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\S 1. The class of closed, uncountable sets and the class of closed sets of
multiplicity (M -sets) have been very extensively investigated; each occurs
as the class of removable sets for some problems in analysis. We describe
some examples in which the first class is represented, roughly speaking, by
the second. Let F be a compact set in Euclidean space and f a continuous
map of F onto a Cantor set C. We require that

(a) For each element x of C, f^{-1}(x) is a U -set (that is, not an
M -set). The same is then true for f^{-1}(A) , whenever A is a closed,
countable subset of C.

(b) For each perfect set P in C, f^{-1}(P) is an M-set. We call such
functions c . m. mappings (cardinality-multiplicity mappings) simply to
have a name for them. The thee examples of c . m. mappings that follow are
based on different principles and have specific properties that cannot be
attained by a single construction. The idea of representing classes of sets by
inverse images is from [3] ; further comparisons are postponed to \S 5.

\S 2. A simple example in R^{2}. In this example and the next one,
property (b) occurs in a stronger, somewhat peculiar form:

(b) For each perfect set P in C, f^{-1}(P) carries a probability measure
\mu , such that \mu*\mu is absolutely continuous. Thus f^{-1}(P) is an M_{0} -set.

Let C be represented as a closed set on the arc 0\leq\theta\leq\pi of the unit circle,
let F be the set \{ re^{i\theta} : \theta\in C, 1\leq r\leq 2\} and let f(re^{i\theta})=\theta, so that (a) is
obvious. As for (bO , let P ’be a perfect set in C, so that P carries a
continuous probability measure \lambda . Then f^{-1}(P) carries the measure \mu=\lambda

(d\theta)dr, and assertion (b’) is simply an observation about the convolution of
the linear measures on line segments which aren’t parallel.

\S 3. An example in R^{1} . We begin with an outline. To each element x

in C we attach a probability measure \mu(x) , whose support, say F(x) , is a
U set; moreover \mu(x)*\mu(y) is absolutely continuous whenever x\neq y. Then
the function f is defined so that f^{-1}(x)=F(x) for each x in C. The proof
that f is single-valued and continuous is the most difficult point, and requires
a detour in the method.
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Step I. We suppose that C is contained in [1, 2] and contains no
rational number. For k=1,2,3 , \ldots , we define \phi_{k}(x)=[4^{k}x] so that 4^{k}\leq\phi_{k}<

2\cdot 4^{k} and \phi^{k} is continuous on C. If \phi_{k}(x)=\phi_{l}(y) , for integers k, l and x, y
in C, then k=l and |x-y|<4^{-k} . We define a set \sigma(x) of natural numbers
as follows. Let m=2^{r}+s, with 0\leq s<2^{r} ; then m belongs to \sigma(x) if r is \underline{not}

one of the numbers \phi_{k}(x) . The set \sigma(x) is enumerated n_{1}(x)<n_{2}(x)<\ldots<

n_{j}(x)<\ldots . so that the numbers n_{j}(x) are continuous functions on C.
Step II. Let B be a Cantor set whose wlements z are sequences (\epsilon_{1} ,

\epsilon_{2} , \ldots . \epsilon_{j} , \ldots), \epsilon_{j}=0,1 . We define g on C\cross B by the formula

g(x, z)= \sum_{1}\epsilon_{j}2^{-n_{J}(x)} .

For each x in C, g(x, B) is a U -set. Indeed, there are infinitely many
numbers q=q(x) , such that \sigma(x) omits q and q+1 . For any choice of the
sequence z, 2^{q-1}g(x, z)\in[0,1/2] (modulo 1), since the numbers 2^{-q}, 2^{-1-q} are
absent from the binary expansion of g(x, z) . Therefore g(x, B) is a U-set;
the details for sets on the torus are in [41, pp. 317-345].

We shall determine a special closed set B_{1}\subseteq B, such that g is a
homeomorphism on C\cross B_{1} . Let \lambda be the usual product measure in B, so

that \sum_{1}^{N}\epsilon_{j}=N/2+o(N) for almost all sequences (Borel’s theorem on normal

numbers). For B_{1} we take any closed set, of positive \lambda -measure, on which
this relation is valid with no exception.

Suppose now that there is an equality

\sum_{1}^{\infty}\epsilon_{j}2^{-n_{j}(x)}=\sum_{1}^{\infty}\epsilon_{j}’2^{-n_{J}(y)}

with x, y in C, z=(\epsilon_{j}) , z’=(\epsilon_{j}’) in B_{1} . Since \sigma(x) and \sigma(y) have infinite
complements in the set of natural numbers, it must be true that \epsilon_{j}=0

whenever n_{j}\in\sigma(x)|\sigma(y) . If x\neq y, and 4^{-k}<|x-y| , then p=\phi_{k}(y) is
different from all the numbers \phi_{t}(x) . The numbers m=2^{p}+s, 0\leq s<2^{p} are
contained in \sigma(x)|\sigma(y) , and therefore \epsilon_{j}=0 for 2^{p}\leq j<2^{\beta+1} . By the choice
of the set B_{1} , this is impossible for large k, and this contradiction proves that
x=y (and consequently z=z9 .

Thus g is a homeomorphism on C\cross B_{1} and f is then defined by f(g(x, z))
\equiv x whenever x\in C, z\in B_{1} . Now f^{-1}(x)=g(x, B_{1}) and we have seen that
this is a U-set.

Step III. Property (bO is verified in two stages. For each fixed x, the
mapping of B onto g(x, B) transforms the measure \lambda onto a measure \nu=\nu

(x) such that, for all real u
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\int\exp(-2\pi iu)d\nu\equiv\prod_{1}^{\infty}(1+\exp-2\pi i2^{-n,(x)}u)/2 .

Now \nu(x)*\nu(y) is absolutely continuous whenever x\neq y. In fact \sigma(x)\cup\sigma

(y) contains all natural numbers beginning with some N\geq 1 . Therefore \nu

(x)*\nu(y) contains, as a convolution factor, the measure whose Fourier-

Stiltjes transform is \prod_{N}^{\infty}(1+\exp-2\pi i\cdot 2^{-n}u)/2 , and that measure is absolutely

continuous.
Now B_{1} carries a probability measure \lambda_{1} , such that \lambda_{1}<\lambda ; writing \mu(x)

for the transform of \lambda_{1} by g, we see that \mu(x)*\mu(y)<\nu(x)*\nu(y) , whence \mu

(x)*\mu(y) is absolutely continuous. The conclusion of the proof of (bO

then follows the lines of the first example.

\S 4. A further example. Let H be a compact M -set in R^{1} . We
construct a c . m. mapping \underline{whose}domain F\underline{is}contained inH. It is clear
that the method cannot be the same as in the first two examples; it can be
adapted easily to all Euclidean spaces and even some totally disconnected
groups. By hypothesis H carries a distribution S\neq 0 , such that S\Lambda is
bounded and vanishes at \pm\infty . Now S^{\Lambda} is uniformly continuous, because H
is compact, and it is no loss of generality to suppose that S^{\Lambda}(O)=||S^{\Lambda}||_{\infty}=

1 . The example is explained through one Lemma and two constructive
steps.

LEMMA. To each 0<\delta<1 there are functions f_{1}\geq 0 , f_{2}\geq 0 with disjoint
supports, both having a Fourier expansion

f=\Sigma a_{k}\exp 2\pi ikx, a_{0}=1

\Sigma|a_{k}|<+\infty , |a_{k}|<\delta for k\neq 0 .

PROOF Let \mu be a probability measure on the torus of length 1, such
that \hat{\mu}=0 at \pm\infty , and the closed support of \mu has Lebesgue measure 0.
Then \mu-\Sigma b_{k} exp 2\pi ih and |b_{k}|<\delta for |k|\geq p>1 . Therefore \lambda-\Sigma b_{kp}

exp 2\pi ikpx has the same properties as \mu and |\hat{\lambda}(k)|<\delta when k\neq 0 . To find
f_{1} , we convolve \lambda with a smooth function of period 1, taking care that the
closed support of f_{1} has Lebesgue measure <\delta/2 . We can then find f_{2} , with

support disjoint from that of f_{1} , and \int_{0}^{1}|f_{2}(t)-|dt<\delta, whence |\hat{f_{2}}(k)|<\delta

for k\neq 0 .
To construct the example we form S(\epsilon_{1}) , \ldots

S(\epsilon_{1} , \epsilon_{2}, \ldots \epsilon_{j}) , with
\epsilon_{j}=0,1 . At each stage, intermediate approximations are denoted by T.
For simplicity we give the details for S(\epsilon_{1}) .
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Step I. T(0) will be f_{1}(Nt)\cdot S for a suitable integer N, and, for
example \delta<1/2 . The Fourier transform of f_{1}(Nt)\cdot S at u is S^{\Lambda}(u)+ \sum\acute{a}_{k}

S^{\Lambda}(u-Nk) , where \sum^{r} is a sum over integers k\neq 0 . Since \sum|a_{k}|<+\infty and
S\Lambda(\pm\infty)=0 , the second sum can be estimated uniformly by \delta+o(1) , for
large N. Doing the same for T(1)=f_{2}(Nt)\cdot S, we obtain distributions with
disjoint supports.

Step II. We fix once and for all a smooth function h\geq 0 , of mean 1 and
period 1, vanishing on (0, 1/2). We choose S(0)=h(Mt)\cdot T(0) and S(1)=
h(M^{2}t)\cdot T(0) and let Marrow+\infty . For S(0) and T(0) the Fourier trans-
forms are uniformly close, outside a domain defined by M^{3/4}<|u|<M^{5/4} . for
example, whereas for S(1) and T(1) the domain to be avoided is contained
in M^{7/4}<|u|<M^{9/4} . Thus (S(0)*S(1))^{\Lambda} converges uniformly to ( T(O)*T
(1))^{\Lambda} as Marrow\infty , and moreover |S(0)^{\Lambda}|<3/2 , |S(1)^{\Lambda}|<3/2 . The support
of S(0) is contained in H , and also in the set defined by Mt\in[1/2,1]
(modulo 1), and a similar statement is valid for S(1) .

Steps 1 and II are repeated in alternation, leading to distributions S(z)=
S(\epsilon_{1}, \epsilon_{2}, \ldots) . We denote the Fourier transforms by S^{\Lambda}(z, u) . With a little
care in estimating the errors at each step, we obtain this situation.

(i) The closed support F(z) of each S(z) is a U -set contained in H,

the union F all the sets F(z) is compact, and the mapping of F
determined by the condition f^{-1}(z)=F(z) is continuous.

(ii) |S\Lambda(z, u)|<3/2 , |S\Lambda(z, 0)-1|<1/2 , and S^{\Lambda} is continuous in
both variables. Whenever z\neq z’ then S^{\Lambda}(z, u)\cdot S^{\Lambda}(z’. u) vanishes when
|u|arrow\infty . These properties yield (b) in the same way as before.

\S 5. Let g be a real function, continuous on a closed set of R^{1} . and N
(g) the set of real numbers t, such that g^{-1}(t) is uncountable. Mazu-
rkiewicz and Sierpinski [3] prove that

(\alpha) N(g) is an analytic set in R^{1} .
(\beta) Each analytic set in R^{1} can be realized as a set N(g) for a certain g.
Since the Cantor set can be mapped continuously onto [0, 1] , and the

mapping is at most 2-to-1 , each of our examples yields a variant of (\beta) ,
with “ M ” in place of “ uncountable.” Related results using much more
from the theory of Fourier transforms appear in [1, 2] : we have learned
indirectly that R. Solovay (Berkeley) has obtained examples of the same
nature.

The cited works, and the present one, show that the complexity of the
class of M -sets (or uncountable sets) in the class of all closed sets is the
same as the complexity of analytic sets. The examples show directly how
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the class of M -sets is at least as complex as the class of uncountable sets.
Unlike uncountable closed sets, M -sets are not preserved by an extensive
class of homeomorphisms, so examples of c . m. mappings with particular
properties (for example (bO in the first two examples) must be based on a
variety of techniques. The classes of M -sets and U-sets contain many
interesting subclasses, each presenting its particular analytical problems.
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