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1. Introduction

The problem to investigate relations between the local and global pr0-
perties of a finite group is one of the most important and elementary pr0-
blems in the theory of finite groups. Concerning a prime number p, several
techniques to investigate the global properties from p-local structure of groups
are studied by many authors and play an important role for the advancement
of the theory of finite groups (see [15]).

The representation theory of finite groups provides an effective tool to
connect local properties to global properties. Hence for studies of the repre-
sentation theory itself, it is also an important to investigate relations between
the local and global properties. The result of Brauer and Fowler [5] is
a representative example in this direction. They showed that there exist
at most a finite number of simple groups with a specified centralizer of an
involution. Several induction theorem by Artin, Brauer and others are also
representative ones in this problem.

When we are interested in a prime p, the modular representation theory
of finite groups with respect to p is a refinement of the ordinary representa-
tion theory and at the same time is an effective tool to investigate p local
properties of finite groups. In studying it the theory of vertices and sources
of Green, together with a series of studies of Brauer, has many contents to
be developed in the future.

In this paper we shall investigate the theory of vertices and sources,
especially the Green correspondence and try to refine several results in it
for a certain type of finite groups.

In section 2, we are concerned with irreducible modules with trivial
sources and investigate properties of the Green correspondence for them.

In section 3, as an application of section 2 we define a family of finite
groups called M_{p}-groups and study the representation theory of them.

In section 4, we are mainly interested in finite solvable groups and some
correspondence between a set of irreducible modules of a solvable group and
its subgroup. This correspondence relates to the Green correspondence a
little.
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In section 5, we try to give some refinement of Brauer’s induction
theorem in terms of p-blocks. Dress’s induction theorem is also considered
there.

Let G be a finite group and p a fixed rational prime number. In this
paper we use the following notations and terminologies and for other notations
and terminologies we shall refer to books of Gorenstein [16], Dornhoff [8]
and Feit [11].

R ; a complete discrete valuation ring with maximal ideal (\pi)\ni p .
K ; the quotient field of R.
F;=R/(\pi) , the residue field of R which has characteristic p.
R[G] , K[G] , F[G] ; the group algebras of G over R, K and F respec-

tively.
We assume that fields K and F are both splitting fields for all groups

considered in this paper. All modules considered are right unital and finitely
generated.

V^{N} ; the induced module for an F[H] -module V to N where H and
N are subgroups of G with H\subseteqq N.

V_{1H} ; the restriction of an F[N] -module V to H where H and N are
subgroups of G with H\subseteqq N.

V^{x} ; the conjugate module of an F[H] -module V by an element x in
G which is an F[H^{x}] -module.

If H is a normal subgroup of G, we define the inertia subgroup of
V, denoted by I_{G}(V) , to be the set \{x\in G|V^{x}\cong V\} .

V|W ; for F[G] modules V and W, V is isomorphic to a direct summand
of W.

In the above we use the same notations for R[T] -modules too for a
subgroup T of G.

L_{0}(G) ; an F[G] -module of dimension 1 on which G acts trivially.
For F[G] modules V and W and a subgroup H of G define ( V, W)_{H}=

Hom_{F[H]} ( V, W) . The relative norm map T_{H,G} ; ( V, W)_{H}arrow(V, W)_{G} is defined
as follows. T_{H,G}( \lambda)=\sum_{x}\lambda^{x} for \lambda\in(V, W)_{H}, where x ranges over a set of
representatives of right cosets of H in G and \lambda^{x} is the map varrow(\lambda(vx^{-1}))x .
If \mathfrak{H}_{\vee} is a set of subgroups of G, we define (V, W)_{G}^{\mathfrak{H}}=(V, W)_{G}/(V, W)_{\mathfrak{H},G} where
(V, W)_{\mathfrak{H},G}= \sum_{H\in \mathfrak{H}} Im T_{H,G} .

Now we shall describe the Green correspondence which is frequently
used in the paper. We refer to a book of Feit [11].

Let V be an indecomposable F[G] -module. Then there exists a p-
subgroup D which is a minimal subgroup of G such that V is F[D] -projec-
tive. A group D is uniquely determined up to conjugation by an element
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in G and called a vertex of V. If D is a vertex of V, then here exists
an indecomposable F[D] -module W such that V|W^{G} . W is also determined
up to conjugation by an element in N_{G}(D) .

Let D be a p-subgroup of G and N a subgroup of G with N_{G}(D)\subseteqq N.
Define the following sets of subgroups;

\mathfrak{X}(G, D, N)=\mathfrak{X}= { A|A\subseteqq D\cap D^{x} for some x\in G-N}
\mathfrak{Y}(G, D, N)=\mathfrak{Y}= {A|A\subseteqq N\cap D^{x} for some x\in G-N}
\mathfrak{A}(G, D, N)=\mathfrak{A}= {A|A\subseteqq D and A\not\in \mathfrak{X}}.

The Green correspondence f with respect to (G, D, N) is the map from the
set of indecomposable F[G] -modules with vertices in \mathfrak{A} to the set of those
of F[N] -modules. For properties of the Green correspondence, see [11].

2. Irreducible modules with trivial sources

In this section we shall consider properties of the Green correspondence
of irreducible modules with trivial sorces. First we shall prove the following
which is concerned with the Brauer characters afforded by modules with
trivial sources. For a definition of the Brauer characters see [8].

Lemma 2. 1. Let G be a fifinite group, V an indecomposable F[G]-
module voith vertex D and \beta the Brauer character afforded by V. Assume
the p-part of \dim_{F}V is equal to one of |G:D| . Then we have that |G:C_{G}(x)

|\beta(x)/\beta(1) lies in R for every p’ element x in G.

PROOF. Let Q be a Sylow p subgroup of C_{G}(x) . The result of Green
(Theorem 10 in [17]) shows that \beta(x)/|Q:Q\cap D^{y}| lies in R for each element
y in G. By our assumption the p-part of |G:C_{G}(x)|/\beta(1) is equal to |D|/|Q|

and therefore the lemma follows as |D|/|Q|\cdot|Q|/|Q\cap D^{y}| is a positive power
of p.

Lemma 2. 2. Let G be a fifinite group and V an irreducible F[G]-
module with vertex D. Let f be the Green correspondence with respect
to (G, D, N_{G}(D)) . If a source of V is trivial one, then f(V) is irreducible
and the p-part of \dim_{F}V is equal to one of |G:D| .

PROOF. Let W=f(V) and N=N_{G}(D) . In the notation defined in section
1 ( V, V)_{G}\cong F as V is irreducible and therefore ( V, V)_{G}^{ae}\cong F. Thus (W, W)_{zV}^{t\grave{b}}\equiv F

by the result of Green ([19]). Let E\in \mathfrak{Y} , then ED\neq E. Let T be a set of
representatives of right cosets of E in ED. Since W has a vertex D, DaN
and has a trivial source, D acts on W trivially and W is a projective in-
decomposable F[N/D] -module. Let \lambda be any F[E] -endmorphism of W and put
\mu=T_{E,ED}(\lambda) . Then for each element w in W we have \mu(w)=\sum_{\iota\epsilon\tau}(\lambda(wt^{-1}))t=
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, \sum_{\epsilon\tau}\lambda(w)=0 . Thus by the definition of (W, W)_{N}^{t\grave{1;}}, we have that \{W,W)_{N}\cong F.
Then since W is projective as an F[N/D] -module, we have that W is irre-
ducible. Since W is projective and irreducible as an F[N/D]- module, there
exists an R-free R[N/D] -module U such that W=U/U(\pi) and U\otimes K is
irreducible. Thus the p-part of \dim_{F}W is equal to one of |N:D| . By
a property of Green correspondence we have W^{G}=V\oplus X, where X is an
F[G] -module whose indecomposable direct summands all have vertices pr0-

perly contained in D. By Corollary 2 in [17] \dim_{F}X is divisible by p\cdot|G:D| .
Thus the last statement of the lemma follows and the proof of the lemma
is complete.

THEOREM 2. 3. Let G be a fifinite group and L an irreducible F[G]-
module with vertex D. If a source of L is trivial, then we have the
following;

(1) Let f be the Green correspondence with respect to (G, D, N_{G}(D)) .
Then f(L) is irreducible and has D as a vertex. In particular, N_{G}(D)/D

and DC_{G}(D)/D have a p-block of defect 0.
(2) If \varphi is the Brauer character afforded by L, then |G:C_{G}(x)|\varphi(x)/\varphi(1)

lies in R for every p’ -element x in G.
(3) If B is a p-block of G which contains L, then we can take a p-

subgroup D_{0} as a defect group of B so that Z(D_{0})\subseteqq Z(D)\subseteqq D\subseteqq D_{0} .
(4) If N_{G}(D)/D is abelian, then D=D_{0} in the statement (3).
PROOF. Let N=N_{G}(D) and C=DC_{G}(D) . The first half of the statement

(1) follows from Lemma 2. 2. As f(L) is irreducible and projective as an
F[N/D] module, a p-block of N/D which contains f(L) is of defect 0 and
so the second half of (1) is proved. The statement (2) follows from Lemma
2. 1 and 2. 2. Let b be a p-block of N which contains f(L) and b_{1} a p-
block of C covered by b. Let W be an indecomposable direct summand
of f(L)_{1C} contained in b_{1} . Then W is irreducible and projective as an
F[C/D] module, Thus b_{1} has D as a defect group by Lemma 64.3 in [8]
and b_{1}^{N}=b by Lemma 64. 8 in [8]. By the result of Nagao (see Lemma 56. 5
in [8] ) we have b^{G}=B . Then the statement (3) follows from the result of
Brauer [3]. Finally we shall prove the statement (4). Our proof is based
on the idea of Erdman in [10]. Set T=I_{N}(W) and T_{1} be a subgroup of
T such that T_{1}/C is a Sylow p-subgroup of T/C. Then W can be extended
to an T[T_{1}] -module W_{1} uniquely by [11] and therefore W_{1}|f(L)_{1T_{1}} as T_{1}

is normal in N. Since f(L) has D as a vertex we have that T_{1}/C=1 and
therefore |I_{N}(W) : C| is a p’ -number. Hence by the extension of Brauer’s
first main theorem (see \S 64 in [8]) b has a defect group D and then the
statement (4) follows from Brauer’s first main theorem.
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3. Monomial irreducible modules

DEFINITION 3. 1. Let X be an F[G] -module. Then X is called monO-

not if X=Y^{G} , where Y is an F[H] -module with \dim_{F}Y=1 for some
subgroup H of G.

Since for a p group P only one dimensional F[P] -module is trivial one,
we have the following elementary fact for a monomial module;

REMARK 3. 2. If X is a monomial F[G] -module, then every indecom-
posable summand of X has a trivial source.

PROPOSITION 3. 3. Let X be an irreducible F[G] -module with vertex
D, N=N_{G}(D) and f the Green correspondence with respect to (G, D, N) .
If X is monomial, then we have the following;

(1) f(X) is irreducible and monomial,
(2) \dim_{F}f(X) divides \dim_{F}X.
PROOF. Since X has a trivial source by the above remark we can

apply Theorem 2. 3 for X and then we have that f(X) is irreducible. Let
H be a subgroup of G and Y an F[H] -module with \dim_{F}Y=1 such that
Y^{G}=X. We may assume that D\subseteqq H. By the Mackey decomposition it
follows that Y_{1N}^{G}= \otimes\sum ( Y_{IH^{x}\cap N}^{x})^{N} , where x ranges over a complete set of

x
representatives of (H, N) -double cosets in G. Taking x=1 Y_{1N_{H}(D)^{N}} is a
direct summand of X_{1N} . From the fact that D\subseteqq KerY and DaN every
indecomposable summand of_{1}Y_{1N,(D)^{N}} has D as a vertex. Then by a pr0-
perty of the Green correspondence Y_{IN,(D)^{N}}=f(X) and therefore f(X) is
monomial. Then \dim_{F}f(X)=|N:N_{H}(D)| and it devides |G:H|=\dim_{F}X.
Thus the proposition is proved.

DEFINITION 3.4. A fifinite group G is called an M_{p}-group if every
irreducible F[G] -module is monomial.

A finite group G is called an M-group if every irreducible complex
character of G is induced from a linear character of some subgroup of G.
Properties of M-groups are studied by several authors and it is well known
that M-groups are solvable (see \S 15 in [8]).

In the remaining in this section we shall investigate properties of M_{p} -

groups
REMARK 3. 5. (1) An Mgroup is an M_{p} -group for every prime num-

berp. This follows tfie fact that M-groups are solvable and the result
of Fong-Swan (\S 72 in [8]).

(2) SL(2,3) is an M_{2}-group since it is 2-closed and has an abelian
2-c0mplement. But it is known that SL (2, 3) is not an Mgroup (see



304 T. Okuyama

Exercise 15. 1 in [8] ) . So M_{p}-groups need not be M-groups.
(3) Subgroups of M_{p}-groups need not be M_{p} -groups. A fifinite group

defifined in Exercise 15. 2 in [8] provides a such example.
(4) If P is normal p-subgroup of G and G/P is an M_{p} group then

G is also an M_{p}-group.
DEFINITION 3. 6. Let G be a fifinite group and put G^{p(0)}=G . For

each positive integer i defifine G^{p(i)}=O^{p}[G^{p(i-1)}, G^{p(i-1)}]) .
G^{p(i)} is a characteristic subgroup of G and O^{p}(G^{p(i)})=G^{p(i)} for each

integer i>0 .
The following theorem will be proved by the similar method as those

of the proof of Theorem 5. 12 in [26].

THEOREM 3. 7. Let G be an M_{p} -group and let 1=d_{1}<\cdots<d_{k} be the
distinct dimensions of the irreducible F[G] -modules. Let X be an irreduci-
ble F[G] -module with \dim_{F}X=d_{i} . Then we have that G^{p(i)}\subseteqq KerX.

PROOF. If i=1 , then \dim_{F}X=1 and the theorem is proved easily in
this case. Assume that i>1 and we shall prove the theorem by induction
on i. If V is an irreducible F[G] -module with \dim_{F}V<\dim_{F}X, then
\dim_{F}V=d_{j} for some positive integer j<i and G^{p(i-1)}\subseteqq G^{p(j)}\subseteqq KerV by
induction. Choose a subgroup H of G and an F[H] -module Y with \dim_{F}

Y=1 such that Y^{G}=X. By our assumption |G:H|>1 . If V is any irreduci-
ble F[G] -module which appears in a composition factor of L_{0}(H)^{G} , then
\dim_{F}V<|G:H|=\dim_{F}X since L_{0}(G) is contained in L_{0}(H)^{G} . Thus since
G^{p(i-1)} is generated by p-regular elements and contained in the kernel of
each irreducible constituent of L_{0}(H)^{G} , G^{p(i-1)}\subseteqq KerL_{0}(H)^{G}\subseteqq H. Then we
have that G^{p(j)}\subseteqq O^{p}(H’) . Since O^{p}(H’)\subseteqq KerY and G^{p(i)}\# G it follows
that G^{p(i)}\subseteqq KerX. Thus the proof of the theorem is complete.

COROLLARY 3. 8. If G is an M_{p} -group, then G is solvable.
It is not true that all solvable groups are M_{p}-groups as a group SL (2, 3)

shows. SL (2, 3) is solvanle but is not an M_{3} -group for it has an irreducible
module of dimension two over an algebraically closed field of characteristic
3 and has no subgroup of index 2. However, Dade has shown that every
finite solvable group is a subgroup of an M-group (see Satz. V. 18. 11 in
[21] ) and therefore every finite solvable group is contained in an M_{p}-group.

THEOREM 3. 9. Let G be an M_{p} group and B a p-block of G with
defect group D. Let N=N_{G}(D) and b a p-block of N with b^{G}=B and f
the Green correspondence with respect to (G, D, N) . Then f defifines a one-
tO-One correspondence between the set of all irreducible F[G] -module in
B with vertex D and the set of all irreducible F[N] -modules in b. If
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furthermore D is abelian, the number of irreducivle F[G] -modules in B
and the number of those of b are equal.

PROOF. If D is abelian, every irreducible F[G] -module in B has a
vertex D by Theorem 2. 3. (3). So the second assertion of the theorem
follows from the first. Let X_{1} and X_{2} be irreducible F[G] -modules in B
with vertex D. Then a property of the Green correspondence shows that
f(X_{1})\equiv.f(X_{2}) if and only if X_{1}\equiv X_{2} . If we can show that the number of
irreducible F[G] -modules in B with vertex D and the number of irreducible
F[N] -modules in b are equal, then from Proposition 3. 3. (1) it follows
that f defines a desired one-t0-0ne correspondence. So it will suffice to
show that

(^{*}) Let G be a finite solvable group and B, D, N and b as in Theorem
3. 9. Then the number of irreducible F[G] -modules in B with vertex D
is equal to the number of irreducible F[N] -modules in B.

We shall show this assertion in the next section (see Theorem 4. 1).

COROLLARY 3. 10. Let G be an M_{p} group and D a p-subgroup of G.
If b is a p-block of N=N_{G}(D) with defect group D, then every irreducible
F[N] -module in b is monomial. In particular, if D is a Sylow p-subgroup
of G, then N is an M_{p} -group.

PROOF. The first assertion of the corollary follows from Proposition
3. 3. (1) and Theorem 3. 9. The second follows from the first and the
fact that every p-block of N has D as defect group if D is a Sylow p-
subgroup of G.

COROLLARY 3. 11. If G is an Mgroup with a Sylow p-subgroup P.
If H is a p-complement of N_{G}(P) , then H is an M-group.

PROOF. By Remark 3. 5. (1) G is an M_{p}-group and then by Corollary
3. 10 H\cong N_{G}(P)/P is also an M_{p} -group. Since p\parallel|H| it follows that H is
an M-group and the proof of the corollary is complete.

4. Module correspondence in finite groups

In this section we shall investigate properties of the Green correspondence
in finite solvable groups and construct some correspondence between a set
of irreducible modules of a solvable group and a set of those of its sub-
group. Very important studies of the modular representation theory of
finite solvable groups are done by Fong in his papers [12] and [13]. We
shall use his results frequently in this section. The results of Hamernik
and Michler [21] and Cliff [6] also provide useful tools for our investigation.
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As a final consequences of our consideration in this section we shall prove
the following ;

THEOREM 4. 1. Let G be a fifinite solvable group and B a p-block of
G with defect group D. Let N=N_{G}(D) and b a p-block of N with b^{G}=B .
Then the number of irreducible F[G] -modules in B with vertex D is equal
to the number of irreducible F[N] -module in b.

Let G be a finite group and H a normal subgroup of G. If W is an
irreducible F[H] -module, then the investigation of F[G] -module whose
restriction to H contain W is very important in studying the representation
theory. Also if V is an F[G] -module it is so to study the restriction of
V to H. First in this section we shall study these problems in connection
with our appl\dot{l}cations to the case considered in later in this section. In
the case characteristic of F is 0, our results that we shall described are
studied by several authors and well known (see [25], [26] and [28]). Our
proof of them will be done with references to [25] and [26].

Lemma 4. 2. Let G be a fifinite group, H a subgroup of G and N
a normal p’ -subgroup of G such that G=HN. Put M=H\cap N. Let X
be an irreducible F[N] -module such that X_{1M} is also irreducible and I_{G}(X)

=G. Then the map \sigma;V\mapsto V_{IH} is a one-tO-One correspondence between the
set of all irreducible F[G] -module V with X|V_{1N} and the set of all ir-
reducible F[H] -module U with X_{IM}|U_{1M}. Furthermore the map \sigma satisfifies
the following;

(1) If V is an irreducible F[G] -module with X|V_{IN}, then V and
\sigma(V) have a common vertex.

(2) If B is a p-block of G which covers p-block \{X\} of N, then \sigma(B)

is also a p-block of H which covers a p-block \{X_{1M}\} of M and B and \sigma(B)

have a common defect group.
(3) In (2) if furthermore a defect group D of B satisfifies that N_{G}(D)

\subseteqq H, then B=\sigma(B)^{G} .

PROOF. If T is a subgroup and W_{1} and W_{2} are F[T] -modules, then
we denote I_{T}(W_{1}, W_{2})=\dim_{F}Hom_{F[T]}(W_{1}, W_{2}) . Let Y=X_{1M} . Let V be as
in the statement (1) and U an irreducible submodule of V_{1H}. Then we have
that V_{IN}=nX and U_{1M}=mY for some positive integer n and m. We shall
show that n=m which implies that V_{1H}=U is irreducible. It follows easily
that n\geqq m by counting dimensions of V and U. Since X and Y are ir-
reducible, n=I_{N}( V_{IN}, X) and m=I_{M}(U_{1M}, Y) . Applying the Frobenius re-
ciplocity low and Mackey decomposition theorem we have m=I_{N}((U_{1M})^{N}, X)=

I_{N}(U_{1N}^{G}, X)=I_{G}(U^{G}, X^{G}) . V is isomorphic to a factor module of U^{G} and X^{G}
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is projective as N is of p’ -0rder. So we have that I_{G}(U^{G}, X^{G})=I_{G}(V, X^{G})=

I_{N}(V_{IN}, X)=n . Thus we have n=m. Since H is of p’ -index in G, it is
clear that V and U have a common vertex. As Y^{N}=X\oplus W, where W
is F[N] -module which has no irreducible submodule isomorphic to X, V
is a unique indecomposable component of (V_{1H})^{G} which has an irreducible
F[N] -submodule isomorphic to X. Thus for irreducible F[G] -modules V_{1}

and V_{2} with X|V_{i1N}, V_{1}\cong V_{2} if and only if V_{1IH}\cong V_{21H}. As I_{G}(X)=G we
have that for an irreducible F[H] -module U with Y|U_{\mathfrak{l}M}, U^{G}=V\oplus W where
V is an F[G] -module such that V_{IN}=nX and W is an F[G] -module not
containing an F[N] -submodule isomorphic to X. Then it is shown by the
similar argument in the above that V is irreducible. Thus \sigma is a one-t0-0ne
correspondence. Let W_{i} , 1\leqq i\leqq s, be all non-isomorphic projective inde-
composable F[G] -modules with X|W_{iIN} . Let Z_{j}, 1\leqq j\leqq s , be all non-is0-
morphic projective indecomposable F[H] -modules with Y|Z_{jIM}. Let V_{i} be an
irreducible F[G] -module which corresponds to W_{i} , that is, a unique irreduci-
ble factor module of W_{i} . Let U_{j} be one of Z_{f} as V_{i} for W_{i} . Let X^{G}=

\oplus\sum_{i}a_{i}W_{i} and Y^{H}= \oplus\sum_{j}b_{j}Z_{j} . Then a_{i}=I_{G}(X^{G}, V_{i}) and b_{j}=I_{H}(Y^{H}, Z_{f}) .
Then the above argument implies that after suitable renumbering a_{i}=b_{i}

and W_{i\mathfrak{l}H}=Z_{i} . Thus every projective indecomposable F[G] -module W is also
indecomposable as F[H] -modules.

Let B be a p-block as in the statement (2) and V_{1} and V_{2} be irreducible
F[G] -modules in B. We shall show that \sigma(V_{1}) and \sigma(V_{2}) are in the same
p-block of H. By Theorem 46.2 in [8] there exist projective indecomposable
F[G] -modules W_{1} , \cdots , W_{n} such that W_{i} and W_{i+1} have a common irreducible
constituent and V_{1} appears in a composition factor of W_{1} and V_{2} in one of
W_{n} . So we may assume that V_{1} and V_{2} appear in the same projective
indecomposable F[G] -module as its irreducible constituents. The the result
follows from the preceding paragraph as every projective indecomposable
F[G] -module is also indecomposable as F[H] -module. Thus the statement
(2) is proved.

Let B be a p-block of G with defect group D such that N_{G}(D)\subseteqq H.
Then there is a unique p-block B_{1} of H by Brauer’s first main theorem such
that B_{1} has a defect group D and B_{1}^{G}=B . Let V be an irreducible F[G]-
module in B with vertex D, then V_{IH}^{G}=V\oplus W for some F[G] -module W
and V_{IH} and V are in correspondence by the Grren correspondence with
respect to (G, D, H) . Then the result of Green (Theorem 5. 8 in [20]) shows
that V_{IH} is in B_{1} and therefore the statement (3) follows.

In the following we shall state the results of Fong and Cliff which is
needed in later.
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THEOREM 4. 3 (Fong [12], Cliff [6]). Let G be a fifinite group, Na
normal p-subgroup of G and X an irreducible F[N] -module. Let T=I_{G}(X) .
If. B is a p-block of G which covers a p-block \{X\} of N, then there exists
a p-block B’ of T such that

(1) There is a one-tO-One correspondence between irreducible F[G]-
modules L in B and irreducible F[T] -modules L’ in B’ given by L=L^{\prime_{G}} .

If L and L’ are in this correspondence, then they have a common vertex.
(2) B and B’ have a common defect group.
COROLLARY 4. 4. Let G, H, N and M be as in Lemma 4. 2. Assume

furthermore that M is normal in G. Let Y be an irreducible F[M\rfloor -

module with I_{G}(Y)=H. Then Y^{N} is irreducible and the map \tau;U\mapsto U^{G}

is a one-tO-One correspondence between the set of irreducible F[H] -modules
U with Y|U_{|M} and the set of irreducible F[G] -modules V with Y^{G}|V_{1N} .
Furthermore tfie map \tau satisfifies the following;

(1) If U is an irreducible F[H] -module with Y|U_{1M}, then U and
\tau(U) have a common vertex.

(2) If b is a p-block of H which covers a p-block \{ Y\} of M, then
\tau(b)i_{\ell}s a p-block of G which covers a p-block \{ Y^{G}\} of N. b and \tau(b) have
a common defect group. I_{J}n fact b^{G} is defifined and b^{G}=\tau(b) .

PROOF. Since I_{N}(Y)=M, it follows that Y^{N} is irreducible by Satz 2. 3
in [24]. : Then the corollary is proved using Theorem 4. 3.

THEOREM 4. 5 (Fong [12], Cliff [6]). In Theorem 4. 3 assume that
T=^{f} G. Then there is a fifinite group \hat{G} with a central cyclic p’ -subgroup
A such that \hat{G}/A=G/N and there is a p-block \hat{B} of G which satisfifies the
following;

(1) There is a one-tO-One correspondence between irreducible F[\hat{G}] -

modules \hat{L} in B and irred^{j}ucible F[G] -modules L in B such that L and
L have isomorphic vertices.

\sim ’

(2) B and B have isomorphic defect groups.
Lemma 4. 6. Let G, N, X and T be as in Theorem 4. 3 and assume

T=G. Let B be a p-block of G which covers a p-block X of N. Let
D be a defect group of B, H a subgroup of G) containing N and N_{G}(D)

and b a p-block of H with defect group D such that b^{G}=B . Then there
is a subgroup H of \hat{G} such that fl/A=H/N and there is a p-block \hat{b} of
H with the following properties ;

(1) \hat{b} satisfifies the conclusions of Theorem 4. 5 for H, N, and b.
(2) \hat{b}^{\hat{c\neq}}is defifined and b^{\hat{G}}=B where B is a p-block of \hat{G} in Theorem

4. 5 for B.
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PROOF. The lemma can be proved by using the argument of Cliff in
section 2 in [6]. Let \hat{H} be a subgroup of G such that H/A\cong H/N under
the isomorphism \hat{G}/A\cong G/N in Theorem 4. 5. Since H and b satisfies the
conditions in Theorem 4. 5, the existence \hat{b} such that \hat{b} satisfies (1) is clear.
If V and W are F[G] -modules which contain an F[N] -module isomorphic
to X and W|V, then the construction of F[\hat{G}] -modules \hat{W} and V defined
by Cliff in [6] from W and V shows that \hat{W}|\hat{V}. Also it holds that if U
is an F[H] -module which contains X as an F[N] -submodule, then \hat{U^{G}}=

\hat{U}^{\hat{G}} . Take an indecomposable F[H] -module U with vertex D and let W
be an F[G] -module which corresponds to U in the Green correspondence
with respect to (G, D, H) . Then \hat{W} corresponds to \hat{U} in the Green cor-
respondence with respect to (\hat{G},\hat{DN}, H) . Then the result of Green in [20]
shows that \hat{b}^{\hat{G}}=B and the lemma is proved.

The following two propositions are proved using a proof of Wolf of
Theorem 2. 2 and 2.3 in [28].

PROPOSITION 4. 7. Let G be a fifinite group and H and E be a subgroup
of G. Assume the following;

(1) G is a semidirect product EH and \^E G,
(2) 1_{\doteqdot}^{\subset}Z(E)\subseteqq Z(G) , Z(E) is cyclic and E is a p’ -group.
(3) E/Z(E) is an elementary abelian q-group for some prime q distinct

from p.
(4) [E/Z(E), L]=E/Z(E) for some C_{H}(E)aLarrow H such that L/C_{H}(E) is

a p-group.
(5) X is a faithful irreducible F[E] -module.
Let Y be an irreducible F[Z(E)] -submodule of X_{1Z(E)} . Then we have

the following;
(i) There exists an irreducible F[G] -module Z with the following

properties ; (a) Z_{1E}=X, (b). C_{H}(E)\subseteqq KerZ and (c). if Z^{*}=Hom_{F}(Z, F) , the
dual module of Z, then Z\otimes Z^{*}=L_{0}(G)\oplus W, where a vertex of every in-
decomposable direct summand of W does not contain a Sylow p-subgroup
of LE.

(ii) If U is an F[H] -module, then there is a unique F[G] -module
U^{0} with Ker U^{0}\supseteqq E and U_{IH}^{0}=U. Then the map \mu;U\mapsto U^{0}\otimes Z is a one-
tO-One correspondence between the set of irreducible F[H] -modules and the
set of irreducible F[G] -modules which contain X as an F[E] -submodule.
The map \mu satisfifies the following; (a), if U is an irreducible F[H] -module,
then U and \mu(U) have a common vertex, (b). if b is a p-block of H, then
\mu(b) is a p-block of G which covers a p-block \{X\} of E, (c). if U is an
irreducible F[H] -module, then U\otimes U^{*}|\mu(U)\otimes\mu(U)^{*} .
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PROOF. First we shall prove the statement (i). By the result of Wolf
(Theorem 2. 2 in [28]) there exists an irreducible F[G] -module Z which
satisfies (a) and (b) in (i). Put V=Z\otimes Z^{*} . Then V is an F[G/Z(E)C_{H}(E)] -

module. As E is of F’ -0rder we have that V=C_{V}(E)\oplus[V, E] , where C_{V}(E)

is asubmodule of V centralized by E and [V, E] is a submodule of V

generated by all elements vx- v for v in V and x in E. As E is normal
in G, C_{V}(E) and [V, E] are both F[G] -modules. By our assumption (4) L

acts on E/Z(E) fixed-point-freely and therefore a vertex of every indecom-
posable F[G/Z(E)C_{H}(E)] -module not containing E in its kernel does not

contain a Sylow p-subgroup of LE. Since Z is irreducible C_{V}(E)=C_{V}(G)

and it has an F-dimension 1. So Z has a property (c) in (i). Thus the
statement (i) is proved. By Satz 2. 4 and 2.5 in [24] if U is an irreducible
F[H] -module then U^{0}\otimes Z is irreducible and if W is a projective indecom-
posable F[H] -module then W^{0}\otimes Z is also projective and indecomposable.
Then the statement (ii) xcept for (c) is proved in the similar manner with
that of Lemma 4. 2. The statement (c) in (ii) follows from (c) in (i).

PROPOSITION 4. 8. Let G be a fifinite group and E, H subgroups of G.
Assume the following;

(1) G=EH, \^E G, E\cap H=Z(E)\subseteqq Z(G) and E is a p’ group
(2) Z(E)\neq 1 is cyclic,
(3) E/Z(E) is an elementary abelian q-group for some prime number

q distinct from p,

(4) [L, E/Z(E)]=E/Z(E) for some C_{H}(E)\subseteqq L\sim H such that L/C_{H}(E)

is a p-group.
(5) Y is a faithful irreducible F[Z(E)] -module
Let X be an irreducible summand of Y^{E}, then the following hold;

(i) There is a one-tO-One correspondence \alpha between the set of all p-
blocks of G which cover a p-block \{X\} of E and whose defect groups
contain a Sylow p-subgroup of L and the set of p-blocks of H which covers
a p-block \{Y\} of Z(E) and whose defect groups contain a Sylow p-subgroup

of L. Furthermore \alpha is the map which preserves defect groups.
(ii) There is a one-tO-One correspondence \beta between the set of irreducible

F[G] -module V with X|V_{1E} and the set of irreducible F[H] -module U

with Y|U_{1Z(E)} . If V has a vertex containing a Sylow p-subgroup of L, so
has \beta(V) and in that case V and \beta(V) have a common vertex.

(iii) If V is in a p-block B of G, then \beta(V) is in a p-block \alpha(B) of H.

PROOF. This proposition is proved by using the method of Wolf in
[28] and Proposition 4. 7. Thus we shall omit the details of the proof.
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Now we shall prove the following which is used to prove the theorem
described in the begining in this section.

PROPOSITION 4. 9. Let G be a fifinite group with a Sylow p-subgroup
P. Let E be a normal p’ -subgroup of G such that ENG\{P) =G. Set N=
N_{G}(P) and M=N\cap E. If X is an irreducible F[E] -module with I_{G}(X)=G,
then the following hold.

(1) There exists a unique F[M] -module Y such that I_{M}(X_{1M}, Y)\not\equiv 0

(modp). This Y is N-invariant.
(2) Assume G/PE is abelian. Then X is extendible to G if and only

if Y is extendible to N.
(3) The number of all irreducible F[G] -modules whose restrictions to

E contain X is equal to the number of all irreducible F[N] -modules whose
restrictions to M contain Y.

PROOF. (1) is the result of Glauberman (see \S 13 in [25]). In fact
Glauberman’s correspondence is a 1-lcorrespondence between P-invariant
irreducible F[E] -modules V and irreducible F[M] -modules U such that
I_{lI}( V_{1M’}U)\not\equiv 0 (mod p).

Next we shall prove the statement (2). Notice that if X is extendible
to a p-complement of G, then so is to G. This follows from the result
of Fong (Lemma 2. A, [13]) since G/E is p-closed.

(2) is proved by induction on |G| . Let L be a p-complement in N.
As L/M is abelian, there is a subgroup A with M\underline{\subset}A\subseteq L such that L/A
is cyclic and C_{P/P’}(A)\neq 1 . Assume C_{P/P’}(A)=P/P’ Then C_{P}(A)=P. If
Y is extendible to N, then so is to L. Let \hat{Y} be an extension of Y to L
and Y_{0} be the restrivtion of \hat{Y} to A . The number of irreducible F[A]-
modules whose restrictions to M contain Y is equal to |A/M| and such
irreducibles are all P-invariant since A\subseteq C_{G}(P) . Then by the Glauberman’s
correspondence it follows that the number of irreducible F[AE] -modules
whose restrictions to E contain X is also equal to |A/M|=|AE/E| . Since
AE/E is abelian, this implies that such irreducibles are all extensions of X
to AE. Let X_{0} be the irreducible F[AE] -module which corresponds to Y_{0}

in the Glauberman correspondence. This X_{0} is an extension of X to AE
and I_{LE}(X_{0})=LE since I_{L}(Y_{0})=L . Thus X_{0} is extendible to LE as LE/AE
\cong L/A is cyclic (Satz 3. 1, [27]). And therefore X is extendible to G since
LE is a p-complement of G. Conversely if X is extendible to G, then by
the similar argument as in the above it follows that Y is extendible to N.

Next assume C_{P/P’}(A)=Q/P\neq P/P’ As A is normal in L, Q and QE
are normal in N and G respectively. Let H=QLE and J=C_{E}(Q) . Then
there is a unique irreducible F[J] -module W such that I_{J}(W, X_{1J})\not\equiv 0 (mod p)
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by Glauberman’s correspondence. This W is N_{G}(Q) -invariant and I_{M}(Y, W_{1M})

\not\equiv 0 (mod p). Considering the group N_{G}(Q)/Q we have by induction that Y is
extendible to N if and only if W is extendible to N_{G}(Q) . Also by induction
we have that Wis^{\tau} extendible to N_{H}(Q) if and only if X is extendible to
H. As |G:H| and |N_{G}(Q):N_{H}(Q)| are powers of p we can conclude that Y

is extendible to N if and only if X is extendible to G. Thus the statement
(2) is proved.

Since |PE:E| is a power of p, X is extended to PE uniquely. As E and
G/PE are of p’ -0rder we can apply the result of Gallagher (see 11, [25] PrO-
blem 11.7 and 8) and (3) follows from (2). Thus the proposition is proved.

Now we can prove the theorem which is described in the begining in
this section.

THEOREM 4. 1. Let G be a fifinite p-solvable group and B a p-block of
G with defect group D. Let N=N_{G}(D) and b a p-block of N such that
b^{G}=B . Then the number of irreducible F[G] -modules in B with vertex
D is equal to the number of irreducible F[N] -modules in b.

PROOF. We shall prove the theorem by induction on the order of G.
If O_{P}(G)=P\neq 1 , then D\supseteqq P and every irreducible F[G] -module has P in
its kernel. Put \overline{G}=G/P. It is clear that N_{\overline{G}}(\overline{D})=\overline{N_{G}(D}) . Let B_{1} , \cdots , B_{k}

be all p-blocks of \overline{G} such that B_{i}\subseteqq B and has a defect group D. Let
b_{1} , \cdots , b_{s} be all p-blocks of \overline{N} with b_{j}\subseteqq b . Then by Brauer’s first main
theorem k=s and after suitable renumbering b_{i}^{\overline{G}}=B_{i} . By induction the
theorem holds for b_{i} and B_{i} . If an irreducible F[G] -module with vertex
D is in a p-block of G with defect group D, then as considered as an
F[\overline{G}] -module it is in a p-block of \overline{G} with defect group \overline{D} . Thus the theorem
follows in this case. So we may assume that O_{p’}(G)=E\neq 1 . Assume that
ED4G. Then H=N_{G}(D)E is a proper subgroup of G. Let B_{0} be a unique
p-block of H with B_{0}^{G}=B and b^{H}=B_{0} . As the theorem holds for B_{0} and
b by induction, it will suffice to show that the number of irreducible F[G]-
modules in B with vertex D and the number of those in B_{0} are equal.
Let X be an irreducible F[E] -module such that a p-block \{X\} is covered
by B. If I_{G}(X)\neq G , then by induction and Theorem 4. 3 the result follows.
If I_{G}(X)=G , then by Theorem 4. 5 and Lemma 4. 6 we may assume that
O_{p’}(G) is central and therefore O_{p}(G)\neq 1 . Thus in this case the result also
follows. Next assume that EDaG. Let X be as in the above. HI_{G}(X)\neq G,

then by induction and Theorem 4. 3 our theorem holds. If I_{G}(X)=G, then
D is a Sylow p-subgroup of G by arguments of Fong [12] and B is a
unique p-block of G which covers a p-block \{X\} . Then the theorem follows
from Proposition 4. 9 and the proof of the theorem is complete.
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5. Induction theorems of Brauer and Dress

Let G be a finite group. For a subgroup H of G, let C(H) denote
the character ring of H. It is the set of all integral linear combinations
of characters which are afforded by K[H] -modules. If H and N are
subgroups of G such that H\subseteqq N, we define C(H)^{N}\subseteqq C(N) to be the set of
elements in C(N) which are induced from those in C(H) .

In [4] Brauer has shown the following;

THEOREM (Brauer [4]). Let G be a fifinite group and \mathcal{E} the set of all
elementary subgroups of G. Then we have

C(G)= \sum_{E\in 8}C(E)^{G}

First in this section we shall investigate this theorem of Brauer in
block-wise and prove the following;

THEOREM 5. 1. Let G be a fifinite group and B4a p-block of G with
defect group D. Let C_{B}(G) be the set of all integral linear combinations
of characters in B. Let \mathcal{E}(D) be the set of all elementary subgroups of
G those Sylow p-subgroups are contained in some conjugates of D. Then

C_{B}(G) \subseteqq\sum_{E\in 8(D)}C(E)^{G}

This theorem will be obtained as a corollary of Theorem 5. 3 in later.

Lemma 5. 2. Let H=P\cross A be a fifinite group where P is a p-group
and A is a p’ -group. Let V be an indecomposable R free R[H] -module
with vertex D\subseteqq P and \chi a character afforded by V. Then there exists \eta

a character afforded by some K[D\cross A] -module such that \chi=\eta^{H}.

PROOF. By III. \S 3 in [11] we may assume that V is absolutely in-
decomposable and there exist indecomposable R-free R[H] -modules U and
W such that P is in the kernel of W, A is in the kernel of U and V=
U\otimes W. It is obvious that U has D as a vertex and therefore it will be
suffice to show the lemma in the case H=P. Then by a result of Green
(see III. \S 3 in [11]) we may assume that there exists an indecomposable
R-free R[D] -module V_{1} such that V_{1}^{P}=V. Thus the proof of the lemma
is complete.

If B is a p-block of G with defect group D, then every R[G] -module
which lies in B is R[D] -projective and has a vertex contained in D (see
Theorem 54.1 in [8] ) . So Theorem 5. 1 is obtained as a corollary of the
following.
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THEOREM 5. 3. Let V be an R free R[G] -module which is R[D]-
projective with D a p-subgroup and \chi a character afforeded by V. Then
we have

\chi\in\sum_{E\epsilon 6(D)},C(E)^{G}

PROOF. By Brauer’s induction theorem we have 1_{G}= \sum_{E\in\dot{6^{J}}}a_{E}\theta(E)^{G} where
a_{E} is an integer and \theta(E) is a character of E. \theta(E) is afforded by some
R-free R[E] -module U(E) by [11]. Since every indecomposable direct sum-
mand of U(E)\otimes V_{IE} has a vertex contained in some conjugate of D by [11]
and E is a finite group of type as in Lemma 5. 2, the theorem follows.

It is known that there exists an irreducible complex character of G
contained in B such that a p-part of its degree is that of |G:D| . Thus
we have the following;

REMARK 5. 4. Let G, B and D as in Theorem 5. 1. If C_{B}(G) \in\sum_{E\in \mathcal{E}(D_{0})}C(E)^{G}

f\sigma r some D_{0}\subseteqq D, then D_{0}=D.
In the remainder of this section we assume that the field F is alge-

braically closed. For a subgroup H of G let A(H) denote the representa-
tion algebra of F[H] over the ring of rational integers. It is defined as
follows. A(H) is the abelian group generated by the set of all isomorphism
classes (V) of F[H] -modules V subject to the relations (V_{1}\oplus V_{2})=(V_{1})+(V_{2}) .
If H and N are subgroups of G such that H\subseteqq N, we define A(H)^{N}\subseteqq A(N)

to be the set of elements in A(N) which are induced from those in A(H) .
Dress has shown in [9] the following which asserts that for the represen-

tation algebra of a finite group an induction theorem of type of Brauer’s
induction theorem also holds.

THEOREM (Dress [9]). Let G be a fifinite group and \mathcal{E}_{p} be the set of
all subgroups E of G such that E/O_{p}(E) is an elementary group of p’-
order. Then we have

A(G)= \sum_{E\in 8_{p}}A(E)^{G}

As we can prove Theorem 5. 1, we shall be able to prove the following
theorem in connection with Theorem of Dress.

THEOREM 5. 5. Let G be a fifinite group and B a p-block of G with
defect group D. Let A_{E}(G) denote the set of all integral linear combina-
tions of F[G] -modules which lie in B. Let \mathcal{E}_{p}(D) be the set of all subgroups
E of G which lie in \mathcal{E}_{p} such that O_{p}(E) is contained in some conjugate
of D. Then we have
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A_{B}(G) \subseteqq\sum_{E\in 6_{p}(D)}A(E)^{G}

Theorem 5. 5 follows from Theorem 5.8 which is proved in later.

Lemma 5. 6. Let H be a solvable p-closed fifinite group with a p-
complement A and a Sylow p-subgroup P. Let V be an indecomposable
F[H] -module voith vertex D such that D is normal in H. Then there
exists an F[AD] -module W such that V=W^{H}.

PROOF. We shall prove the lemma by induction on the order of H.
If H=P, then the lemma follows from the result of Green [17]. Let U
be an indecomposable F[D] -module such that V|U^{H} . Put T=I_{H}(U) , the
inertia subgroup of U in H. By Satz 2. 2 in 24 there exists an indecom-
posable F[T] -module V_{0} such that V_{0}^{H}=V. If T\neq H, then by induction
we have our lemma and therefore we may assume that T=H. Then the
lemma follows from the following Lemma 5. 7.

Lemma 5. 7. Let H, A, P, V and D be as in Lemma 5. 6. Let U
be an indecomposable F[D] -module which is a source of V. If I_{H}(U)=H,
then there exists an F[AD] -module W such that W^{H}=V. Furthermore
W is a unique indecomposable F[AD] -module which satisfifies that V|W^{H}

PROOF. If H=P, then by the result of Green [17] we have that
V=U^{P} . If U’ is another indecomposable F[D] -module such that V|U^{\prime P} ,
then V=U^{\prime P} and therefore U’=U as I_{P}(U)=P. So we shall prove the
lemma by induction on the order of H. Since A is solvable we can take
a normal subgroup A_{0} of A with prime index, say q. As A is of p’ -0rder,
q is distinct from p. Put T=AD, T_{0}=A_{0}D and H_{0}=T_{0}P. Let V_{0} be an
indecomposable F[H_{0}] -module such that V_{0}|V_{IH_{0}} . Then we have the fol-
lowing two cases;

(1) V=V_{0}^{H} and I_{H}(V_{0})=H_{0} ,
(2) V_{IH_{0}}=V_{0} and I_{H}(V_{0})=H

PROOF in the case (1). We have that V_{IH_{0}}= \oplus\sum_{x}V_{0}^{x}, where x ranges

over a set of representatives of right cosets of H_{0} in H. We can take all
x’s in T By induction there exists an F[T_{0}] -module W_{0} such that W_{0}^{H_{0}}=V_{0} .
By a uniqueness of the existence of W_{0} we have the I_{T}(W_{0})=T_{0} and W_{0}^{T}

is indecomposable by Satz 2. 2 in [24]. Then W=W_{0^{T}} satisfies that W^{H}=V.
Let W’ be another indecomposable F[T] -module which satisfies that V|W^{H}.
Then by the fact that V_{0}|V_{IH_{0}}|W_{1H_{0}}^{\prime H}=(W1T_{0})^{H_{0}} , W_{0} is a direct summand of
W_{1T_{0}}’ and therefore W’=W_{0^{T}} as W’ is indecomposable and I_{T}(W_{0})=T_{0} .
Thus the lemma is proved in this case.
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PROOF in the case (2). Since H/H_{0} is cyclic and I_{H}(V_{0})=H. it follows
that V_{0}^{H}=V_{1}\oplus V_{2}\oplus\cdots\oplus V_{q} and V_{i}’s are all non-isomorphic and indecom-
posable. We set V=V_{1} . By induction there exists and F[T_{0}] -module W_{0}

such that W_{0}^{H_{0}}=V_{0} . We have that I_{T}(W_{0})=T since I_{H}(V_{0})=H and the
existence of W_{0} is unique. Then by Satz 3. 1 in [24] there exist F[T]-
modules W_{1} , W_{2} , \cdots , W_{q} such that W_{i\mathfrak{l}T_{0}}=W_{0} , W_{0}^{T}=W_{1}\oplus W_{2}\oplus\cdots\oplus W_{q} and
W_{i}’s are all non-isomorphic and indecomposable. Thus we have that
W_{1}^{H}\oplus W_{2}^{H}\oplus\cdots\oplus W_{q}^{H}=V_{1}\oplus V_{2}\oplus\cdots\oplus V_{q} and after suitable renumbering
W_{i}^{H}=V_{i} for each i. For i=1 , W=W_{1} satisfies that W^{H}=V. Let W’ be
another indecomposable F[T] -module such that V|W^{H}. Then the fact
that V_{0}|V_{1H_{0}}|(W^{\prime H})_{1H_{0}}=(W_{1T_{0}})^{H_{0}} implies that W_{0}|W_{1K_{0}} . So as W’ is indecom-
posable W=W_{i} for some i, 1\leqq i\leqq q, and therefore W’=W_{1}=W. Thus the
proof of the lemma is complete.

Now we can prove the following from which Theorem 5. 5 follows.

THEOREM 5. 8. Let G be a fifinite group and V an indecomposable
F[G] -module with vertex D. Then we have

V \in\sum A(E)^{G}
E\epsilon e_{p}(D)

PROOF. If D=1 , then the theorem follows from the result of Dress
[9]. So we shall proved the theorem by induction on the order of D. By
a property of the Green correspondence V=W^{G}\oplus U, where W is an in-
decomposable F[N_{G}(D)] -module with vertex D and U is an F[G] -module
whose indecomposable direct summands all have vertices properly contained
in D. Thus we may assume that G=N_{G}(D) , that is, D is normal in G.
By Dress’s induction theorem L_{0}(G)= \sum a_{E}V(E)^{G} , where a_{E} is an integer

E\in 6_{p}
’

and V(E) is an indecomposable F[E] -module. Since every indecomposable
direct summand of V(E)\otimes V_{1E} has a vertex contained in D and E is a p-
closed solvable, our theorem follows from Lemma 5. 6.

If B is a p-block of G with defect group D, then every indecomposable
F[G] -module which lies in B is F[D] -projective and has a vertex contained
in D. Thus Theorem 5. 5 follows from Theorem 5. 8.

As is remarked in Remark 5. 4, we have the following;

REMARK 5. 9. Let G, B, and D be as in Theorem 5. 5. If A_{B}(G)

\subseteqq \sum A(E)^{G} for some D_{0}\subseteqq D, then D_{0}=D .
E\epsilon e_{p}(D_{0})
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