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On pseudo-product graded Lie algebras
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Introduction.

For several years, N. Tanaka has worked on the geometry of pseudo-
product manifolds in connection with the geometric study of systems of &-th
order ordinary differential equations, where £=2. A study in this line can
be found in his recent paper [6]. His theory shows that the geometry is
closely related to the study of pseudo-product graded Lie algebras, which we
will explain later on.

The main purpose of this paper is to prove structure theorems on some
restricted types of pseudo-product graded Lie algebras.

Let m=@®,<08» be a graded Lie algebra with 0<dimm<oco., Then mis
called a fundamental graded Lie algebra or simply an FGLA, if m is generat-
ed by g-1. Let e and f be subspaces of g-;. Then the triplet (m;e,f) is
called a pseudo-product FGLA if the following conditions are satisfied :

D m is an FGLA.
@) g-1=e@f and [e, e]=[f, f]={0}

A pseudo-product FGLA (m e, f) is called non-degenerate, if the condi-
tion “xEg-1 and [x, g-1]={0}" implies x=0.

Now let g=@,czg» be a graded Lie algebra and let e and f be subspaces
of g-1. Set m=@p<0gp. Then g (together with ¢ and f) is called a pseudo-
product graded Lie algebra if the following conditins are satisfied :

(D (m;e, f) is a pseudo-product FGLA.

2 g is transitive, i.e.the condition “p=0, x<g, and [x, g-1]={0}"
implies x=0.

(3) [g0, e] e and [go, {]CFf

Let (m;e, f) be an FGLA and g be its derivations of the graded Lie
algebra m leaving both e and f invariant. Then the prolongation §=®czd »
of the pair (m;go) is called the prolongation of (m;e,f) (see and [6]),
which may be characterized as the maximum pseudo-product graded Lie
algebra g=@,ez8r such that @psogp=m@Pdo (as graded Lie algebras). Itis
known that if (m e, f) is non-degenerate, then g is of finite dimension (see
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N. Tanaka [6], page 292).

These being prepared, our main theorems (Theorem 3.2 and 3.3)
together may be stated as follows : let g=@<zg» be a pseudo-product grad-
ed Lie algebra over the field C of complex numbers or the field R of real
numbers. Assume that the natural representations of go on both e and f are
irreducible and that the pseudo-product FGLA (m e, f) is non-degenerate.
If g.#+{0}, the Lie algebra g is of finite dimension and simple.

Following N. Tanaka (see and [6]), we will explain how the geom-
etry of pseudo-product manifolds is related to the study of pseudo-product
graded Lie algebras, as we promised. Let R be a manifold, and £ and F be
two differential systems on R. Then the triplet (R;E, F) is called a
pseudo-product manifold, if both E and F are completely integrable, and E
NF={0}. Let (R;E,F) be a pseudo-product manifold. Assuming that
the differential system D=FE+F is regular, let us consider the symbol
algebra (m(x); E(x), F(x)) of (R;E,F) at each point x€R, which is a
pseudo-product FGLA. Note that m(x) is the symbol algebra of D at x, and
g-1=D(x). Given a pseudo-product FGLA, (m e, f), the pseudo-product
manifold (R ; E, F) is called of type (m e, f), if D is regular, the symbol
algebra (m(x); E(x), F(x)) of (R;E, F) at each xR is isomorphic with
the given (m e, f), and dim R=dimm.

Now, let (m;e, f) be a non-degenerate pseudo-product FGLA, and let g
=@,=za» be its prolongation. Then N. Tanaka showed that to every
pseudo-product manifold (R ; E, F) of type (m;e, f) there is associated, in
canonical manner, a manifold (P, w) with absolutely parallelism satisfying
the following conditions: 1) dim P=dimg 2) P is a fibred manifold over M,
and 3) wis a g-valued 1-form on P, and gives the absolutely parallelism. In
particular, it follows that the Lie algebra a of all infinitesimal automor-
phisms of (R ; E, F) is of finite dimension, and dim a=dimg. Futhermore,
he showed that if g is simple, to every pseudo-product manifold (R; E, F) of
type (m;e, f) there is associated a connection of type g on R in natural
manner. Recently he has generalized this fact to the case where g is not
semisimple (and satisfies certain conditions), and has applied the result to
the geometric study of systems of 4-th order ordinary differential equations,
where k£=3.

We have thus seen that our main theorems are applicable to the geome-
try of pseudo-product manifolds. It should be remarked that our main
theorems are likewise applicable to the geometry of pseudo-complex mani-
folds, which is based on N. Tanaka’s work and the fact that the
complexification of a pseudo-complex FGLA becomes naturally a pseudo-
product FGLA (see also [6]).
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We will now give a brief description of the varoius sections. Following
V.G. Kac [1], we first give basic definitions on graded Lie algebras and
minimal graded Lie algebras. In Section 2, we consider a finite dimensional
transitive graded Lie algebra ¢=@,cza» over C for which the natural repre-
sentation of go on g-1 is completely reducible. Our main task in this section
is to determine the structure of the local part g-1®PgoPg: of g, and discuss
conditions for g to be semisimple (Corollary 2.5). To do these, we apply the
reasonings, due to V.G. Kac [1], in the realization of graded Lie algebras,
and use the fundamental representation theory of finite dimensional Lie
algebras. In Section 3 we prove the main theorems by using the finite
dimensionality of the pseudo-product graded Lie algebras and by applying
the results in Section 2.

Finally I warmly thank Professor N. Tanaka for his kind suggestion of
the problem and thank Dr. Yamaguchi for his invaluable help.

§1. Preliminaries

In this section, the ground field K is assumed to be of characteristic zero.
In fact in our applications K will be the field C of complex numbers or the
field R of real numbers.

1.1. Graded Lie algebras.
Let g be a Lie algebra. If Z is the ring of integers, a Z-gradation of g
is, by definition, a direct decomposition

g=®iczg: such that [g:, g;]=g:i+s, dimg. <0 ({E€Z)

We will call a Lie algebra g a Z-graded Lie algebra when g has such a
Z-gradation. A subalgebra (resp. an ideal) 8Cg is called a Z-graded
subalgebra (resp. ideal) if 8=@.cz8MNg:;. Let gand g’ be two Z-graded Lie
algebras. Then, by definition, a homomorphism ¢:g—g" of Z-graded Lie
algebras preserves the Z-gradation in the sense that #(g:)Cgi.  Similarly
isomorphisms and epimorphisms of Z-graded Lie algebras are defined.

Let g=@®icz9; be a Z-graded Lie algebra. We will denote by g- the
subalgebra @.<-1g;. Then a Z-graded Lie algebra g is called transitive if it
satisfies the following conditions:

(1.1.1) g-1#{0} and g- is an FGLA.
(1.1.2) For x€g:{i20), [x, g-:1]={0} implies x=0.

1.2. Correspondence between local Lie algebra and graded Lie algebras
(see V. G. Kac. [1]. page 1276-1277)
A direct sum of vector spaces g-1PgoDag: is called a local Lie algebra if
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one has bilinear maps :g:Xg;—ga:+; for |¢], |7, |+7|=1, such that anticom-
mutativity and the Jacobi identity hold whenever they make sense.
Homomorphisms and isomorphisms of local Lie algebras are defined as in the
case of graded Lie algebras. Given a Z-graded Lie algebra g=@®.czg:, the
subspace g-1DgoPag: is a local Lie algebra, which is called the local part of
a.

Now, let g=@.cz9: be a Z-graded Lie algebra generated by g_:PgoPg;.
Then the Z-graded Lie algebra g is called minimal if, for any other Z-graded
Lie algebra g¢’, each isomorphism of the local parts § and §’ extends to an
epimorphism of g" onto g. Indeed, for any local Lie algebra g, there is a
minimal Z-graded Lie algebra g whose local part is isomorphic to @ (see V.
G. Kac [1], page 1276). We will utilize this fact in the proof of Lemma 2. 2.

§2. Finite dimensional transitive graded Lie algebras

In this section, we state a necessary and sufficient condition under which
a finite dimensional transitive Z-graded Lie algebra over C be semisimple.
Also, throughout this section, we assume that the ground field is the field of
complex numbers C.

2.1. Throughout this section, g=@iczg; will denote a finite dimen-
sional transitive Z-graded Lie algebra for which the representation of go on
g-1 1s completely reducible. We denote by ¢; the representation of go on g;
induced by restriction of the adjoint representation of g. By the assumption,
we can decompose g-; into a direct sum of go-submodules

(2. 1. 1) g-1— @—1@9,—1, @—1:@§=199f, 9:1:@;‘15:}31{3(3%,
where each g4 is an irreducible go-submodule of g-;1 such that

[69) a1]7#{0} for 1</<¢
and [g9, a:]={0} for t<j<n(—1).

We denote by ¢ the representation of go on a¥l given by [go, g9}]Cg4).
Since ¢-: is faithful and completely reducible, go is a reductive Lie algebra,
i.e, g0=g0@Pc(go), where gy denotes the semisimple part of go and c(go) the
conter of go.

From the assumption, we first deduce

LEMMA 2.1  The representation of ao on g is completely reducible.

PrROOF. We first prove that go-module g- is completely reducible. By
transitivity, we can consider go as a subalgebra of the Lie algebra Dergr(g-)
of all the derivations of g- preserving the gradation of g-. On the other
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hand, Dergr(g-) contains the semisimple and nilpotent components of its
elements (see N. Bourbaki [2], Ch. VI, § 5,n°1). Thus we can decompose
the element x of c(go) as follows:

x=xs+%n, Xs, xnEDergr(g-),

where «xs (resp. x») is the semisimple (resp. nilpotent) component of x.
Since x|g-: is semisimple and x.|a-1 is the nilpotent component of x|g-1, we
have x.|g-1=0. Since g- is generated by g-1, we have x,=0, so x=xs.
Thus go-module g- is completely reducible. Next we prove that g,(p=0) is
a completely reducible go-module. We will use induction on p. Since go is
reductive, the statement holds for p=0. We assume now that the statement
holds for £. We consider the mapping

¢ : grer— Hom(g-1, g&),

where for xSgr+1, ((x)=ad(x)lg-;. Then, by transitivity, it is easy to
prove that ¢ is a monomorphism of go-modules, so we may regard gz+1 as a
go-submodule of Hom(g_1, g.). Owing to the induction hypothesis, Hom(g-1,
gx) is a completely reducible go-module, so gr+1 is a completely reducible
go-module. This proves the Lemma. Q. E. D

2.2. Now we decompose g: into a direct sum of irreducible go-
submodules :

0= BIal”,
and we denote by ¢{” the representation of go on gf”’ given by [go, at”’]Cgf”.
In this paragraph, we will investigate the relation between ¢{* and ¢Y).

Here we note that the elements of c¢(go) act on gi”’(7=1,..., n(1)) by
scalar multiplications.

Let b be a Cartan subalgebra of go. Then, associated to this choice is
the system of weights of the representations ¢,, ¢ and ¢{".

We now fix a Cartan subalgebra b and a Weyl chamber, and by A:(resp.
M;) we will denote the highest (resp. lowest) weight of ¢“(resp. ¢{”). For
each A:(resp. M:), Fa€a%(resp. Ew,.Egi”) denotes a non-zero weight vector
for A:(resp. M:). Also, for a root @ of g, we denote by e. a root vector for
@, and let %. be the unique element of Cles, e-a] for which a(k.)=2. Fix
1<7/<#n(1). Then there is an integer 7 such that [a%, ai”]#{0}, since g is
transitive. Here we remark that [¢%9, gi?]1{0} if and only if [Ew, F a.]¥
{0}.

Then we have

LEMMA 2.2. The representations of go on o9 and of° are contra-
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gredient (i. e., Aiw+M;=0). Consequently h: =[Ewm,, Fi.)EH.

PROOF. For covenience, we suppose that z%p=:=1. We first suppose
that A,+Mi=e« is a root of gi(i.e., [Em;, Fa]=es). Then we have

go=a:1Pa2PasDas,
where each a; is a semisimple ideal in go such that
Ker ¢Y=a0,Pa, and Ker ¢{¥=a,Pas.

Here we consider four cases. If @ is a root of az, then we have [e;[ Eu,
F all=le-y[Ewm, F a]]=0 for any root y of az, which is a contradiction
because of the semisimplicity of a.. Next suppose that « is a root of as.
Since Ai+Mi=¢ and Mi(%.)=0, we have Ai(%.)+0. Let b be the three
dimensional subalgebra of g with a basis {{Fa, e-al, e, Emi}. We consider
b-submodule N of b-module g generated by Fa(i.e., N=Ad(U())F 4, where
U(b) is the universal enveloping algebra of b). Then we have 0=tr(ad
hol N)=(dim N)A:(h.), which is a contradiction. Similarly, when we sup-
pose that « is a root of a;, we reach a contradiction by applying the above
arguments to b=CF s ®ChPC[Ew,, e.] and N=Ad(U(b))Ey,. Finally,
we suppose that « is a root of a;. Let a be a simple component of a; such
that @ is a root of a, and g (resp. d{") be an irreducible a-submodule of g%
(resp. af”) containing F a(resp. Em;). Then the representations of a on g%
and §i¥ are faithful and irreducible. Since A;+M,=ea, by V.G. Kac ([1],
page 1299 Theorem 2), we know that §®aP a" is isomorphic to the local
part of the special algebra S» or the Hamiltonian algebra H. as a local Lie
algebra. Since S, and H, is minimal, it follows that g contains a subalge-
bra whose factor algebra is isomorphic to S, or H.. Butsince S, and H, is
infinite dimensional, we obtain that g is infinite dimensional, which is a
contradiction due to the assumption. Q.E.D

For the behavior of %:=[Ew, Fa.], we have

LEMMA 2.3. Mih)=—A (h)*0. Consequently [h, Ew]#0, [k, Fa.]
*+0.

PROOF. For convenience, we suppose :=12=1. We now suppose that
[k, Em,]=0. By transitivity, there is a weight vector vi of go-module g-;
with a weight A such that [%, v:]#0. We put b=CEw, P ChPCF,, and N=
Ad(U(®))vi. Then we have 0=tr(ad 4|N)=(dim N)A(%), which is a contra-
diction. Q.E.D

For the pair (g%, g{?) of go-modules such that [g®, ¢{”]+{0}, we have

LEMMA 2.4. For each i (1=i=n(1)), there is a unique integer k such
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that [g%, oP]#{0}. Furthermore, Apw+M:*0 for any k' such that k+Fk .

PrOOF. We first suppose that there are two integers A1, k. such that
[Ew;, F 2, ]#{0} and [Ewm, F 4.]#{0}. We put @’ =[Ewm, F a.] and @& =[Ew,
F.]. Then, by Lemma 2.3, we have

[, Ev]=c1Ew, (@&, Exv]=c:Em, 1, 2EC™.

First suppose that {a’, @'} is linearly independent. Replace ¢%" by
the irreducible representation ¢%" with the highest weight Ax, and corre-
sponding weight vector Fa,—cz'ciFa.. Then we have

~

h: [EMZ, Fa.—cilaiFa)=a’ —cithiad +0
[h EMi] ’

which is a contradiction by Lemma 2.3 Thus {a, @'} is linearly depen-
dent. Moreover, multiplying Em, and F 4, by some non-zero scalars, we
may assume that &= and ci=c;=1. Also we put Fa=F,—F .
Then, for s=0, we obtain by induction :

(ad Exm)(ad Fa,)S ' Fa=—(s+1)(s+2)/2(ad Fa.)°Fa.

If so is the last integer such that (ad Fa,)*°Fa+0, then we have ss=—1 or
so=—2, which is a contradiction.

Next we suppose that there are two integers ki, k. such that [Ew, Fa.]
+{0}, Ar,+M:=0 and [Ew, F 1.]=0. Using the notation above, for s=0,
we obtain by induction

(ad Ew)(ad Fa) "' Fa.=—(s+1)(s+2)/2(ad Fa.)°Fa.

Similarly we can reach a contradiction as above. Q.E.D

2.3. Using our previous results, we prove the following proposition
which will play a crucial role in the investigation of the pseudo-product
graded Lie algebra.

PROPOSITION 2.5. Let g=@.cz a: be a finite dimensional transitive
Z-graded Lie algebra over C for which the representation of g on g-1 s
completely reducible. Then we have the following

(i) Let §-1 and g-1 be as n (2.1.1) so that g-1=3-1Dg-1. Then
the Z-graded subalgebra §=®iczd: of o generated by §1P[d-1, 0:]Pa1 is a
semisimple Lie algebra. Furthermore the subalgebra ®iz18: of o is generated
by ai.

(ii) The radical ¢ of g is a Z-graded ideal in o(i. e., tv=Diczr:, where
v=tNg:) and t:=0:i=<0) and ¢;={0}(i=1), where d_r={xEg-x:(ad a)*x
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={0}}(k21) and de={x=c(go): (ad a)x={0}}. Moreover we have t-1=g.,
and go=roD[g-1, 01]Pas, where af is the centralizer of -1 n go.

PrROOF. (i) Let E be the element of Dergr(g) such that
E(x)=px for xEgp.

Regarding c(go) as the subalgebra of Dergr(g), (c(go)+ CE)-module g is com-
pletely reducible by Lemma 2.1. By O. Mathieu ([7], page 402, Lemma 34),
there is a Levi subalgebra 8 of g such that (c(go)+ CE)(8)C3. Then & is
graded, which we write 8=@,cz8p. Also, the radical t of g is graded,
which we write t=@ezt,. Then, since ¢(g) Do, 3 is a go-submodule of g,
so 8 is a completely reducible go-submodule by Lmma 2.1. Hence we can
decompose 8, into a direct sum of irreducible go-submodules of 35 :

Qp:@i(fl)%k)-

Let W be an irreducible go-submodule of v:. Then, by transitivity, there is
an integer & such that [¢%, W]+{0}. Let Eu be the highest weight vector of
W with the highest weight M. By [Lemma 2.3, the subspace

CF v ®DC[F A, Ev]®CEy is a simple three dimensional Lie subalgebra of r,
which is a contradiction. Thus we have t.={0}, so, by transitivity, t,=
{0}(p=1). Hence we have 8,=g,(p=1). For each i(1=i<1t), ¢} is contra-
gredient to 8{” as a go-module for some j(1<;=<s(1)). Also we remark that
81 is contragredient to 8, as a go-module. Indeed, let ( | ) be the Killing
form of . Since the restriction of ( | ) on 8:X8_; is non-degenerate, we
have an isomorphism v : 3——8*, defined by

<w(x), y>=(xly), xE8,, yEs_,.

Since ( | ) is completely invariant (i.e, (x|Dy)+(Dx|y)=0 for x, y=8& and
D€EDer(8)), we can prove easily that v is an isomorphism of go-modules, so
81 is contragredient to 8-; as a go-module. Thus g is isomorphic to 8%
as a go-module for some A(1=k=<s(—1)). However, since g9 is not isomor-
phic to g¥] as a go-module for all j such that i#; by Lemma 2.4, we have
g“1=8%. In particular, we have /(3-1)</(d-1), where we denote by /(N)
the number of the irreducible components of go-module N. On the other
hand, by Lemma 2.4, we have /(8-1)=/(81)=1(g_1). Thus we have /(g_,)
=/(8-1), so @-1=8_,. Since the subalgebra (a/r)- of g/r is generated by
6-1/t-1, the subalgebra 8_ of 8 is generated by 8_,. Moreover, since an ideal
in a semisimple Z-graded Lie algebra is graded, we can decompose % into a
direct sum of two semisimple idealst and u (i.e., 8=t®u, t=P,czt, and u=
@yezup) such that t is a semisimple transitive Z-graded Lie algebra and u=
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1o. Then the subalgebra @.z1t: of tis generated by t1, and we have to=[t-1,
t.J=[g-1, a1] (see N.Tanaka [5], page 28). Also, since 8,=ts(p=1), the
subalgebra @.z19: of g is generated by g;.. Thus we have g=t, so ¢ is
semisimple.

(ii) We put b=@:<b:. Then b is a solvable ideal in g, so dCr. In
particular, we have g.1Cbd-1Cr-;. Since §-1=%_,, we have dimg.i=dim
-1, SO t-1=g~1. Moreover, since (ad @) "t-:Cr_1(¢22) and [ro, g:1]Ct:1=
{0}, we have t_;Cd_,(:=0). Hence we have db=1_47/=0). Finally, from
the proof of (i), we have w=g¢ and to=[g-1, 1], so go=r1e®[d-1, 3:1]Pgs .

Q.E.D

As a corollary of [Proposition 2.5, we have

COROLLARY 2.5. Let g=@®icz8: be a finite dimensional transitive
Z-graded Lie algebra over C. Then following statements are equivalent.

(1) g is semisimple.

(2) (1) The representation of go on g-1 is completely reducible, and
(ii) there is mo mon-trivial go-invariant subspace of g-1 contained in the
centralizer of a1 in g.

(3) (i) The representation of g0 on g-1 is completely reducible, and
(ii) g'_l‘—‘{O}.

PROOF. Let W be a go-invariant subspace of g-, such that [ W, a.]={0}.
Then an ideal in g generated by W is a solvable ideal in g ; thus (1)—> (2)
(ii). It follows from L L. Kantor ([3], page 44, Proposition 12) that (1)
—(2) (i). If (3 holds, then g-1=g-1. Since g- is generated by g-1, we
have g-=g-. Moreover, since g is semisimple by [Proposition 2. 5., we have
¢:={0}(i<—1), so, by transitivity, t»={0}(»=0). Hence g is semisimple,
which proves (3)—(1). (2)—(3) is clear. Q.E.D

§ 3. Pseudo-product graded Lie algebras

3.1. Let g=@®,cz9» be a transitive Z-graded Lie algebra over K,
where K is R or C. Let g¥ and g3 be subspaces of g-1. Then the Z-graded
Lie algebra g=@®,cza» is called a pseudo-product graded Lie algebra, if it
satisfies the following conditions

(3.1.1) g_1=¢%Pg?
(3.1.2) [g¥, gW]=1[a¥, a4]1={0}
(3.1.3)  [ao, a%1Ca, [g0, %] Cg?

Then we have the following

LEMMA 3.1. (see N. Tanaka [6], page 292) Let a=@,cz 9» be a
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pseudo-product graded Lie algebra over K. If g- is non-degenerate (that is,
for any xEg-1, [x, a-1]=1{0} implies x=0), then the Lie algebra g is finite
dimensional.

3.2. Now we give our main theorem.

THEOREM 3.2. Let =@,cz 0p be a pseudo-product graded Lie algebra
over C, and suppose that the subalgebra g- of g is non-degenerate and the
representations of go on ¢ and gA are irreducible. Then we have

(1) If the representation of g on a1 is reducible, then g is a simple Lie
algebra.

(ii)  If the representation of go on a1 is irreducible, then we have g:={0}.

As a consequence of (i) and (ii), if a:#+{0}, then g is a simple Lie
algebra.

PrROOF. By [Lemma 3.1, we can apply all arguments in § 2.

(i) Using the notation of (2.1.1), we have ¢-;={0} by Lemma 2.4.
Hence, by [Corollary 2.5, g is semisimple. If g is not simple, then we have g
=aP@a?, where a”’(i=1, 2) is a non-trivial semisimple ideal ing. Since a®
is graded, we can write a¥=®,c; af. Here we remark that o =+{0}
because of transitivity of g. Since g% is not isomorphic to g as a go-module
by Lemma 2.4, we have g =a¥, g¥@=a® or g =a¥, ¢@=a¥. Thus
[¢¥Y, a¥]= {O} Wthh is a contradiction to the fact that g- is non-degenerate.
Hence g is a simple Lie algebra.

(ii) Now we can assume that [g¥), g1]={0}. Then the subalgebra g
@P[a?, a:]®Pa: is a simple Lie algebra by Proposition 2.5, so [g1, g1]={0}.
Therefore it follows from [Proposition 2. 5 that g2={0}. Q.E.D

3.3. We now prove the real version of Theorem 3. 2.

THEOREM 3.3. Let g=®cz ar be a pseudo-product graded Lie algebra
over R, and suppose that its subalgebra g- of ¢ is non-degenerate and the
representation of g0 on ¢& and a@ is irreducible. Then we have :

(i) If the representation of go on g: is reducible, then g is a simple Lie
algebra.

(i) If the representation of go on g: is irreducible, then we have g:={0}.

As a consequence of (1) and (ii), if g2#{0}, then g is a simple Lie
algebra over R.

PrOOF.  First of all, we note that g is finite dimentional by Lemma 3. 1.
Let ¢°=®,cz af denote the complexification of a=@,cz g». Then g¢ is a
transitive Z-graded Lie algebra over C. Then, since g4¢ is not isomorphic
to g€ as a gf module by Lemma 2.4, g is not isomorphic to g? as a
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go-module. Let t be the radical of . Then v is a Z-graded ideal in g, which
we write t=@,cztp. Moreover its complexification t¢ is the radical of g°.
Then t-: is a go-submodule of g_1, so we have r-1=g¥ or r-1=a% or r-1={0}.
Here we remark that g% /t¢, is contragredient to gf as a gf module by
Proposition 2.9, so g-i1/x-1 is contragredient to g1 as a go-module. If go-
module g; is reducible, then go-module g-1/t-1 is reducible. Hence we have
t.1={0}. By [Corollary 2.5, g¢ is semisimple, so g is semisimple. Then, by
the same method of proof of theorem 3.2, we can prove the fact that g is

simple. This proves (i). If go-module g is irreducible, then we have g%=

t-; or g¥=v_;. Now we suppose that g8=r-1. Then, by [Proposition 2.5,
the subalgebra generated by gZ¢@P[gh¢, ¢f1Paf is semisimple. However,
since [g%¢, g%¢]1={0}, we have [gf, a¢]1={0}. Hence, by [Proposition 2.5,
we have g€ ={0}, so g2={0}. Similarly we can prove that gz={0} when g"}=

t-1. This proves (ii). Q.E.D
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