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A note on the Lonergan-Hosack presentation
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Introduction.

The problem of finding different methods to prove groups finite or
infinite was discussed by M. Newman in a lecture which he gave at the
GROUPS-KOREA 1988 conference in Pusan. As an example he consid-
ered the Lonergan-Hosack presentation

G(m)=\langle x, z:z^{3}x^{m-4}z^{3}x^{-1}=z^{5}x^{m-3}z^{2}x^{m-3}=1\rangle .

For the two cases m=1 and m=5 we have fundamental group presen-
tations of closed, orientable 3-dimensional manifolds. For a while it was
an open problem whether these presentations are those of finite or infinite
groups. The first solution came from M. Slattery [4] who managed to
show that G(1) and G(5) are infinite by using the computer algebra pack-
age CAYLEY. In his conference talk M. Newman welcomed all contribu-
tions to this area and the purpose of this note is to show that the use of
some supporting theory provides us with more information about the struc-
ture of G(m) .

Results.

Consider the presentation G(m) given in the introduction.

THEOREM 1. Let m\geq 5 or m=3 or m<0 . Then
(1) G(m) has a subgroup of finite index mapping onto a free group

of rank 2 and G(m) has a free subgroup of rank 2.
(2) G(m) has a generating pair \{u, v\} such that the subgroup generated

ed by elements u^{k} and v^{h} is free of rank 2 for a sufficiently large
integer k.

(3) G(m) is SQ-universal.

PROOF: If m=5, then the result follows directly from [3]. If m=3,
then G(3)\cong Z_{2}\star Z_{7} and the result is well known (see [2]). Then assume
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that either m\geq 6 or m\leq 0 . Now the Triangle-group

T(m-3,7, 2)=\langle a, b:a^{m-3}=b^{7}=(ab)^{2}=1\rangle

is an epimorphic image of G(m) . Since |m-3|\geq 3 it follows that \frac{1}{|m-3|}

+ \frac{1}{7}+\frac{1}{2}<1 and we can proceed as in [3].

THEOREM 2. If m is odd and m\neq 7 , then G(m) is a nontrivial free
product with amalgamation.

PROOF: If m=5 then the result follows from [3] and it is also clear
that it holds for G(3) . Then assume that m is odd with m\geq 9 or m\leq 1 .
Then m-5 is even and |m-5|\geq 4 . We denote m-5=2k. Then

H(k)=\langle a, b : a^{3}=b^{2k}=(ab^{2})^{2}=1\rangle

is an epimorphic image of G(m) and H(k) is a nontrivial free product of
H_{1} and H_{2} with the amalgamated subgroup H, where H_{1}=\langle b:b^{2k}=1\rangle ,
H_{2}=\langle a, d : a^{3}=d^{k}=(ad)^{2}=1\rangle and H=\langle b^{2} : (b^{2})^{k}=1\rangle\cong\langle d : d^{k}=1\rangle .
Again the rest of the proof follows as in [3].

THEOREM 3. The group G(1) has a subgroup of finite index mapping
onto a free group of rank 2 and G(1) has a free subgroup of rank 2.
Furthermore, G(1) is SQ-universal.

PROOF: As in the proof of theorem 2, G(1) has

H(-2)=\langle a, b:a^{3}=b^{-4}=(ab^{2})^{2}=1\rangle

as an epimorphic image. By theorem 6 of [1], it follows that H(-2) has
a free subgroup of rank 2 (notice that H(-2)\cong H(2) ). We now consider
the presentation

H(2)=\langle a, b:a^{3}=b^{4}=(ab^{2})^{2}=1\rangle .

The subgroup K of H(2) generated by u=a, v=bab^{-1} and w=b^{2} has
index 2 in H(2) . The presentation

K=\langle u, v, w:u^{3}=v^{3}=w^{2}=(uw)^{2}=(vw)^{2}=1\rangle

has the properties of our theorem (see [1] and [2]) and hence G(1) has
these properties.

We shall now introduce three problems which are related to the pre-
ceding results.

1) Does theorem 1 also hold for m=1 ?
2) Does theorem 2 also hold for m=7 ?
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3) Does theorem 2 301d for some even m ?

THEOMEM 4. The groups G(4) and G(2) are finite.
PROOF: It is easy to see that G(4) is of order 19. Then consider

G=G(2)=\langle x, z:z^{3}x^{-2}z^{3}x^{-1}=z^{5}x^{-1}z^{2}x^{-1}=1\rangle .
Adding the relations x=z^{2} gives \langle z:z^{3}=1\rangle . Now denote a=xz^{-1} , b=zx ,
c=z^{2}xz^{-1} . d=z^{3} and consider the epimorphism from G to \langle z:z^{3}=1\rangle .
Then the Reidermeister-schreier method (with the transversal {1, z, z^{2}\} )
gives the following presentation for the kernel K of the epimorphism: K
has generators a , b , c , d and relators da^{-2} . d^{2}b^{-1}db^{-1} , d^{2}c^{-1}dc^{-1} . db^{-1} .
dc^{-1}a^{-1} . dc^{-1}da^{-1}b^{-1} and da^{-1}db^{-1}C^{-1}- Since d=a^{2} . we have c=a^{3}b^{-1} .
We substitute these values for c and d into the other defining relations
and then in the presentation for K we have generators a and b and
relators a^{4}b^{-1}a^{2}b^{-1}aba^{-1}b , b^{-1}a^{2}ba^{-2} and a^{2}ba^{-2}b^{-1} . Hence

K=\langle a, b:[a^{2}. b]=a^{6}b^{-2}=aba^{-1}b=1\rangle .

Now the last relation gives ba^{-1}b=a^{-1} and by using the second relation
we get a^{12}=1 and b^{4}=1 . Then, clearly, K has order 24 and G has order
72. The proof is complete.
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