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Notes on Beurling’s theorem
To Professor Mitsuru Ozawa on the occasion of his 60th birthday

By Yukio NAGASAKA
(Received January 20, 1983)

For some harmonic function on a Riemann surface with Kuramochi
boundary, fine limits exist on the boundary except for a set of capacity zero
(Beurling type theorem, (1), (2)). The purpose of the present paper is to
improve a result in (2).

Let R be an open Riemann surface and \{R_{n}\}_{n=0}^{\infty} be an exhaustion of R.
Let R^{*} be the Kuramochi compactification of R and \Delta_{1} be the set of minimal
points of \Delta=R^{*}-R . For any p\in\Delta_{1} , denote by \mathfrak{G}_{p} the family of open sets
G in R such that R-G is N\cdot thin at p. Let u be a harmonic function on
R. For any p\in\Delta_{1} , then N-fine cluster set u^{N}(p) is defined by u^{N}(p)=\cap\{\overline{u(G)} :
G\in \mathfrak{G}_{p}\} , where the closure \overline{u(G)} is taken in extended real numbers. Let
F be a closed set in R with piecewise analytic boundary \partial F and G be an
open set in R containing F with piecewise analytic boundary. Suppose there
is a Dirichlet finite function f in G-F with boundary values 1 on \partial F and
0 on \partial G . Denote by \omega(\partial F, z, G-F) the unique function which gives the
smallest Dirichlet integral among the functions like f. Let E be a closed set

in \Delta . Set E_{k}= \{z\in R:d(z, E)\leqq\frac{1}{k}\} , where d is a Kuramochi metric. Let
E_{k}’ be a closed set in R with piecewise analytic boundary such that E_{k+1}\subset

E_{k}’\subset E_{k}-\partial E_{k} . Then \omega(E\cap B(F), z, G) is defined by lim \omega(\partial(E_{k}’\cap F), z, G-
karrow\infty

E_{k}’\cap F) . Set \omega(E\cap B(F), z)=\omega(E\cap B(F), z, R-R_{0}) , \omega(E, z)=\omega(E\cap B(R-R_{1}) ,
z) and \omega(B(F), z)=\omega(\Delta\cap B(F), z) . A Borel set A on \Delta is said to be a
capacity zero if \omega(E, z)=0 for any closed subset E of A.

Let u be a harmonic function on R. For any open set G in R, denote
by D_{G}(u) the Dirichlet integral of u on G. Let y be a real number. If
there is a number \delta>0 such that D_{(a<u<b)}(u)=\infty for any interval (a, b) in
(y-\delta, y+\delta) , then we call y an I-point. Denote by \mathcal{E}=\mathcal{E}(u) the set of I-
points Then \mathcal{E} is an open subset of real numbers. For any component

e=(c, d) of \mathcal{E} , denote by e_{n} the closed interval [c- \frac{1}{n}, d+ \frac{1}{n}] .

DEFINITION 1. A harmonic function u on R is said to be almost
Dirichlet fifinite, if \lim_{narrow\infty}\omega(B(u^{-1}(e_{n})), z)=0 on R for any component e of \mathcal{E} .
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DEFINITION 2. A harmonic function u on R is said to be quasi-Diri-
chlet fifinite, if D_{(-n<u<n)}(u)<\infty for any n .

Z. Kuramochi (2) proved the following.

THEOREM. Let u be a quasi-Dirichlet fifinite harmonic function on R. If
\lim_{narrow\infty}\omega (B(|u|\geqq n) , z)=0 ,

then S= {p\in\Delta_{1} : diam u^{N}(p)>0} is a set of capacity zero.

Our result is the following.

THEOREM 1. If u is an almost Dirichlet fifinite harmonic function on
R, then S= {p\in\Delta_{1} : diam u^{N}(p)>0} is a set of capacity zero.

If u is quasi-Dirichlet finite, \mathcal{E}(u)=\phi . Hence any quasi-Dirichlet finite
harmonic function is almost Dirichlet finite. By Theorem 1, we obtain the
following improvement of Theorem.

COROLLARY. If u is quasi-Dirichlet fifinite, then S is a set of capacity
zero.

1. The proof of Theorem 1.

Lemma 1. If \omega(E\cap B(F), z, G)>0 , then E_{G}=\{p\in E\cap\Delta_{1} : G\in \mathfrak{G}_{p}\} is a
set of positive capacity.

PROOF. Let \mu be the canonical measure of \omega(E, z) . Then, by Lemma
4 in (1),

\int_{E\cap\Delta_{1}}N(\cdot, p)d\mu(p)>\int_{E\cap\Delta_{1}}N(\cdot, p)_{R-G}d\mu(p)

on G and so \mu(E_{G})>0 . Since the energy \int_{E\cap\Delta_{1}}\omega(E, p)d\mu(p) of \mu is finite,

E_{G} is a set of positive capacity.

Lemma 2. Let u be a harmonic function on R such that D_{(a<u<\rho)}(u)<\infty .
Then, for any closed set E in \Delta with \omega(E, z)>0 , either E_{u}^{\alpha}=\{p\overline{\overline{arrow}-}E\cap\Delta_{1} :
u^{N}(p)\subset[\alpha, +\infty]\} or \beta E_{u}=\{p\in E\cap\Delta_{1} : u^{N}(p)\subset[-\infty, \beta]\} is a set of positive
capacity.

PROOF. Set c= \frac{\alpha+\beta}{2} . Since

\omega(E, z)\leqq\omega(E\cap B(u\leqq c), z)+\omega(E\cap B(u\geqq c) , z) ,

it follows that either \omega(E\cap B(u\leqq c), z)>0 or \omega(E\cap B(u\geqq c), z)>0 . Suppose
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now \omega(E\cap B(u\leqq c), z)>0 . Consider the function u_{0}=1- \frac{u-c}{\beta-c} . Then
D_{(a<u<\rho)}(u_{0})<\infty . Hence \omega(E\cap B(u\leqq c), z, (u<\beta)) is well-defined and, by Diri-
chlet principle,

D ( \omega (E\cap B(u\leqq c) , z, (u<\beta)))\geqq D(\omega(E\cap B(u\leqq c), z))

This shows that \omega(E\cap B(u\leqq c), z, (u<\beta))>0 . Hence, by Lemma 1, E_{(u<\beta)}

is of positive capacity. This shows that \beta E_{u} is of positive capacity. If
\omega(E\cap B(u\geqq c), z)>0 , we see similarly that E_{u}^{a} is of positive capacity.

Lemma 3. Let u be an almost Dirichlet fifinite harmonic function. Let
E be a closed set in \Delta and (a, b) be an open interval. If u^{N}(p)\supset(a, b) for
any point p\in E\cap\Delta_{1} , then \omega(E, z)\equiv 0 on R.

PROOF. Suppose \omega(E, z)>0 . Let us first assume (a, b)-\mathcal{E}(u)\neq\phi . Then
there exists a closed interval [\alpha, \beta] contained in (a, b) such that D_{(\alpha<u<\beta)}(u)<\infty .
Hence, by Lemma 1, E^{a}\neq\phi or \beta E\neq\phi for u . But this contradicts [\alpha, \beta]\subset

(a, b) .
Next we consider the case when (a, b)\subset \mathcal{E} . Since \mathcal{E} is open, there is a

component e=(c, d) of \mathcal{E} such that (a, b)\subset(c, d) . Since u^{-1}(e_{n})\neq R for some
n , it follows that either c>-\infty or d<\infty . Then

\omega(E, z)\leqq\omega(E\cap B(u\leqq c-\epsilon), z)

+\omega (E\cap B(c-\epsilon\leqq u\leqq d+\epsilon) , z)+\omega(E\cap B(u\geqq d+\epsilon), z)

for any \epsilon>0 . Since \omega(B(u^{-1}(e_{n})), z)\geqq\omega(E\cap B(c-\epsilon\leqq u\leqq d+\epsilon)_{ Z},)(\epsilon<\frac{1}{n}) , it
follows that

\lim_{\epsilonarrow 0}\omega (E\cap B(c-\epsilon\leqq u\leqq d+\epsilon) , z)=0c

Hence either \omega(E\cap B(u\leqq c-\epsilon), z)>0 or \omega(E\cap B(u - d+\epsilon), z)>0 for some
\epsilon>0 . Suppose now \omega(E\cap B(u\leqq c-\epsilon), z)>0 . Then c>-\infty and c\not\in \mathcal{E} . Hence
there is a closed interval [\alpha, \beta] contained (c-\epsilon, c) such that D_{(a<u<\beta)}(u)<\infty .
Since \omega(E\cap B(u\leqq c-\epsilon), z)>0 , by Lemma 2, u^{N}(F_{1})\subset[-\infty, \beta]\subset[-\infty, c) for
some point p_{1}\in E\cap\Delta_{1} . If \omega(E\cap B(u\geqq d+\epsilon), z)>0 , then d<\infty and u^{N}(p_{2})\subset

(d, \infty] for some p_{2}\in E\cap\Delta_{1} . These contradict (a, b)\subset(c, d) .
PROOF OF THEOREM 1. Let \{a_{k}\} be the set of rational numbers. Set

A_{n,k}=\{p\in\Delta_{1} : u^{N}(p) \supset[a_{k}-\frac{1}{n}, a_{k}+ \frac{1}{n}]\}

for any pair of k and n. Then A_{n,k} is a Borel set. Set A= \bigcup_{n,k}A_{n,k} . Since



Notes on Beurling’s theorem 29

u_{N}(p) is a closed interval of extended real numbers for any p\in S, we have
S\subset A . Suppose A has positive capacity. Then there exists a closed set E
contained in A_{n,k} for some pair of n and k such that \omega(E, z)>0 . But this
contradicts Lemma 3.

EXAMPLE. There is a quasi-Dirichlet fifinite harmonic function on
R=\{|z|<1\} such that \{p\in\Delta_{1} : u^{N}(p)=\{\infty\}\} is a set of positive capacity.

Let F_{n}(n=1,2, \cdots) be a finite sum of closed intervals on \Delta=\Delta_{1}=\{|z|=1\}

such that F_{n}\supset F_{n+1} and F=\cap F_{n} has linear measure zero and positive ca-

pacity. Set H_{n}=\{z:|z|=1 , \min_{n}w\in F|z-w|>\frac{1}{n}\} and \overline{w}_{n}(z)=\frac{1}{2\pi}\int_{H_{n}^{C}}\frac{1-|z|^{2}}{|e^{i\theta}-z|^{2}}d\theta .

Then lim \tilde{w}_{n}(z)=0 . Let w_{n} be a harmonic function on R which has the
boundarynarrow\infty values 1 on F_{n} and 0 on \overline{H}_{n} and whose normal derivative vanishes
on \Delta-F_{n}-\overline{H}_{n} . Then \tilde{w}_{n}\geqq w_{n}\geqq w_{n+1} . On choosing a subsequence, if neces-

sary, we may assume \overline{w}_{n}(0)<\frac{1}{n^{2}} . Set u(z)= \sum w_{n}(z) . Since \lim_{zarrow C}u(z)\geqq\lim_{zarrow\zeta}

nw_{n}(z)=n for any \zeta\in F_{n} , we have u^{N}( \zeta)=\lim_{zarrow\zeta}u(z)=\infty for any \zeta\in F. Take

any positive integer m and take n_{o} such that 2m<n_{o} . Set
G_{0}=(w_{n_{O}}< \frac{1}{2B})_{y}

.
Then G_{0}\supset(u<m) and \overline{G}_{o}\cap\Delta\cap F_{n_{O}}=\phi . Take n_{1} such that \overline{G}_{o}\cap\Delta\subset H_{n_{1}} .
w_{n}(0)< \frac{1}{n^{2}} ,

\sum_{n\geqq n_{1}}w_{n}(z) has boundary values 0 on H_{n_{1}} . Then \sum_{n\geqq n_{1}}w_{n}(z) is

harmonic on \overline{G}_{o} and so D_{G_{O}}( \sum_{n\geqq n_{1}}w_{n})<\infty . Hence we have

D_{(u<m)}(u) \leqq D_{G_{O}}(u)\leqq D(\sum_{n\leqq n_{1}}w_{n})+D_{G_{O}}(\sum_{n\geqq n_{1}}w_{n})<\infty

THEOREM 2 (Riesz type theorem). Let u be a harmonic function on
R. Suppose there exist quasi-Dirichlet fifinite functions u_{1} and u_{2} such that
u_{1}\leqq u\leqq u_{2} on R and \infty>\sup u_{1}>\inf u_{2}>-\infty . Then u^{N}(p)\neq^{-} const on \Delta_{1}

except on a set of capacity zero.
PROOF. Set inf u_{2}=\alpha_{o} and sup u_{1}=\beta_{0} . Take any real numbers \alpha and \beta

such that \alpha_{o}<\alpha<\beta<\beta_{0} . Let w_{n,n+i} be the harmonic function in R_{n+i}-

((u_{1}\geqq\beta)-R_{n}) which has the boundary values 0 on \partial R_{n+i}-(u_{1}\geqq\beta) and 1 on
\partial((u_{1}\geqq\beta)-R_{n})\cap R_{n+i} . Since u_{1}\leqq\beta+\beta_{0}w_{n,n+i} on R_{n+i}-((u_{1}\geqq\beta)-R_{n}) , we have
lim lim w_{n,n+i}>0 . This shows \omega(B(u_{1}\geqq\beta), z)>0 . Since D_{(a<u_{1}<\rho)}(u_{1})<\infty ,
\Delta_{u_{1}}^{\alpha}hasnarrow\infty iarrow\infty positive capacity by Lemma 2. Next take any real numbers \alpha’

and \beta’ such that \alpha_{0}<\beta’<\alpha’<\alpha . Then we have \omega((u_{2}\leqq\beta’), z)>0 similarly.
And since D_{(\rho’<u_{2}<)}\alpha’(u_{2})<\infty , a’\Delta_{u_{2}} has positive capacity by Lemma 2. Since
u_{1}\leqq u\leqq u_{2}, \Delta_{u_{1}}^{\alpha}\subset\Delta_{u}^{\alpha} and \alpha’\Delta_{u_{2}}\subset^{a’}\Delta_{u} . This shows that u^{N}(p) \frac{1}{-+-} const except for
a set of capacity zero.
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COROLLARY. Let u be a non-constant Dirichlet fifinite harmonic function
on R. Then u^{N}(p)\neq const on \Delta_{1} except for a set of capacity zero.

Proor. Take positive and Dirichlet finite harmonic functions u_{i}(i=1,2)

such that u=u_{1}-u_{2} on R. Let \{u_{i,n}\}_{n} be sequences of positive, bounded and
Dirichlet finite harmonic functions such that u_{i,n}\uparrow u_{i}(n\uparrow\infty) on R. Then
u_{i,n}-u_{2}\leqq u\leqq u_{1}-u_{2,n} on R. Take n_{o} such that

\infty>\sup_{R}(u_{1,n_{O}}-u_{2})>\inf_{R}(u_{1}-u_{2,n}J>-\infty
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