpha}w\rangle

= \frac{1}{2}\langle H’(\alpha z+\beta w)v , v\rangle

=- \frac{1}{2}\langle H’(v)(\alpha z+\beta w) , \alpha z+\beta w)\backslash

Clearly the last term can be expressed as a linear combination of |\alpha|^{2}, |\beta|^{2},
{\rm Re}\overline{\alpha}\beta , {\rm Im}\overline{\alpha}\beta with real coefficients. Thus H\in \mathscr{A}_{1} . q . e . d .

We continue the proof of Theorem A’ . We fix a unitary basis \{v, w, z\}

of C^{3} . Using the above lemma and Proposition .Q,. 5 we have

f(\pi_{1}(\alpha z+\beta w, -\overline{\beta}z+\overline{\alpha}w), \pi_{1}(\alpha z+\beta w, -\overline{\beta}z+\overline{\alpha}w))

=\langle H(\alpha z+\beta w)v , v\rangle-\langle H(-\overline{\beta}z+\overline{\alpha}w)v , v\rangle

=a(|\alpha|^{2}-|\beta|^{2})+b Re \overline{\alpha}\beta+c{\rm Im}\overline{\alpha}\beta

for any (\alpha, \beta)\in S^{3} , where H\in \mathscr{A}_{1} , and a, b, c are real constants. On the
other hand, the set

\{\pi_{0}(\alpha z+\beta w)|(\alpha, \beta)\in S^{3}\}

represents a projective line CP^{1} in CP^{2} , and
\pi_{1}(\alpha z+\beta w, -\overline{\beta}z+\overline{\alpha}w)\in TCP^{1}\subset TCP^{2} .
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Let \iota denotes the inclusion CP^{1}arrow CP^{2}. Then, expressing f as
\iota^{*}f=h\iota^{*}g_{0}, h\in C^{\infty}(CP^{1}) ,

we have

f(\pi_{1}(\alpha z+\beta w, -\overline{\beta}z+\overline{\alpha}w), \pi_{1}(\alpha z+\beta w, -\overline{\beta}z+\overline{\alpha}w))

=h(\pi_{0}(\alpha z+\beta w))

and therefore

(*_{3}) h(\pi_{1}(\alpha z+\beta w))=a(|\alpha|^{2}-|\beta|^{2})+b{\rm Re}\overline{\alpha}\beta+c{\rm Im}\overline{\alpha}\beta .

Remarking the fact that (\alpha, \beta)\mapsto\pi_{0}(\alpha z+\beta w) gives the natural projection
C^{2}\supset S^{3}arrow CP^{1} , we can easily see that the map

\pi_{0}(\alpha z+\beta w) – ( \frac{1}{2}(|\alpha|^{2}-|\beta|^{2}) , Re \overline{\alpha}\beta, Im \overline{\alpha}\beta)

gives an isometry CP^{1}arrow S^{2}=\{x\in R^{3}| |x|= \frac{1}{2}\} . Under this identification
we see by (*_{3}) that h is a linear function on CP^{1}=S^{2}. Therefore by Lemma
1. 2, it follows that there is a vector field Y on CP^{1} such that \mathscr{L}_{Y}(\iota^{*}g_{0})=\iota^{*}f,

If we vary \{v, w, z\} over all unitary basis of C^{3} , the set

\{\pi_{0}(\alpha z+\beta w)|(\alpha, \beta\rangle\in S^{3}\}

can represent any projective line in CP^{2} . Thus by Theorem 1. 1 we have
shown that there is a vector field X on CP^{2} such that \mathscr{L}_{X}g_{0}=f.

q . e . d .

Appendix

In this appendix we give a proof of the following theorem due to Tanaka.
THEOREM (Tanaka). Let M=CP^{n}(n\geqq 2) and let (g_{t})_{t\in I} be a k\"ahlerian

C_{\pi}-deformation of \mathcal{G}0

’ where I is an open interval containing 0. If g_{t}

depends real analytically on the parameter t, then there is a one-parameter
family (\psi_{t})_{t\in I} of holomorphic transformations of CP^{n} defifined on the same
interval I, such that \psi_{0}=identity and g_{t}=\psi_{t}^{*}g_{0} .

PROOF. Let X be a vector field on CP^{n} and \phi a 1-form dual to X.
Let D\phi be a symmetric 2-form defined by

(D\phi)(Y, Z)=(\nabla_{Y}\phi)(Z)+(\nabla_{Z}\phi)(Y) .
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Then we can easily see that \mathscr{L}_{X}g_{0}=D\phi . Let L\phi be the anti-hermitian part

of D\phi, i. e. ,

(L \phi)(Y, Z)=\frac{1}{2}\{(D\phi)(Y, Z)-(D\phi)(IY, IZ)\} .

Then by Tanaka [6], we see that L\phi=0 if and only if

\Delta\phi+d\delta\phi-((d\delta(\phi I))I-8(n+1)\phi=0 ,

where \phi I is a 1-form defined by (\phi I)(Y)=\phi(IY) , and \delta denotes i_{A1}^{1-} - adjoint
operator of d, and \Delta denotes the usual Laplace operator. We remark that
\mathscr{L}_{X}q_{0} is hermitian if and only if L\phi=0 . Set

B=\{\phi|L\phi=0\}

B_{1}= {df|f is a function on CP^{n} , \Delta f=4(n+1)f }
B_{2}= {(df)I|f is a function on CP^{n} , \Delta f=4(n+1)f }
B_{3}=\{\phi|\delta\phi=\delta(\phi I)=0, \Delta\phi=8(n+1)\phi\}

Remarking the fact that \delta((df)I)=0 and \Delta(\phi I)=(\Delta\phi)I, we can easily see that

B=B_{1}\oplus B_{2}\oplus B_{3} (orthogonal decomposition)

Moreover it is well known that X is an infinitesimal isometry if and only if
\phi\in B_{2} and that X is an infinitesimal holomorphic transformation if and only
if \phi\in B_{1}+B_{2} .

For any \phi\in B , we define a 2-form P\phi by

(P\phi)(Y, Z)=(D\phi)(Y, IZ) .
Lemma 1. If \phi\in B_{3} and dP\phi=0 , then we have \phi=0 .

PROOF. By calculating \delta dP, we have

0=(\delta dP\phi)(Y, Z)=4(n+1)\{(\nabla\phi)(IZ, Y)-(\nabla\phi)(IY, Z)\}

From this we easily have D\phi=0 . Since \phi\in B_{3} , it follows that \phi=0 .
q. e . d .

By Lemma 1 we see that \mathscr{L}_{X}g_{0} is hermitian and dP\phi=0 if and only

if X is an infinitesimal holomorphic transformation.

Lemma 2. There is a series of infifinitesimal holomorphic transforma-
tions X^{(i)}(i\geqq 0) such that for any integer l\geqq 0 we have

(*)_{l}
\mathscr{L}_{X_{l}}g_{t}\equiv\frac{\partial g_{t}}{\partial t} (mod t^{l+1}) ,



On the infifinitcsimal Blaschke conjecture 139

where X_{t}= \sum_{i=0}^{l}t^{i}X^{(i)} .

PROOF. We shall define X^{(i)} inductively. Let \Omega_{t} be the 2-form associ-
ated with g_{t} , i. e. , \Omega_{t}(Y, Z)=g_{t} (Y, IZ) . Since g_{t} is k\"ahlerian, we have d\Omega_{t}=0 .
We describe g_{t} as

(*)_{0} g_{t}\equiv g_{0}+th (mod t^{2}).

Then we see that h\in\tilde{\mathscr{S}}’ . Hence by Theorem A there is a vector field X
such that \mathscr{L}_{X}g_{0}=h . Let \Theta be the 2-form defined by

\Theta(Y, Z)=h(Y, IZ)

Then we have
\Omega_{t}\equiv\Omega_{0}+t\Theta (mod t^{2})

and d\Theta=0 . Hence by Lemma 1 we see that X is an infinitesimal holomorphic
transformation. We put X^{(0)}=X. Now we assume that there are infinitesi-
mal holomorphic transformations X^{(0)} , \cdots , X^{(l)} such that X_{t}= \sum_{i=0}^{l}t^{i}X^{(i)} satisfies

(*)_{l} \mathscr{L}_{X_{t}}g_{t}\equiv\frac{\partial g_{t}}{\partial t} (mod t^{l+1}).

Let \Phi_{t} be the one-parameter family of holomorphic transformations generated
by X_{t} , i. e. , \Phi_{0}=identity and

( \Phi)_{t}^{-1_{*}}\{\frac{\partial}{\partial t}\Phi_{t}\langle x)\}=(X_{t})_{x}, x\in CP^{n}r

Putting \overline{g}_{t}=(\Phi_{t}^{-1})^{*}g_{t} , we have

\mathscr{L}_{X},g_{t}+\Phi_{t^{*}}\frac{\partial\overline{g}_{t}}{\partial t}=\frac{\partial g_{t}}{\partial t}

Thus we obtain

\Phi_{t^{*\frac{\partial\overline{g}_{t}}{\partial t}}}\equiv 0 (mod t^{\iota+1}) ,

and hence

\frac{\partial\overline{g}_{t}}{\partial t}\equiv 0 (mod t^{\iota+1})

Therefore we have

\overline{g}_{t}\equiv g_{0}+\frac{1}{l+2}t^{\iota+2}\overline{h} (mod t^{l+3}) ,
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\overline{h} being a symmetric 2-form. Since \overline{g}_{t} is k\"ahlerian and C_{\pi}, it follows easily

that \overline{h}\in\overline{\mathscr{S}}’- Hence by Theorem A there is a vector field \overline{X} such that
\mathscr{L}_{\overline{X}}g_{0}=\overline{h} . Let \overline{\Omega}_{t} and \overline{\Theta} be the 2-forms defined respectively by

\overline{\Omega}_{t}\langle Y, Z)=\overline{g}_{t}(Y, IZ),\overline{\Theta}(Y, Z)=\overline{h}(Y, IZ) .

Then we have

\overline{\Omega}_{t}\equiv\Omega_{0}+\frac{1}{l+2}t^{l+2}\overline{\Theta} (mod t^{\iota+3})

and d\overline{\Theta}=0 . Thus by Lemma 1 we see that \overline{X} is an infinitesimal holomorphic
transformation. Therefore, putting

Y_{t}=X_{t}+t^{l+1}\overline{X},\cdot

we have
\mathscr{L}_{Y_{t}}g_{t}=\mathscr{L}_{X_{t}}g_{t}+t^{l+1}\mathscr{L}_{\overline{X}}g_{t}

= \frac{\partial g_{t}}{\partial t}-\Phi_{t}^{*}\frac{\partial\overline{g}_{t}}{\partial t}+t^{l+1}\mathscr{L}_{\overline{X}}g_{t}

\equiv^{\frac{\partial g_{t}}{\partial t}}-t^{\iota+1}\overline{h}+t^{\iota+1}\mathscr{L}_{\overline{X}}g_{l} (mod t^{\iota+2})

\equiv\frac{\partial g_{t}}{\partial t} (mod t^{l+2})

Thus, putting X^{(\iota+1)}=\overline{X}, we see that (*)_{l+1} holds. q. e. d .

Lemma 3. The holomorphic sectional curvature of (CP^{n}, g_{t}) is constant,

and this constant does not depend on the parameter t .

PROOF. Let \nabla_{l} , R_{t} , c_{t} be the connection, the curvature and the hol0-
morphic sectional curvature of g_{t} respectively. Here we note that c_{t} is a

function on the grassmann bundle of 1-dimensional complex contact elements

to CP^{n} . Let X_{t}= \sum_{i=0}^{l}t^{i}X^{(i)} be as in Lemma 2 and \Phi_{t} be the one-parameter

family of holomorphic transformations generated by X_{t} . Put \overline{g}_{t}=(\Phi^{-1})^{*}g_{l} .
Let \overline{\nabla}_{t},\overline{R}_{t},\overline{c}_{t} be the connection, the curvature, and the holomorphic sectional
curvature of \overline{g}_{t} respectively. Then we have

\overline{g}_{t}\equiv g_{0} (mod t^{l+2})

and
\overline{\nabla}_{t}\equiv\nabla_{0} (mod t^{l+2})
\overline{R}_{t}\equiv R_{0} (mod t^{l+2})

\overline{c}_{t}\equiv c_{0} (mod t^{l+2})
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Since c_{0} is constant, we have
d\overline{c}_{t}\equiv 0 (mod t^{\iota+2})

Since c_{t}=\Phi_{t}^{*}\overline{c}_{l} , it follows dc_{t}=\Phi_{t^{*}}d\overline{c}_{t} , and hence

dc_{t}\equiv 0 (mod t^{l+2}).

Since this is true for any l\geqq 0 , and since c_{l} is analytic in t , we have dc_{t}=0 .
Thus c_{t} is constant. On the other hand, from \Phi_{t}^{*}\overline{c}_{t}=c_{t} we have

\mathscr{L}_{X_{l}}c_{t}+\Phi_{t}^{*}\frac{\partial\overline{c}_{t}}{\partial t}=\frac{\partial c_{t}}{\partial t} .

Since \mathscr{L}_{X_{t}}c_{t}=0 and \frac{\partial\overline{c}_{t}}{\partial t}\equiv 0 (mod t^{\iota+1}), we obtain

\frac{\partial c_{t}}{\partial t}\equiv 0 (mod t^{l+1}).

Since this is true for any l\geqq 0 , and since c_{t} is analytic in the parameter t,

it follows that \frac{\partial c_{t}}{\partial t}=0 . Therefore we have c_{t}=c_{0}=constant . q . e . d .

By Lemma 3 and [2] II Theorem 7. 9, we see that each (CP^{n}, g_{t}) is
holomorphically isometric to (CP^{n}, g_{0}) . The construction of \psi_{t} is then trivial.

q. e . d . of Theorem.

Finally we make a remark. If the infinitesimal Blaschke conjecture is

true for a projective space M, then we have the following:

Let (g_{t})_{t\in I} be a one-parameter family of C_{\pi}-metrics on M such that \mathcal{G}0

is the standard C_{\pi}-metric. If g_{t} depends real analytically on the parameter

t . then there is a one-parameter family (\psi_{t})_{t\in I} of diffeomorphisms of M such

that \psi_{0}=identity and \psi_{t}*g_{0}=g_{t} .
The proof is completely analogous to the above. We use \nabla_{t}R_{t} instead

of c_{t} , and prove \nabla_{t}R_{t}=0 , which implies that (M, g_{t}) is a symmetric space.
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