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Projective I '-sets

By Tomoyuki YosHIDA
(Received January 26, 1982)

The purpose of this paper is to study projective functors from a small
category to the category of sets. Our results are generalizations of semigroup
cases.

1. Some basic definitions and properties

Let & be the category of sets and I' a small category. We denote by
ST the functor category from I' to &%. Then an object in &7 is called
a (right) I'-set and a morphism in &7 is called a I'-map. We denote the
hom-set from 7 to j in I' by I'(¢,j). Furthermore throughout the paper,

we denote the composition X_LY_Q-»Z by fg: X—Z. So a (right) I'set X
consists of sets X;, i=I, which are called stalks at i, together with maps

XixI'(i,5)— X;: (xy a)l—> ;0

for i, jeI' which satisfy the conditions :
(a) zi+ly=ux; for i€l’, z;€X; and the identity 1;;
(b) (xsa)sf=x;+(ap) for ;€ X, aEl'(1,5), BEL (J; k).
Furthermore a I'map f: X—Y between ['-sets is a family of maps f;:
X,—Y,, i=r, satisfying the condition (z;+a) f;=(x:fi)+a for i, jEI', 1,€X,,
acI(i,j). The set of all I'maps of X to Y is denoted by I'(X,Y). We
define analogously left I'-sets which can be regarded as contravariant functor
from I' to &. The category of I'-sets, &7, is complete and cocomplete.
In fact, limits and colimits of I'-sets are constructed pointwise. A I'-set X
is called a finite I'-set provided each stalk X, is a finite set. The"full sub-
category of finite I'-sets in &7 is denoted by 7.

Any set A is regarded as a constant I'-set defined by A;=A and a-a=a
for all ac A, acI'(i,j). For each k&I, the hom-functor H*:i>I'(k, 1)
is a I'-set, which is called a representable I'-set. Of course the map H* X
I'G,j)—H*: (y, @~>ya is defined by the compositions. If I" is a finite cate-
gory, that is, all morphisms in I makes a finite set, then H* is a finite I'-
set. It is well-known as the Yoneda Lemma that I’-maps of H* to X are
bijectively corresponding with elements of X;. The Yoneda embedding Y:
[o?—> 7 k> H* is fully-faithful, and furthermore Y preserves and reflects
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limits, monomorphisms and isomorphisms.

Some elementary concepts about sets are generalized to ones about I'-
sets. See Chapter 14 of [3]. For example, a I'-subset A of a I'-set X con-
sists of subsets A; of X,, i€[l', such that A;+aCA; for acl'(i, ), i, jI.
A non-empty [I'-set is called indecomposable if it is not decomposed to the
disjoint union of two non-empty I'-subsets. For example, each representable
I'-set is indecomposable. Furthermore, for each A:j—% in I', the I'-subset
AH*C H’ is also indecomposable. The following lemma is easily proved.

LEmMA 1. (1) A I'-set is uniquely decomposed to the disjoint union
of minimal indecomposable I'-subsets.

(2) A decomposition of a ['-set to a disjoint union of I'-subsets is
preserved by the inverse image of a I'-map.

(3) A I'set X s indecomposable if and only if every equivalence
relation ~ on [[.rX; satisfying

xi~xica for xeXy acsl(i,))
has only one equivalence class.

A I'-set P is called projective provided every I'-epimorphism onto P is
split, that is, whenever f: A—P is a I-epimorphism, then there is g: P—A
such that gf=1,: P A—P. A I'-set which is a disjoint union of representa-
ble I'-subsets is called a free I'-set

LEmMa 2. (1) A I'-set is projective if and only if each indecomposa-
ble direct summand of it is so.

(2) A I'set X is projective if and only if the hom-functor HX: $T—>
S A>(X, A); preserves epimorphisms.

(3) A I'-set which has a split epimorphism from a projective I'-set
is also projective.

(4) A I'-set has a I'-epimorphism from a free I'-set.

(5) A free I'-set is projective.

The proof is easy, but the Axiom of Choise is necessary to prove the
“if-part” of (1) and (5). For a I'-set X, we can choose as a free I'-set F
in (4) the free I'-set

F:=]lterXpex H*
with a [-epimorphism r: F—X defined by =;: (xs, @)z -a.
2. Projective I'-sets

In this section we characterize projective I'-sets.
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THEOREM A. Let I' be a small (resp. finite) category and X a I'-set
(resp. finite I'-set). Then X is projective if and only if X is isomorphic to
the direct sum of I'-sets of the form eH® for some kI and some idem-
potent e=cI'(k, k).

ProoF. 'We may assume that X is indecomposable. We will first show
that ¢eH*, where k<I" and &=c¢&I'(k, k), is projective. Let n: A—e¢H* be
a I'-epimorphism. Then there is an element a; of A; such that = : age.

We define a I-map ¢:eH*—A by
@i : el (k, i)%‘Ai Peal—— apea .

‘Then ¢ is acturely a-I'-map and ¢z=1 on eH*. Thus each epimorphism to
¢eH* is split, and hence ¢H* is projective, as required. Next let X be an
indecomposable and projective I'-set. Take a I'-epimorphism z: F—X from
a free I-set F. Then there is a I''map ¢: X—F such that ¢r=15. By
the indecomposability of X and Lemma 1/(2), we have that the image of ¢
is contained in a unique indecomposable direct summand, and so for some
k, we have a commutative diagram |

o= gr: X—2 P "X,
‘ \H,/
Thus we may assume that F=H", so that
ly=¢r: X ?5 H— X,

Set f=rg: H*—>HF. Then ¢?=6 and X=Im §C H*. Define ¢<I'(k k) by
0, : Ho—— H* : 1, |—e.

Then for any a: k—i in I', we have a commutative diagram

k I'(k, k) (&, k) 1kl—> €

R

I'(k, 1) al—ea

Thus 6, sends each acI'(k, i) to ex, and so X=Im §=ecH*. Furthermore,
since 6 is an idempotent, so is ¢, as required. The theorem is proved.

LEMMA 3. Let k, €T, e=<I'(k, k) and n=p<I(l,]). Then ¢H* is
isomorphic to pH' if and only if there exist x: k—l and 2: l—k such that
A=nle, k=¢cky, e=kKA =4k



Projective I'-sets 13

K

eGk——1lDy.
7

This lemma is easily proved by the similar way as in the Yoneda Lemma.

CoROLLARY A.1.. Let I' be a small (resp. finite) category in which
every endomorphism is an automorphism. Then the Yoneda functor Y:
ree—%7: k> H* yields an equivalence between I'? and the full subcategory
of indecomposable and projective I'-sets in F7T (resp. SF7%). ‘ .

CoROLLARY A.2. Let I' and 4 be small (resp. finite) category in which
every endomorphism is an autonorphism. If F* (resp. %) and L* (resp.
&7 are equivalent, then I' and 4 are equivalent, too.

Note 1. Two small categories I" and 4 are called Morita equivalent
provided &7 and &“ are equivalent. The problem when two categories are
Morita equlvalent is solved in monoidcase (Knauer [1]). Moreover, it is well-
known that &% ? and &4 are equivalent for groups I and 4 1f and only 1f the
profinite completion /' and 4 are isomorphic.

NoTe 2. A I'-set P is called internally projective it H*X P is projec-
tive I'-set for every k in I The characterization of internally projective
I'-sets seems to be more. troublesome excepting the case ‘where I" is a finite
monoid.

3. Projective covers.

A I-epimorphism f: X—Y between I'-sets is called essential if no proper
I-subsets of X is mapped onto Y by . A I'-set X with projection =« : X—+X
is called a projective cover of X provided X is pr0]ect1ve and r is an essential
I-epimorphism. Differing from injective envelopes, projective covers does
not always exist. Similarly as module-case, some finiteness conditions are
absolutely necessary for the existence of prOJectlve covers. Let I" be a small
category and k=I. Let R\I" be the category of morphisms from k. For

a: k—1 and B: k—j in I', we write a!s«ﬁ if there exist 1: a—§f land, 7%
B—a in E\I" such that ail=yp, fu=a.

LEMMA 4. Let I' be a small category and k=I'. Then the representa-
ble I'-set H* possesses only a finite number of I'-subsets if and only if K\’
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has a finite number of equivalence classes with respect to va

Proor. For present, we call a I'-set X irreducible if X has a I'-epi-
morphism from a representable I'-set. By [Lemma 2 (4), every ['-set is a
union of set-indexed irreducible I'-subsets. Thus the I'-set H* has only
a. finite number of I'-subsets if and only if H* has only a finite number of
irreducible I"-subsets. Let a<I'(k, ) and S&I'(k,j). Suppose first the image
of a*: H'—H* and p*: H’—H"® are coincident. Since a} sends 1; to «,
there exists pe= H’;=I"(j, 1) which is mapped to a=pgy by g*. Similarly,

there exists A&7'(7,j) such that f=ai. Hence a'f]i,@. Conversely, suppose

afvﬁ, so that there exist 2&I'(7,j) and p&l'(j, ¢) such that f=a1 and a=
Br. Then al'(i,))=pI'(j,1) for each ! in I', and hence Im a*=Im g*C H*

Thus we have that Ima*=Im g* if and only if aliﬁ. Now the lemma
follows from Yoneda.

- TueorReM B. Let I' be a small category, 4 a finite set of objects in
I' and X and finite I'-set. Assume the following conditions :

(a) d\I' has only finite leu-equivalence classes for every d in 4;

(b) Xi=UsesXaI'(d, k) for every k in I
Then X possesses a projective cover X— X uniquely determined up to iso-
morphism on X. In particular, if I" is a finite category and X is a finite
I'-set, then X has a projective cover.

Proor. Take the I'-map

n: P=]] XgxXx H— X: (24, a)l—> x4+ .
ded

Then by the assumption (b), 7= is a I-epimorphism. Furthermore by the
assumption (a) and Lemma 4, P has only a finite number of I'-subsets.
Thus there exists a minimal I'-subset X of P such.that mz: X—X is a
I'-epimorphism. Then the minimality implies that 7,z : X— X is an essential
epimorphism. We will show that X is projective. Let i: X—P be the
injection. Since ir: X—X is an epimorphism and P is projective, there
exists a I-map ¢: P—X such that z=din.

? %
XL"”
X

Thus 7=¢+(in) =¢i¢+(ix). Since mz=tir is essential and = is an epimorphism,

we have that ¢: P—X and ¢ig: P—X are both epimorphisms, and so

z

P

P
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¢(P)=¢(X)=X. Thus it follows from the finiteness of X that ig: X=X
is a I'-isomorphism. Set ¢=(i¢)"% : X—>P. Then ¢¢=1¢, that is, ¢: P—X
is a split epimorphism, and hence X is projective. We proved that ir:
X—X is a projective cover with X finite. Next we will show the uniqueness.
Let p: P-X and ¢: Q— X be two projective covers of X. We may assume
that P is finite. Then there are maps f: P—Q and ¢: Q—P such that

fq=p and gp=q.

q X
/q
Thus fgp=p and gfg=gq. Since p and g are essential, we have that fg and
gf are epimorphisms. The finiteness of P implies that fg: P—P is an auto-
morphism, and so f is not only a epimorphism but also a monomorphism.
Thus f and also g are isomorphisms on X, as required. The theorem is
proved.

The following lemma is useful to see whether the category I' satisfies
the assumption of the theorem.

f

O=0="

LEMMA 5. Let I' be a small category satisfying the following condi-
tions:

(a) Any morphism in I’ can be factored as an epi followed by a mono ;

(b) Any object of I' has only finite quotient objects ;

(c) Any object of I' is injective.

Then for each kI, E\I' has finite fli-equivalence classes, that 1s, H* has
finite I'-subsets.

’ 174
Proor. Let a: k—i be a morphism in I" and let a=d'a”’: kS K%

k

be an epi-mono factorization of @. Then by (c), we have that a<a’. Thus

there is a bijective correspondence between fkf—equivalence classes and quotient
objects of k.

ExampLeEs. (1) Let I' be a monoid. Then I' may be considered as
a category with only one object. In this case, a projective I'-set is a direct
sum of cyclic I'-sets eI’ generated idempotents e of I' (Knauer [1]). In
particular, when I" is a group, a ['-set is projective if and only if it is
semi-regular.

(2) Let I' be the category with two objects and four morphisms as
follows :

1dG1—=001d.
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Then a I'-set is regarded as directed graph. - An indecomposable and pro-
jective I'-set is represented by cne of the following graphs:

o oO— 0,

Furthermore in this case every I'-set has unconditionally a projective cover.
(3) Let 4 be the category which has as objects the sets [n]: ={0, 1,
-«.,n}, n>>0, and as morphisms all monotone functions. Set I'=4°?. Then
I-sets are called simplicial sets (May [2]). In this case, an indecomposable
and projective simplicial set is always representable, and so it is isomorphic
to the simplicial set given by a finite simplex. The category I satisfies the
conditions of [Lemma 5. Thus by Theorem B, a simplicial set of finite
dimensional (that is, with a finite dimensional CW complex as its geometric
realization) has a projective cover. Contrary, infinite dimentional simplicial
sets have no projective covers. |
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