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On pseudo-product graded Lie algebras
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Introduction.

FlNTkhkdthtfdor severa years, . anaa as wore on e geomery o pseuo-
product manifolds in connection with the geometric study of systems of k-th
order ordinary differential equations, where $k\geqq 2$ . A study in this line can
be found in his recent paper [6]. His theory shows that the geometry is
closely related to the study of pseudo-product graded Lie algebras, which we
will explain later on.

The main purpose of this paper is to prove structure theorem on some
restricted types of pseudo-product graded Lie algebras.

Let $\mathfrak{m}=\oplus_{p<0}\mathfrak{g}_{p}$ be a graded Lie algebra with $0<\dim \mathfrak{m}<\infty$ . Then $\mathfrak{m}$ is
called a fundamental graded Lie algebra or simply an FGLA, if rn is generat-
ed by $\mathfrak{g}_{-1}$ . Let $e$ and $\mathfrak{f}$ be subspaces of $\mathfrak{g}_{-1}$ . Then the triplet $(\mathfrak{m};e, \mathfrak{f})$ is
called a pseudo-product FGLA if the following conditions are satisfied:

(1) rn is an FGLA.
(2) $\mathfrak{g}_{-1}=e\oplus \mathfrak{f}$ and $[e, e]=[\mathfrak{f}, \mathfrak{f}]=\{0\}$

A pseudo-product FGLA $(\mathfrak{m};e, \mathfrak{f})$ is called non-degenerate, if the condi-
tion “

$x\in \mathfrak{g}_{-1}$ and $[x, \mathfrak{g}_{-1}]=\{0\}$
” implies $x=0$ .

Now let $\mathfrak{g}=\oplus_{p\in Z}\mathfrak{g}_{p}$ be a graded Lie algebra and let $e$ and $\mathfrak{f}$ be subspaces
of $\mathfrak{g}_{-1}$ . Set $\mathfrak{m}=\oplus_{p<0}\mathfrak{g}_{p}$ . Then $\mathfrak{g}$ (together with $e$ and $\mathfrak{f}$) is called a pseudo-
product graded Lie algebra if the following conditins are satisfied:

(1) $(\mathfrak{m};e, \mathfrak{f})$ is a pseudo-product FGLA.
(2) $\mathfrak{g}$ is transitive, $i$ . $e$ . the condition “

$p\geqq 0$ , $x\in \mathfrak{g}_{p}$ and $[x, \mathfrak{g}_{-1}]=\{0\}$
”

implies $x=0$ .
(3) $[\mathfrak{g}_{0}, e]\subset e$ and $[\mathfrak{g}_{0}, \mathfrak{f}]\subset \mathfrak{f}$

Let $(\mathfrak{m};e, \mathfrak{f})$ be an FGLA and $\mathfrak{g}_{0}$ be its derivations of the graded Lie
algebra $\mathfrak{m}$ leaving both $e$ and $\mathfrak{f}$ invariant. Then the prolongation $\mathfrak{g}^{v}=\oplus_{p\in z\mathfrak{g}^{v}p}$

of the pair $(\mathfrak{m};\mathfrak{g}_{0})$ is called the prolongation of $(\mathfrak{m};e, \mathfrak{f})$ (see [4] and [6]),
which may be characterized as the maximum pseudo-product graded Lie
algebra $\mathfrak{g}=\oplus_{p\in Z}\mathfrak{g}_{p}$ such that $\oplus_{p\leqq 0}\mathfrak{g}_{p}=\mathfrak{m}\oplus \mathfrak{g}_{0}^{\vee}$ (as graded Lie algebras). It is
know that if $(\mathfrak{m};e, \mathfrak{f})$ is non-degenerate, then $\mathfrak{g}^{\vee}$ is of finite dimension (see
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N. Tanaka [6], page 292).
Th $e$ being prepared, our main theorem (Theorem 3.2 and 3.3)

together may be stated as follows: let $\mathfrak{g}=\oplus_{p\in z}\mathfrak{g}_{p}$ be a pseud0-product grad-
ed Lie algebra over the field $C$ of complex numbers or the field $R$ of real
numbers. Assume that the natural representations of $\mathfrak{g}_{0}$ on both $e$ and $f$ are
irreducible and that the pseud0-product FGLA $(\mathfrak{m};e, f)$ is non-degenerate.
If $\mathfrak{g}_{2}\neq\{0\}$ , the Lie algebra $\mathfrak{g}$ is of finite dimension and simple.

Following N. Tanaka (see [5] and [6]), we will explain how the geom-
etry of pseud0-product manifolds is related to the study of pseud0-product
graded Lie algebras, as we promised. Let $R$ be a manifold, and $E$ and $F$ be
two differential systems on $R$ . Then the triplet $(R: E, F)$ is called a
pseud0-product manifold, if both $E$ and $F$ are completely integrable, and $E$

$\cap F=\{0\}$ . Let $(R;E, F)$ be a pseud0-product manifold. Assuming that
the differential system $D=E+F$ is regular, let us consider the symbol
algebra $(\mathfrak{m}(x);E(x), F(x))$ of $(R;E, F)$ at each point $x\in R$ , which is a
pseud0-product FGLA. Note that $\mathfrak{m}(x)$ is the symbol algebra of $D$ at $x$ , and
$\mathfrak{g}_{-1}=D(x)$ . Given a pseud0-product FGLA, $(\mathfrak{m};e, f)$ , the pseud0-product
manifold $(R;E, F)$ is called of type $(\mathfrak{m};e, \mathfrak{f})$ , if $D$ is regular, the symbol
algebra $(\mathfrak{m}(x);E(x), F(x))$ of $(R:E, F)$ at each $x\in R$ is isomorphic with
the given $(\mathfrak{m};e, \mathfrak{f})$ , and dim $R=\dim \mathfrak{m}$ .

Now, let $(\mathfrak{m};e, \mathfrak{f})$ be a non-degenerate pseud0-product FGLA, and let $\mathfrak{g}$

$=\oplus_{p\in Z}\mathfrak{g}_{p}$ be its prolongation. Then N. Tanaka showed that to every
pseud0-product manifold $(R;E, F)$ of type $(\mathfrak{m};e, f)$ there is associated, in
canonical manner, a manifold $(P, \omega)$ with absolutely parallelism satisfying
the following conditions: 1) dim $P=\dim \mathfrak{g}2$ ) $P$ is a fibred manifold over $M$ ,

and 3) $\omega$ is a $\mathfrak{g}$ -valued 1-form on $P$ , and gives the absolutely parallelism. In
particular, it follows that the Lie algebra $[]$ of all infinitesimal automor-
phisms of $(R;E, F)$ is of finite dimension, and dim $()\leqq\dim \mathfrak{g}$ . Futhermore,
he showed that if $\mathfrak{g}$ is simple, to every pseud0-product $man\dot{l}fold(R;E, F)$ of
type $(\mathfrak{m};e, f)$ there is associated a connection of type $\mathfrak{g}$ on $R$ in natural
manner. Recently he has generalized this fact to the case where $\mathfrak{g}$ is not
semisimple (and satisfies certain conditions), and has applied the result to
the geometric study of systems of $k$ -th order ordinary differential equations,
where $k\geqq 3$ .

We have thus seen that our main theorem are applicable to the geome-
try of pseud0-product manifolds. It should be remarked that our main
theorem are likewise applicable to the geometry of pseud0-complex mani-
folds, which is based on N. Tanaka’s work [4] and the fact that the
complexification of a pseud0-complex FGLA becomes naturally a pseud0-
product FGLA (see also [6]).
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We will now give a brief description of the varoius sections. following
V. G. Kac [1], we first give basic definitions on graded Lie algebras and
minimal graded Lie algebras. In Section 2, we consider a finite dimension
transitive graded Lie algebra $\mathfrak{g}=\oplus_{p\in Z}\mathfrak{g}_{p}$ over $C$ for which the natural repre-
sentation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{-1}$ is completely reducible. Our main task in this section
is to determine the structure of the local part $\mathfrak{g}_{-1}\oplus \mathfrak{g}_{0}\oplus \mathfrak{g}_{1}$ of $\mathfrak{g}$ , and discuss
conditions for $\mathfrak{g}$ to be semisimple (Corollary 2.5). To do these, we apply the
reasonings, due to V. G. Kac [1], in the realization of graded Lie algebras,
and use the fundamental representation theory of finite dimension Lie
algebras. In Section 3 we prove the main theorems by using the finite
dimensionality of the pseud0-product graded Lie algebras and by applying
the results in Section 2.

Finally I warmly thank Professor N. Tanaka for his kind suggestion of
the problem and thank Dr. Yamaguchi for his invaluable help.

\S 1. Preliminaries

In this section, the ground field $K$ is assumed to be of characteristic zero.
In fact in our applications $K$ will be the field $C$ of complex numbers or the
field $R$ of real numbers.

1. 1. Graded Lie algebras.
Let $\mathfrak{g}$ be a Lie algebra. If $Z$ is the ring of integers, a $Z$-gradation of $\mathfrak{g}$

is, by definition, a direct decomposition

$\mathfrak{g}=\oplus_{i\in Z}\mathfrak{g}_{i}$ such that $[\mathfrak{g}_{i}, \mathfrak{g}_{j}]=\mathfrak{g}_{i+j}$ , dim $\mathfrak{g}_{i}<\infty(i\in Z)$

We will call a Lie algebra $\mathfrak{g}$ a $Z$ graded Lie algebra when $\mathfrak{g}$ has such a
$Z$-gradation. A subalgebra (resp. an ideal) $\mathfrak{s}\subset \mathfrak{g}$ is called a Z-graded
subalgebra (resp. ideal) if $\mathfrak{s}=\oplus_{i\in Z}\mathfrak{s}\cap \mathfrak{g}_{i}$ . Let $\mathfrak{g}$ and $\mathfrak{g}’$ be two $Z$ graded Lie
algebras. Then by definition, a homomorphism $\phi:\mathfrak{g}arrow \mathfrak{g}’$ of $Z$ graded Lie
algebras preserves the $Z$-gradation in the $s$ ome that $\phi(\mathfrak{g}_{i})\subset \mathfrak{g}_{i}’$ . Similarly
isomorphisms and epimorphisms of $Z$ graded Lie algebras are defined.

Let $\mathfrak{g}=\oplus_{i\in Z}\mathfrak{g}_{i}$ be a $Z$ graded Lie algebra. We will denote by $\mathfrak{g}_{-}$ the
subalgebra $\oplus_{i\leqq-1}\mathfrak{g}_{i}$ . Then a $Z$ graded Lie algebra $\mathfrak{g}$ is called transitive if it
satisfies the following conditions:

(1. 1. 1) $\mathfrak{g}_{-1}\neq\{0\}$ and $\mathfrak{g}-$ is an FGLA.
(1. 1. 2) For $x\in \mathfrak{g}_{i}(i\geqq 0)$ , $[x, \mathfrak{g}_{-1}]=\{0\}$ implies $x=0$ .

1. 2. Correspondence between local Lie algebra and graded Lie algebras
(see V. G. Kac. [6]. page 1276-1277)

A direct sum of vector spaces $\mathfrak{g}_{-1}\oplus \mathfrak{g}_{0}\oplus \mathfrak{g}_{1}$ is called a local Lie algebra if
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one has bilinear maps : $\mathfrak{g}_{i}\cross \mathfrak{g}_{j}arrow \mathfrak{g}_{i+j}$ for $|i|$ , $|j|$ , $|i+j|\leqq 1$ , such that anticom-
mutativity and the Jacobi identity hold whenever they make sense.
Homomorphisms and isomorphic of local Lie algebra are defined as in the
case of graded Lie algebra Given a $Z$ graded Lie algebra $\mathfrak{g}=\oplus_{i\in Z}\mathfrak{g}_{i}$ , the
subspace $\mathfrak{g}_{-1}\oplus \mathfrak{g}_{0}\oplus \mathfrak{g}_{1}$ is a local Lie algebra, which is called the local part of
$\mathfrak{g}$ .

Now, let $\mathfrak{g}=\oplus_{i\in Z}\mathfrak{g}_{i}$ be a $Z$ graded Lie algebra generated by $\mathfrak{g}_{-1}\oplus \mathfrak{g}_{0}\oplus \mathfrak{g}_{1}$ .
Then the $Z$ graded Lie algebra $\mathfrak{g}$ is called minimal if, for any other graded
Lie algebra $\mathfrak{g}’$ , each isomorphic of the local parts $\hat{\mathfrak{g}}$ and $\hat{\mathfrak{g}}’$ extends to an
epimorphism of $\mathfrak{g}’$ onto $\mathfrak{g}$ . Indeed, for any local Lie algebra $\hat{\mathfrak{g}}$ , there is a
minimal $Z$ graded Lie algebra $\mathfrak{g}$ whose local part is isomorphic to $\overline{\mathfrak{g}}$ (see V.
G. Kac [6], page 1276). We will utilize this fact in the proof of Lemma 2. 2.

\S 2. finite dimension transitive graded Lie algebra

In this section, we state a necessary and sufficient condition under which
a finite dimension transitive $Z$ graded Lie algebra over $C$ be semisimple
Also, throughout this section, we assume that the ground field is the field of
complex numbers $C$ .

2. 1. Throughout this section, $\mathfrak{g}=\oplus_{i\in Z}\mathfrak{g}_{i}$ will denote a finite dimen-
sional transitive $Z$ graded Lie algebra for which the representation of $\mathfrak{g}_{0}$ on
$\mathfrak{g}_{-1}$ is completely reducible. We denote by $\phi_{i}$ the representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{i}$

induced by restriction of the adjoint representation of $\mathfrak{g}$ . By the assumption,
we can decompose $\mathfrak{g}_{-1}$ into a direct sum of $\mathfrak{g}_{0}$-submodules
(2. 1. 1) $\mathfrak{g}_{-1}=\overline{\mathfrak{g}}_{-1}\oplus \mathfrak{g}_{-1}’,\tilde{\mathfrak{g}}_{-1}=\oplus_{j=1}^{t}\mathfrak{g}_{-}^{(j}i$ , $\mathfrak{g}_{-1}’=\oplus_{j=t+1}^{n(-1)}\mathfrak{g}_{-:}^{(j}$ ,

where each $\mathfrak{g}_{-}^{(j}1$ is an irreducible $\mathfrak{g}_{0}$-submodule of $\mathfrak{g}_{-1}$ such that
$[\mathfrak{g}_{-}^{(j}1, \mathfrak{g}_{1}]\neq\{0\}$ for $1\leqq j\leqq t$

and $[\mathfrak{g}_{-}^{(j}1, \mathfrak{g}_{1}]=\{0\}$ for $t<j\leqq n(-1)$ .

We denote by $\phi_{-}^{(j}i$ the representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{-:}^{(j}$ given by $[\mathfrak{g}_{0}, \mathfrak{g}_{-}^{(j}i]\subset \mathfrak{g}_{-}^{(j}i$ .
Since $\phi_{-1}$ is faithful and completely reducible, $\mathfrak{g}_{0}$ is a reductive Lie algebra
$i$ . $e$ , $\mathfrak{g}_{0}=\mathfrak{g}_{\acute{0}}\oplus c(\mathfrak{g}_{0})$ , where $\mathfrak{g}_{\acute{0}}$ denotes the semisimple part of $\mathfrak{g}_{0}$ and $c(\mathfrak{g}_{0})$ the
order of $\mathfrak{g}_{0}$ .

From the assumption, we first deduce

LEMMA 2. 1 The reprcscntation of $\mathfrak{g}_{0}$ on $\mathfrak{g}$ is completely reducible.

PROOF. We first prove that $\mathfrak{g}_{0}$-module $\mathfrak{g}_{-}$ is completely reducible. By
transitivity, we can consider $\mathfrak{g}_{0}$ as a subalgebra of the Lie algebra Dergr(g-)
of all the derivations of $\mathfrak{g}_{-}$ preserving the gradation of $\mathfrak{g}_{-}$ . On the other
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hand, Dergr(g-) contains the semisimple and nilpotent components of its
elements (see N. Bourbaki [1], Ch. [1], \S 5, $n^{0}1$ ). Thus we can decompose
the element $x$ of $c(\mathfrak{g}_{0})$ as follows:

$x=x_{s}+x_{n}$ , $Xs$ , $x_{n}\in Dergr(\mathfrak{g}-)$ ,

when $\chi_{S}$ (resp. $x_{n}$ ) is the semisimple (resp. nilpotent) component of $x$ .
Since $x|\mathfrak{g}_{-1}$ is semisimple and $x_{n}|\mathfrak{g}_{-1}$ is the nilpotent component of $x|\mathfrak{g}_{-1}$ , we
have $x_{n}|\mathfrak{g}_{-1}=0$ . Since $\mathfrak{g}-$ is generated by $\mathfrak{g}_{-1}$ , we have $x_{n}=0$ , so $x=x_{s}$ .
Thus $\mathfrak{g}_{0}$-module $\mathfrak{g}_{-}$ is completely reducible. Next we prove that $\mathfrak{g}_{p}(p\geqq 0)$ is
a completely reducible $\mathfrak{g}_{0}$ -module. We will use induction on $p$ . Since $\mathfrak{g}_{0}$ is
reductive, the statement holds for $p=0$ . We assume now that the statement
holds for $k$ . We consider the mapping

$\iota$ : $\mathfrak{g}_{k+1}arrow Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{k})$ ,

when for $x\in \mathfrak{g}_{k+1}$ , $\iota$
$(x)=ad(x)|\mathfrak{g}_{-1}$ . Then, by transitivity, it is easy to

prove that $\iota$ is a monomorphism of $\mathfrak{g}_{0}$-modules, so we may regard $\mathfrak{g}_{k+1}$ as a
$\mathfrak{g}_{0}$-submodule of $Hom(\mathfrak{g}_{-1}, \mathfrak{g}_{h})$ . Owing to the induction hypothesis, $Hom(\mathfrak{g}_{-1}$ ,
$\mathfrak{g}_{k})$ is a completely reducible $\mathfrak{g}_{0}$-module, so $\mathfrak{g}_{k+1}$ is a completely reducible
$\mathfrak{g}_{0}$-module. this prove the Lemma. Q. E. $D$

2. 2. Now we decompose $\mathfrak{g}_{1}$ into a direct sum of irreducible $\mathfrak{g}_{0}$
-

submodules :
$\mathfrak{g}_{1}=\oplus_{j=1}^{n(1)}\mathfrak{g}i^{j)}$ ,

and we denote by $\phi 1^{j)}$ the representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}i^{j)}$ give by $[\mathfrak{g}_{0}, \mathfrak{g}1^{j)}]\subset \mathfrak{g}f^{j)}$ .
In this paragraph, we will investigate the relation between $\phi i^{k)}$ and $\phi_{-}^{(j}1$ .

Here we note that the elements of $c(\mathfrak{g}_{0})$ act on $\mathfrak{g}\{^{i\rangle}(i=1, . n(1))$ by
scalar multiplications.

Let $\mathfrak{h}$ be a Cartan subalgebra of $\mathfrak{g}_{0}$ . Then, associated to this choice is
the system of weights of the representation $\phi_{p}$ , $\phi_{-}^{(i}1$ and $\phi 1^{i)}$ .

We now fix a Cartan subalgebra $\mathfrak{h}$ and a Weyl chamber, and by $\Lambda_{i}(resp$ .
$M_{i})$ we will denote the highest (resp. lowest) weight of $\phi_{-}^{(i}1(resp. \phi 1^{i)})$ . For
each $\Lambda_{i}(resp. M_{i})$ , $F_{\Lambda_{\iota}}\in \mathfrak{g}_{-}^{(i}i(resp. E_{M_{i}}\in \mathfrak{g}1^{i)})$ denote a non-zero weight vector
for $\Lambda_{i}(resp. M_{i})$ . Also, for a root $\alpha$ of $\mathfrak{g}_{\acute{0}}$ , we denote by $e_{a}$ a root vector for
$\alpha$ , and let $h_{a}$ be the unique element of $C[e_{a}, e_{-a}]$ for which $\alpha(h_{a})=2$ . Fix
$1\leqq i\leqq n(1)$ . Then th $e$ is an integer $i_{0}$ such that $[\mathfrak{g}_{-1}^{(i_{0})}, \mathfrak{g}f^{i)}]\neq\{0\}$ , since $\mathfrak{g}$ is
transitive Here we remark that $[\mathfrak{g}_{-1}^{(i_{0})}, \mathfrak{g}|^{i)}]\neq\{0\}$ if and only if $[E_{M_{i}}, F_{\Lambda_{0}},]\neq$

$\{0\}$ .
Then we ha $s$

LEMMA 2. 2. The representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{-1}^{(i_{0})}$ and $\mathfrak{g}\{^{i)}$ are contra-
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gredient $(i. e., \Lambda_{i_{0}}+M_{i}=0)$ . Consequently $h$ $:=[E_{M_{1}}, F_{\Lambda_{\iota 0}}]\in \mathfrak{h}$ .

PROOF. For covenience, we suppose that $i_{0}=i=1$ . We first suppose
that $\Lambda_{1}+M_{1}=\alpha$ is a root of $\mathfrak{g}_{\acute{0}}(i. e., [E_{M_{1}}, F_{\Lambda_{1}}]=e_{a})$ . Then we have

$\mathfrak{g}_{\acute{0}}=\mathfrak{a}_{1}\oplus tI_{2}\oplus_{113}\oplus t14$ ,

where each $t1_{i}$ is a semisimple ideal in $\mathfrak{g}_{\acute{0}}$ such that

Ker $\phi_{-}^{(1}:=0_{1}\oplus \mathfrak{a}_{2}$ and Ker $\phi t^{1)}=\mathfrak{a}_{2}\oplus t13$ .

Here we consider four case If $\alpha$ is a root of $t1_{2}$ , then we have $[e_{\gamma}[E_{M_{1}}$ ,
$F_{\Lambda_{1}}]]=[e_{-\gamma}[E_{M1}, F_{\Lambda_{1}}]]=0$ for any root $\gamma$ of t12, which is a contradiction
because of the semisimplicity of Q2. Next suppose that $\alpha$ is a root of $[]_{3}$ .
Since $\Lambda_{1}+M_{1}=\alpha$ and $M_{1}(h_{a})=0$ , we have $\Lambda_{1}(h_{a})\neq 0$ . Let $b$ be the th $e$

dimensional subalgebra of $\mathfrak{g}$ with a ha $s$ $\{[F_{\Lambda_{1}}, e_{-a}], h_{a}, E_{M_{1}}\}$ . We consider
$b$ -submodule $N$ of $b$ -module $\mathfrak{g}$ generated by $F_{\Lambda_{1}}(i$ . $e.$ , $N=Ad(U(b))F_{\Lambda_{1}}$ , where
$U(b)$ is the universal enveloping algebra of $b$ ). Then we have $0=tr(ad$

$h_{a}|N)=(\dim N)\Lambda_{1}(h_{a})$ , which is a contradiction. Similarly, when we sup-
pose that $\alpha$ is a root of $\mathfrak{a}_{1}$ , we each a contradiction by applying the whose
arguments to $b=CF_{\Lambda_{l}}\oplus Ch_{a}\oplus C[E_{M_{l}}, e_{a}]$ and $N=Ad(U(b))E_{M_{1}}$ . Finally,
we suppose that $\alpha$ is a root of $()_{4}$ . Let $t1$ be a simple component of $\mathfrak{a}_{4}$ such
that $\alpha$ is a root of $Q$ , and $\hat{\mathfrak{g}}_{-}^{(1}i$ (resp. $\hat{\mathfrak{g}}|^{1)}$ ) be an irreducible g0-submodule of $\mathfrak{g}_{-}^{(1}$ }
(resp. $\mathfrak{g}f^{1)}$ ) containing $F_{\Lambda_{1}}(resp. E_{M_{1}})$ . Then the representations of $Q$ on $\hat{\mathfrak{g}}_{-}^{(1}1$

and $\hat{\mathfrak{g}}1^{1)}$ are faithful and irreducible. Since $\Lambda_{1}+M_{1}=\alpha$ , by V. G. Kac [1],
page 1299 Theorem 2), we know that $\hat{\mathfrak{g}}_{-}^{(1}1\oplus \mathfrak{a}\oplus\hat{\mathfrak{g}}i^{1)}$ is isomorphic to the local
part of the special algebra $S_{n}$ or the Hamiltonian algebra $H_{n}$ as a local Lie
algebra. Since $S_{n}$ and $H_{n}$ is minimal it follows that $\mathfrak{g}$ contains a subalge-
bra whose factor algebra is isomorphic to $S_{n}$ or $H_{n}$ . But since $S_{n}$ and $H_{n}$ is

finite dimensional we obtain that $\mathfrak{g}$ is finite dimensional, which is a
contradiction due to the assumption, Q. E. $D$

For the behavior of $h:=[E_{M_{i}} F_{\Lambda_{\iota 0}}]$ we have$,$
,

LEMMA 2. 3. $M_{i}(h)=-\Lambda i_{0}(h)\neq 0$ . Consequently $[h, E_{M_{i}}]\neq 0$ , $[h, F_{\Lambda\iota 0}]$

$\neq 0$ .

PROOF. For convenience, we suppose $i=i_{0}=1$ . We now suppose that
$[h, E_{M_{1}}]=0$ . By transitivity, there is a weight vector $v_{\lambda}$ of $\mathfrak{g}_{0}$ -module $\mathfrak{g}_{-1}$

diction. Q. E. $D$

For the pair $(\mathfrak{g}_{-1}^{(k)}, \mathfrak{g}i^{i)})$ of $\mathfrak{g}_{0}$-modules such that $[\mathfrak{g}_{-1}^{(k)}, \mathfrak{g}i^{i)}]\neq\{0\}$ , we have

with a weight $\mathcal{A}$ such that $[h, v_{\lambda}]\neq 0$ . We put $b=CE_{M_{1}}\oplus Ch\oplus CF_{\Lambda_{l}}$ and $N=$

Ad(U(b))v\lambda . Then we have $0=tr(adh|N)=(\dim N)\mathcal{A}(h)$ , which is a contra-

LEMMA 2. 4. For each $i(1\leqq i\leqq n(1))$ , there is a uniquc intcger $k$ such
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that $[\mathfrak{g}_{-1}^{(k)}, \mathfrak{g}f^{i)}]\neq\{0\}$ . Furthermore, $\Lambda_{k’}+M_{i}\neq 0$ for any $k’$ such that $k\neq k’$

PROOF. We first suppose that there are two integers $k_{1}$ , $k_{2}$ such that
$[E_{M_{i}}, F_{\Lambda_{t1}}]\neq\{0\}$ and $[E_{M_{i}}, F_{\Lambda_{i_{l}}}]\neq\{0\}$ . We put $\alpha_{1}^{\vee}=[E_{M_{i}}, F_{\Lambda_{\iota 1}}]$ and $\alpha_{2}^{\vee}=[E_{M_{t}}$ ,
$F_{\Lambda_{t2}}]$ . Then, by Lemma 2.3, we have

$[\alpha_{1}^{\vee}. E_{M_{i}}]=c_{1}E_{M_{i}}$ , $[\alpha_{\check{2}}, E_{M_{i}}^{\backslash }]=c_{2}E_{M_{i}}$ , $c_{1}$ , $c_{2}\in C^{\cross}$ .

First suppose that $\{\alpha_{1}^{\vee}, \alpha_{2}^{\vee}\}$ is linearly independent. Replace $\phi_{-1^{1}}^{(k)}$ by
the irreducible representation $\overline{\phi}_{-1^{1}}^{(k)}$ with the highest weight $\Lambda_{k_{1}}$ and corre-
sponding weight vector $F_{\Lambda_{k1}}-c_{2}^{-1}c_{1}F_{\Lambda_{k2}}$ . Then we have

$\tilde{h}:=[E_{M_{i}}, F_{\Lambda_{k_{1}}}-c_{2}^{-1}c_{1}F_{\Lambda_{kz}}]=\alpha_{1}^{\vee}-c_{2}^{-1}h_{1}\alpha_{2}^{\vee}\neq 0$

$[\tilde{h}, E_{M_{i}}]=0$ ,

which is a contradiction by Lemma 2.3. Thus $\{\alpha_{1}^{\vee}, \alpha_{2}^{\vee}\}$ is linearly depen-
dent. Moreover, multiplying $E_{M_{i}}$ and $F_{\Lambda_{k2}}$ by some non-zero scalars, we
may assume that $\alpha_{1}^{\vee}=\alpha_{2}^{\vee}$ and $c_{1}=c_{2}=1$ . Also we put $F_{\Lambda}=F_{\Lambda_{k_{2}}}-F_{\Lambda_{k_{1}}}$ .
Then, for $s\geqq 0$ , we obtain by induction:

(ad $E_{M_{i}}$) $(adF_{\Lambda_{kl}})^{s+1}F_{\Lambda}=-(s+1)(s+2)/2(adF_{\Lambda_{k_{1}}})^{s}F_{\Lambda}$ .

If So is the last integer such that $($ad $F_{\Lambda_{k}}‘)^{s_{0}}F_{\Lambda}\neq 0$ , then we have $s_{0}=-1$ or
$s_{0}=-2$ , which is a contradiction.

Next we suppose that there are two integers $k_{1}$ , $k_{2}$ such that $[E_{M\iota}, F_{\Lambda_{k_{1}}}]$

$\neq\{0\}$ , $\Lambda_{k_{2}}+M_{i}=0$ and $[E_{M_{i}}, F_{\Lambda_{k_{2}}}]=0$ . Using the notation above, for $s\geqq 0$ ,

we obtain by induction

(ad $E_{M_{i}}$) $(adF_{\Lambda_{k_{1}}})^{s+1}F_{\Lambda_{k_{2}}}=-(s+1)(s+2)/2(adF_{\Lambda_{k_{1}}})^{s}F_{\Lambda_{k_{2}}}$

Similarly we can reach a contradiction as above. Q. E. $D$

2. 3. Using our previous results, we prove the following proposition
which will play a crucial role in the investigation of the pseud0-product
graded Lie algebra.

PROPOSITION 2. 5. Let $\mathfrak{g}=\oplus_{i\in Z}\mathfrak{g}_{i}$ be a finite dimensional transitive
$Z$-graded Lie algebra over $C$ for which the representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{-1}$ is
completely reducible. Then we have the following

$(i)$ Let $\tilde{\mathfrak{g}}_{-1}$ and $\mathfrak{g}_{-1}’$ be as in (2. 1. 1) so that $\mathfrak{g}_{-1}=\tilde{\mathfrak{g}}_{-1}\oplus \mathfrak{g}’-1$ . Then
the $Z$-graded subalgebra $\tilde{\mathfrak{g}}=\oplus_{i\in Z}\tilde{\mathfrak{g}}_{i}$ of $\mathfrak{g}$ generated by $\tilde{\mathfrak{g}}_{-1}\oplus[\tilde{\mathfrak{g}}_{-1}, \mathfrak{g}_{1}]\oplus \mathfrak{g}_{1}$ is $a$

semisimple Lie algebra. Furthermore the subalgebra $\oplus_{i\geqq 1}\mathfrak{g}_{i}$ of $\mathfrak{g}$ is generated
by $\mathfrak{g}_{1}$ .

(ii) The radical $r$ of $\mathfrak{g}$ is a $Z$-graded ideal in $\mathfrak{g}(i$. $e.$ , $\mathfrak{c}=\oplus_{i\in zt_{i}}$ , where
$\tau_{i}=r\cap \mathfrak{g}_{i})$ and $r_{i}=b_{i}(i\leqq 0)$ and $\tau_{i}=\{0\}(i\geqq 1)$ , where $b_{-k}=\{x\in \mathfrak{g}_{-k}$ : $($ad $\mathfrak{g}_{1})^{k}x$
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$=\{0\}\}(k\geqq 1)$ and $b_{0}=$ { $x\in c(\mathfrak{g}_{0})$ : (ad $\mathfrak{g}_{1})x=\{0\}$ }. Moreover we have $r_{-1}=\mathfrak{g}_{-1}’$

and $\mathfrak{g}_{0}=\tau_{0}\oplus[\tilde{\mathfrak{g}}-1, \mathfrak{g}_{1}]\oplus \mathfrak{g}_{\acute{\acute{0}}}$ , where $\mathfrak{g}_{\acute{\acute{0}}}$ is the centralizer of $\mathfrak{g}_{-1}^{-}$ in $\mathfrak{g}_{\acute{0}}$ .

PROOF. $( i)$ Let $E$ be the element of Dergr(g) such that
$E(x)=px$ for $x\in \mathfrak{g}_{p}$ .

Regarding $c(\mathfrak{g}_{0})$ as the subalgebra of Dergr(g), $(c(\mathfrak{g}_{0})+CE)$ -module $\mathfrak{g}$ is com-
pletely reducible by Lemma 2.1. By O. Mathieu ([7], page 402, Lemma 34),
there is a Levi subalgebra $\mathfrak{s}$ of $\mathfrak{g}$ such that $(c(\mathfrak{g}_{0})+CE)(\mathfrak{s})\subset \mathfrak{s}$ . Then $\mathfrak{s}$ is
graded, which we write $\mathfrak{s}=\oplus_{p\in z}\mathfrak{s}_{p}$ . Also, the radical $t$ of $\mathfrak{g}$ is graded,
which we write $r=\oplus_{p\in ztp}$ . Then, since $c(\mathfrak{g}_{0})\supset r_{0}$ , $\mathfrak{s}$ is a $\mathfrak{g}_{0}$-submodule of $\mathfrak{g}$ ,
so $\mathfrak{s}$ is a completely reducible $\mathfrak{g}_{0}$-submodule by Lmma 2.1. Hence we can
decompose $\mathfrak{s}_{p}$ into a direct sum of irreducible $\mathfrak{g}_{0}$-submodules of $\mathfrak{s}_{p}$ :

$\mathfrak{s}_{p}=\oplus_{k=}^{s(p}1\mathfrak{s}b^{k)}$ .

Let $W$ be an irreducible $\mathfrak{g}_{0}$-submodule of $c_{1}$ . Then, by transitivity, there is
an integer $k$ such that $[\mathfrak{g}_{-1}^{(k)}, W]\neq\{0\}$ . Let $E_{M}$ be the highest weight vector of
$W$ with the highest weight M. By Lemma 2.3, the subspace
$CF_{\Lambda_{k}}\oplus C[F_{\Lambda_{k}}, E_{M}]\oplus CE_{M}$ is a simple three dimensional Lie subalgebra of $t$ ,
which is a contradiction. Thus we have $r_{1}=\{0\}$ , so, by transitivity, $r_{p}=$

$\{O\}(p\geqq 1)$ . Hence we have $\mathfrak{s}_{p}=\mathfrak{g}_{p}(p\geqq 1)$ . For each $i(1\leqq i\leqq t)$ , $\mathfrak{g}_{-}^{(i}i$ is contra-
gredient to $\mathfrak{s}i^{j)}$ as a $\mathfrak{g}_{0}$-module for some $j(1\leqq j\leqq s(1))$ . Also we remark that
$\mathfrak{s}_{-1}$ is contragredient to $\mathfrak{s}_{1}$ as a $\mathfrak{g}_{0}$ -module. Indeed, let $( |)$ be the Killing
form of $\mathfrak{s}$ . Since the restriction of $( |)$ on $\mathfrak{s}_{1}\cross \mathfrak{s}_{-1}$ is non-degenerate, we
have an isomorphism $\nu:\mathfrak{s}_{1}$– $\mathfrak{s}_{-1}^{*}$ defined by

$<\nu(x)$ , $y>=(x|y)$ , $x\in \mathfrak{s}_{1}$ , $y\in \mathfrak{s}_{-1}$ .

Since $( |)$ is completely invariant $(i. e, (x|Dy)+(Dx|y)=0$ for $x$ , $y\in \mathfrak{s}$ and
$D\in Der(\mathfrak{s}))$ , we can prove easily that 1/ is an isomorphism of $\mathfrak{g}_{0}$-modules, so
$\mathfrak{s}_{1}$ is contragredient to $\mathfrak{s}_{-1}$ as a $\mathfrak{g}_{0}$-module. Thus $\mathfrak{g}_{-}^{(i}i$ is isomorphic to $\mathfrak{s}_{-1}^{(k)}$

as a $\mathfrak{g}_{0}$ -module for some $k(1\leqq k\leqq s(-1))$ . However, since $\mathfrak{g}_{-}^{(i}i$ is not isomor-
phic to $\mathfrak{g}_{-}^{(j}1$ as a $\mathfrak{g}_{0}$-module for all $j$ such that $i\neq j$ by Lemma 2.4, we have
$\mathfrak{g}_{-1}^{(i)}=\mathfrak{s}_{-1}^{(k)}$ . In particular, we have $l(\mathfrak{s}_{-1})\leqq l(\tilde{\mathfrak{g}}_{-1})$ , where we denote by $l(N)$

the number of the irreducible components of $\mathfrak{g}_{0}$ -module $N$ . On the other
hand, by Lemma 2.4, we have $l(\mathfrak{s}_{-1})=l(\mathfrak{s}_{1})\geqq l(\tilde{\mathfrak{g}}_{-1})$ . Thus we have $l(\tilde{\mathfrak{g}}_{-1})$

$=l(\mathfrak{s}_{-1})$ , so $\tilde{\mathfrak{g}}_{-1}=\mathfrak{s}_{-1}$ . Since the subalgebra $(\mathfrak{g}/\tau)_{-}$ of $\mathfrak{g}/t$ is generated by
$\mathfrak{g}_{-1}/t_{-1}$ , the subalgebra $\mathfrak{s}_{-}$ of $\mathfrak{s}$ is generated by $\mathfrak{s}_{-1}$ . Moreover, since an ideal
in a semisimple $Z$-graded Lie algebra is graded, we can decompose $\mathfrak{s}$ into a
direct sum of two semisimple ideals $t$ and $\mathfrak{U}(i.$ $e.$ , $\mathfrak{s}=t\oplus_{\mathfrak{U}}$ , $t=\oplus_{p\in Z}t_{p}$ and $\mathfrak{U}^{=}$

$\oplus_{p\in z\mathfrak{U}p})$ such that $t$ is a semisimple transitive $Z$-graded Lie algebra and $\mathfrak{U}^{=}$
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$\mathfrak{U}0$ . Then the subalgebra $\oplus_{i\geqq 1}t_{i}$ of $t$ is generated by $t_{1}$ , and we have $t_{0}=[t_{-1}$ ,
$t_{1}]=[\tilde{\mathfrak{g}}_{-1}, \mathfrak{g}_{1}]$ (see N. Tanaka [5], page 28). Also, since $\mathfrak{s}_{p}=t_{p}(p\geqq 1)$ , the
subalgebra $\oplus_{i\geqq 1}\mathfrak{g}_{i}$ of $\mathfrak{g}$ is generated by $\mathfrak{g}_{1}$ . Thus we have $\tilde{\mathfrak{g}}=t$ , so $\tilde{\mathfrak{g}}$ is
semisimple.

(ii) We put $b=\oplus_{i\leqq 0}b_{i}$ . Then $b$ is a solvable ideal in $\mathfrak{g}$ , so $b\subset c$ . In
particular, we have $\mathfrak{g}_{-1}’\subset b_{-1}\subset r_{-1}$ . Since $\tilde{\mathfrak{g}}_{-1}=\mathfrak{s}_{-1}$ , we have dim $\mathfrak{g}_{-1}’=\dim$

$\tau_{-1}$ , so $\tau_{-1}=\mathfrak{g}_{-1}’$ . Moreover, since $($ad $\mathfrak{g}_{1})^{i-1}r_{-i}\subset r_{-1}(i\geqq 2)$ and $[c_{0}, \mathfrak{g}_{1}]\subset r_{1}=$

$\{0\}$ , we have $c_{-i}\subset b_{-i}(i\geqq 0)$ . Hence we have $b=\tau_{-i}(i\geqq 0)$ . Finally, from
the proof of $( i )$ , we have $\mathfrak{u}_{0}=\mathfrak{g}_{\acute{\acute{0}}}$ and $t_{0}=[\tilde{\mathfrak{g}}_{-1}, \mathfrak{g}_{1}]$ , so $\mathfrak{g}_{0}=\tau_{0}\oplus[\tilde{\mathfrak{g}}_{-1}, \mathfrak{g}_{1}]\oplus \mathfrak{g}_{\acute{\acute{0}}}$ .

Q. E. $D$

As a corollary of Proposition 2.5, we have

COROLLARY 2. 5. Let $\mathfrak{g}=\oplus_{i\in Z}\mathfrak{g}_{i}$ be a finite dimensional transitive
$Z$-graded Lie algebra over C. Then following statements are equivalent.

(1) $\mathfrak{g}$ is semisimple.
(2) $( i)$ The representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{-1}$ is completely reducible, and

(ii) there is no non-trivial $\mathfrak{g}_{0}$ -invariant subspace of $\mathfrak{g}_{-1}$ contained in the
centralizer of $\mathfrak{g}_{1}$ in $\mathfrak{g}$ .

(3) $( i)$ The representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{-1}$ is completely reducible, and
(ii) $\mathfrak{g}_{-1}’=\{0\}$ .

PROOF. Let $W$ be a $\mathfrak{g}_{0}$-invariant subspace of $\mathfrak{g}_{-1}$ such that $[ W, \mathfrak{g}_{1}]=\{0\}$ .
Then an ideal in $\mathfrak{g}$ generated by $W$ is a solvable ideal in $\mathfrak{g}$ ; thus $(1)arrow(2)$

$(ii)$ . It follows from I. L. Kantor ([3], page 44, Proposition 12) that (1)

$arrow(2)\sim$ $( i )$ . If (3) holds, $then\sim\tilde{\mathfrak{g}}_{-1}=\mathfrak{g}_{-1}$ . Since $\mathfrak{g}-$ is generated by $\mathfrak{g}_{-1}$ , we
have $\mathfrak{g}_{-}=\mathfrak{g}_{-}$ . Moreover, since $\mathfrak{g}$ is semisimple by Proposition 2. 5., we have
$r_{i}=\{0\}(i\leqq-1)$ , so, by transitivity, $r_{p}=\{0\}(p\geqq 0)$ . Hence $\mathfrak{g}$ is semisimple,
which proves $(3)arrow(1)$ . $(2)arrow(3)$ is clear. Q. E. $D$

\S 3. pseud0-product graded Lie algebras

3. 1. Let $\mathfrak{g}=\oplus_{p\in Z}\mathfrak{g}_{p}$ be a transitive $Z$-graded Lie algebra over $K$ ,

where $K$ is $R$ or $C$ . Let $\mathfrak{g}_{-:}^{(1}$ and $\mathfrak{g}_{-:}^{(2}$ be subspaces of $\mathfrak{g}_{-1}$ . Then the Z-graded
Lie algebra $\mathfrak{g}=\oplus_{p\in Z}\mathfrak{g}_{p}$ is called a pseudO-product graded Lie algebra, if it
satisfies the following conditions

(3. 1. 1) $\mathfrak{g}_{-1}=\mathfrak{g}_{-}^{(1}i\oplus \mathfrak{g}_{-:}^{(2}$

(3. 1.2) $[\mathfrak{g}_{-}^{(1}1_{ \mathfrak{g}-}^{(1},i]=[\mathfrak{g}_{-}^{(2}1_{ \mathfrak{g}-}^{(2},1]=\{0\}$

(3. 1.3) $[\mathfrak{g}_{0},$ $\mathfrak{g}_{-}^{(1}i1\subset \mathfrak{g}_{-}^{(1}1$ , $[\mathfrak{g}_{0},$ $\mathfrak{g}_{-}^{(2}\}j\subset \mathfrak{g}_{-:}^{(2}$

Then we have the following

LEMMA 3. 1. (see N. Tanaka [6], page 292) Let $\mathfrak{g}=\oplus_{p\in Z}\mathfrak{g}_{p}$ be $a$
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pseudO-product graded Lie algebra over K. If $\mathfrak{g}_{-}$ is non-degenerate (that is,
for any $x\in \mathfrak{g}_{-1}$ , $[x, \mathfrak{g}_{-1}]=\{0\}$ implies $x=0$), then the Lie algebra $\mathfrak{g}$ is finite
dimensional.

3. 2. Now we give our main theorem.

THEOREM 3. 2. Let $\mathfrak{g}=\oplus_{p\in Z}\mathfrak{g}_{p}$ be a pseudO-product graded Lie algebra
over $C$, and suppose that the subalgebra $\mathfrak{g}_{-}$ of $\mathfrak{g}$ is non-degenerate and the
representations of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{-:}^{(1}$ and $\mathfrak{g}_{-}^{(2}1$ are irreducible. Then we have:

$(i)$ If the representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{1}$ is reducible, then $\mathfrak{g}$ is a simple Lie
algebra.

(ii) If the representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{1}$ is irreducible, then we have $\mathfrak{g}_{2}=\{0\}$ .
As a consequence of $( i)$ and $( ii)$ , if $\mathfrak{g}_{2}\neq\{0\}$ , then $\mathfrak{g}$ is a simple Lie

algebra.

PROOF. By Lemma 3. 1, we can apply all arguments in \S 2.
$(i)$ Using the notation of (2. 1. 1), we have $\mathfrak{g}_{-1}’=\{0\}$ by Lemma 2. 4.

Hence, by Corollary 2. 5, $\mathfrak{g}$ is semisimple. If $\mathfrak{g}$ is not simple, then we have $\mathfrak{g}$

$=_{t}x^{(1)}\oplus Q(2)$ . where $\mathfrak{a}^{(1)}(i=1,2)$ is a non-trivial semisimple ideal in $\mathfrak{g}$ . Since $(1^{(1)}$

is graded, we can write ($1^{(1)}=\oplus_{p\in Z}\mathfrak{a}b^{1)}$ . Here we remark that $(1_{-1}^{(1)}\neq\{0\}$

because of transitivity of $\mathfrak{g}$ . Since $\mathfrak{g}_{-}^{(1}1$ is not isomorphic to $\mathfrak{g}_{-}^{(2}i$ as a $\mathfrak{g}_{0}$ module
by Lemma 2. 4, we have $\mathfrak{g}_{-}^{(1}1=\mathfrak{a}_{-}^{(1}1$ , $\mathfrak{g}_{-}^{(2}i=\mathfrak{a}_{-}^{(2}1$ or $\mathfrak{g}_{-}^{(1}1=\mathfrak{a}_{-}^{(2}i$ , $\mathfrak{g}_{-}^{(2}1=Q$ (l-i. Thus
$[\mathfrak{g}_{-}^{(1}1_{ \mathfrak{g}_{-}}^{(2},1]=\{0\}$ , which is a contradiction to the fact that $\mathfrak{g}_{-}$ is non-degenerate.
Hence $\mathfrak{g}$ is a simple Lie algebra.

(ii) Now we can assume that $[\mathfrak{g}_{-}^{(1}i, \mathfrak{g}_{1}]=\{0\}$ . Then the subalgebra $\mathfrak{g}_{-}^{(2}1$

$\oplus[\mathfrak{g}_{-}^{(2}1, \mathfrak{g}_{1}]\oplus \mathfrak{g}_{1}$ is a simple Lie algebra by Proposition 2. 5, so $[\mathfrak{g}_{1}, \mathfrak{g}_{1}]=\{0\}$ .
Therefore it follows from Proposition 2. 5 that $\mathfrak{g}_{2}=\{0\}$ . Q. E. $D$

3. 3. We now prove the real version of Theorem 3. 2.

THEOREM 3. 3. Let $\mathfrak{g}=\oplus_{p\in Z}\mathfrak{g}_{k}$ be a pseudO-product graded Lie algebra
over $R$, and suppose that its subalgebra $\mathfrak{g}_{-}$ of 9 is non-degenerate and the
representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{-:}^{(1}$ and $\mathfrak{g}_{-}^{(2}i$ is irreducible. Then we have:

$(i)$ If the representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{1}$ is reducible, then $\mathfrak{g}$ is a simple Lie
algebra.

(ii) If the representation of $\mathfrak{g}_{0}$ on $\mathfrak{g}_{1}$ is irreducible, then we have $\mathfrak{g}_{2}=\{0\}$ .
As a consequence of $( i)$ and $( ii)$ , if $\mathfrak{g}_{2}\neq\{0\}$ , then $\mathfrak{g}$ is a simple Lie

algebra over $R$ .

PROOF. First of all, we note that $\mathfrak{g}$ is finite dimentional by Lemma 3. 1.
Let $\mathfrak{g}^{C}=\oplus_{p\in Z}\mathfrak{g}_{p}^{C}$ denote the complexification of $\mathfrak{g}=\oplus_{p\in Z}\mathfrak{g}_{p}$ . Then $\mathfrak{g}^{C}$ is a
transitive $Z$-graded Lie algebra over $C$ . Then, since $\mathfrak{g}_{-1}^{(1)C}$ is not isomorphic
to $\mathfrak{g}_{-1}^{(2)C}$ as a $\mathfrak{g}_{0}^{C}$ module by Lemma 2. 4, $\mathfrak{g}_{-:}^{(1}$ is not isomorphic to $\mathfrak{g}_{-:}^{(2}$ as a
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$\mathfrak{g}_{0}$-module. Let $t$ be the radical of $\mathfrak{g}$ . Then $t$ is a $Z$ -graded ideal in $\mathfrak{g}$ , which
we write $c=\oplus_{p\in ztp}$ . Moreover its complexification $t^{C}$ is the radical of $\mathfrak{g}^{C}$ .
Then C-l is a $\mathfrak{g}_{0}$-submodule of $\mathfrak{g}_{-1}$ , so we have $\tau_{-1}=\mathfrak{g}_{-}^{(1}i$ or $r_{-1}=\mathfrak{g}_{-}^{(2}i$ or C-l $=\{0\}$ .
Here we remark that $\mathfrak{g}_{1}^{C}/t_{1}^{C}$ is contragredient to $\mathfrak{g}_{1}^{C}$ as a $\mathfrak{g}_{0}^{C}$ module by
Proposition 2. 5, so $\mathfrak{g}_{-1}/t_{-1}$ is contragredient to $\mathfrak{g}_{1}$ as a $\mathfrak{g}_{0}$ -module. If $\mathfrak{g}_{0}$ -

module $\mathfrak{g}_{1}$ is reducible, then $\mathfrak{g}_{0}$ module $\mathfrak{g}_{-1}/\mathfrak{c}_{-1}$ is reducible. Hence we have
$t_{-1}=\{0\}$ . By Corollary 2. 5, $\mathfrak{g}^{C}$ is semisimple, so $\mathfrak{g}$ is semisimple. Then, by
the same method of proof of theorem 3. 2, we can prove the fact that $\mathfrak{g}$ is
simple. This proves $( i )$ . If $\mathfrak{g}_{0}$ module $\mathfrak{g}_{1}$ is irreducible, then we have $\mathfrak{g}_{-1}^{(1)}=$

$c_{-1}$ or $\mathfrak{g}_{-}^{(2}i=r_{-1}$ . Now we suppose that $\mathfrak{g}_{-}^{(2}|=\mathfrak{c}_{-1}$ . Then, by Proposition 2. 5,
the subalgebra generated by $\mathfrak{g}_{-1}^{(1)C}\oplus[\mathfrak{g}_{-1}^{(1)C}, \mathfrak{g}_{1}^{C}]\oplus \mathfrak{g}_{1}^{C}$ is semisimple. However,

since $[\mathfrak{g}_{-1}^{(1)C}. \mathfrak{g}_{-1}^{(1)C}]=\{0\}$ , we have $[\mathfrak{g}_{1}^{C}. \mathfrak{g}_{1}^{C}]=\{0\}$ . Hence, by Proposition 2. 5,

we have $\mathfrak{g}_{2}^{C}=\{0\}$ , so $\mathfrak{g}_{2}=\{0\}$ . Similarly we can prove that $\mathfrak{g}_{2}=\{0\}$ when $\mathfrak{g}_{-}^{(1}1=$

$r_{-1}$ . This proves $( ii)$ . Q. E. $D$
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