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\S 1. Introduction

Microlocal parametrices for hyperbolic mixed problems in domains with
diffractive boundary have been constructed by Ludwig [9], Melrose [11],
Taylor [16], Eskin [3] and others for second-0rder hyperbolic equations with
Dirichlet boundary conditions. Taylor [16] (or [18]) has also obtained such
results for Neumann boundary conditions, and Imai and Shirota [4] have
obtained such results for certain general boundary conditions which include
the Neumann conditions. (See also Shirota [14]). Moreover applying the
results in [16] Taylor has obtained in [17] such results for Maxwell’s equa-
tions in the exterior of a strictly convex perfect conductor.

The purpose of this paper is to give a generalization of the above results.
Let \Omega be the open half space \{x=(x’, x_{n})=(x_{0}, x’, x_{n});x_{0}\in R^{1} , x’\in R^{n-1},

x_{n}>0\} in R^{n+1}(n\geqq 2) with boundary \partial\Omega and P(x, D) a symmetric system
of first order defined on \overline{\Omega} which is hyperbolic with respect to x_{0} . Consider
a mixed problem:

P(x, D)u= \sum_{j=0}^{n}A_{j}(x)D_{j}u+C(x)u=0 in \Omega ,

B(x’)u=f(x’) on \partial\Omega ,

u(x)=0 in \Omega\cap\{x_{0}<0\} ,

where D_{j}=-i\partial/\partial x_{j}, A_{j}, j=0,1 , \cdots , n, are hermitian m\cross m matrices, A_{0}

is positive definite, and A_{j}, C and B are smooth (i . e. , of class C^{\infty}) and
are constant for |x| large enough.

Let f\in \mathcal{E}’(\partial\Omega) , f(x’)=0 for x_{0}<0 and the wave front set WF(f) be
contained in a conic neighborhood of the diffractive points. We then want
to show that there is a parametrix for the mixed problem, i . e. , a distribution
u\in \mathscr{D}’(\Omega\cap U) with a neighborhood U of sing supp f in R^{n+1} such that
u(x) is a C^{\infty}-function of x_{n}\geqq 0 with value in \mathscr{D}’(R_{x}^{n},) and

(1. 1) P(x, D)u\in C^{\infty}(\overline{\Omega}\cap U) ,
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(1. 2) Bu|_{\partial\Omega}-f\in C^{\infty}(\partial\Omega\cap U) ,

(1. 3) u\in C^{\infty}(\overline{\Omega}\cap U\cap\{x_{0}<0\}) ,

WF(u|_{\partial\Omega})\subset WF(f) and WF(u) is contained in the set of null bicharacteristics
of P_{1}(x, \xi) passing over WF(f) and going into positive time, where P_{1}(x, \xi)

is the principal symbol of P.
It is assumed that P is of constant multiplicity and hence det P_{1}(x, \xi)

can be written in the form:

det P_{1}(x, \xi)=Q_{1}(x, \xi)^{m_{1}}\cdots Q_{r}(x, \xi)^{m_{r}}\tilde{Q}(x, \xi),\cdot

where Q_{1} , \cdots , Q_{r} and \tilde{Q} are homogeneous polynomials in \xi with C^{\infty}(\overline{\Omega})

coefficients which have no common zero in \xi_{0} , such that Q_{1} , \cdots , Q_{r} are
strictly hyperbolic with respect to x_{0} and \tilde{Q}(x, \xi) is independent of \xi_{n} for
x near \partial\Omega . (See Matsuura [10]). Moreover the boundary \partial\Omega is assumed to
be noncharacteristic for Q_{j}, j=1 , \cdots , r. Then a point (x’, \xi’)\in T^{*}(\partial\Omega)\backslash 0 is
said to be diffractive if, for some j and some real \xi_{n} , Q_{j}(x’, 0, \xi’, \xi_{n})=

(\partial Q_{j}/\partial\xi_{n})(x’, 0, \xi’, \xi_{n})=0 and the Poisson bracket \{Q_{j}, \partial Q_{j}/\partial\xi_{n}\}(x’, 0, \xi’, \xi_{n}) is
positive. We impose furthermore the following condition on Q_{j} .

(i) The surface Q_{j}(x’, 0, \xi_{0}, \xi’, \xi_{n})=0 in the (\xi’, \xi_{n}) -space is bounded
and strictly convex for every j=1 , \cdots , r, (x’, 0)\in\partial\Omega and \xi_{0}\neq 0 .

It follows then that the real roots of the equation in \xi_{n} : Q_{j}(x, \xi’, \xi_{n})=0

are at most double and there is at most such one root for x_{n}=0 , j=1 , \cdots , r.
Let (x^{0’}, \xi^{0’})\in T^{*}(\partial\Omega)\backslash 0 be a diffractive point such that Q_{1}(x^{0’}, 0, \xi^{0’}, \xi_{n})=0

has the real double root \xi_{n}^{0} and let us restrict to a conic neighborhood of
(x^{0’}, 0, \xi^{0’}, \xi_{n}^{0}) in T^{*}\overline{\Omega} . Then Q_{1} can be writtwn as

(1. 4) Q_{1}(x, \xi)=((\xi_{n}-\lambda(x, \xi’))^{2}-\mu(x, \xi’)) .(nonzero factor) ,

where \lambda(x, \xi’)(\mu(x, \xi’)) is a smooth function which is analytic and hom0-
geneous of degree one (two) in \xi’ respectively and such that

\xi_{n}^{0}=\lambda(x^{0’}, 0, \xi^{0’}) , \mu(x^{0’}, 0, \xi^{0’})=0

Note that (\partial\mu/\partial\xi_{0})(x^{0’}, 0, \xi^{0’})\neq 0 since Q_{1} is strictly hyperbolic. For definiteness
we assume (\partial\mu/\partial\xi_{0})(x^{0’}, 0, \xi^{0’})>0 . Then, by the implicit function theorem,
\mu is factorized as

(1. 5) \mu(x, \xi’)=(\xi_{0}-\mu_{1}(x, \xi’))\mu_{2}(x, \xi’)

with \xi_{0}^{0}=\mu_{1}(x^{0’}, 0, \xi^{0’}) and \mu_{2}(x^{0’}, 0, \xi^{0’})>0 .
Notice that near \partial\Omega the boundary matrix A_{n} is of constant rank and

the number of the positive eigenvalues, say, d is constant. For the boundary
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operator B we assume
(ii) B(x’) is a d\cross m matrix with maximal rank and the kernel of

A_{n}(x, 0) is contained in that of B(x’) for each (x’, 0)\in\partial\Omega .
Then a Lopatinski determinant R(x’, \xi’) of the mixed problem may be

regarded as an analytic function of z= \frac{-x’,o,\prime\prime}{\xi_{0}\mu_{1}(\xi)} with coefficients
smooth in (x, \xi’) , where \sqrt{1}=1 . Set R(x, \xi’)=\tilde{R}(x’, \xi’, z) .

We assume that \tilde{R}(x^{0’}, \xi^{0’}, z) is simply characteristic at z=0, i . e. ,

(iii) (\partial\tilde{R}/\partial z)(x^{0’}, \xi^{0’}, 0)\neq 0 when \tilde{R}(x^{0’}, \xi^{0’}, 0)=0 .
Now let \tilde{R}(x^{0’}, \xi^{0’}, 0)=0 . Then \tilde{R} is represented as

(1. 6) \tilde{R}(x’, \xi’, z)=(z-D(x’, \xi’))\tilde{R}^{(1)}(x’, \xi’, z)’.
where \tilde{R}^{(1)}(x^{0’}, \xi^{0’}, 0)\neq 0 and D(x’, \xi’) is smooth in (x’, \xi’) , homogeneous
of degree 1/2 in \xi’ .

Finally we impose the following restriction on the range of D(x’, \xi’)

which was adopted in [4].

(iv) There are positive constants \delta_{1} , \delta_{2} with \delta_{1}<\pi/2 such that

\pi/2+\delta_{2}\leqq\arg(e^{i\delta_{1}}D(x’, \xi’))\leqq 3\pi/2-\delta_{2} .

Now the main result in this paper is

THEOREM. Assume conditions (i) to (iv). Let (x^{0’}, \xi^{0’})\in T^{*}(\partial\Omega)\backslash 0 be
an arbitrary dijfractive point and let f\in \mathcal{E}’(\partial\Omega) , f(x’)=0 for x<0 and
WF(f) be contained in a conic neighborhood of (x^{0’}, \xi^{0’}) . Then there exists
a parametrix for the mixed problem.

In proving the theorem we will first find an asymptotic solution to
P(x, D)u=0 in the (microlocal) hyperbolic region by using the phase functions
constructed by Eskin [3], and then extend smoothly the solution thus obtained
to the elliptic region so that the system of equations is satisfied to infinite
order on the boundary as in Taylor [16]. This will enable us to solve
(1. 2) in both hyperbolic and elliptic regions by a unified method. For strictly
hyperbolic systems the existence of asymptotic solutions is a direct conse-
quence of the solvability of the eikonal and transport equations and Cramer’s
rule, even in the elliptic region. But in the case of non-strictly hyperbolic
systems it seems inadequate to use Cramer’s rule in this region and hence
we adopt instead an analogue to the method, due to Agranovich [1], which
brings a matrix depending smoothly on several parameters to a certain block-
diagonal form. (See section 3).

As is well known the transport equation is degenerate on the glancing
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surface. In the case of strictly hyperbolic equations or systems where the
transport equations involve scalar-valued unknowns, it is known that con-
dition (i) guarantees the solvability of the transport equations near the diffrac
tive points. In the present article we will show that condition (i) enables
us to reduce the transport equations to symmetric hyperbolic systems which
are actually systems of ordinary differential equations with the bicharacteristic
curves of P_{1}(x, \xi) as the directions of differentiation.

It should be pointed out that if R(x^{0’}, \xi^{0’})=0 and if the boundary condi-
tion is such that an incoming wave creates two or more outgoing waves
when the corresponding bicharacteristic curve hits \partial\Omega tangentially at x^{0’} ,
then we must in general take the initial data for the transport equation
which depend on the boundary operator B(x\acute{)} so that (1. 2) is solvable.
(See section 6). Moreover one can construct a parametrix in the special
cases where R(x^{0}, \xi^{0’})\neq 0 or the function D(x, \xi’) in (1. 6) vanishes identcally.

The plan of the paper is as follows. Section 2 contains extensions of
phase functions and a construction of a basis of the null space of P_{1}(x, \xi) .
In section 3 we look for an asymptotic solution to P(x, D)u=0 and in sec-
tion 4 we solve the transport equations which involve matrix-valued un-
knowns. In doing so an essential role will be played by Lemma 4. 1. In
section 5 we solve (1. 2) and complete the proof of Theorem. Finally some
examples are given in section 6.

\S 2. Preliminaries

NOTATIONS. We often denote a boundary point (x’, 0)\in\partial\Omega by x’ and
for instance \partial\mu(x, \xi)/\partial x by \mu_{x}(x, \xi) or \partial_{x}\mu(x, \xi) .

2. 1. Let (x^{0’}, \xi^{0’})\in T^{*}(\partial\Omega) be an arbitrary fixed diffractive point with
\xi^{0’}\neq 0 and let \xi_{n}^{0} be the real doub1e_{\backslash }root of the characteristic equation in
\xi_{n} , say, of Q_{1}(x^{0’}, \xi^{0’}, \xi_{n})=0 . In the present article we adopt the phase
functions \theta(x, \eta’) and \rho(x, \eta’) constructed in [3], where \eta’=(\eta_{0}, \eta’)\in R^{n} is
a new covariable such that (\xi^{0’}, \xi_{n}^{0})=\theta_{x}(x^{0’}, \eta^{0’}) with \eta_{0}^{0}=0 and \eta^{0\prime\prime}=\xi^{0’} .

LEMMA 2. 1. ([3]). There are real valued functions \theta(x, \eta’) and \rho(x, \eta’)

defifined on a conic neighborhood of (x^{0’}, \eta^{0’}) in \overline{\Omega}\cross(R^{n}\backslash 0) , smooth and homO-
geneous of degree 1, 2/3 in \eta’ respectively, such that

(2. 1) \phi_{\pm}(x, \eta’)=\theta(x, \eta’)\pm\frac{2}{3}\rho(x,
\eta\acute{)}^{3/2}

are solutions of the eikonal equation

(2. 2) (\phi_{x_{n}}-\lambda(x, \phi_{x’}))^{2}-\mu(x, \phi_{x’})=0
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for \rho\geqq 0 . Moreover

(2. 3) det \partial^{2}\theta/\partial x’\partial\eta’\neq 0 for x_{n}=0_{:}

(2. 4) \rho=(\alpha+O(\alpha^{\infty}))|\eta’|^{2/3} for x_{n}=0 ,

where \alpha=\eta_{0}/|\eta’| ,

(2. 5) \partial\rho/\partial x_{n}>0 for \rho=0

Lemma 2. 2. There are smooth extensions of \theta|_{\alpha\geqq 0} and \rho|_{\alpha\geqq 0} to the
region \alpha<0 such that

(2. 6) \rho(x, \eta’)=\alpha|\eta’|^{2/3} for x_{n}=0 , \alpha<0 ,

and \phi_{\pm} satisfy (2. 2) to infifinite order on x_{n}=0 , i. e. ,

(2. 7) (\theta_{x_{n}}\pm\sqrt{\rho}\rho_{x_{n}}-\lambda(x, \theta_{x’}\pm\sqrt{\rho}\rho_{x’}))^{2}-\mu(x, \theta_{x’}\pm\sqrt{\rho}\rho_{x’})=0 for
\rho\geqq 0 , =O(x_{n}^{\infty}) as x_{n}arrow+0 for \alpha<0

Such an extension has given in [16] when Q_{1}(x, \xi) is of the second
order.

PROOF OF Lemma 2. 2. Since \mu(x, \xi’) is analytic in \xi’ , \mu(x, \theta_{x’}\pm\sqrt{\rho}\rho_{x’})

may be written as
\mu(x, \theta_{x’}\pm\sqrt{\rho}\rho_{x’})=\mu^{(1)}\pm\sqrt{\rho}\mu^{(2)} ,

where

\mu^{(1)}=\sum_{j=0}^{\infty}\sum_{|\beta|=2j}\rho^{j}(\rho_{x’})^{\beta}(\partial_{\xi’}^{\beta}\mu)(x, \theta_{x’})/\beta! ,

\mu^{(2)}=\sum_{j=0}^{\infty}\sum_{|\beta|=2j+1}\rho^{j}(\rho_{x’})^{\beta}(\partial_{\beta’}^{\beta}\mu)(x, \theta_{x’})/\beta !

Analogously
\lambda(x, \theta_{x’}\pm\sqrt{\rho}\rho_{x’})=\lambda^{(1)}\pm\sqrt{\rho}\lambda^{(2)}

Hence the left side of (2. 7) is written as

(\theta_{x_{n}}-\lambda^{(1)}\pm\sqrt{\rho}(\rho_{x_{n}}-\lambda^{(2)}))^{2}-(\mu^{(1)}\pm\sqrt{\rho}\mu^{(2)})

Thus for \rho\geqq 0(2.7) is equivalent to the pair:

(2. 8) (\theta_{x_{n}}-\lambda^{(1)})^{2}+\rho(\rho_{x_{n}}-\lambda^{(2)})^{2}=\mu^{(1)} :

(2. 9) 2 (\theta_{x_{n}}-\lambda^{(1)})\cdot(\rho_{x_{n}}-\lambda^{(2)})=\mu^{(2)}

We shall show, following [16], that \theta and \rho restricted to \alpha\geqq 0 can be
extended to \alpha<0 so that (2. 8) and (2. 9) as well as (2. 6) are satisfied to
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infinite order on \partial\Omega . To this end it suffices to specify \theta, \rho and all their
normal derivatives on \partial\Omega , because Whitney’s extension theorem then allows
us to extend these quantities smoothly to the whole region \overline{\Omega} intersected
with a small open set \alpha close to zero. In what follows we restrict ourselves
to \partial\Omega and |\eta’|=1 .

Define \rho by (2. 6) and take \theta an arbitrary extension. Then \rho is smooth
by virtue of (2. 4), and for \alpha<0 we have \mu^{(1)}=\mu(x’, \theta_{x’}) , \mu^{(2)}=0 and \lambda^{(1)}=

\lambda(x, \theta_{x’}) , \lambda^{(2)}=0 . Therefore, if we define

(2. 10) \theta_{x_{n}}(x’, \eta’)=\lambda^{(1)}=\lambda(x’, \theta_{x’}) for \alpha<0 :

then (2. 9) holds. Note that

(2. 11) \theta_{x_{n}}=\lambda^{(1)}+O(\alpha^{\infty})=\lambda(x’, \theta_{x’})+O(\alpha^{\infty}) for \alpha\geqq 0

since \rho_{x_{n}}>0 and \rho_{x’}=O(\alpha^{\infty}) , so \theta_{x_{n}} is smooth near \alpha=0 . Next we shall
specify \rho_{x_{n}} for \alpha<0 . From (2. 8), (2. 11) and (2. 4) we have

(2. 12) \mu(x, \theta_{x’})=\alpha(\rho_{x_{n}})^{2}+O(\alpha^{\infty}) for \alpha\geqq 0 .
Therefore, setting
(2. 13) \mu(x’, \theta_{x’})=\alpha\mu_{3}(x, \eta’)’.

we see that \mu_{3} is smooth and positive near \alpha=0 . We now define
\rho_{x_{n}}(x’, \eta’)=\sqrt{\mu_{3}(x’,\eta’)} for \alpha<0r

Then \rho_{x_{n}} is smooth near \alpha=0 , and (2. 8) holds according to (2. 6), (2. 10)
and (2. 13).

In order to specify the normal derivatives of higher order we assume
inductively that (\partial/\partial x_{n})^{j+1}\theta, (\partial/\partial x_{n})^{j+1}\rho, j=0,1 , \cdots , q –1, are given to be smooth
so that on \partial\Omega the j-th normal derivatives of the left sides of (2. 8) and (2. 9)
equal those of the right sides respectively. Differentiating both sides of
(2. 9) q times with respect to x_{n} we have

( \rho_{x_{n}}-\lambda^{(2)})(\frac{\partial}{\partial x_{n}})^{q}(\theta_{x_{n}}-\lambda^{(1)})+(\theta_{x_{n}}-\lambda^{(1)})(\frac{\partial}{\partial x_{n}})^{q}(\rho_{x_{n}}-\lambda^{(2)})=\Phi ,

where \Phi does not contain normal derivatives of \theta , \rho of order q+1 . Since
\rho_{x_{n}}-\lambda^{(2)}\neq 0 and the second term on the left side vanishes by (2. 10) we
find that (\partial^{q+1}\theta/\partial x_{n}^{q\dagger 1})|_{\alpha<0} is represented in terms of the normal derivatives
of \theta and \rho of order up to q. Similarly from (2. 8) we have

\rho(\rho_{x_{n}}-\lambda^{(2)})(\partial/\partial x_{n})^{q+1}\rho=\Psi :

where \Psi is of O(\alpha) and involves the normal derivatives of \theta , \rho of order
up to q+1 , q respectively. Since \rho_{x_{n}}-\lambda^{(2)}\neq 0 , (\partial^{q+1}\rho/\partial x_{n}^{q+1})|_{\alpha<0} is represented
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in terms of \theta, \rho of order up to q+1 , q respectively. Thus the lemma is
proved.

2. 2. In proving Theorem we may assume without loss of generality
that A_{0} is the identity matrix and that A_{n} is of the form

(2. 14) A_{n}(x)=\{\begin{array}{ll}A(x) 00 0\end{array}\} near \partial\Omega ,,

where A(x) is a nonsingular 2d\cross 2d matrix which has d positive and d
negative eigenvalues respectively according to condition (i). Hence we write

P_{1}(x, \xi)=\{\begin{array}{ll}A 00 0\end{array}\} \xi_{n}+\{\begin{array}{lllll}A_{I} I(x, \xi’) II(x, A_{I} \xi’’)A_{II} I(x,\xi’,) A_{II} II(x,\xi’)\end{array}\}

where A_{II}(A_{IIII}) is a square matrix of order 2d(m-2d) respectively. Note
that det A_{IIII}(x^{0’}, \xi^{0’})\neq 0 . Set

M(x, \xi’)=-A^{-1}(A_{II}-A_{I I}I A_{IIII}^{-1}A_{II} I)(x, \xi’)

Then we have

(2. 15) P_{1}(x, \xi)=[_{0}^{A(\xi_{n}I_{2d}-M)} A_{III}A_{IIII]}^{-1}I_{m-2d} \{\begin{array}{llll}I_{2d} 0 A_{II} I A_{II} II\end{array}\} ,

where I_{k} denotes the identity matrix of order k. Therefore it follows that
det (\xi_{n}I_{2d}-M(x, \xi’))=Q_{1}(x, \xi)^{m_{1}}\cdot (nonzero factor) for (x, \xi)\in T^{*}\overline{\Omega} near (x^{0’}, \xi^{0’}) .
Moreover it is convenient to bring the matrix M(x, \xi’) to a normal block-
diagonal form.

Lemma 2. 3. There exists a nonsingular smooth matrix S(x, \xi’) defifined
on a conic neighborhood of (x^{0’}, \xi^{0’}) in \overline{\Omega}\cross R^{n}, analytic and homogeneous

of degree zero in \xi’ , such that

(2. 16) MS=S\overline{M},\overline{M}=\{\begin{array}{lll}\overline{M}_{d} 00 \overline{M}_{h} \overline{M}_{e}\end{array}\} , \overline{M}_{d}=\{\begin{array}{ll}M_{1}. 00 M_{m_{1}}\end{array}\}\wedge

,

where

(2. 17) M_{j}(x, \xi’)=\{\begin{array}{lll}\lambda(x, \xi’) 1\mu(x,\xi’) \lambda(x,\xi’)\end{array}\}

for |\xi’|=1 and j=1, \cdots , m_{1} ,

the eigenvalues of \overline{M}_{h} or \overline{M}_{e} are real semisimple or nonreal respectively.
This is a variant of [1], Theorem 1. 2 when A_{n}(x) is non-singular,

and can be proved in a way similar to [1] except that A_{n} may be singular
in our case.
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PROOF OF Lemma 2. 3. Set S=[S_{a}, S_{h}, S_{e}] and S_{J},=[s_{1}, \cdot ‘ \cdot, s_{2m_{1}}] . We
shall first construct S_{a} . There is a smooth m\cross 2d matrix V(x, \xi’, \xi_{n}) with
maximal rank, analytic in (\xi’, \xi_{n}) , such that

(2. 18) P_{1}(x, \xi)V=VD(x, \xi) ,

where

D(x, \xi)=\xi_{0}I_{2d}-\{\begin{array}{lllll}\tau_{1} .\backslash -\backslash ^{m_{1}} \tau_{1} \tau_{2}. \circ \tau_{q}\end{array}\} ,

and \tau_{j}(x, \xi’, \xi_{n}) , j=1 , \cdots , q, are the mutually distinct roots of the equation

in \xi_{0} : Q_{1}(x, \xi)\cdots Q_{r}(x, \xi)=0 with \tau_{1}(x^{0’}, \xi^{0’}, \xi_{n}^{0})=\xi_{0}^{0} . Set V=\{\begin{array}{l}V_{I}V_{II}\end{array}\} with V_{I} the
2d\cross 2d block. Then (2. 18) is written, by (2. 19), as

(\xi_{n}I_{2a}-M)V_{I}+A^{-1}A_{III}A_{IIII}^{-1}(A_{III}V_{I}+A_{IIII}V_{II})=A^{-1}V_{I}D

with

(2. 19) A_{III} V_{I}+A_{II} II V_{II}=V1D .
Note that A_{IIII}(x, \xi’)-(\xi_{0}-\tau_{j}(x, \xi’, \xi_{n}))I_{m-2d} is nonsignular for j=1, \cdots , q.
Therefore V_{II} is linearly dependent on V_{I} and hence V_{I} is nonsingular.
Thus, with V_{II} defined by (2. 19), (2. 18) is equivalent to

(2. 20) (\xi_{n}I_{2a}-M(x, \xi’))V_{I}=A^{-1}(V_{I}-A_{III}A_{IIII}^{-1}V_{II})D .

Suppose for instance that the uppermost left m_{1}\cross m_{1} block of V_{I} is
nonsingular. We shall then define s_{1} , \cdots , s_{2m_{1}} by

(2. 21) v_{2(j-1)+k}(x, \xi’, y)=\int_{\Gamma}e^{iyz}V_{I}(x, \xi’, z)e_{j}\frac{(z-\lambda(x,\xi’))^{2^{-}k}}{(z-\lambda(x,\xi’))^{2}-\mu(x,\xi)},dz

and

s_{2(j-1)+k}(x, \xi’)=v_{2(j-1)+k}(x, \xi’, 0) , j=1 , \cdots , m_{1} , k=1,2,

where \{e_{1}, \cdots, e_{2a}\} is the canonical basis of R_{2d} and \Gamma is a closed Jorden
curve enclosing \xi_{n}^{0} only of the roots of det P_{1}(x^{0’}, \xi^{0’}, \xi_{n})=0 . Notice that

\xi_{0}-\tau_{1}(x, \xi’, \xi_{n})=(\xi_{n}-\lambda(x, \xi’)^{2}-\mu(x, \xi’)) .(nonzero factor) ,

for (x, \xi) near (x^{0’}, \xi^{0}) according to (1. 4), since \xi_{0}=\tau_{1}(x, \xi’, \xi_{n}) is a root of
Q_{1}(x, \xi)=0 . Hence from (2. 20) and (2. 21) we have
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(-i\partial/\partial y-M(x, \xi’))v_{l}(x, \xi’,y)=0 for y\geqq 0 , l=1, \cdots , 2m_{1}

Setting y=0 we obtain
Ms_{2(j-1)+1}=\lambda s_{2(f-1)+1}+\mu s_{2(j-1)+2} ,

Ms_{2(f-1)+2}=s_{2(j-1)+1}+\lambda s_{2(j-1)+2}, j=1, \cdots , m_{1}

which means MS_{a}=S_{d}\overline{M}_{a} .
Next we shall show that v_{1}(y) , \cdots , v_{2m_{1}}(y) are linearly independent.

Suppose that this is not the case at fixed point (x, \xi’) . Then there are
polynomials R_{f}(z) , j=1 , \cdots , m_{1} , of degree one such that

(2. 22) \sum_{j=1}^{m_{1}}\S_{\Gamma}.e^{iyz}V_{0}(z)e_{j}\frac{R_{f}(z)}{(z-\lambda)^{2}-\mu}dz=0 for y\geqq 0 ,

where V_{0} is the uppermost left m_{1}\cross m_{1} block of V_{I} and e_{j} are regarded as
m_{1}Wrvectors. Let z_{1} and z_{2} be the roots of (z-\lambda)^{2}-\mu=0 . Then, without
destroying (2. 22), we can replace V_{0}(z) by a corresponding Lagrange inter-
poration polynomial

P_{0}(z)=V_{0}(z_{1})+ \frac{z-z_{1}}{z_{2}-z_{1}}(V_{0}(z_{2})-V_{0}(z_{1}))

Applying the differential operator (cof P_{0}) (-i\partial/\partial y) to the left side of (2. 22)

we have

\sum_{j=1}^{m_{1}}\S_{\Gamma}(\det P_{0}(z))e_{j}\frac{R_{j}(z)}{(z-\lambda)^{2}-\mu}dz=0r

which leads to a contradiction, since

det P_{0}(z_{l})=\det V_{0}(z_{l})\neq 0 for l=1,2|

Now S_{h} and S_{e} with the required property can be constructed as usual.
This proves the lemma.

By means of (2. 15) and Lemma 2. 3 we obtain a basis of the null space
of P_{1}(x, \xi) which is very convenient. In fact, define an m\cross m_{1} matrix W\langle x, \xi)

by

(2. 23) W(x, \xi)=\{\begin{array}{lll}I_{2a} -A_{IIII}^{-1} A_{II} I\end{array}\} (x, \xi’)S(x, \xi’)\overline{W}_{I}(x, \xi)

with
\overline{W}_{I}(x, \xi)=[e_{1}, e_{3}, \cdots, e_{2m_{1}-1}]+(\xi_{n}-\lambda(x, \xi’))|\xi’|^{-1}[e_{2}, e_{4^{ }},\cdots, e_{2m_{1}}]\backslash.

where \{e_{1}, e_{2}, \cdots, e_{2a}\} is the canonical basis of R^{2a} . Then W is of maximal
rank and satisfies
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(2. 24) P_{1}(x, \xi)W(x, \xi)

=\{\begin{array}{l}I_{2d}0\end{array}\} A(x)S(x, \xi’)(\xi_{n}I_{2d}-\tilde{M}(x, \xi’)\overline{W}_{I}(x, \xi))

=\{\begin{array}{l}I_{2a}.\alpha_{0_{A}^{\tau}}\end{array}\} A(x)S(x, \xi’)[e_{2}, e_{4}, \cdots, e_{2m_{1}}]\cdot((\xi_{n}-\lambda(x, \xi’))^{2}-\mu(x, \xi’))/|\xi’|\circ

2. 3. In the present article we use one of Airy functions defined by

(2. 25) A(s)=2\pi e^{\pi i/3}A_{i}(se^{\pi i/3})

= \int_{\Gamma}e^{i(k^{3}/3-sk)}dk ,

where L is a path running from \infty\cdot e^{-\pi i/2} to \infty\cdot e^{\pi i/6} . The following asymp-
totic formula which is valid uniformly in a sector -\pi+\delta\leqq\arg z\leqq\pi-\delta with
arbitrary \delta>0 , is given in [2].

(2. 26) A_{i}(z)=\Phi(z)e^{-2z^{3/2}/3}

with

\Phi(z)\sim\frac{1}{2\sqrt{\pi}}z^{-1/4}(1+O(z^{-3/2})) as |z|arrow\infty .

which implies

\Phi’(z)=O(z^{-1-1/4}) as |z|arrow\infty

Therefore we have

(2. 27) \frac{A’(s)}{A(s)}=\int_{1}-is^{1/2}(1+O(s^{-3/2}))-|s|^{1/2}(1+O(|s|^{-32}’)) asas sarrow\infty sarrow-\cdot\infty

’

[

Notice that A(s) and A’(s) do not vanish for s real.
Define a symbol K by

(2. 28) K( \eta’)=(\frac{A’}{A})(\alpha|\eta’|^{2/3})=(\frac{A’}{A})(\eta_{0}|\eta’|^{-1/3}) .

It follows (2. 25) and (2. 26) that (A’/A)(s)\in S_{1,0}^{1/2}(R^{1}) , as pointed out in [16].
Therefore K(\eta’)\in S_{1/3,0}^{1/3} . More precisely we obtain the following estimates
which will be used in \S 5.

Lemma 2. 4. There are positive constants C_{1} and C_{2} such that

(2. 29) C_{1}(1+|\alpha|\cdot|\eta’|^{2/3})^{1/2}\leqq|K(\eta’)|\leqq C_{2}(1+|\alpha|\cdot|\eta’|^{2/3})^{1/2} .
Furthermore \partial_{\eta’}K\in S_{\overline{1/}3,0}^{1/3} and for every j, \beta there are constants C_{f,\beta} such that

(2. 30) |\partial_{\eta_{0}}^{j}\partial_{\eta’}^{\beta}K(\eta\acute{)}|\leqq C_{j,\beta}|\acute{\eta}|^{-|\beta|-j/3}|K(\eta\acute{)}|^{1-2j}
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COROLLARY 2. 5. For real number q let |K|^{q} be the pseudO-differential
operator with symbol |K(\eta’)|^{q} and let a(y’, \eta’)\in S_{1/3,0}^{0} . Then the symbol of
the commutator [a, |K|^{q}] is such that

(2. 31) \sigma([a, |K|^{q}])\in S_{1/3,0}^{-1/3} if q\leqq 2 .

Moreover

(2. 32) \sigma([a, |K|^{q}])\in S_{\overline{1/}3,0}^{2/3} if q\leqq 1 and a=O(\alpha)

PROOF. From (2. 29) and (2. 30) we have

|\partial_{\eta’}^{\beta}|K|^{q}|\leqq const . |\eta’|^{-|\beta|/3}|K|^{q-2I\beta 1}

for each q and \beta . Hence |K|^{q} belongs to S_{1/3,0}^{q/3} for q\geqq 0 , to S_{1/3,0}^{0} for q<0
and \sigma([a, |K|^{q}]) has the asymptotic expansion

\sum_{|\beta|\geqq 1}(D_{y}^{\beta}, a)(\partial_{\eta}^{\beta},|K|^{q})/\beta !

Moreover \partial_{\eta}^{\beta},|K|^{q}\in S_{\overline{1/}3,0}^{|\beta|/3} for |\beta|\geqq 1 and q\leqq 2 . Therefore we obtain (2. 31).
To derive (2. 32) it suffices to note that for some constant C>0

(2. 33) |\alpha|\cdot|K(\eta’)|^{-1}\leqq C|\alpha|^{1/2}|\eta’|^{-1/3} .

\S 3. Asymptotic solutions

Let (x^{0’}, \xi^{0’})\in T^{*}(\partial\Omega) and \xi_{n}^{0} be the same point and root as in the
preceding section, and let \theta , \rho be so extended phase functions as in Lemma
2. 2. We shall look for a solution u to (1. 1), (1. 2) and (1. 3) in the form
u=Gv\in \mathscr{D}’(\Omega) with v=^{\iota}(v_{1}, \cdots, v_{d})\in \mathcal{E}’(R^{n}) and

(3. 1) (Gv) (x)= \sum_{j=1}^{3}G^{(j)}v^{(j)} ,

where G^{(2)} is a Fourier integral operator with classical symbol which cor-
responds to the (microlocal) hyperbolic part of P_{1} , and G^{(3)} is a classical
pseudodifferential operator corresponding to the elliptic part. G^{(1)} is of the
form

(3. 2) (G^{(1)}v^{(1)})(x)= \int_{R^{n}}\{\int_{L}e^{i\phi(x,\eta’,k)}a(x, \eta’, k)dk\}\frac{\chi(\eta’)}{A(\alpha|\eta|^{2/3})},\hat{v}^{(1)}(\eta’)d\eta .

Here \phi(x, \eta’, k)=\theta(x, \eta’)-k\rho(x, \eta’)+k^{3}/3 , L is the path in (2. 25), a has
asymptotic expension a \sim\sum_{j=-\infty}^{0}a_{j}, a_{j}(x, \eta’, k) are polynomials in k whose coef-
ficients are m\cross m_{1} matrices smooth in (x, \eta’) and which are homogeneous of
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degree j in the sense: a_{j}(x, t\eta’, t^{1/3}k)=t^{j}a_{j}(x, \eta’, k) for t>0 , v^{(1)}={}^{t}(v_{1^{ }},\cdots, v_{m_{1}}) ,
\hat{v}^{(1)} is the Fourier transform of v^{(1)} , A(s) is the function defined by (2. 25),

and \chi is a cutoff function such that \chi(\eta’)=\chi^{(1)}(|\eta’/|\eta’|-\eta^{0’}/|\eta^{0’}||)\cdot\chi(2)(|\eta’|) ,

where \chi^{(j)}\in C^{\infty}(R^{1}) , \chi^{(1)}(t) is equal to one for |t|<\delta and to zero for |t|>2\delta

with small \delta>0 , \chi^{(2)}(t) is equal to one for |t|>2\delta^{-1} and to zero for |t|<\delta^{-1} .
The present and following sections will be devoted to construct the

amplitude a(x, \eta’, k) so that

(3. 3) \int_{L}P(x, D)(e^{i\phi(x,\eta’,k)}a(x, \eta, k))dk

= \int_{L}e^{i\phi(x,\eta’,k)}\{\sum_{j=-\infty}^{1}(b_{1j}(x, \eta’)+kb_{2j}(x, \eta’))\}dk ,

where, for every j=1,0, –1, -2, \cdots , b_{1j}(x, \eta’) and b_{2j}(x, \eta’) are smooth in
(x, \eta’) , homogeneous of degree j, j-1/3 in \eta’ respectively and satisfy

(3. 4)_{j} b_{lj}(x, \eta’)=0 for \rho\geqq 0 , l=1,2,\cdot

(3. 5)_{j} b_{lj}(x, \eta’)=O(x_{n}^{\infty}) as x_{n}arrow+0 for \alpha<0 , l=1,2 ,

which yield (1. 1) for u=G^{(1)}v^{(1)} . (See [16]).
To accomplish the purpose above we often use the following well known

device. Consider the integral

\int_{L}e^{i\phi(x,\eta’,k)}b(x, \eta’, k)dk ,

where b(x, \eta’, k) is a polynomial of k with coefficients smooth in (x, \eta’) which
is homogeneous of degree q in the sense above. Then b is represented as

(3. 6) b(x, \eta’, k)=b_{1}(x, \eta’, \rho)+kb_{2}(x, \eta’, \rho)+(k^{2}-\rho)b_{3}(x, \eta’, k) :

where

b_{1}(x, \eta’, \rho)=’\frac{b(x,\eta^{\prime\sqrt{\rho}})+b(x,\eta’,-\sqrt{\rho})}{2}

(3. 7)
b_{2}(x, \eta’, \rho)=’\frac{b(x,\eta^{\prime\sqrt{\rho}})-b(x,\eta’,-\sqrt{\rho})}{2\sqrt{\rho}}j

Note that b_{3}(x, \eta’, k) is homogeneous of degree q-2/3 and b_{l}(x, \eta’, \rho(x, \eta’))

is smooth in (x, \eta’) , homogeneous in \eta’ of degree q for l=1 , q-1/3 for l=2.
Moreover, if b(x, \eta’, \pm\sqrt{\rho})=0 for \rho\geqq 0 then b_{l}(x, \eta’, \rho)=0 for \rho\geqq 0 , l=1,2,

and if b(x, \eta’j\pm\sqrt{\rho})=O(x_{n}^{\infty}) for \alpha<0 then b_{l}(x, \eta, \rho)=O(x_{n}^{\infty}) for \alpha<0 , l=
1,2 . Furthermore (k^{2}-\rho)b_{3}(x, \eta’, k) may be regarded as a term homogeneous
of degree q-1 , since (k^{2}-\rho)e^{i\phi}=-i\partial e^{i\phi}/\partial k so that

\int_{L}e^{i\phi}(k^{2}-\rho)b_{3}dk=i.\int Le^{i\phi}(\partial b_{3}/\partial k)dk ,
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where \partial b_{3}/\partial k is homogeneous of degree q-1 . (See [3]).
We shall first derive (3. 4)_{1} and (3. 5)_{1} . Since the amplitude on the left

side in (3. 3) is

(3. 8) e^{-i\phi}P(e^{i\phi}a)=P_{1}(x, \theta_{x}-k\rho_{x})a+P(x, D)a ,

we take a_{0} in the form

(3. 9) a_{0}(x, \eta’, k)=(W_{1}(x, \eta’)-kW_{2}(x, \eta’))(g_{0}(x, \eta’)-kh_{0}(x, \eta’))

where with the matrix W(x, \xi) defined by (2. 23)

W_{1}(x, \eta’)--\frac{W(x,\theta_{x}+\sqrt{\rho}\rho_{x})+W(x,\theta_{x}-\sqrt{\rho}\rho_{x})}{2}
,\cdot

W_{2}(x, \eta’)=\frac{W(x,\theta_{x}+\sqrt{\rho}\rho_{x})-W(x,\theta_{x}-\sqrt{\rho}\rho_{x})}{2\sqrt{\rho}}

so that

(3. 10) W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})=W_{1}(x, \eta’)\pm\sqrt{\rho}W_{2}(x, \eta’)r
,

g_{0}(x, \eta’) and h_{0}(x, \eta\acute{)} are smooth m_{1}\cross m_{1} matrices homogeneous in \eta’ of
degree 0 and -1/3 respectively with g_{0} nonsingular. Then it follows from
(2. 7) and (2. 24) that

(3. 11) P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})(W_{1}(x, \eta’)\pm\sqrt{\rho}W_{2}(x, \eta’))=0

for \rho\geqq 0 , =O(x_{n}^{\infty}) for \alpha<0,\cdot

which gives (3. 4)_{1} and (3. 5)_{1} .
We shall next establish (3. 4)_{0} and (3. 5)_{0} . By (3. 8) the relevant terms are

\int_{L}e^{i\phi}\{P_{1}(x, \theta_{x}-k\rho_{x})a_{-1}+P(x, D)a_{0}\}dk+\int_{L}e^{i\phi}P_{1}(x, \theta_{k}-k\rho_{x})a_{0}dk\tau

To the amplitude in the last integral we apply (3. 6) with b(x, \eta’, k)=

P_{1}(x, \theta_{x}-k\rho_{x})(W_{1}-kW_{2}) . Then

(3. 12) P_{1}(x, \theta_{x}-k\rho_{x})(W_{1}(x, \eta’)-kW_{2}(x, \eta’))

=b_{1}(x, \eta’)+kb_{2}(x, \eta’)+(k^{2}-\rho)b_{3}(x, \eta’) ,

where b_{l}(x, \eta’) , l=1,2, satisfy (3. 4)_{1} and (3. 5)_{1} by virtue of (3. if) , and b_{3}

is homogeneous of degree 1/3. Thus we need only to establish

(3. 13) P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})a_{-1}(x, \eta’, \mp\sqrt{\rho})+F_{0}(x, \eta’, \mp\sqrt{\rho})=0

for \rho\geqq 0 , =O(x_{n}^{\infty}) as x_{n}arrow+0 for \alpha<0 ,

where
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(3. 14) F_{0}(x, \eta’, k)=P(x, D)a_{0}(x, \eta’, k)-ib_{3}(x, \eta’)h_{0}(x, \eta\acute{)}

and b_{3}(x, \eta’)=P_{1}(x, \rho_{x})W_{2} .
We shall now look for a special solution a_{-1}^{0}(x, \eta, \mp\sqrt{\rho}) of (3. 13) with

F_{0}(x, \eta, \mp\sqrt{\rho}) regarded as given. For convenience set \xi=\theta_{x}\pm\sqrt{\rho}\rho_{x} and

(3. 15) a_{-1}^{0}(x, \eta’, \mp\sqrt{\rho})=\{\begin{array}{l}a_{I}a_{II}\end{array}\} , F_{0}(x, \eta’, \mp\sqrt{\rho})=-\{\begin{array}{l}F_{I}F_{II}\end{array}\} ,

where a_{I} and F_{I} are the 2d\cross m_{1} blocks. Then by (2. 15) we have

P_{1}(x, \xi)a_{-1}^{0}(x, \eta’, \mp\sqrt{\rho})=[_{A_{III}a_{I}+A_{IIII}a_{II}}^{A(\xi_{n}I_{2a}-M)a_{I}+A_{III}A_{IIII}^{-1}(A_{II1}a_{I}+A_{IIII}a_{II})}]

Hence, if we define a_{II} by

(3. 16) a_{II}=A_{IIII}^{-1}(F_{II}-A_{III}a_{I}),\cdot

then the equation P_{1}(x, \xi)a_{-1}^{0}+F_{0}=0 is equivalent to

(3. 17) A (\xi_{n}I_{2a}-M)a_{I}=F_{I}-A_{I} IIA_{IIII}^{-1}F_{II}
r

which becomes, by (2. 16),

(\xi_{n}I_{2a}-\overline{M})S^{-1}a_{I}=S^{-1}A^{-1}(F_{I}-A_{III}A_{IIII}^{-1}F_{II}) .
Moreover set

(3. 18) a_{I}=S \{\begin{array}{l}\tilde{a}_{d}\tilde{a}_{h}\tilde{a}_{e}\end{array}\} , S^{-1}A^{-1}(F_{I}-A_{III}A_{IIII}^{-1}F_{II})=\{\begin{array}{l}\tilde{F}_{d}F_{h}F_{e}\end{array}\} ,

where \tilde{a}_{a} and \tilde{F}_{a} are 2m_{1}\cross m_{1} matrices. Then (3. 17) is written as
\langle3. 19) (\xi_{n}I_{2m_{1}}-\overline{M}_{d})\tilde{a}_{d}=\tilde{F}_{a} ,

(3. 20) (\xi_{n}I_{2a-2m_{1}}-\{\begin{array}{ll}\overline{M}_{h} 00 \tilde{M}_{e}\end{array}\}) \{\begin{array}{l}\tilde{a}_{h}\tilde{a}_{e}\end{array}\}=\{\begin{array}{l}\tilde{F}_{h}\tilde{F}_{e}\end{array}\}

Since \xi_{n}I_{2d-2m_{1}}-[_{0}^{\overline{M}_{h}}\frac{0}{M}]e(x, \xi’) is nonsingular, (3. 20) is uniquely solvable.

On the other hand the rank of \xi_{n}I_{2m_{1}}-\overline{M}_{d}(x, \xi’) is equal to m_{1} when \rho\geqq 0 .
Set now

(3. 21) \tilde{L}_{d}\langle x, \xi)=(\xi_{n}-\lambda(x, \xi’)){}^{t}[e_{1}, e_{3}, \cdots, e_{2m_{1}-1}]+{}^{t}[e_{2}, e_{4}, \cdots, e_{2m_{1}}] ,

where \{e_{1}, e_{2}, \cdots, e_{2m_{1}}\} is the canonical basis of R^{2m_{1}} . Then \tilde{L}_{d}(x, \xi) is of rank
m_{1} and its rows are, by (2. 17), left null vectors of \xi_{n}I_{2m_{1}}-\overline{M}_{a}(x, \xi’) for \rho\geqq 0 .
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We shall define a solution \tilde{a}_{a} of (3. 19) by

(3. 22) \tilde{a}_{cl}=-{}^{t}[0, F_{1},0, F_{3}, \cdots, 0, F_{2m_{1}-1}] :

where \tilde{F}_{\iota l}=^{l}[F_{1}, F_{2}, \cdots, F_{2m_{1}}] . Then by (2. 17) and (3. 21) we obtain

(\xi_{n}I_{2m_{1}}-\overline{M}_{d}(x, \xi’))\tilde{a}_{d}-F_{a}=-{}^{t}[0, H_{1},0, H_{2^{ }},\cdots, 0, H_{m_{1}}] ,

where \tilde{L}_{d}\tilde{F}_{tl}={}^{t}[H_{1}, H_{2}, \cdots, H_{m_{1}}] . With a_{-1}^{0} thus defined, the left side of (3. 13)
is dominated by \tilde{L}_{tJ}\tilde{F}_{J}, . Moreover we shall show that the latter is estimated
by W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})F_{0}(x, \eta’, \pm\sqrt{\rho}) .

Let \rho\geqq 0 and set W_{I}(x, \xi)=S(x, \xi’)\tilde{W}_{I}(x, \xi) , where \overline{W}_{I} is the matrix in
(2. 23). Then from (2. 15) and (3. 11) we have

\{A(\xi_{n} I_{2a}-M)W_{I}0\}=P_{1}(x, \xi)W(x, \xi)=0

Since A(\xi_{n}I_{2d}-M) is hermitian and (2. 23) yields W^{*}=W_{I}^{*}[I_{2d}, - A_{III}A_{IIII}^{-1}] ,
it follows that W_{I}^{*}A(\xi_{n}I_{2a}-M)=0 and hence the rows of W_{I}^{*}AS are left
null vectors of \xi_{n}I_{2d}-\overline{M} according to (2. 16). On the other hand, the rows
of the m_{1}\cross 2d matrix [\tilde{L}_{d}(x, \xi), 0] is also left null vectors of \xi_{n}I_{2d}-\overline{M}. Hence
there is a (nonsingular) m_{1}\cross m_{1} matrix T(x, \eta’) such that [\tilde{L}_{l}(’ 0]=TW_{I}^{*}AS.

Furthermore it follows from (2. 23) and (3. 15) that W^{*}F_{0}=-W_{I}^{*}(F_{I}– A_{I} II
A_{IIII}^{-1}F_{II}) . Therefore by (3. 18) we obtain \tilde{L}_{tJ}\tilde{F}_{a}=-TW^{*}F_{0} as desired. Thus
the left side of (3. 13) is estimated by W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})F_{0}(x, \eta’, \mp\sqrt{\rho}) not only
for \rho\geqq 0 but also for \rho<0 by continuity. Summing up we have proved

PROPOSITION 3. 1. Defifine a_{-1}^{0}(x, \eta’, \mp\sqrt{\rho}) by (3. 15) (3. 16), (3. 18) (3. 20)
and (3. 22). Then the left hand side of (3. 13) with a_{-1} replaced by a_{-1}^{0} is
estimated by W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})F_{0}(x, \eta’, \mp\sqrt{\rho}) .

Thus, if we define a_{-1} by

a_{-1}(x, \eta’, k)=a_{-1}^{(1)}(x, \eta’)+ka_{-1}((2)x, \eta’)

+(W_{1}(x, \eta’)-kW_{2}(x, \eta’))(g_{-1}(x, \eta’)-kh_{-1}(x, \eta’)) .

where g_{-1} , h_{-1} are homogeneous of degree -1, -1–1/3 in \eta’ respectively
and a_{-1}^{(j)}(x, \eta’) , j=1,2, are the functions b_{j}(x, \eta’, \rho(x, \eta’)) defined by (3. 7)
with b(x, \eta’, k)=a_{-1}^{0}(x, \eta’, k) , then (3. 13) is reduced to the transport equations
for g_{0} and h_{0} :

(3. 23) W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})F_{0}(x, \eta’, \mp\sqrt{\rho})=0

for \rho\geqq 0 , =O(x_{n}^{\infty}) as x_{n}arrow+0 for \alpha<0 ,

which will be solved in the following section. Analogously for j=-1 , -2,
\ldots we can establish
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P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})a_{j-1}(x, \eta’, \mp\sqrt{\rho})+F_{j}(x, \eta’, \mp\sqrt{\rho})

=O(W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})F_{j}(x, \eta’, \mp\sqrt{\rho}))’.
where

F_{j}(x, \eta’, k)=P(x, D)a_{j}-iP_{1}(x, \rho_{x})W_{2}h_{j} ,

and solve the transport equations for g_{j} and h_{j} :

W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})F_{j}(x, \eta’j\mp\sqrt{\rho})=0 for \rho\geqq 0 , =O(x_{n}^{\infty}) as x_{n}arrow+0 for \alpha<0 .

\S 4. Transport equations

In this section we shall look for g_{0}(x, \eta’) and h_{0}(x, \eta’) satisfying (3. 23).
From (3. 9) and (3. 14) we have

(4. 1) F_{0}(x, \eta’, k)=\sum_{j=0}^{n}A_{j}(x)(W_{1}-kW_{2})\cdot(D_{j}g_{0}-kD_{j}h_{0})-ib_{3}h_{0}

+(P(x, D)(W_{1}-kW_{2}))(g_{0}-kh_{0}) .
Moreover, by (3. 10) and (3. 12), b_{3} can be written as

b_{3}(x, \eta’)=\pm\frac{1}{2\sqrt{\rho}}P_{1}(x, \rho_{x})W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})

\pm\frac{1}{2\sqrt{\rho}}(b_{2}(x, \eta’)+P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})W_{2})

Therefore

(4. 2) F_{0}(x, \eta’, \mp\sqrt{\rho})=\sum_{j=0}^{n}A_{j}(x)W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})D_{j}(g_{0}\pm\sqrt{\rho}h_{0})

+(P(x, D)(W_{1}-kW_{2}))(g_{0}-kh_{0})|_{k=\mp\sqrt{\rho}}

\mp\frac{i}{2\sqrt\overline{\rho}}(b_{2}(x, \eta’)+P_{1}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})W_{2})h_{0} ,

since

\sum_{j=0}^{n}A_{j}(x)W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})D_{j}(\pm\sqrt{\rho})=\mp\frac{i}{2\sqrt{\rho}}P_{1}(x, \rho_{x})W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})t

We shall first solve (3. 23) for \rho\geqq 0 and then extend the obtained g_{0} and
h_{0} to the region \rho<0 as in lemma 2. 2.

Let \rho\geqq 0 . Then b_{2}(x, \eta’) and (W^{*}P_{1})(x, \theta_{x}\pm\sqrt{\rho}\rho_{x}) vanish according to
(3. 10), (3. 11) and (3. 12). Thus (3. 23) becomes, by (4. 2),
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(4. 3)_{\pm} \sum_{j=0}^{n}A_{j}^{\pm}(x_{ \eta’},, \sqrt{\rho})\frac{\partial}{\partial x_{j}}(g_{0}\pm\sqrt{\rho}h_{0})+C^{\pm}(x, \eta^{\prime,\sqrt{\rho})(g_{0}\pm\sqrt{\rho}h_{0})=0} ,

where
A_{j}^{\pm}(x, \eta’, t)=W^{*}(x, \theta_{x}\pm t\rho_{x})A_{j}(x)W(x, \theta_{x}\pm t\rho_{x}) , j=0,1 , \cdots , n ,

(4. 4)
C^{\pm}(x, \eta’, t)=iW^{*}(x, \theta_{x}\pm t\rho_{x})(P(x, D)W(x, \theta_{x}\pm t\rho_{x})) .

Furthermore it follows from (2. 1), (2. 2) and (2. 24) that for small \rho>0 the
direction of differentiation in (4. 3)_{+} or (4. 3)_{-} coincides with the bicharacter-
istic curve of \xi_{n}-\lambda(x, \xi’)-\sqrt{\mu(x,\xi’)} or \xi_{n}-\lambda(x, \xi’)+\sqrt{\mu(x,\xi’)} respectively, i . e. ,
with the incoming or outgoing bicharacteristic. (See for instance Ludwig [7]).

Let |\eta’|=1 . We shall show that the equations (4. 3)_{\pm} for g_{0}\pm\sqrt{\rho}h_{0} are
uniquely solvable with data prescribed on the surface \rho=0 . To this end
we make a change of variables (x’, x_{n})arrow(x’, \rho) , \eta’ being regarded as a pa-
rameter, which is possible by virtue of (2. 5). Set

a^{\pm}(_{X’}, \sqrt{\rho}, \eta’)=g_{0}(x, \eta’)\pm\sqrt{\rho}h_{0}(x, \eta’)

Then (4. 3)_{\pm} become

(4. 5)_{\pm} ( \sum_{j=0}^{n}A_{j}^{\pm}(x, \eta’, \sqrt{\rho})\rho_{x_{j}})\frac{\partial a^{\pm}}{\partial\rho}+\sum_{j=0}^{n-1}A_{j}^{\pm}(x, \eta’, \sqrt{\rho})\frac{\partial a^{\pm}}{\partial x_{j}}

+C^{\pm}(x, \eta^{\prime\sqrt{\rho}},)a^{\pm}=0 :

where x_{n}=x_{n}(x’, \rho, \eta’) . As will be seen in (4. 8) below, the coefficient of
\partial a^{\pm}/\partial\rho is singular for \rho=0 . So, we make once more a change of variables
(x’, \rho)- (x’, t) by t=\sqrt{\rho}t Then (4. 5)_{\pm} are equivalent to

(4. 6)_{\pm} C_{n}^{\pm}(x’, t, \eta’)\frac{\partial a^{\pm}}{\partial t}+\sum_{j=0}^{n-1}C_{j}^{\pm}(x’, t, \eta’)\frac{\partial a^{\pm}}{\partial x_{j}}+C_{n+1}^{\pm}(x’, t, \eta’)a^{\pm}=0 ,

where

C_{n}^{\pm}(d, t, \eta’)=\frac{1}{2t}\sum_{j=0}^{n}A_{j}^{\pm}(x, \eta’, t)\rho_{x_{j}} ,

(4. 7) C_{j}^{\pm}(x, t, \eta’)=A_{j}^{\pm}(x, \eta’, t)j j=0,1 , \cdots , n-1 ,\cdot

C_{n+1}^{\pm}(x’, t, \eta’)=C^{\pm}(x, \eta’, t)

Notice that a^{-}(x’, t, \eta’) satisfies the same equation as a^{+}(x’, -t, \eta’) , since by
(4. 4) and (4. 7) C_{n}^{-}(x, t, \eta’)=-C_{n}^{+}(x’, -t, \eta’) and C_{j}^{-}(x, t, \eta\acute{)}=C_{j}^{+}(x, -t, \eta’)

for j\neq n . Moreover C_{j}^{\pm} are hermitian for j=0,1 , \cdots , n . Consequently (4. 6)_{\pm}

have unique solutions smooth in (x’, t, \eta’) for t near zero provided smooth
data are prescribed on t=0, by virtue of
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Lemma 4. 1. \mp(sign\xi_{0}^{0})C_{n}^{\pm}(x’, t, \eta’) are smooth and positive defifinite for
small t\geqq 0 . Moreover

(4. 8) W^{*}(x, \theta_{x})P_{1}(x, \rho_{x})W(x, \theta_{x})=0 for \rho=0 ,

(4. 9) \lim_{tarrow+0}C_{n}^{\pm}(x, t, \eta’)

= \mp\frac{1}{2}\rho_{x}(\partial_{\xi}W^{*})(x, \theta_{x})P_{1}(x, \theta_{x})\rho_{x}(\partial_{\xi}W)(x, \theta_{x})|_{\rho=0}

=\pm{\rm Re}\{W^{*}(x, \theta_{x})P_{1}(x, \rho_{x})\rho_{x}(\partial_{\xi}W)(x, \theta_{x})\}|_{\rho=0} .

PROOF. Let \rho>0 . Then from (4. 4) and (4. 7) we have

C_{n}^{\pm} (x, \sqrt{\rho}, \eta’)=(2\sqrt{\rho})^{-1}W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})P_{1}(x, \rho_{x})W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x}),\cdot

and it follows from (3. 10) and (3. 11) that

W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})P_{1}(x, \rho_{x})W(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})

=\mp\sqrt{\rho}\rho_{x}(\partial_{\xi}W^{*})(x, \theta_{x})P_{1}(x, \theta_{x})\rho_{x}(\partial_{\xi}W)(x, \theta_{x})+O(\rho) ,

which implies (4. 8) and (4. 9). Therefore C_{n}^{\pm}(x’, t, \eta’) are smooth in (x’, t, \eta’)

with t\geqq 0 . To prove that \mp(sign\xi_{0}^{0})C_{n}^{\pm}(x’, t, \eta’) are positive definite we
suppose first \xi_{0}^{0}>0 . Then it suffices to show that

(4. 10) (\partial_{\xi n}W^{*})(x, \theta_{x})P_{1}(x, \theta_{x})(\partial_{\xi n}W)(x, \theta_{x}) is positive definite at
(x, \theta_{x})=(x^{0’}, \xi^{0}) ,

since C \frac{arrow}{n}(x’, t, \eta’) are hermitian and \rho_{x’}(x^{0’}, \eta^{0’})=0 , \rho_{x_{n}}(x^{0’}, \eta^{0’})>0 . To do
so we need

Lemma 4. 2. Let \xi_{0}^{0}>0 and let \xi_{n}^{+}(x, \xi’) , \xi_{n}^{-}(x, \xi’) be the outgoing,
incoming root respectively of (\xi_{n}-\lambda(x, \xi’))^{2}-\mu(x, \xi’)=0i . e. , \xi_{n}^{\pm}(x, \xi’)=\lambda(x, \xi’)

\mp\sqrt{\mu(x,\xi’)} with \sqrt{1}=1 . Then, for \xi_{0}\geqq\mu_{1}(x, \xi’) , the hermitian matrix A(x)
(\xi_{n}^{+}(x, \xi’)-M(x, \xi’)) restricted to the range of the projection

\prod(x, \xi’)=\frac{1}{2\pi i}\S_{c(x,\xi’)}(z-M(x, \xi’))^{-1}dz

has m_{1} positive and m_{1} zero eigenvalues, where C(x, \xi’) is a closed Jordam
curve enclosing \xi_{n}^{\pm}(x, \xi’) only of the roots of Q_{1}(x, \xi’, \xi_{n})=0 .

PROOF. Let (x, \xi’) be fixed. Then \xi_{n}^{\pm}(\xi_{0})=\xi_{n}^{\pm}(x, \xi’) , being regarded as
functions of \xi_{0} only, are simple roots of Q_{1}(x, \xi_{0}, \xi’, \xi_{n})=0 for \xi_{0}>\mu_{1}(x, \xi’)

and hence are analytic functions of \xi_{0} which can be continued up to \xi_{0}arrow+\infty .
On the other hand

N( \xi_{0})=A(x)(\xi_{n}^{+}(\xi_{0})-M(x, \xi’))\prod(x, \xi’)
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may be identified with a hermitian 2m_{1}\cross 2m_{1} matrix of rank m_{1} which has
m_{1} zero and m_{1} nonzero real eigenvalues. Thus we must only show that
the nonzero eigenvalues are positive. Since all eigenvalues of N(\xi_{0}) , say,
\gamma_{1}(\xi_{0}) , \cdots , \gamma_{2m_{1}}(\xi_{0}) are real, they can be labelled so that \gamma_{1}(\xi_{0})\geqq\cdots\geqq\gamma_{2m_{1}}(\xi_{0})

and every \gamma_{j}(\xi_{0}) is a single-valued continuous function for \xi_{0}\geqq\mu_{1}(x, \xi’) .
Therefore it suffices to show that \gamma_{1}(\xi_{0}) , \cdots , \gamma_{m_{1}}(\xi_{0}) are positive. For \xi_{0} large
enough we have

A(x)(\xi_{n}^{+}(x, \xi_{0}, \xi’)-M(x, \xi_{0}, \xi’))/\xi_{0}=A(x)(\xi_{n}^{+}(x, 1, O)-M(x, 1,0)+O(\xi_{0}^{-1}))

and M(x, 1, O)=-A(x)^{-1} .
Here we may assume without loss of generality that A(x) is diagonal and
hence according to condition (i)

A(x) \prod(x, \xi’)=\{\begin{array}{ll}\alpha(x)I_{m_{1}} 00 \beta(x)I_{m_{1}}\end{array}\} ,

where \alpha(x)>0 and \beta(x)<0 . We then observe that \xi_{n}^{+}(x, 1,0)=-\alpha(x)^{-1} and
\xi_{n}^{-}(x, 1,0)=-\beta(x)^{-1} , so

A(x)( \xi_{n}^{+}(x, 1, O)-M(x, 1,0))\prod(x, 1,0)=\{\begin{array}{l}0 00(1-\alpha(x)^{-1}\beta(x))I_{m_{1}}\end{array}\} ,

which proves the lemma, since the eigenvalues of A(x)(\xi_{n}^{+}(x, \xi’)-M(x, \xi’))

are multi-valued continuous functions of (x, \xi’) .
END OF proof OF Lemma 4. 1. We shall construct another basis \overline{W}(x, \xi)

satisfying (4. 10). Let us keep using the notations in Lemma 4. 2 and its
proof. Let \gamma_{1} , \cdots , \gamma_{m_{1}} be the positive eigenvalues of A(x^{0’})(\xi_{n}^{0}-M(x^{0’}, \xi^{0’}))

\prod(x^{0’}, \xi^{0’}) and let \tilde{h}_{1}^{0} , \cdots,\tilde{h}_{m_{1}}^{0} be orthonormal eigenvectors of the matrix cor-
responding to \gamma_{1} , \cdots , \gamma_{m_{1}} respectively. For j=1, \cdots , m_{1} set

(4. 11) h_{j}(x, \xi’)=(\lambda (x, \mu_{1}(x, \xi’) , \xi’)-M(x, \xi’))\tilde{h}_{j}(x, \xi’)9

with \tilde{h}_{j}(x, \xi’)=\prod(x, \xi’)\tilde{h}_{j}^{0} . Then \tilde{h}_{j}(x^{0’}, \xi^{0’})=\tilde{h}_{j}^{0} and it follows from Lemma
2. 3 that

(4. 12) ( \xi_{n}^{+}(x, \xi’)-M(x, \xi’))^{2}\prod(x, \xi’)=0 for \xi_{0}=\mu_{1}(x, \xi’) [

Therefore h_{j}(x, \xi’) are null vectors of ( \xi_{n}^{+}(x, \xi’)-M(x, \xi’))\prod(x, \xi’) for \xi_{0}=\mu_{1}

(x, \xi’) and hence h_{1} , \cdots , h_{m_{1}},\tilde{h}_{1} , \cdots,\tilde{h}_{m_{1}} are linearly independent. We shall
now set

\overline{W}(x, \xi)=\{\begin{array}{lll}I_{2d} -A_{IIII}^{-1} A_{II} I\end{array}\} (x, \xi’)W_{I}(x, \xi) ,
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and seek a 2d\cross m_{1} matrix W_{I}(x, \xi) with maximal rank in the form

(4. 13) W_{I}(x, \xi)=h(x, \xi’)+\tilde{h}(x, \xi’)S(x, \xi’ , \lambda(x, \xi’)-\xi_{n})

such that

(4. 14) (\xi_{n}-M(x, \xi’))W_{I}(x, \xi)=0 for \xi_{n}=\xi_{n}^{+}(x, \xi’) ,

where h=[h_{1^{ }},\cdots, h_{m_{1}}],\tilde{h}=[\tilde{h}_{1^{ }},\cdots,\tilde{h}_{m_{1}}] and S(x, \xi’, z) is a smooth m_{1}\cross m_{1}

matrix, analytic in z, and \partial S/\partial z=I_{m_{1}} for z=0. In this case it follows from
(2. 15) that P_{1}(x, \xi)\overline{W}(x, \xi)=0 for \xi_{n}=\xi_{n}^{+}(x, \xi’) and

(\partial_{\epsilon_{n}}\overline{W}^{*})(x^{0’}, \xi^{0’})P_{1}(x^{0’}, \xi^{0’})(\partial_{\xi n}\overline{W})(x^{0’}, \xi^{0})

=( \tilde{h}^{0})^{*}A(x^{0’})(\xi-M(x^{0’}, \xi^{0’}))\prod(x^{0’}, \xi^{0’})\tilde{h}^{0}=\{\begin{array}{lll}\gamma_{1} 0o 0 \circ \gamma_{m}\end{array}\} ,

which will give (4. 10). To assure (4. 14) with (4. 13) we need to solve the
linear equation for S

(4. 15) (\lambda(x, \xi’)-\sqrt{\mu(x,\xi’)}-M(x, \xi’))\tilde{h}(x, \xi’)S(x, \xi’, \sqrt{\mu})

=-(\lambda(x, \xi’)-\sqrt{\mu(x,\xi’)}-M(x, \xi’))h(x, \xi’)

It follows from (4. 11) that the ranks of ((\lambda-\sqrt{\mu}-M)[\tilde{h}, h])(x, \xi’) and
((\lambda-\sqrt{\mu}-M)\tilde{h})(x, \xi’) are equal to m_{1} . Therefore (4. 15) is uniquely solvable
so that S(x, \xi’, \sqrt{\mu}) is smooth in (x, \xi’, \sqrt{\mu}) and analytic in \sqrt{\mu}. Moreover
the right side of (4. 15) vanishes for \mu=0 according to (4. 11) and (4. 12).
Hence S(x, \xi’ , \sqrt{\mu)}=O(\sqrt{\mu}) . Differentiate both sides of (4. 15) with respect
to \sqrt{\mu} and set \mu=0 . Then, since \xi_{0}=\mu_{1}(x, \xi’)+O(\mu) , we have

((\lambda-M)\tilde{h})(x, \xi’)(\partial S/\partial\sqrt{\mu})=h(x, \xi’) for \mu=0 .

This and (4. 11) yield

h(x, \xi’)(\partial S/\partial\sqrt{\mu})=h(x, \xi’) for \mu=0 .
Thus we find that \partial S/\partial\sqrt{\mu}) =I_{m_{1}} for \mu=0 , since h(x, \xi’) is of rank m_{1} . This
completes the proof of Lemma 4. 1 when \xi_{0}^{0}>0 . The other case may be
analogously treated.

Now let a^{\pm}(x’, t, \eta’) be the solutions of (4. 6)_{\pm} with smooth data on t=0
which will be specified in the next section so that (1. 2) is solvable, and let

\hat{g}(x’, \rho, \eta’)=\frac{a^{+}(x’,\sqrt{\rho},\eta’)+a^{+}(x’,-\sqrt{\rho},\eta’)}{2} ,
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\hat{h}(x, \rho, \eta’)=\acute{\acute{\frac{a^{+}(_{X},\sqrt{\rho},\eta)-a^{+}(x’,-\sqrt{\rho},\eta’)}{2\sqrt{\rho}}}}

Then \hat{g} and \hat{h} are smooth and \hat{g}\pm\sqrt{\rho}\hat{h} satisfy (4. 5)_{\pm} , since a^{\pm}(x’, t, \eta’) are
smooth for t near 0 and a^{-}(x’, t, \eta’)=a^{+}(x’, -t, \eta’) . Hence if we define g_{0}

and h_{0} by

g_{0}(x, \eta’)=\hat{g}(x’, \rho(x, \eta’) , \eta’) , h_{0}(x, \eta’)=\hat{h}(x’, \rho(x, \eta’) , \eta’) ,

then g_{0}\pm\sqrt{\rho}h_{0} are solutions of (4. 3)_{\pm} or (3. 23) for \rho\geqq 0 .
Next we shall extend \mathcal{G}0 and h_{0} to the region \rho<0 so that (3. 23) holds.

To do so we eliminate \sqrt{\rho} It follows from (4. 1) and (4. 4) that i times
the left side of (3. 23) is equal to

\sum_{j=0}^{n}A_{j}^{\pm}(x, \eta^{\prime\sqrt{\rho}},)(\frac{\partial g_{0}}{\partial x_{j}}\pm\sqrt{\rho}\frac{\partial h_{0}}{\partial x_{j}})+C^{\pm}(x, \eta’, \sqrt{\rho})(g_{0}\pm\sqrt{\rho}h_{0})

+W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})b_{3}(x, \eta’)h_{0} .

Moreover we can write

(4. 16) A_{j}^{\pm}(x, \eta^{\prime\sqrt{\rho}},)=A_{j}^{(1)}(x’,
\rho , \eta\acute{)}\pm\sqrt{\rho}A_{j}^{(2)}(x’, \rho, \eta’) ,

C^{\pm}(_{X, \eta’}, \sqrt{\rho})=C^{(1)}(x, \rho, \eta’)\pm\sqrt{\rho}C^{(2)}(x, \rho, \eta’) ,

W^{*}(x, \theta_{x}\pm\sqrt{\rho}\rho_{x})b_{3}(x, \eta’)=b_{3}^{(1)}(x, \rho, \eta’)\pm\sqrt{\rho}b_{3}^{(2)}x’ , \rho, \eta’) :

where A_{j}^{(l)} , C^{(l)} and b_{3}^{(l)} are smooth in (x’, \rho, \eta’) . Therefore for \alpha<0(3.23)

becomes

(4. 17) ( \sum_{j=0}^{n}A_{j}^{(1)}\rho_{x_{j}})\frac{\partial g_{0}}{\partial\rho}+\rho(\sum_{j=0}^{n}A_{j}^{(2)}\rho_{x_{j}})\frac{\partial h_{0}}{\partial\rho}+\Phi_{1}=O(x_{n}^{\infty}) ,

(4. 18) ( \sum_{j=0}^{n}A_{j}^{(2)}\rho_{x_{j}})\frac{\partial g_{0}}{\partial\rho}+(\sum_{j=0}^{n}A_{j}^{(1)}\rho_{x_{j}})\frac{\partial h_{0}}{\partial\rho}+\Phi_{2}=O(x_{n}^{\infty}) ,

where

\Phi_{1}=\sum_{j=0}^{n-1}(A_{j}^{(1)}\frac{\partial g_{0}}{\partial x_{j}}+\rho A_{j}^{(2)}\frac{\partial h_{0}}{\partial x_{j}})+C^{(1)}g_{0}+(\rho C^{(2)}+b_{3}^{(1)})h_{0} ,

\Phi_{2}=\sum_{j=0}^{n-1}(A_{j}^{(2)}\frac{\partial g_{0}}{\partial x_{j}}+A_{j}^{(1)}\frac{\partial h_{0}}{\partial x_{j}})+C^{(2)}g_{0}+(C^{(1)}+b_{3}^{(2)})h_{0} .

Note that the left sides of (4. 17) and (4. 18) vanish for \rho\geqq 0 . Moreover
from (4. 4) and (4. 16) we have for \rho=0

\sum_{j=0}^{n}A_{j}^{(1)}(x’, \rho, \eta’)\rho_{x_{j}}=W^{*}(x, \theta_{x})P_{1}(x, \rho_{x})W(x, \theta_{x}) ,
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\sum_{j=0}^{n}A_{j}^{(2)}(x’, \rho, \eta’)\rho_{x_{j}}=2{\rm Re}\{W^{*}(x, \theta_{x})P_{1}(x, \rho_{x})\rho_{x}(\partial_{\xi}W)(x, \theta_{x})\}

Therefore Lemma 4. 1 implies that \sum_{j=0}^{n}A_{j}^{(2)}\rho_{x_{j}}is nonsingular and \rho^{-1}\sum_{j=0}^{n}A_{j}^{(1)}\rho_{x_{\dot{\eta}}}

is smooth. Hence (4. 17) is equivalent to

(4. 19) ( \rho^{-1}\sum_{j=0}^{n}A_{j}^{(1)}\rho_{x_{j}})\frac{\partial g_{0}}{\partial\rho}+(\sum_{j=0}^{n}A_{j}^{(2)}\rho_{x_{j}})\frac{\partial h_{0}}{\partial\rho}+\rho^{-1}\Phi_{1}=O(x_{n}^{\infty}) ,

where \rho^{-1}\Phi_{1} is also smooth. Furthermore the matrix

\{\begin{array}{ll}\rho^{-1}\sum_{j=0}^{n}A_{j}^{(1)}\rho_{x_{j}} \sum_{j=0}^{n}A_{j}^{(2)}\rho_{x_{j}}\sum_{j=0}^{n}A_{j}^{(2)}\rho_{x_{j}} \sum_{j=0}^{n}A_{j}^{(1)}\rho_{x_{j}}\end{array}\}

is nonsingular. We shall now extend g_{0} and h_{0} arbitrarily to the region
\alpha<0 , x_{n}=0 . Then, for \alpha<0 and x_{n}=0 , all derivatives of g_{0} and h_{0} with
respect to \rho (so all normal derivatives of g_{0} and h_{0}) are uniquely determind
so that (4. 18) and (4. 19) hold, as in the proof of Lemma 2.2. Thus we
obtain the desired extensions of g_{0} and h_{0} to the region \rho<0 by Whitney’s
extension theorem.

\S 5. Boundary conditions

The main task in this section is to solve (1. 2). It follows from (2. 25),
(2. 26), (3. 2) and (3. 9) that the boundary value of G^{(1)}v^{(1)} is

(5. 1) (G^{(1)}v^{(1)})(x’)= \int_{R^{n}}e^{i\phi(x’,\eta’)(c_{1}(X} , \eta\acute{)}-ic_{2}(x, \eta\acute{)}K(\eta’))\chi(\eta’)\hat{v}^{(1)}(\eta’)d\acute{\eta}-
,

where K(\eta’) is the symbol defined by (2. 28),

(5. 2) \phi(x’, \eta’)=\theta(x’, \eta’)-\frac{2}{3}\rho(x, \eta’)^{3/2}+\frac{2}{3}\alpha^{3/2}|\eta’| ,

c_{1}\in S_{1,0}^{0}, c_{2}\in S_{1,0}^{-1/3} are classical symbols such that

c_{1}(x’, \eta’)=W(x’, \theta_{x})g_{0}+O(\alpha) mod S_{1,0}^{-1} ,
(5. 3)

c_{2}(x’, \eta’)=\rho_{x}(\partial_{\xi}W)(x, \theta_{x})g_{0}+W(x, \theta_{x})h_{0}+O(\alpha|\eta’|^{-1/3}) mod S_{1,0}^{-1-1_{l}/3} ,

and O(\alpha|\eta’|^{q}) denotes a symbol of the form \alpha a(x, \eta’) with a\in S_{1,0}^{q} . There-
fore the restriction G_{0}^{(1)} of G^{(1)} to \partial\Omega is a Fourier integral operator whose
phase function is \phi(x’, \eta’)-y’\cdot\eta’ , whose amplitude is c_{1}-ic_{2}K. Moreover
the canonical transformation x’=x\acute{(}y’ , \eta\acute{)} , \xi’=\xi’(y’, \eta’) associated with G_{0}^{(1)}

maps \alpha=0 onto the glancing surface and is locally bijective according to
(2. 3), (2. 4) and (5. 2). Let \Sigma be a conic neighborhood of (x^{0’}, \xi^{0’}) containing
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WF(f) and \hat{\Sigma} be the inverse image of \Sigma under the canonical transformation.
The cutoff function \chi is then taken so that \chi(\eta’)=1 if (x\acute{(}y’, \eta’) , \xi’(y’, \eta’))

\in WF(f) for some y’ and \chi(\eta’)=0 if (y’, \eta’)\not\in\Sigma^{\wedge} for all y’ .
G^{(2)} may be constructed by the eikonal method so that G^{(2)}v^{(2)} satisfies

(1. 1) and is of the form

(G^{\langle 2)}v^{(2)})(x)= \int_{R^{n}}e^{i\varphi}((2)x, \xi’)a^{(2)}(x, \xi’)\chi_{1}(\xi’)\hat{v}^{(2)}(\xi’)d\xi’

Here \varphi^{(2)} is a diagonal matrix whose elements are solutions of the initial
value problems

\varphi_{x_{n}}(x, \xi’)-\xi_{n,j}^{+}(x, \varphi_{x’}(x, \xi’))=0 for x_{n}>0 , j=1 , \cdots , l ,

\varphi(x, \xi’)=x’\cdot\xi’ for x_{n}=0 ,

where \xi_{n,j}^{+}(x,\xi’) are the semisimple real roots of the equation det P_{1}(x, \xi’, \xi_{n})=0

which are outgoing, i . e. , (\partial\xi_{n,j}^{+}/\partial\xi_{0})(x^{0’}, \xi^{0’})<0 and a^{(2)}(x, \xi’)\in S_{1,0}^{0} is a clas-
sical symbol whose principal part a_{0}^{(2)}(x, \xi’) is a basis of the null space of
P_{1}(x, \xi’, \xi_{n,j}^{+}(x, \xi’)) , j=1 , \cdots , l . (See for instance [7]). The cutoff function
\chi_{1} is taken so that \chi_{1}(\xi’(y’, \eta’))=1 on \Sigma^{\wedge}.

G^{(3)} may be constructed by the theory of elliptic pseudodifferential
operators so that G^{(3)}v^{(3)} satisfies (1. 1) and its boundary value is

(G^{(\S)}v^{(3)})(x’)= \int_{R^{n}}e^{ix’\xi’}a^{(3)}(x, \xi’)\chi_{1}(\xi’)\hat{v}^{(3)}(\xi’)d\xi’ ,

where a^{(3)}\in S_{1,0}^{0} is a classical symbol whose principal part a_{0}^{(3)} is a basis of
root subspace of P_{1}(x’, \xi’, \xi_{n,j}^{+}(x’, \xi’)) corresponding to the roots \xi_{n,j}^{+}(x’, \xi’) of
det P_{1}(x’, \xi’, \xi_{n})=0 with Im \xi_{n,j}^{+}(x^{0’}, \xi^{0’})>0 , j=l+1 , \cdots , d-m_{1} . Recall that
a Lopatinski determinant R(x’, \xi’) of the mixed problem is defined by

(5. 4) R(x’, \xi’)=\det(B(x’)[W(x’, \xi’, \xi_{n}^{+}(x’, \xi’)), a_{0}^{(2)}(x’, \xi’), a_{0}^{(3)}(x’, \xi’)]) ,

where \xi_{n}^{+}(x’, \xi’) is the outgoing root of (\xi_{n}-\lambda(x’, \xi’))^{2}-\mu(x’, \xi’)=0 .
We shall now solve (1. 2). Let \Phi be the elliptic Fourier integral operator

with the same phase function as G_{0}^{(1)} whose amplitude is equal to one, and
let \Phi^{-1} be an elliptic Fourier integral operator with canonical transformation
inverting that associated to G_{0}^{(1)} such that \Phi\Phi^{-1}v=v (modulo C^{\infty}) for v\in \mathcal{E}’(\partial\Omega)

with WF(v)\in\Sigma . Then (1. 2) is equivalent (modulo C^{\infty}) to

(5. 5) \Phi^{-1}B(G_{0}^{(1)}v^{(1)}+\sum_{j=2}^{3}G_{0}^{(j)}\Phi(\Phi^{-1}v^{(j)}))=\Phi^{-1}f .

where G_{0}^{(j)} , j=2,3, denote the restrictions of G^{(j)} to \partial\Omega . Note that \Phi^{-1}BG_{0}^{(1)}

and \Phi^{-1}BG_{0}^{(j)}\Phi , j=2,3, are pseudodifferential operators. Moreover it follows
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from (2. 14) and condition (ii) that Bis\cdot of the form

(5. 6) B(x’)=[B_{I}(x’), 0] with B_{I} the d\cross 2d block.

Let W_{I}, W_{h} and W_{e} be the matrices of the first 2d rows of W, a_{0}^{(2)} and
a_{0}^{(3)} respectively. Note that the latters are of the same rank as the formers
according to (2. 15). Then it follows from (5. 1), (5. 3) and (5. 6) that for
(x’, \xi’)=(x’(y’, \eta’) , \xi’(y’, \eta’)) the principal symbol in the amplitude of \Phi^{-1}BG_{0}^{(1)} is

(5. 7) B_{I}(W_{I}(x, \theta_{x})g_{0}+O(\alpha))-iB_{I}\{\rho_{x_{\gamma}}(\partial_{\xi n}W_{I})(x’, \theta_{x})g_{0}

+W_{I}(d, \theta_{x})h_{0}+O(\alpha|\eta’|^{-1/3})\}K ,

and that of \Phi^{-1}B[G_{0}^{(2)}, G_{0}^{(3)}]\Phi is

(5. 8) B_{I}[W_{h}, W_{e}](x’, \theta_{x’})+O(\alpha)1

Moreover the Lopatinski determinant defined by (5. 4) becomes

(5. 9) R(x, \xi’)=\det(B_{I}(x\acute{)}[W_{I}(x’, \xi’, \xi_{n}^{+}(x, \xi’)), W_{h}(d, \xi’), W_{e}(x, \xi’)])

Now let R(x^{0’}, \xi^{0’})\neq 0 . In this case we shall prescribe the initial data
for the transport equations (4. 6)_{\pm} so that a^{\pm}|_{t=0}=g_{0}|_{\rho=0}=I_{m_{1}} . Then (5. 5)
is an elliptic pseudodifferential equation and hence is solvable, because the
second term in (5. 7) is estimated by a constant times (|\alpha|+|\eta’|^{-2/3})^{1/2} accord-
ing to (2. 29).

In what follows we suppose R(x^{0’}, \xi^{0’})=0 . With d =x\acute{(}y’ , \eta’ ) set for
convenience

V(\mathcal{U}, \eta\acute{)}=[V_{1^{ }},\cdots, V_{a}](y’, \eta’)

(5. 10) =B_{I}(d)[W_{I}(x, \theta_{x}), W_{h}(x, \theta_{x’}) , W_{e}(x, \theta_{x’})] ,

[\tilde{V}_{1^{ }},\cdots, V_{m_{1}}](y’, \eta’)=|\eta’|B_{I}(x’)(\partial_{\xi}W_{I})n(x, \theta_{x})r

Then V,\tilde{V}_{f}\in S_{1,0}^{0} and it follows from (2. 11) and (5. 9) that

(5. 11) R(x, \theta_{x’})=\det V(y’, \eta’) for \alpha=0 .

Therefore R(x^{0’}, \xi^{0’})=0 becomes

(5. 12) det V(y^{0’}, \eta^{0’})=0

with y^{0’}=\phi_{\eta’}(x^{0’}, \eta^{0’}) , and condition (iii) means

(5. 13) \sum_{j=0}^{m_{1}}\det[V_{1^{ }},\cdots, V_{j-1}, V_{j}, V_{j+1^{ }},\cdots, V_{d}]\neq 0 at (y^{0’}, \eta^{0’}) .

For definiteness we assume that
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(5. 14) det [V_{1}, V_{2}, \cdots, V_{tl}](y^{0’}, \eta^{0’})\neq 0

and set

(5. 15) V(y’, \eta’)=[V_{1}, V_{2}, \cdots, V_{d}](y’, \eta’)

Let V(y’, D_{y’}) be the elliptic pseudodifferential operator with symbol
V(y’, \eta’) and let V^{-1} be a microlocal parametrix for V. Then by (5. 8),
(5. 10) and (5. 15) the principal symbol of V(y’, D_{y’})^{-1}\Phi^{-1}B[G_{0}^{(2)}, G_{0}^{(3)}]\Phi is

(5. 16) \{\begin{array}{l}O(\alpha)I_{d-m_{1}}\end{array}\} mod S_{1,0}^{-1} ,

since

(5. 17) V(y’, \eta’)^{-1}V(y’, \eta’)=[a_{jk} ; j\downarrow 1, \cdots, d, karrow 1, \cdots, d] ,

where a_{jk}=\delta_{jk} for j\geqq 1 , k\geqq 2 , a_{11}=(\det V)/\det V, a_{j1}=- det ( V|_{r_{j}arrow\overline{V}_{1}})/\det V

for j\geqq 2 , and V|_{V_{j}arrow\overline{V}_{1}} denotes the matrix V with V_{j} replaced by V_{1} . MoreO-
ver according to (5. 7) the principal symbol of V^{-1}\Phi^{-1}BG_{0}^{(1)} is of the form

(5. 18) \Psi-i\overline{\Psi}K mod S_{\overline{1/}3,0}^{1} ,

where \Psi\in S_{1,0}^{0},\tilde{\Psi}\in S_{1,0}^{-1/3} , and for \alpha=0

(5. 19) \Psi(y’, \eta’)=[a_{jk} ; j\downarrow 1, \cdots, d, karrow 1, \cdots, m_{1}]g_{0} ,

(5. 20) \tilde{\Psi}(y’, \eta’)=|\eta’|^{-1}\rho_{x_{n}}V^{-1}[V_{1^{ }},\cdots, V_{m_{1}}]g_{0}

+[a_{jk} ; j\downarrow 1, \cdots, d, karrow 1, \cdots, m_{1}]h_{01}

Therefore, setting

\tilde{V}^{-1}\Phi^{-1}BG_{0}^{(1)}=\{\begin{array}{l}B_{11}B_{21}\end{array}\} \chi,\tilde{V}^{-1}\Phi^{-1}B[G_{0}^{(2)}, G_{0}^{(3)}]\Phi=\{\begin{array}{l}B_{12}B_{22}\end{array}\} :

where B_{11} and B_{22} are m_{1}\cross m_{1} and (d-m_{1})\cross(d-m_{1}) matrices of operators
respectively, we find from (5. 16) that \sigma(B_{22})\in S_{1,0}^{0} is elliptic and \sigma(B_{12})\in S_{1,0}^{0}

is O(\alpha) mod S_{1,0}^{-1} , \sigma(B_{jk}) being the symbol of B_{jk} , while \sigma(B_{11}) , \sigma(B_{21})\in S_{1/3,0}^{0} .
Consequently (5. 5) is equivalent (modulo C^{\infty}) to

(5. 21) (B_{11}-B_{12}B_{22}^{-1}B_{21})\chi v^{(1)}=f^{(1)}-B_{12}B_{22}^{-1} \{\begin{array}{l}f^{(2)}f^{(3)}\end{array}\}\equiv F

with

\{\begin{array}{l}v^{(2)}v^{(3)}\end{array}\}=\Phi B_{22}^{-1} (\{\begin{array}{l}f^{(2)}f^{(3)}\end{array}\}-B_{21}\chi v^{(1)}) :

where B_{22}^{-1} is a microlocal parametrix for B_{22} and V^{-1}\Phi^{-1}.f={}^{t}[^{t}f^{(1)},{}^{t}f^{(2)},{}^{t}f^{(3)}] .
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Now let us consider (5. 21). Since \sigma(B_{12}B_{22}^{-1})=O(\alpha) mod S_{1,0}^{-1}, the principal
symbol of B_{11}-B_{12}B_{22}^{-1}B_{21} is

(5. 22) \Psi^{(1)}-i\tilde{\Psi}^{(1)}K mod S_{1/3,0}^{-1} ,

where \Psi^{(1)},\tilde{\Psi}^{(1)} are the uppermost m_{1}\cross m_{1} blocks of \Psi,\tilde{\Psi} respectively when
\alpha=0 . It follows from (5. 17) and (5. 19) that

\Psi^{(1)}=\{

a_{11}g_{11} , a_{11}g_{12}, \cdots , a_{11}q_{1m_{1}}

a_{21}q_{11}+q_{21} , \cdots\cdots

:
a_{m_{1}1}g_{11}+g_{m_{1}1} , \cdots

for \alpha=0 ,

where we have set g_{0}=[g_{jk} ; j\downarrow 1, \cdots, m_{1}, karrow 1, \cdots, m_{1}] . For the transport
equations (4. 6)_{\pm} we shall prescribe the initial data on t=0 so that g_{jk}|_{\rho=0}=\delta_{jk}

for j\geqq 1 , k\geqq 2 , g_{11}\neq 0 , say, g_{11}|_{\rho=0}=\det V|_{\alpha=0} and

(5. 23) a_{j1}g_{11}+g_{j1}=0 for \rho=0 , j=2, \cdots , m_{1}t

Then g_{0} is nonsignular by virtue of (5. 14) and it follows that

(5. 24) \Psi^{(1)}(y’, \eta’)=\{\begin{array}{lllll}det V(y’ ’ \eta’) 0 0 I_{m_{1}-1}\end{array}\} for \alpha=0 .

Moreover we find that the uppermost left entry \tilde{\Psi}_{11} of \tilde{\Psi}^{(1\rangle} is

(5. 25) \tilde{\Psi}_{11}(y’, \eta’)=|\eta’|^{-1}\rho_{x_{n}}\sum_{j=1}^{m_{1}}\det(V|_{V_{j^{arrow\overline{V}}j}})+|\eta’|^{-1/3}O (det V) for \alpha=0 ,

which does not vanish by (2. 5), (5. 12) and (5. 13). In fact, setting V^{-1}

[V_{1^{ }},\cdots, V_{m_{1}}]=[b_{jk} ; j\downarrow 1, \cdots, d, karrow 1, \cdots, m_{1}] we have

V_{j}=b_{1j}V_{1}+ \sum_{k=2}^{a}b_{kj}V_{k} , j=1, \cdots , m_{1} ,

where b_{11}=1 and b_{k1}=0 for k\geqq 2 . Therefore it follows from (5. 23) that
for \alpha=0

\sum_{j=1}^{m_{1}} det (V|_{r_{j^{arrow}}\overline{v}_{j}})= \sum_{j=1}^{m_{1}}b_{1f}g_{j1}+(\det V)\sum_{j=2}^{m_{1}}b_{jj}r

Thus we obtain (5. 25) by (5. 20), since a_{1k}=O (det V) for k\geqq 1 .
Now set

v^{(1)}=\{\begin{array}{l}v_{1}v’\end{array}\} , F=\{\begin{array}{l}F_{1}F,\end{array}\} , \Psi^{(1)}=\{\begin{array}{ll}\Psi_{11} \Psi_{12}\Psi_{21} \Psi_{22}\end{array}\} , \tilde{\Psi}^{t1)}=[_{\tilde{\Psi}_{21}}^{\tilde{\Psi}_{11}}\tilde{\Psi}_{12]}\tilde{\Psi}_{22}’.

where v_{1} , F_{1} , \Psi_{11} and \tilde{\Psi}_{11} are scalars, and write (5. 21) as
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C_{11}\chi v_{1}+C_{12}\chi v’=F_{1}

C_{21}\chi v_{1}+C_{22}\chi v’=F’

Then according to (5.22) and (5.24) the principal symbol c_{ij}, of C_{if} are
such that

c_{11}=\Psi_{11}-i\tilde{\Psi}_{11}K, \Psi_{11}=\det V+O(\alpha),\cdot

c_{12}=-i\tilde{\Psi}_{12}K+O(\alpha) ,
(5. 26)

c_{21}=-i\tilde{\Psi}_{21}K+O(\alpha) ,
c_{22}=I_{m_{1}-1}-i\tilde{\Psi}_{22}K+O(\alpha)

Since \tilde{\Psi}_{22}\in S_{1,0}^{-1/3} and (2. 29) implies

(5. 27) |\eta’|^{-1/3}|K(\eta’)|\leqq C(|\alpha|+|\eta’|^{-2/3})^{1/2} ,

it follows that c_{22}\in S_{1/3,0}^{0} is elliptic. Thus (5. 21) is equivalent (modulo C^{\infty}) to

(5. 28) (C_{11}-C_{12}C_{22}^{-1}C_{21})\chi v_{1}=F_{1}-C_{12}C_{22}^{-1}F\equiv\tilde{F}_{1}

with
v’=C_{22}^{-1}(F’-C_{21}\chi v_{1}) ,

where C_{22}^{-1} denotes a microlocal parametrix for C_{22} . We shall show that
for \alpha=0 and |\eta’|=1

(5. 29) \Psi_{11}=D(x’, \theta_{x}\prime\prime)\tilde{\Psi}_{11}\sqrt{\mu_{2}(x’,\theta_{x’})}/\rho_{x_{n}}+O(D(x’, \theta_{x}\prime\prime)^{2})

Let \alpha=0 , |\eta’|=1 and for convenience set \xi’=\theta_{x’}(x’, \eta’) . Then (1. 5) and
(2. 12) imply \xi_{0}=\mu_{1}(d, \xi’) . Hence from (1. 6)

\tilde{R}(x’, \xi’, O)=-D(x’, \xi’)\tilde{R}^{(1}’(d, \xi’, 0)

and

\tilde{R}^{(1)}(d, \xi’, 0)=(\partial\tilde{R}/\partial z)(d, \xi’, 0)+O(D(x’, \xi’))\Gamma

Moreover it follows from (5. 9) and (5. 10) that

( \partial\tilde{R}/\partial z)(x’, \xi’, 0)=-\sqrt{\mu_{2}(x’,\xi’)}\sum_{j=1}^{m_{1}}\det(V|_{V_{j}arrow\overline{V}_{1}})

since \xi_{n}^{+}(x’, \xi’)=\lambda(d, \xi’)-\sqrt{\mu(d,\xi’)} . Therefore we obtain (5. 29) by virtue of
(5. 11),

First we consider a special case where D(x’, \xi’) vanishes identically.
Then \Psi_{11}=O(\alpha) and hence

c_{11}(y’, \eta’)=-i\tilde{\Psi}_{11}K+O(\alpha) .
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Set, as in [17],

v_{1}=|D_{y’}|^{1/3}K(D_{y’})^{-1}\tilde{v}_{1}

and to both sides of (5. 28) apply i\tilde{\Psi}_{11}(y’, D_{y’})^{-1}|D_{y’}|^{-1/3} which is an elliptic
pseudodifferential operator of order zero according to (5. 25). Then (5. 28)
is equivalent (modulo C^{\infty}) to

(I+C_{11})\chi\tilde{v}_{1}=i\tilde{\Psi}_{11}^{-1}|D_{y’}|^{-1/3}F_{1}

where the principal symbol \tilde{c}_{11} of C_{11} is
\tilde{c}_{11}(y’, \eta’)=|\eta’|^{1/3}K^{-1}O(\alpha)

+(\tilde{\Psi}_{12}’|\eta’|^{-1/3}K+O(\alpha))c_{22}^{-1}(\tilde{\Psi}_{21}’+|\eta’|^{1/3}K^{-1}O(\alpha)) mod S_{\overline{1/}3,0}^{1/3}

with \tilde{\Psi}_{12}’,\tilde{\Psi}_{21}’\in S_{1,0}^{0} . Therefore we find from (2. 33) and (5. 27) that 1+\tilde{c}_{11}\in

S_{1/3,0}^{0} is elliptic. Consequently (5. 28) or (5. 21) is solvable modulo C^{\infty} with
||K\chi v_{1}||_{-_{\tau}^{1}}\leqq const . ||F_{1}|| .

Now we shall consider the general case. Assume that condition (iv)
holds. In this case we use a device, due to Imai and Shirota [4], which
is based on

Lemma 5. 1. ([4]). The real and imaginary parts of A’(s)/A(s) are
negative for real s.

We shall first derive the a priori estimate for (5. 28):

(5. 30) ||\chi v_{1}||_{0}\leqq const.||F_{1}||_{1/3}

taking \delta in the cutoff function \chi small enough. Applying the elliptic operator
-e^{i\delta_{1}}\tilde{\Psi}_{11}^{-1}\in S_{1,0}^{1/3} to both sides of (5. 28) we see that the equation is equivalent
to

(5. 31) (-e^{i\delta_{1}}\overline{\Psi}_{11}^{-1}C_{11}+e^{i\delta_{1}}\tilde{\Psi}_{11}^{-1}C_{12}C_{22}^{-1}C_{21})\chi v_{1}=-e^{i\delta_{1}}\tilde{\Psi}_{11}^{-1}F_{1}

and by (5. 26) the principal symbol of -
e^{i\delta_{1}}\tilde{\Psi}_{11}^{-1}C_{11} is

ie^{i\delta_{1}}K-e^{i\delta_{1}}\tilde{\Psi}_{11}^{-1}\Psi_{11} mod S_{\overline{1/}3,01}^{2/3}

It follows from (5. 29) and condition (iv) that

(5. 32) Re (-e^{i\delta_{1}}\tilde{\Psi}_{11}^{-1}\Psi_{11})(y’, \eta’)\geqq 0 for \alpha=0 ,

while (2. 27), (2. 29) and Lemma 5. 1 imply that for some positive constant
C_{0}

(5. 33) Re (ie^{i\delta_{1}}K(\eta’))\geqq 4C_{0}|K(\eta’)| .
Therefore by virtue of the sharp form of G[mathring]_{a}rding’s inequality we have
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4C_{0}|||K|^{1/2}\chi v_{1}||_{0}^{2}\leqq{\rm Re}
(-e^{i\delta_{1}}\tilde{\Psi}_{11}^{-1}C_{11}\chi v_{1}, \chi v_{1})

+{\rm Re} (a(y’, D_{y’})b(D_{y’})\chi v_{1} , \chi v_{1})+const.||\chi v_{1}||_{-1/3}^{2}

where a(y’, \eta’)\in S_{1,0}^{1/3} and b(\eta’)=\alpha . Moreover the second term on the right
side is estimated by C_{0}|||K|^{1/2}\chi v_{1}||_{0}^{2} . In fact, write

(ab\chi v_{1}, \chi v_{1})=(|K|^{-1/2}ab|K|^{-1/2}(|K|^{1/2}\chi v_{1}) , |K|^{1/2}\chi v_{1})

Then by means of (2. 31) and (2. 33) we get for small \epsilon>0

|(ab\chi v_{1}, \chi v_{1})|\leqq\epsilon|||K|^{1/2}\chi v_{1}||_{0}^{2} .
Therefore by (5. 31) we obtain

(5. 34) 2C_{0}|||K|^{1/2}\chi v_{1}||_{0}^{2}\leqq C|||K|^{-1/2}\tilde{\Psi}_{11}^{-1}C_{12}C_{22}^{-1}C_{21}\chi v_{1}||_{0}^{2}

+C’||\tilde{F}_{1}||_{1/3}^{2}+C’||\chi v_{1}||_{-1/3}^{2}

with some constants C, C’ and C’ . Furthermore we claim that for small
\epsilon>0

(5. 35) |||K|^{-1/2}\tilde{\Psi}_{11}^{-1}C_{12}C_{22}^{-1}C_{21}\chi v_{1}||_{0}^{2}\leqq\epsilon|||K|^{1/2}\chi v_{1}||_{0}^{2}+const.|||K|^{1/2}\chi v_{1}||_{-1’ 3}^{2} .

To this end we write \chi v_{1}=|K|^{1/2}|K|^{-1}(|K|^{1/2}\chi v_{1}) and

(5.36) |K|^{-1/2}\tilde{\Psi}_{11}^{-1}C_{12}C_{22}^{-1}C_{21}|K|^{1/2}|K|^{-1}=\tilde{\Psi}_{11}^{-1}C_{12}C_{22}^{-1}C_{21}|K|^{-1}

+|K|^{-1/2}\{[\tilde{\Psi}_{11}^{-1}C_{12}C_{22}^{-1}, |K|^{1/2}]C_{21}+\tilde{\Psi}_{11}^{-1}C_{12}C_{22}^{-1}[C_{21} , |K|^{1/2}]\}|K|^{-1} .

It follows from (2. 32) and (5. 26) that C_{21}|K|^{-1} is of order -1/3. Moreover
C_{12} is an operator of order zero whose norm is small according to (5. 26)
and (5. 27). Therefore the first term on the right side in (5. 36) is an
operator of order zero whose norm is small. On the other hand the second
term is of order -1/3. In fact we have for example

i[C_{21}, |K|^{1/2}]|K|^{-1}=[\overline{\Psi}_{21} , |K|^{1/2}]K|K|^{-1}+[a, |K|^{1/2}]|K|^{-1} ,

where a(y’, \eta’)=O(\alpha) . Hence Corollary 2.5 implies that [C_{21}, |K|^{1/2}]|K|^{-1} is
of order -2/3. Thus we get (5. 35), which and (5. 34) yield (5. 30)

Now in order to solve (5. 28) it suffices to derive the a priori estimate
analogous to (5. 30) for the adjoint problem of (5. 31). This can be accom-
plished by a producre similar to that derived (5. 30), since it is clear that
the analogues to (5. 32) and (5. 33) hold. Consequently (5. 5) is solvable with
WF(v^{(1)})\subset WF(\Phi^{-1}f) and WF(v^{(j)})\subset WE(f) for j=2,3. Therefore WF
(G_{0}^{(j)}v^{(j)})\subset WF(f) for j=1,2,3 and it is known that for some neighborhood
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U of x^{0’} in R^{n+1}G^{(2)}v^{(2)} and G^{(3)}v^{(3)} satisfy (1. 3), G^{(3)}v^{(3)}\in C^{\infty}(\Omega\cap U) and
WF(G^{(2)}v^{(2)}) as a subset of T^{*}(\Omega\cap U) has the required property. Further-
more it is shown in [16] that, according to the choice (2. 25) of Airy func-
tion, G^{(1)}v^{(1)} also satisfies (1. 3) and WF(G^{(1)}v^{(1)}) has the required property.
(See also [3]).

\S 6. Remarks and examples

Let (x^{0’}, \xi^{0’})\in T^{*}(\partial\Omega)\backslash 0 be a diffractive point and let R(x^{0’}, \xi^{0’})=0 . In
this case we had to choose the initial data g_{0}|_{\rho=0} for the transport equations
(4. 6)_{\pm} so that (5. 23) holds for x_{n}=0 if a_{j1}|_{\alpha=0}\neq 0 for some j=2, \cdots , m_{1} .
Hereafter we keep using the notations in (5. 4), (5. 9), (5. 10), (5. 15) and
(5. 17). We shall show that a_{j1}(y^{0’}, \eta^{0’}) , j=2, \cdots , m_{1} , are proportional to the
corresponding reflection coefficients c_{j1}(x^{0’}, \xi^{0’}) (which will be defined below)
with a nonzero ratio and hence g_{0}|_{\rho=x_{n}=0} must be so taken as to depend on
B(x’) if c_{j1}(x^{0’}, \xi^{0’})\neq 0 for some j=2, \cdots , m_{1} and for any basis W(x’, \xi) of
the null space of P_{1}(x’, \xi) with Q_{1}(x’, \xi)=0 which satisfies (5. 14) and is
independent of B(x’) . In fact, such situations appear for example in the
case of Maxwell’s equations or the linear elastic equations in an isotropic
medium with certain energy conserving boundary conditions which satisfy
condition (iv), as will be seen below.

Recall that for \xi_{0}>\mu_{1}(x, \xi’) the reflection coefficients c_{jk} associated with
a basis of the null space of P_{1} are defined by

(6. 1) [c_{jk}(d, \xi’) ; j\downarrow 1 , \cdots , d, karrow 1 , \cdots , m_{1}]

=\{B(x\acute{)}[W(x, \xi’ , \xi_{n}^{+}(d, \xi’)) , a_{0}^{(2)}(x’, \xi’) , a_{0}^{(3)}(x’, \xi’)]\}^{-1}

B(x’)W(d, \xi’ , \xi_{n}^{-}(x, \xi’)) ,

where \xi_{n}^{-}(x, \xi’) is the incoming root of (\xi_{n}-\lambda(x’, \xi’))^{2}-\mu(x’, \xi’)=0 . (See
[5]; the other c_{jk}, k=m_{1}+i , \cdots , d, can be defined analogously, although they
do not be used here.) Note that c_{jk}(x, \xi’) are well defined for such (x, \xi’)

since |R(x’, \xi’)| is from below by a nonzero constant times (\xi_{0}-\mu_{1}(x’, \xi’))^{1/2}

according to condition (iv). For \xi_{0}=\mu_{1}(x’, \xi’) these are defined to be the
limits as \xi_{0} tends to \mu_{1}(x’, \xi’) .

An interpretation of c_{jk}(x^{0’}, \xi’) for \xi_{0}>\mu_{1}(x^{0’}, \xi’) is as follows. Consider
the frozen (constant coefficients) problem at x^{0’} :

P(x^{0}, D)u=0 in f2 ,

B(x^{0’})u=f on \partial\Omega ,

u(x)=0 in \Omega\cap\{x_{0}<0\}
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Let u_{k}^{-} be an incoming solution of P(x^{0’}, D)u=0 defined by

u_{k}^{-}(X)=I_{R^{n}}^{e^{i\phi^{-}(x,\xi’)}\chi(\xi’\rangle W_{k}(x^{0’},\xi’,\xi_{n}^{-}(x^{0’},\xi’))d\xi’}’.

where W(x’, \xi)=[W_{1}(x, \xi), \cdots, W_{m_{1}}(x, \xi)] , \phi^{\pm}(x, \xi’)=(x\acute{-}x^{0’})\cdot\xi’+x_{n}\xi_{n}^{\pm}(x^{0’}, \xi’)

and \chi\in C_{0}^{\infty}(R^{n}) is a cutoff function supported in a small neighborhood of
\xi^{0’} with \xi_{0}>\mu_{1}(x^{0’}, \xi’) . Note that sing supp u_{k}^{-} is contained in the bichar-
acteristic lines of \xi_{n}-\xi_{n}^{-}(x^{0’}, \xi’) with \xi’\in supp\chi which hit \partial\Omega transversally
at x’=x^{0’} . Let f=B(x^{0’})u_{k}^{-}|_{\partial\Omega} and x_{0}^{0}>0 . Assume for simplicity that det
P_{1}(x, \xi)=Q_{1}(x, \xi)^{m_{1}}Q(x, \xi) and Q_{1} is of the second order. Then a parametrix
u for the frozen problem is given by

u(x)= \int_{R^{n}}e*i\phi(x\xi’)+\chi(\xi’)\sum_{j=1}^{m_{1}}a_{j}(x^{0’}, \xi’)W_{f}(x^{0’}, \xi’ , \xi_{n}^{+}(x^{0’}, \xi’))d\xi’ ,

where, for \xi’\in supp\chi , a_{f} are determined by

\sum_{j=1}^{m_{1}}a_{f}(x^{0’}, \xi’)B(x^{0’})W_{f}(x^{0’}, \xi’ , \xi_{n}^{+}(x^{0’}, \xi’))=B(x^{0’})W_{k}(x^{0’} , \xi’ , \xi_{n}^{+}(x^{0’}, \xi’))r

Thus we have a_{j}(x^{0’}, \xi’)=c_{jk}(x^{0’}, \xi’) . Roughly speaking, the “k-th incident
wave” creates c_{jk}(x^{0’}, \xi’) times the ” j-ih reflected wave”

Now let \xi_{0}^{0}=\mu_{1}(x^{0’}, \xi^{0’})>0 . We shall then prove that for j=2, \cdots , m_{1}

and |\eta^{0’}|=1

(6. 2) c_{f1}(x^{0’}, \xi^{0’})=a_{j1}(y^{0’}, \eta^{0’}) det V(y^{0’}, \eta^{0’})\lim_{\xi_{0}arrow\xi_{0}^{0}+0}((\xi_{n}^{+}-\xi_{n}^{-})/R))(x^{0’},\xi_{0},\xi^{0’}) ,

where the coefficient of a_{j1}(y^{0’}, \eta^{0’}) is a nonzero constant by virtue of (5. 14\grave{)}

and (1. 6). For convenience set \xi’=\theta_{x’}(x’, \eta’) and denote by V_{j}^{+}(x, \xi’) the
j-th coiumn of the matrix in (5. 9): B_{I}(x’)[W_{I}(x’, \xi’, \xi_{n}^{+}(x’, \xi’)), W_{h}(x’, \xi’) ,
W_{e}(x’, \xi’)] and by V_{1}^{-} the vector V_{1}^{+} with \xi_{n}^{+} replaced by \xi_{n}^{-} . Then from
(5. 10) we have V_{1}^{\pm}(x’, \xi’)=V_{1}(y’, \eta’) for \alpha=0 . Let \alpha>0 , |\eta’|=1 and set
U_{1}=(V_{1}^{+}-V_{1}^{-})/(\xi_{n}^{+}-\xi_{n}^{-}) . Then \lim_{\alphaarrow+0}U_{1}(x, \xi’)=V_{1}(y’, \eta’)|_{\alpha=0} and it follows from
(6. 1) and (5. 6) that

V_{1}^{-}(x’, \xi’)=\sum_{j=1}^{a}c_{j1}(x’, \xi’)V_{j}^{+}(x’, \xi’)r

Hence

( \xi_{n}^{+}-\xi_{n}^{-})U_{I}=(1-c_{11})V_{1}^{+}-\sum_{j=2}^{a}c_{j1}V_{j}^{+}

Therefore we find that for j=2, \cdots , m_{1}

c_{j1}(x’, \xi’)=b_{j1}(x’, \xi’)(\xi_{n}^{+}-\xi_{n}^{-})/R(x’,P) ,
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where b_{j1}=- det [V_{1}^{+}, \cdots, V_{j-1}^{+}, U_{1}, V_{j+1^{ }}^{+},\cdots, V_{a}^{+}] tends, by (5. 17), to a_{f1} det V
as \alphaarrow+0 . Thus we obtain (6. 2).

To illustrate the arguments above we shall treat the linear elastic equa-

tions in a homogeneous, isotropic medium defined by \partial_{x_{0}}^{2}w_{j}=\sum_{k=1}^{3}\partial_{x_{k}}\sigma_{jk}, j=
1,2,3, where [\sigma_{jk} ; j, k=1,2,3] is the stress tensor and w=(w_{1}, w_{2}, w_{3}) the
displacement vector. On the boundary we prescribe a condition of the form

b\cross\partial_{x_{0}}w=0 and \sum_{j,k=1}^{3}b_{j}\sigma_{jk}n_{k}=0 ,

where n=(n_{1}, n_{2}, n_{3}) is the inward unit normal and b=(b_{1}, b_{2}, b_{3}) are real
valued functions with n\cdot b\neq 0 . (See [15]). Since the equations are invariant
under rotations and the Lopatinski determinant and reflection coefficients
may be obtained from the frozen problems we shall in what follows a constant
coefficients problem in the half space \Omega=\{x=(x_{0}, x_{1}, x_{2}, x_{3});x_{3}>0\} .

Set u=^{\iota}(\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{23}, \sigma_{13}, \sigma_{12}, \partial_{x_{0}}w) . Then the equations can be written
as

P(D)u= \sum_{j=0}^{3}A_{j}D_{j}u=0 in \Omega

and the boundary condition as

Bu=f on \partial\Omega

with

B=\{\begin{array}{l}0 0 0 0 0 0 0 b_{3} -b_{2}0 0 0 0 0 0 b_{3} 0 -b_{1}0 0 b_{3}b_{2}b_{1} 0 0 0 0\end{array}
’

b_{3}\neq 0 .

Here

A_{0}^{-1}=\{\begin{array}{lll}E_{0}^{-1} 0 00 \mu I_{3} 00 0 I_{3}\end{array}\} , E_{0}^{-1}=\{\begin{array}{lll}\lambda+2\mu \lambda \lambda\lambda \lambda+2\mu \lambda\lambda \lambda \lambda+2\mu\end{array}\} ,

where \lambda , \mu are the Lam\’e parameters of the medium, and

\sum_{j=1}^{3}A_{f}\xi_{f}=-\{\begin{array}{ll}0 C(\xi){}^{t}C(\xi) 0\end{array}\} , {}^{t}C(\xi)=\{\begin{array}{llllll}\xi_{1} 0 0 0 \xi_{3} \xi_{2}0 \xi_{2} 0 \xi_{3} 0 \xi_{1}0 0 \xi_{3} \xi_{2} \xi_{1} 0\end{array}\} ,

because {}^{t}(\sigma_{11}, \sigma_{22}, \sigma_{33})=E_{0}^{-1}e^{(1)} and {}^{t}(\sigma_{23}, \sigma_{13}, \sigma_{12})=2\mu e^{(2)} , where e^{(1)}={}^{t}(e_{11}, e_{22}, e_{ss}) ,
e^{(2)}=^{\iota}(e_{23}, e_{13}, e_{12}) and e_{jk}=(\partial_{x_{k}}w_{j}+\partial_{x_{j}}w_{k})/2 . Noting that the eigenvalues of
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E_{0}^{-1} are 2\mu , 2\mu and 3\lambda+2\mu we assume that \mu>0 and 3\lambda+2\mu>0 . Then A_{0}

is positive definite, so P(D) is hyperbolic. Moreover we have det A_{0}^{-1}P(\xi)

=Q_{1}(\xi)^{2}Q_{2}(\xi)\tilde{Q}(\xi) , where Q_{1}(\xi)=\xi_{0}^{2}-\mu(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}) , Q_{2}(\xi)=\xi_{0}^{2}-(\lambda+2\mu)(\xi_{1}^{2}+

\xi_{2}^{2}+\xi_{3}^{2}) and \tilde{Q}(\xi)=\xi_{0}^{3} . Furthermore the boundary condition Bu=0 is energy
conserving ( i . e. , u\cdot A_{3}u=0 for u\in kerB) with respect to the quadratic form
u\cdot A_{0}u/2 which equals the classical energy density: e^{(1)}\cdot E_{0}^{-1}e^{(1)}/2+2\mu|e^{(2)}|^{2}+

|\partial_{x_{0}}w|^{2}/2 .
Now let \xi^{0’}\in R^{3}\backslash 0 be a point such that Q_{1}(\xi^{0’}, \xi_{3})=0 has the real double

root \xi_{3}=0 , say, \xi_{0}^{0}=\sqrt{\mu}|\xi^{0’}| and \xi_{1}^{0}\neq 0 , and let \xi’ belong to a conic neigh-
borhood of \xi^{0’} Then a basis W(\xi)=[W_{1}(\xi), W_{2}(\xi)]/|\xi’|^{2} of the null space of
P(\xi) with Q_{1}(\xi)=0 is given by W_{1}(\xi)={}^{t}(2\mu\xi_{1}\xi_{3},0, -2\mu\xi_{1}\xi_{3} , -\mu\xi_{1}\xi_{2} , \mu(\xi_{3}^{2}-\xi_{1}^{2}) ,

\mu\xi_{2}\xi_{3} , \xi_{0}\xi_{3},0 , -\xi_{0}\xi_{1}) , W_{2}(\xi)=^{t}(-2\mu\xi_{1}\xi_{2},2\mu\xi_{1}\xi_{2},0, \mu\xi_{1}\xi_{3} , -\mu\xi_{2}\xi_{3} , \mu(\xi_{1}^{2}-\xi_{2}^{2}) , -\xi_{0}\xi_{2},
\xi_{0}\xi_{1},0) and a null vector W_{3}(\xi) of P(\xi) with Q_{2}(\xi)=0 by W_{3}(\xi)={}^{t}(\xi_{0}^{2}-2\mu(\xi_{2}^{2}+

\xi_{3}^{2}) , \xi_{0}^{2}-2\mu(\xi_{1}^{2}+\xi_{3}^{2}) , \xi_{0}^{2}-2\mu(\xi_{1}^{2}+\xi_{2}^{2}) , 2\mu\xi_{2}\xi_{3},2\mu\xi_{1}\xi_{3},2\mu\xi_{1}\xi_{2}, \xi_{0}\xi_{1} , \xi_{0}\xi_{2}, \xi_{0}\xi_{3}) . Let
r_{1}^{+}(\xi’) be the outgoing root of Q_{1}(\xi’, \xi_{3})=0 , i . e. , r_{1}^{+}(\xi’)=-(\xi_{0}^{2}/\mu-|\xi’|^{2})^{1/2} and
r_{2}^{+}(\xi’) be the root of Q_{2}(\xi’, \xi_{3})=0 with Im r_{2}^{+}>0 , i . e. , r_{2}^{+}(\xi’)=i(|\xi’|^{2}-\xi_{0}^{2}/(\lambda+

2\mu))^{1/2} . Taking a_{0}^{(2)}=0 and a_{0}^{(3)}=W_{3}(\xi’, r_{2}^{+}(\overline{\xi}’))/|\xi’|^{2} in (5. 4) we find that
modulo a nonzero factor

R(\xi’)=r_{1}^{+}\{b_{3^{2}}\xi_{0}^{2}/\mu+(b_{2}\xi_{1}-b_{1}\xi_{2})^{2}+r_{1}^{+}r_{2}^{+}(b_{1}^{2}+b_{2}^{2})\}+r_{2}^{+}(b_{1}\xi_{1}+b_{2}\xi_{2})^{2} .

Let R(\xi^{0’})=0 . Then b_{1}\xi_{1}^{0}+b_{2}\xi_{2}^{0}=0 and condition (iii) holds, since r_{1}^{+}(\xi’)

=-z(2\sqrt{\mu}|\xi’|+z^{2})^{1/2}/\sqrt{\mu} with z=(\xi_{0}-\sqrt{\mu}|\xi’|)^{1/2} . Moreover we observe that
condition (iv) is satisfied with arg D(\xi’)=\pi/2 . In fact, iR(\xi’) is an analytic
function of - iz with real coefficients and ir_{2}^{+}(\xi’)<0 , so if R(\xi’)=0 then
-iz\geqq 0 .

We shall examine reflection coefficients. Let first b_{1}=b_{2}=0 and b_{3}=1 .
Then we find that for \xi_{0}>\sqrt{\mu}|\xi’|c_{21}(\xi’)=c_{12}(\xi’)=0 , c_{11}(\xi’)=-1 and c_{22}(\xi’)=1 .
Thus the boundary condition does not couple two shear waves. Suppose
next for example that b_{2}=b_{1}\neq 0 and \xi_{2}^{0}=-\xi_{1}^{0} . We then have

\{\begin{array}{ll}c_{11} c_{12}c_{21} c_{22}\end{array}\} (\xi^{0’})=(b_{3}^{2}-2b_{1^{2}}) \{\begin{array}{ll}-1 00 1\end{array}\}+2b_{1}b_{3} \{\begin{array}{ll}0 21 0\end{array}\}

which one can never bring to a triangular matrix by any similar transfor-
mation independent of b_{1}/b_{3} .

We can also treat similarly Maxwell’s equations defined by

P(D) \{\begin{array}{l}EH\end{array}\}=(D_{0}+\frac{1}{i} \{\begin{array}{ll}0 -cur1cu1il 0\end{array}\}) \{\begin{array}{l}EH\end{array}\}=0 in \Omega ,

where E(H) is the electric (magnetic) field vector respectively, and det P(\xi)
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=\xi_{0}^{2}(\xi_{0}^{2}-\xi_{1}^{2}-\xi_{2}^{2}-\xi_{3}^{2})^{2} . For the system a class of energy conserving boundary
conditions is given in the form: n\cross E=b(n\cross H) , where b is a real valued
function. (See for instance [13]). Note that b=0 corresponds to the classical
boundary condition.

Let \xi^{0’}\in R^{3}\backslash 0 be a point such that \xi_{0}^{0}=|\xi^{0’}|>0 . Then for \xi’ near \xi^{0’}

a basis W(\xi)=[W_{1}(\xi), W_{2}(\xi)]/|\xi’|^{2} of the null space of P(\xi) with \xi_{3}^{2}=\xi_{0}^{2}-

\xi_{1}^{2}-\xi_{2}^{2} is given by W_{1}(\xi)=^{t}(-\xi_{1}\xi_{3}, -\xi_{2}\xi_{3}, \xi_{1}^{2}+\xi_{2}^{2}, -\xi_{0}\xi_{2}, \xi_{0}\xi_{1},0) and W_{2}(\xi)=

{}^{t}(\xi_{0}\xi_{2}, -\xi_{0}\xi_{1},0, -\xi_{1}\xi_{3}, -\xi_{2}\xi_{3}, \xi_{1}^{2}+\xi_{2}^{2}) . Therefore we have R(\xi’)=\xi_{0}\xi_{3}^{+}(\xi’)\cdot(non -

zero factor). (See for instance [5]). Consequently condition (iii) and (iv) with
D(\xi’)=0 hold, while for \xi_{0}>|\xi’|

\{\begin{array}{ll}c_{11} c_{12}c_{21} c_{22}\end{array}\} ( \xi’)=\frac{1-b^{2}}{1+b^{2}} \{\begin{array}{ll}-1 00 1\end{array}\}+\frac{2b}{1+b^{2}} \{\begin{array}{ll}0 11 0\end{array}\}

Thus if b=0 then the boundary condition does not couple two waves, while
if b\neq 0 then one can never bring [c_{jk}] to a triangular matrix by any similar
transformation independent of b. We may also show that condition (iv) with

\arg D(\xi’)=-\pi holds for each maximal dissipative boundary condition B\{\begin{array}{l}EH\end{array}\}

=0 with B real valued which satisfies condition (iii). (See [5]).
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