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1. Introduction

Let X be a manifold and 7X its tangent bundle. A pseudo-length
function on X is a real valued nonnegative function F' on TX satisfying
the condition

ey F(c&)=|c|F (&) for £ETX, c<R.

If F(&) >0 for every nonzero &, then F is called a length function.

If £€ TxX, we write sometimes (x, &) for & although x is redundant.
Similarly, we write occasionally F(x, &) for F(£). When we are work-
ing in a coordinate neighborhood U with a natural identification 7U=U
X R”, the notation F(x, &) is more convenient as well as traditional since
& may be used to denote an element of R” as well as an element of TU.

We say that F is convex if it defines a pseudo-norm on each tangent
space TxX,x€X, ie, if

2 FE+ENSF(E+F(&) for & &€ TX.

A convex length function is usually called a Finsler metric.
Given a pseudo-length function F, its indicatrix T'x at x€X is defined
to be

3) I.={€T:X; F(&<1}.

Then T'x is (1) star shaped in the sense that if £ET'x then cEETx for |c|<
1 and is (2) nontrivial in every direction in the sense that for every £€
TxX there is a nonzero ¢ such that c£ETx.

Conversely, given a subset I'x in each tangent space TxX satisfying
the two conditions above, we can construct a pseudo-length function F by

@ F<é>=inf{c>o;§erx} for £€ TuX.
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Then a pseudo-length function F is convex if and only if its indicatrix
I'x is a convex set for each x€X. Given a (nonconvex) pseudo-length
function F we can associate the largest convex pseudo-length function F
such that F<F by conmdermg the pseudo-length function defined by the
convex hull Tx of Tx. Thus, Tk is, by construction, the indicatrix of F at
x. It is aslo possible to define F as the double dual of F , (see [2D ; but
this fact will not be used here.

Let ¢ be a piecewise smooth curve represented by x(¢), a<t<b. If a

pseudo-length function F is upper semi-continuous, then the arc-length
L(c) of c is defined by

(5) Lio)= [F= I F(D)dt,

and the pseudo-distance d(p, ¢) between p, ¢= X is defined by
(6) d(p, q)=irc1fL(c),

where the infimum is taken over all piecewise smooth curves ¢ from p to
q.

As we shall see later, if F is upper semi-continuous, so is F. There-
fore, using F* we can similarly define the arc-length L(¢) and the pseudo-
distance d(p, q) :

© L= / F= / B (O)dt,
(8) d(p, =inf L(o.
Since F<F, we have d(p, QO<d(p, q).

The purpose of this paper is to prove the following theorem.

THEOREM. Let X be a manifold with an wupper semi-continuous
pseudo-length function F; The pseudq-distance d defined by F coincides
with the pseudo-distance d defined by F.

This theorem has been proved by Busemann and Mayer under the
assumption that F' is continuous and strictly positive. The motivation for
our technical generalization comes from complex analysis, namely the
intrinsic infinitesimal pseudo-metric of a complex manifold which may be
neither continuous nor strictly positive, (see [2] [4].

2. Proof of the theorem.

The following lemma goes back to Carathéodory (see, for example,
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[2], [5;p.15D.

LEMMA 1. Let V be a veal vector space, and T' a subset containing
the origin 0 V. Then an element vEV is in the convex hull T of T if
and only if it is contained in a finite dimensional simplex having its ver-
tices in T and having 0 as one of its vertices.

Using we prove the following

LEMMA 2. Given 7€Tx and €>0, there exist linearly independent &,
o+ EmETx such that

=&+ +En and F(+e>F(E)++F(&n.
If F(p)>0, there exist linearly independent &,+,EnETx such that
=&t +énand F()=F( &)+ +F(&n).

PrROOF. For any positive real number s we set sI'x={s€; EET'x} and
sTx={s&: EET .

Let »=F(y). Then 7€ (r+¢e)Tx for any €>0. (If »>0, then 7<
rT'x.) By [Lemma 1, there exist linearly independent 71, *,7n in ( +&)Tx
(in #Tx if »>0) such that

p=2tn:  with t;>0, 2t:<1.
Then
2FUm)=2tF (o <(r+e)2t:<(r+e).

By setting &;=1t:7;, we obtain the desired inequality.
If »>0, then we can drop ¢ and obtain the inequality 2 F(t:7.)<r.
Hence,

SF(E)<F (.

The reverse inequality follows from F'(&)<F(&) and the triangular in-
equality satisfied by F'. Q.E.D.
The first application of is the following

LEMMA 3. If F is upper semi-continuous, so is F.

PROOF. Let 7& Tx, X, and €>0. Multiplying 7 by a suitable nonzer-
o constant, we may assume that F'(7)<1. By Lemma 2, given ¢>0 there
exist &, +,EnETx X with F(&:) <1 such that

=&+ +&n and F(Uo)+€>F(51>+'“+F<§m>.
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Let V: be a neighborhood of &; in 7X such that
FE)<FE)+——c for &€V

Let W be the neighborhood of 7 in TX defined by W=Vi+:-+ Va.
Then for any 7'=§&i+:-+ &€ W with &€ V; we have

F () +26>S(F () +--6) > SF (€D >
DFED 2F(ZE)=F.
Q.E.D.

LEMMA 4. If F is an upper semi-continuous pseudo-length function
on X, it is the limit of a monotone decreasing sequence of continuous
length functions H.. Furthermore, if H. denotes the continuous convex
length function associated with H., then F is the limit of a monotone
decreasing sequence {Hax}.

PROOF. Let SXC TX be the tangent unit sphere bundle defined by a
Riemannian metric ¢ of X. Since Fisx is an upper semi-continuous non-
negative function, it is a limit of a monotone decreasing sequence of con-
tinuous positive functions Hx on SX (see, for example [3;p.43]). Since
F(—=&=F(&), we can choose H: in such a way that Hx(—& =H.(&).
We extend H:. to TX by setting.

Hk(05>=|C|Hk(S) for £€SX, cER.

Then {H:} is a monotone decreasing sequence of continuous length func-
tions, and F(&)=lim H.(§) for E&€TX. Since F<Hp.1<H:., we have F
<H,.1<H.. Given a nonzero £ TX, choose a convex length function G
such that G(&)=1. Since lim H.(&)=F (&), given €>0 there is an inte-
ger ko such that

H.(&)<XF(E)+e=F(&)+eGE) for k> k.
Hence,
H.(O<FE)+eGE=F(&+e for k>k.

Thus, lim Hx.(&)=F(£). Q.E.D.

Let », g€ X, and let ¢ be a piecewise smooth curve from p to ¢ reper-
esented by x(#), a<t<b. Since F<F, we have L(c)<L(c). The prob-
lem is to show that given €>0 there is another curve ¢ from p to g such
that
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9 L(&<L(c)+3e.

By subdiving ¢ if necessary, we may assume that c¢ is contained in a sin-
gle coordinate neighborhood U. For the sake of convenience we fix an
arbitrarily chosen Riemannian metric ¢ on X. It is convenient to choose
g in such a way that in U it is the Euclidean metric defined by the local
coordinate system. Without loss of generality we may assume that the
velocity x'(¢) is of unit length with respect to g.

Let H; be as in and put

) L= [ A

Then by the Lebesgue convergence theorem, given € >0 there is an integer
ko such that

(1D Le(c)<L(c)+e for k> k.

Let 7=(a=t<th<--<t,=b) be a subdivision of the interval [a, 5],
and let |r|=max{ti—to, ', tr— tr-1}. We set

Ati=t;—ti-;.
Using the local coordinate system in U, we define
Axi=x(t;) —x(t:-1) ER".

Under the identification Tx(..,,~R" by the coordinate system, Ax:/At: is
approximately equal to x'(#-1) so that |Ax;/At:| is approximately equal to
1.

For each 7 and %, we set

Ax,-

(12) gk,n:ggk(x(ti—l), Axi>:i=zr}1Hk<x<ti—l>, At

)At,-.

(As we explained in the preceding section, we write the base point x(#_1)
in (12) explicitly since we are using the local coordinate system).
Then, given >0 there is 8 >0 such that

13 Sea<Li(c)+e  if |x]<é.
For a fixed £> ko, there is 62>0 such that for every ¢,a<t<b,

A0 HG,O<HGED, O+ L for [y—xl <o, e

where |y—x(#)| denotes the Euclidean distance from x({)Ec to yeX
with respect to the local coordinate system.
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Let 6=min{61, 82}, and fix a subdivision 7 of [a, b] such that |7|<d.
Since |Ax:/At:| is approximately equal to 1 and since A#: <6, we have |Ax|
<94.

We fix ¢ and k>k. Since H.(Ax) >0, by there exist
linearly independent &i,*,EnE Tx:-nX such that

(15) Axi=&1++&n
and
(16) ﬁk<x<ti—l>, AxiDZHk<x<ti—l>, 51) +"’+Hk<x<fi—1>, ?fm)

This says that the length of the line segment from the origin to Ax: in
Tty X measured by the length function Hi is equal to the length of the
polygonal path from the origin to Ax; via vertices &, &+ &, &i+&+ &,
&1+ &+---+&--1 measured by the length function He..

Using the local coordinate system we identify a neighborhood of the
origin in Tx.pX with a neighborhood of x(#-1) in X. Let ¢&: be the
polygonal path in X corresponding to the polygonal path in Txe.»X de-
scribed above. Then ¢é: goes from x(#i-1) to x(¢:). For each i, we
replace the portion of ¢ from x(#:-1) to x(#;) by ¢:. Let ¢ be the result-
ing path from p=x(a) to ¢q=x(b). We shall show that ¢ has the desired
property.

We estimate the length L(é;) of é: measured by H:x. Since |Ax<d
and since Hi.(&)<H.(&), it follows from (15) and (16) that ¢&: is
contained in the J&-neighborhood of x(#-1). (By ”d8-neighborhood” we
mean the Euclidean neighborhood {yE€X ;|y—x(#:-1)|<8}.) Therefore, by
(14)

an Hk<y,5><Hk<x<ti_l>,s>+§£% for EER”

at every point y of é&:.. Integrating (17) along ¢; and using (16), we
obtain

eIAx;\

(18) fHk<Hk<x<tz 1) AX:>+ b—a -

Since X|Ax:| is approximately equal to 2A#;=b—a, summing over ; we
obtain

(19) lHk< Sexte.

Combining (11), (13) and (19) we obtain
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(20) ‘éHk<L<c> +3e.

Since f F< / Hy, we obtain the desired inequality (9), thus completing the
proof of the theorem.
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