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Projective \Gamma-sets

By Tomoyuki YOSHIDA
(Received January 26, 1982)

The purpOSe Of this paper iS tO Study prOjective functOrs frOm a Small
categOry tO the categOry Of SetS. Our reSultS are generalizatiOns Of SemigrOup
caseS.

1. Some basic definitions and properties

Let \mathscr{S} be the categOry Of SetS and \Gamma a small categOry. We denOte by
\mathscr{S}^{\Gamma} the functOr categOry frOm \Gamma tO \mathscr{S} . Then an Object in \mathscr{S}^{\Gamma} iS called
a (right) \Gamma-set and a mOrphiSm in \mathscr{S}^{\Gamma} is called a \Gamma-map. We denOte the
hOm-Set frOm i tO j in \Gamma by \Gamma(i,j) . FurthermOre throughout the paper,

f q
we denOte the cOmpOSitiOn Xarrow Yarrow Z by fq:Xarrow Z. SO a (right) \Gamma-set X
cOnSiStS Of SetS X_{i} , i\in\Gamma

- which are called stalks at i, tOgether with maps

X_{i}\cross\Gamma(i,j)arrow X_{j} : (x_{i}, \alpha)1arrow x_{i}\cdot\alpha

fOr i, j\in\Gamma which satiSfy the cOnditiOnS:
(a) x_{i}\cdot 1_{i}=x_{i} fOr i\in\Gamma, x_{i}\in X_{i} and the identity 4_{i} ;
(b) (x_{i}\cdot\alpha)\cdot\beta=x_{i}\cdot(\alpha\beta) fOr x_{i}\in X_{i}, \alpha\in\Gamma(i,j) , \beta\in\Gamma\langle j, k) .
FurthermOre a \Gamma-map f:Xarrow Y between \Gamma-SetS iS a family Of mapS f_{i} :
X_{i}arrow Y_{i} , i\in\Gamma. SatiSfying the cOnditiOn (x_{i}\cdot\alpha)f_{j}=(x_{i}f_{i})\cdot\alpha fOr i, j\in\Gamma, x_{i}\in X_{i},
\alpha\in\Gamma(i,j) . The set Of all \Gamma-maps Of X tO Y is denOted by \Gamma(X, Y) . We
define analOgOusly left \Gamma-setS which can be regarded as cOntravariant functOr
frOm \Gamma tO \mathscr{S} . The categOry Of \Gamma-sets, \mathscr{S}^{\Gamma}, is cOmplete and cOcOmplete.
In fact, limitS and cOlimitS Of \Gamma-setS are cOnStructed pOintwise. A \Gamma-set X
is called a fifinite \Gamma-set prOvided each stalk X_{t} is a finite set. The.full sub-
categOry Of finite \Gamma-setS in \mathscr{S}^{\Gamma} iS denOted by \mathscr{S}_{f}^{\Gamma}.

Any Set A is regarded as a constant \Gamma-Set defined by A_{i}=A and a\cdot\alpha=a

fOr all a\in A_{i}, \alpha\in\Gamma(i,j) . FOr each k\in\Gamma
,\cdot the hOm functor H^{k} : i\mapsto\Gamma(k, i)

is a \Gamma-Set, which is called a representable \Gamma-set. Of cOurse the map H_{i}^{k}\cross

\Gamma(i,j)arrow H_{j}^{k} : (\gamma, \alpha)\mapsto\gamma\alpha is defined by the cOmpOsitiOnS. If \Gamma is a finite cate-

gOry, that is, all mOrphisms in \Gamma makeS a finite set, then H^{k} iS a finite \Gamma-

set. It is well-knOwn aS the YOneda Lemma that \Gamma maps Of H^{k} tO X are
bijectively cOrreSpOnding with elements Of X_{k} . The YOneda embedding Y :
\Gamma^{op}arrow \mathscr{S}^{\Gamma} : k\mapsto H^{k} iS fully-faithful, and furthermOre Y preServes and reflects
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limits, monomorphisms and isomorphisms.
Some elementary concepts about sets are generalized to ones about \Gamma-

sets. See Chapter 14 of [3]. For example, a \Gamma-subset A of a \Gamma-set X con-
sists of subsets A_{i} of X_{i} , i\in\Gamma, such that A_{i}\cdot\alpha\subseteq A_{j} for \alpha\in\Gamma(i,j) , i, j\in\Gamma

A non-empty \Gamma-set is called indecomposable if it is not decomposed to the
disjoint union of two non-empty \Gamma-subsets. For example, each representable
\Gamma-set is indecomposable. Furthermore, for each \lambda:jarrow k in \Gamma, the \Gamma-subset
\lambda H^{k}\subseteq H^{j} is also indecomposable. The following lemma is easily proved.

lemma 1. (1) A \Gamma-set is uniquely decomposed to the disjoint union
of minimal indecomposable \Gamma-subsets.

(2) A decomposition of a \Gamma-set to a disjoint union of \Gamma subsets i\grave{s}

preserved by the inverse image of a \Gamma-map.
(3) A \Gamma-set X is indecomposable if and only if every equivalence

relation \sim on I^{-}1_{i\in\Gamma}X_{i} satisfying

x_{i}\sim x_{i}\cdot\alpha for x_{i}\in X_{i}, \alpha\in\Gamma(i,j)

has only one equivalence class.

A \Gamma-set P is called projective provided every \Gamma-epimorphism onto P is
split, that is, whenever f:Aarrow P is a \Gamma-epimorphism, then there is q:Parrow A

such that qf–1_{P} : Parrow Aarrow P. A \Gamma-set which is a disjoint union of representa-
ble \Gamma-subsets is called a free \Gamma-set

lemma 2. (1) A \Gamma-set is projective if and only if each indecomposa-
ble direct summand of it is so.

(2) A \Gamma-set X is projective if and only if the hom functor H^{X} : \mathscr{S}^{\Gamma}arrow

\mathscr{S} : A\mapsto(X, A)_{\Gamma} preserves epimorphisms.
(3) A \Gamma-set which has a split epimorphism from a projective \Gamma-set

is also projective.
(4) A \Gamma-set has a \Gamma-epimorphism from a free \Gamma-set.
(5) A free \Gamma-set is projective.

The proof is easy, but the Axiom of Choise is necessary to prove the
“if-part” of (1) and (5). For a \Gamma-set X, we can choose as a free \Gamma-set F
in (4) the free \Gamma-set

F:=I\lrcorner_{k\in\Gamma}X_{k}\cross H^{k}

with a \Gamma epimorphism \pi:Farrow X defined by \pi_{i} : (x_{k}, \alpha)\mapsto x_{k}\cdot\alpha .

2. Projective \Gamma-sets

In this section we characterize projective \Gamma-sets.
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THEOREM A. Let \Gamma be a small {resp. fifinite) category and X a \Gamma-set
{resp. fifinite \Gamma-set). Then X is projective if and only if X is isomorphic to
the direct sum of \Gamma-sets of the form \epsilon H^{k} for some k\in\Gamma and some idem-
potent \epsilon^{2}=\epsilon\in\Gamma(k, k) .

PBOOF. We may assume that X is indecomposable. We will first show
that \epsilon H^{k} , where k\in\Gamma and \epsilon^{2}=\epsilon\in\Gamma(k, k) , is projective. Let \pi:Aarrow\epsilon H^{k} be
a \Gamma-epimorphism. Then there is an element a_{k} of A_{k} such that \pi_{k} : a_{k}\mapsto\epsilon .
We define a \Gamma-map \phi:\epsilon H^{k}arrow A by

\phi_{i} : \epsilon\Gamma(k, i)arrow A_{i} : \epsilon\alpha 1arrow a_{k}\epsilon\alpha

Then \phi is acturely a \Gamma-map and \phi\pi=1 on \epsilon H^{k} . Thus each epimorphism to
\epsilon H^{k} is split, and hence \epsilon H^{k} is projective, as required. Next let X be an
indecomposable and projective \Gamma-set. Take a \Gamma epimorphism \pi:Farrow X from
a free \Gamma-set F. Then there is a \Gamma-map \phi:Xarrow F such that \phi\pi=1_{X}. By
the indecomposability of X and Lemma 1 (2), we have that the image of \phi

is contained in a unique indecomposable direct summand, and so for some
k, we have a commutative diagram

1_{X}= \phi\pi:X\frac{\phi}{\searrow_{H^{k}}\nearrow}FXt\underline{\pi}

Thus we may assume that F=H^{k} , so that

1_{X}=\phi\pi:XH^{k}X\underline{\phi}\underline{\pi}

Set \theta=\pi\phi:H^{k}arrow H^{k} . Then \theta^{2}=\theta and X\cong{\rm Im}\theta\subseteq H^{k} . Define \epsilon\in\Gamma(k, k) by

\theta_{k} : H_{k}^{k}arrow H_{k}^{k} : 1_{k}1arrow\epsilon t

Then for any \alpha:karrow i in \Gamma, we have a commutative diagram

\Gamma(k, k)\Gamma(k, k)\underline{\theta_{k}}

k\downarrow\alpha 11arrow 6T^{k}I

i
\Gamma(k, i)\Gamma(k, i)\downarrow\underline{\theta_{i}}\downarrow

\alpha|arrow\epsilon\alpha

Thus \theta_{i} sends each \alpha\in\Gamma(k, i) to \epsilon\alpha, and so X\cong{\rm Im}\theta=\epsilon H^{k} . Furthermore,

since \theta is an idempotent, so is \epsilon, as required. The theorem is proved.

Lemma 3. Let k, l\in\Gamma_{j}\epsilon=\epsilon^{2}\in\Gamma(k, k) and \eta=\eta^{2}\in\Gamma(l, l) . Then \epsilon H^{k} is
isomorphic to \eta H^{l} if and only if there exist \kappa:karrow l and \lambda:larrow k such that
\lambda=\eta\lambda\epsilon, \kappa=\epsilon\kappa\eta, \epsilon=\kappa\lambda, \eta=\lambda\kappa .
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\epsilon Ckl\not\subset\supset\eta\overline{\overline{\lambda}}\kappa .

This lemma is easily proved by the similar way as in the Yoneda Lemma.

COROLLARY A. 1. Let \Gamma be a small {resp, fifinite) category in which
every endomorphism is an automorphism. Then the Yoneda functor Y :
\Gamma^{op}arrow \mathscr{S}^{\Gamma} : k\mapsto H^{k} yields an equivalence between \Gamma^{op} and the full subcategory

of indecomposable and projective \Gamma-sets in \mathscr{S}^{\Gamma} {resp.\mathscr{S}_{f}^{\Gamma}).

COROLLARY A. 2. Let \Gamma and \Delta be small {resp, fifinite) category in which
every endomorphism is an autonorphism. If \mathscr{S}^{\Gamma} {resp. \mathscr{S}_{f}^{\Gamma}) and \mathscr{S}^{A} {resp.
\mathscr{S}_{f}^{\Delta\backslash },are equivalent, then \Gamma and \Delta are equivalent, too.

NOTE 1. Two small categories \Gamma and \Delta are called Morita equivalent
provided \mathscr{S}^{\Gamma} and \mathscr{S}^{\Delta} are equivalent. The problem when two categories are
Morita equivalent is solved in monoidcase (Knauer [1]). Moreover, it is well-
known that \mathscr{S}_{f}^{\Gamma} and \mathscr{S}_{f}^{\Delta} are equivalent for groups \Gamma and \Delta if and only if the
profinite completion \hat{\Gamma} and \hat{\Delta} are isomorphic.

NOTE 2. A \Gamma-set P is called internally projective if H^{k}\cross P is projec-
tive \Gamma-set for every k in \Gamma The characterization of internally projective
\Gamma-sets seems to be more troublesome excepting the case where \Gamma is a finite
monoid.

3. Projective covers.

A \Gamma-epimorphism f:Xarrow Y between \Gamma-sets is called essential if no proper
\Gamma-subsets of X is mapped onto Y by f. A \Gamma-set X with projection \pi:Xarrow X

is called a projective cover of X provided X is projective and \pi is an essential
\Gamma-epimorphism. Differing from injective envelopes, projective covers does
not always exist. Similarly as module-case, some finiteness conditions are
absolutely necessary for the existence of projective covers. Let \Gamma be a small
category and k\in\Gamma Let k\backslash \Gamma be the category of morphisms from k. For
\alpha:karrow i and \beta:karrow j in \Gamma,\cdot we write \alpha\sim\beta k if there exist \lambda:\alphaarrow\beta and \mu\cdot.
\betaarrow\alpha in k\backslash \Gamma such that a\lambda=\mu , \beta\mu=\alpha .

Lemma 4. Let \Gamma be a small category and k\in\Gamma Then the representa-
ble \Gamma-set H^{k} possesses only a fifinite number of \Gamma-subsets if and only if k\backslash \Gamma
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khas a fifinite number of equivalence classes with respect to \sim .
PROOF. For present, we call a \Gamma-set X irreducible if X has a \Gamma-epi-

morphism from a representable \Gamma-set. By Lemma 2 (4), every \Gamma-set is a
union of set-indexed irreducible \Gamma-subsets. Thus the \Gamma-set H^{k} has only
a\wedge finite number of \Gamma-subsets if and only if H^{k} has only a finite number of
irreducible \Gamma-subsets. Let \alpha\in\Gamma(k, i) and \beta\in\Gamma(k,j) . Suppose first the image
of \alpha^{*}: H^{i}arrow H^{k} and \beta^{*}: H^{j}arrow H^{k} are coincident. Since \alpha_{i}^{*} sends 1_{i} to \alpha,
there exists \mu\in H_{i}^{j}=\Gamma(j, i) which is mapped to \alpha=\beta\mu by \beta^{*} . Similarly,

there exists \lambda\in\Gamma(i,j) such that \beta=\alpha\lambda . Hence \alpha\sim\beta k . Conversely, suppose
\alpha\sim\beta k , so that there exist \lambda\in\Gamma(i,j) and \mu\in\Gamma(j, i) such that \beta=\alpha\lambda and \alpha=

\beta\mu . Then \alpha\Gamma(i, l)=\beta\Gamma(j, l) for each l in \Gamma. and hence Im \alpha^{*}={\rm Im}\beta^{*}\subseteq H^{k} .
Thus we have that Im \alpha^{*}={\rm Im}\beta^{*} if and only if \alpha\sim\beta k . Now the lemma
follows from Yoneda.

THEOREM B. Let \Gamma be a small category, \Delta a fifinite set of objects in
\Gamma and X and fifinite \Gamma-set. Assume the following conditions:

(a) d\backslash \Gamma has only fifinite \sim k -equivalence classes for every d in \Delta ;
(b) X_{k}=\cup d\in 4X_{(}l\cdot\Gamma(d, k) for every k in \Gamma

Then X possesses a projective cover Xarrow X uniquely determined up to is0-
morphism on X. In particular, if \Gamma is a fifinite category and X is a fifinite
\Gamma-set, then X has a projective cover.

PROOF. Take the \Gamma-map

\pi:P=]\rfloor X_{d}\cross H^{a}arrow X:d\epsilon d(x_{d}, \alpha)1arrow x_{d}\cdot\alpha .

Then by the assumption (b), \pi is a \Gamma-epimorphism. Furthermore by the
assumption (a) and Lemma 4, P has only a finite number of \Gamma-subsets.
Thus there exists a minimal \Gamma-subset X of P such that \pi_{1\tilde{X}} : Xarrow X is a
\Gamma-epimorphism. Then the minimality implies that \pi_{1} -: Xarrow X is an essential
epimorphism. We will show that X is projective. Let i:Xarrow P be the
injection. Since i\pi:Xarrow X is an epimorphism and P is projective, there
exists a \Gamma-map \phi:Parrow X such that \pi=\phi i\pi .

Thus \pi=\phi\cdot(i\pi)=\phi i\phi\cdot(i\pi) . Since \pi_{1Z}=i\pi is essential and \pi is an epimorphism,
we have that \phi:Parrow X and \phi i\phi:Parrow X are both epimorphisms, and so
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\phi(P)=\phi(\tilde{X})=\tilde{X}. Thus it follows from the finiteness of X that i\phi:Xarrow X

is a \Gamma-isomorphism. Set \psi=\langle i\phi)^{-1}i:\tilde{X}arrow P. Then \phi\phi=1\tilde{Y_{1}} , that is, \phi:Parrow X

is a split epimorphism, and hence X is projective. We proved that i\pi :
Xarrow X is a projective cover with X finite. Next we will show the uniqueness.
Let p:Parrow X and q:Qarrow X be two projective covers of X. We may assume
that P is finite. Then there are \Gamma-maps f:Parrow Q and q:Qarrow P such that
fq=p and qp=q.

Thus fqp=p and qfq=q. Since p and q are essential, we have that fq and
qf are epimorphisms. The finiteness of P implies that fq:Parrow P is an aut0-
morphism, and so f is not only a epimorphism but also a monomorphism.
Thus f and also q are isomorphisms on X, as required. The theorem is
proved.

The following lemma is useful to see whether the category \Gamma satisfies
the assumption of the theorem.

lemma 5. Let \Gamma be a small category satisfying the following condi-
tions:

(a) Any morphism in \Gamma can be factored as an epi followed by a mono;
(b) Any object of \Gamma has only fifinite quotient objects;
(c) Any object of \Gamma is injective.

Then for each k\in\Gamma, k\backslash \Gamma has fifinite
\sim k -equivalence classes, that is, H^{k} has

fifinite \Gamma-subsets.

PROOF. Let \alpha:karrow i be a morphism in \Gamma and let \alpha=\alpha’\alpha’ : k\alpha’arrow k’\alpha’arrow i

be an epi -mono factorization of \alpha . Then by (c), we have that \alpha\sim\alpha’k . Thus
there is a bijective correspondence between \sim k -equivalence classes and quotient
objects of k .

EXAMPLES. ( 1) Let \Gamma be a monoid. Then \Gamma may be considered as
a category with only one object. In this case, a projective \Gamma-set is a direct
sum of cyclic \Gamma-sets e\Gamma generated idempotents e of \Gamma (Knauer [1]). In
particular, when \Gamma is a group, a \Gamma-set is projective if and only if it is
semi-regular.

(2) Let \Gamma be the category with two objects and four morphisms as
follows :

idC1–0\circ id .
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Then a \Gamma-set is regarded as directed graph. An indecomposable and pr0-

jective \Gamma-set is represented by one of the following graphs:

l\circ-\circ

Furthermore in this case every \Gamma-set has unconditionally a projective cover.
(3) Let \Delta be the category which has as objects the sets [n]:=\{0,1 ,

\ldots , n\} , n\geq 0, and as morphisms all monotone functions. Set \Gamma=\Delta^{op} . Then
\Gamma-sets are called simplicial sets (May [2]). In this case, an indecomposable
and projective simplicial set is always representable, and so it is isomorphic
to the simplicial set given by a finite simplex. The category \Gamma satisfies the
conditions of Lemma 5. Thus by Theorem B, a simplicial set of finite
dimensional (that is, with a finite dimensional CW complex as its geometric
realization) has a projective cover. Contrary, infinite dimentional simplicial
sets have no projective covers.
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