Notes on Beurling's theorem

To Professor Mitsuru Ozawa on the occasion of his 60th birthday

By Yukio NAGASAKA

(Received January 20, 1983)

For some harmonic function on a Riemann surface with Kuramochi boundary, fine limits exist on the boundary except for a set of capacity zero (Beurling type theorem, (1), (2)). The purpose of the present paper is to improve a result in (2).

Let R be an open Riemann surface and $\{R_n\}_{n=0}^{\infty}$ be an exhaustion of R. Let R^* be the Kuramochi compactification of R and \mathcal{I}_1 be the set of minimal points of $\Delta = R^* - R$. For any $p \in \Delta_1$, denote by \mathfrak{G}_p the family of open sets G in R such that R-G is N-thin at p. Let u be a harmonic function on *R*. For any $p \in \mathcal{A}_1$, then *N*-fine cluster set $u^N(p)$ is defined by $u^N(p) = \bigcap \{\overline{u(G)} :$ $G \in \mathfrak{G}_p$, where the closure u(G) is taken in extended real numbers. Let F be a closed set in R with piecewise analytic boundary ∂F and G be an open set in R containing F with piecewise analytic boundary. Suppose there is a Dirichlet finite function f in G-F with boundary values 1 on ∂F and 0 on ∂G . Denote by $\omega(\partial F, z, G-F)$ the unique function which gives the smallest Dirichlet integral among the functions like f. Let E be a closed set in Δ . Set $E_k = \left\{ z \in R : d(z, E) \leq \frac{1}{k} \right\}$, where d is a Kuramochi metric. Let E'_k be a closed set in R with piecewise analytic boundary such that $E_{k+1} \subset$ $E'_k \subset E_k - \partial E_k$. Then $\omega(E \cap B(F), z, G)$ is defined by $\lim_{k \to \infty} \omega(\partial(E'_k \cap F), z, G)$. k→∞ $E'_k \cap F$). Set $\omega(E \cap B(F), z) = \omega(E \cap B(F), z, R - R_0), \ \omega(E, z) = \omega(E \cap B(R - R_1), z)$ z) and $\omega(B(F), z) = \omega(\varDelta \cap B(F), z)$. A Borel set A on \varDelta is said to be a capacity zero if $\omega(E, z) = 0$ for any closed subset E of A.

Let u be a harmonic function on R. For any open set G in R, denote by $D_G(u)$ the Dirichlet integral of u on G. Let y be a real number. If there is a number $\delta > 0$ such that $D_{(a < u < b)}(u) = \infty$ for any interval (a, b) in $(y-\delta, y+\delta)$, then we call y an I-point. Denote by $\mathcal{E} = \mathcal{E}(u)$ the set of Ipoints. Then \mathcal{E} is an open subset of real numbers. For any component e=(c,d) of \mathcal{E} , denote by e_n the closed interval $\left[c-\frac{1}{n}, d+\frac{1}{n}\right]$.

DEFINITION 1. A harmonic function u on R is said to be almost Dirichlet finite, if $\lim_{n \to \infty} \omega(B(u^{-1}(e_n)), z) = 0$ on R for any component e of \mathcal{E} .

DEFINITION 2. A harmonic function u on R is said to be quasi-Dirichlet finite, if $D_{(-n < u < n)}(u) < \infty$ for any n.

Z. Kuramochi (2) proved the following.

THEOREM. Let u be a quasi-Dirichlet finite harmonic function on R. If

$$\lim_{n\to\infty}\omega(B(|u|\geq n),z)=0,$$

then $S = \{p \in \mathcal{A}_1 : \text{diam } u^N(p) > 0\}$ is a set of capacity zero.

Our result is the following.

THEOREM 1. If u is an almost Dirichlet finite harmonic function on R, then $S = \{p \in \Delta_1 : \text{diam } u^N(p) > 0\}$ is a set of capacity zero.

If u is quasi-Dirichlet finite, $\mathcal{E}(u) = \phi$. Hence any quasi-Dirichlet finite harmonic function is almost Dirichlet finite. By Theorem 1, we obtain the following improvement of Theorem.

COROLLARY. If u is quasi-Dirichlet finite, then S is a set of capacity zero.

1. The proof of Theorem 1.

LEMMA 1. If $\omega(E \cap B(F), z, G) > 0$, then $E_G = \{p \in E \cap A_1 : G \in \mathfrak{G}_p\}$ is a set of positive capacity.

PROOF. Let μ be the canonical measure of $\omega(E, z)$. Then, by Lemma 4 in (1),

$$\int_{E \cap A_1} N(\boldsymbol{\cdot}, \boldsymbol{p}) \, d\mu(\boldsymbol{p}) > \int_{E \cap A_1} N(\boldsymbol{\cdot}, \boldsymbol{p})_{R-G} d\mu(\boldsymbol{p})$$

on G and so $\mu(E_G) > 0$. Since the energy $\int_{E \cap A_1} \omega(E, p) d\mu(p)$ of μ is finite, E_G is a set of positive capacity.

LEMMA 2. Let u be a harmonic function on R such that $D_{(a < u < \beta)}(u) < \infty$. Then, for any closed set E in Δ with $\omega(E, z) > 0$, either $E_u^{\alpha} = \{p \in E \cap \Delta_1 : u^N(p) \subset [\alpha, +\infty]\}$ or ${}^{\beta}E_u = \{p \in E \cap \Delta_1 : u^N(p) \subset [-\infty, \beta]\}$ is a set of positive capacity.

PROOF. Set $c = \frac{\alpha + \beta}{2}$. Since

$$\omega(E, z) \leq \omega (E \cap B(u \leq c), z) + \omega (E \cap B(u \geq c), z)$$
,

it follows that either $\omega(E \cap B(u \leq c), z) > 0$ or $\omega(E \cap B(u \geq c), z) > 0$. Suppose

Y. Nagasaka

now $\omega(E \cap B(u \leq c), z) > 0$. Consider the function $u_0 = 1 - \frac{u-c}{\beta-c}$. Then $D_{(\alpha < u < \beta)}(u_0) < \infty$. Hence $\omega(E \cap B(u \leq c), z, (u < \beta))$ is well-defined and, by Dirichlet principle,

$$D(\omega(E \cap B(u \leq c), z, (u < \beta))) \geq D(\omega(E \cap B(u \leq c), z)).$$

This shows that $\omega(E \cap B(u \leq c), z, (u < \beta)) > 0$. Hence, by Lemma 1, $E_{(u < \beta)}$ is of positive capacity. This shows that ${}^{\beta}E_{u}$ is of positive capacity. If $\omega(E \cap B(u \geq c), z) > 0$, we see similarly that E_{u}^{α} is of positive capacity.

LEMMA 3. Let u be an almost Dirichlet finite harmonic function. Let E be a closed set in Δ and (a, b) be an open interval. If $u^{N}(p) \supset (a, b)$ for any point $p \in E \cap \Delta_{1}$, then $\omega(E, z) \equiv 0$ on R.

PROOF. Suppose $\omega(E, z) > 0$. Let us first assume $(a, b) - \mathcal{E}(u) \neq \phi$. Then there exists a closed interval $[\alpha, \beta]$ contained in (a, b) such that $D_{(\alpha < u < \beta)}(u) < \infty$. Hence, by Lemma 1, $E^{\alpha} \neq \phi$ or ${}^{\beta}E \neq \phi$ for u. But this contradicts $[\alpha, \beta] \subset$ (a, b).

Next we consider the case when $(a, b) \subset \mathcal{E}$. Since \mathcal{E} is open, there is a component e=(c, d) of \mathcal{E} such that $(a, b) \subset (c, d)$. Since $u^{-1}(e_n) \neq R$ for some n, it follows that either $c > -\infty$ or $d < \infty$. Then

$$egin{aligned} &\omega(E,oldsymbol{z}) \leq \omega \Big(E \cap B(u \leq c-arepsilon),oldsymbol{z} \Big) \ &+ \omega \Big(E \cap B(c-arepsilon \leq u \leq d+arepsilon),oldsymbol{z} \Big) + \omega \Big(E \cap B(u \geq d+arepsilon),oldsymbol{z} \Big) \end{aligned}$$

for any $\varepsilon > 0$. Since $\omega(B(u^{-1}(e_n)), z) \ge \omega(E \cap B(c - \varepsilon \le u \le d + \varepsilon), z) \left(\varepsilon < \frac{1}{n}\right)$, it follows that

$$\lim_{\varepsilon\to 0} \omega \Big(E \cap B(c-\varepsilon \leq u \leq d+\varepsilon), \, z \Big) = 0 \, .$$

Hence either $\omega(E \cap B(u \leq c-\varepsilon), z) > 0$ or $\omega(E \cap B(u \geq d+\varepsilon), z) > 0$ for some $\varepsilon > 0$. Suppose now $\omega(E \cap B(u \leq c-\varepsilon), z) > 0$. Then $c > -\infty$ and $c \notin \mathcal{E}$. Hence there is a closed interval $[\alpha, \beta]$ contained $(c-\varepsilon, c)$ such that $D_{(\alpha < u < \beta)}(u) < \infty$. Since $\omega(E \cap B(u \leq c-\varepsilon), z) > 0$, by Lemma 2, $u^N(p_1) \subset [-\infty, \beta] \subset [-\infty, c)$ for some point $p_1 \in E \cap \mathcal{A}_1$. If $\omega(E \cap B(u \geq d+\varepsilon), z) > 0$, then $d < \infty$ and $u^N(p_2) \subset (d, \infty]$ for some $p_2 \in E \cap \mathcal{A}_1$. These contradict $(a, b) \subset (c, d)$.

PROOF OF THEOREM 1. Let $\{a_k\}$ be the set of rational numbers. Set

$$A_{n,k} = \left\{ p \in \mathcal{A}_1 : u^N(p) \supset \left[a_k - \frac{1}{n}, a_k + \frac{1}{n} \right] \right\}$$

for any pair of k and n. Then $A_{n,k}$ is a Borel set. Set $A = \bigcup_{n,k} A_{n,k}$. Since

 $u_N(p)$ is a closed interval of extended real numbers for any $p \in S$, we have $S \subset A$. Suppose A has positive capacity. Then there exists a closed set E contained in $A_{n,k}$ for some pair of n and k such that $\omega(E, z) > 0$. But this contradicts Lemma 3.

EXAMPLE. There is a quasi-Dirichlet finite harmonic function on $R = \{|z| < 1\}$ such that $\{p \in \mathcal{A}_1 : u^N(p) = \{\infty\}\}$ is a set of positive capacity.

Let $F_n(n=1, 2, \cdots)$ be a finite sum of closed intervals on $\mathcal{A}=\mathcal{A}_1=\{|z|=1\}$ such that $F_n \supset F_{n+1}$ and $F=\cap F_n$ has linear measure zero and positive capacity. Set $H_n=\left\{z: |z|=1, \min_{w\in F_n}|z-w| > \frac{1}{n}\right\}$ and $\tilde{w}_n(z)=\frac{1}{2\pi}\int_{H_n^c}\frac{1-|z|^2}{|e^{i\theta}-z|^2}d\theta$. Then $\lim_{n\to\infty}\tilde{w}_n(z)=0$. Let w_n be a harmonic function on R which has the boundary values 1 on F_n and 0 on \overline{H}_n and whose normal derivative vanishes on $\mathcal{A}-F_n-\overline{H}_n$. Then $\tilde{w}_n\geq w_n\geq w_{n+1}$. On choosing a subsequence, if necessary, we may assume $\tilde{w}_n(0)<\frac{1}{n^2}$. Set $u(z)=\sum w_n(z)$. Since $\lim_{z\to\zeta}u(z)\geq \lim_{z\to\zeta}nw_n(z)=n$ for any $\zeta\in F_n$, we have $u^N(\zeta)=\lim_{z\to\zeta}u(z)=\infty$ for any $\zeta\in F$. Take any positive integer m and take n_o such that $2m< n_o$. Set $G_0=\left(w_{n_o}<\frac{1}{2}\right)$. Then $G_0\supset(u<m)$ and $\overline{G}_o\cap\mathcal{A}\cap F_{n_o}=\phi$. Take n_1 such that $\overline{G}_o\cap\mathcal{A}\subset H_{n_1}$. By $w_n(0)<\frac{1}{n^2}, \sum_{n\geq n_1}w_n(z)$ has boundary values 0 on H_{n_1} . Then $\sum_{n\geq n_1}w_n(z)$ is harmonic on \overline{G}_o and so $D_{G_0}(\sum_{n\geq \infty}w_n)<\infty$. Hence we have

$$D_{(u < m)}(u) \leq D_{G_o}(u) \leq D(\sum_{n \leq n_1} w_n) + D_{G_o}(\sum_{n \geq n_1} w_n) < \infty .$$

THEOREM 2 (Riesz type theorem). Let u be a harmonic function on R. Suppose there exist quasi-Dirichlet finite functions u_1 and u_2 such that $u_1 \leq u \leq u_2$ on R and $\infty > \sup u_1 > \inf u_2 > -\infty$. Then $u^N(p) \equiv const$ on Δ_1 except on a set of capacity zero.

PROOF. Set $\inf u_2 = \alpha_0$ and $\sup u_1 = \beta_0$. Take any real numbers α and β such that $\alpha_0 < \alpha < \beta < \beta_0$. Let $w_{n,n+i}$ be the harmonic function in $R_{n+i} - ((u_1 \ge \beta) - R_n)$ which has the boundary values 0 on $\partial R_{n+i} - (u_1 \ge \beta)$ and 1 on $\partial ((u_1 \ge \beta) - R_n) \cap R_{n+i}$. Since $u_1 \le \beta + \beta_0 w_{n,n+i}$ on $R_{n+i} - ((u_1 \ge \beta) - R_n)$, we have $\lim_{n \to \infty} \lim_{i \to \infty} w_{n,n+i} > 0$. This shows $\omega(B(u_1 \ge \beta), z) > 0$. Since $D_{(\alpha < u_1 < \beta)}(u_1) < \infty$, $\Delta_{u_1}^{\alpha}$ has positive capacity by Lemma 2. Next take any real numbers α' and β' such that $\alpha_0 < \beta' < \alpha' < \alpha$. Then we have $\omega((u_2 \le \beta'), z) > 0$ similarly. And since $D_{(\beta' < u_2 < \alpha')}(u_2) < \infty$, $\alpha' \Delta_{u_2}$ has positive capacity by Lemma 2. Since $u_1 \le u_2$, $\Delta_{u_1}^{\alpha} \subset \Delta_u^{\alpha}$ and $\alpha' \Delta_{u_2} \subset \alpha' \Delta_u$. This shows that $u^N(p) \pm const$ except for a set of capacity zero.

Y. Nagasaka

COROLLARY. Let u be a non-constant Dirichlet finite harmonic function on R. Then $u^{N}(p) \pm const$ on Δ_{1} except for a set of capacity zero.

PROOR. Take positive and Dirichlet finite harmonic functions $u_i(i=1, 2)$ such that $u=u_1-u_2$ on R. Let $\{u_{i,n}\}_n$ be sequences of positive, bounded and Dirichlet finite harmonic functions such that $u_{i,n}\uparrow u_i$ $(n\uparrow\infty)$ on R. Then $u_{i,n}-u_2\leq u\leq u_1-u_{2,n}$ on R. Take n_0 such that

 $\infty > \sup_{R} (u_{1,n_0} - u_2) > \inf_{R} (u_1 - u_{2,n_0}) > -\infty$.

References

- Z. KURAMOCHI: On Beurling's and Fatou's theorems, Lecture Notes in Mathematics 58, Springer, 1968, 43-69.
- [2] Z. KURAMOCHI: On Fatou's and Beurling's Theorems, Hokkaido Math. J., vol. 11 (1982), 262–278.

College of Medical Technology Hokkaido University