Pseudo-conformal invariants of type (1, 3) of CR manifolds

Dedicated to Professor Noboru Tanaka on his sixtieth birthday Shukichi TANNO
(Received November 6, 1989)

0. Introduction

A real hypersurface of C^{n} or a non-degenerate integrable $C R$ manifold admits the pseudo-conformal invariant of type (1,3) (Chern-Moser [4], Tanaka [6], Webster [12]) . In this paper we define pseudo-conformal invariants of type $(1,3)$ of contact Riemannian manifolds. A contact Riemannian manifold is also called a strongly pseudo-convex pseudohermitian manifold or a strongly pseudo-convex $C R$ manifold. The integrability condition of the $C R$ structure associated with contact Riemannian structure is expressed by $Q=0$, where Q is a tensor field of type (1, 2). A contact Riemannian structure satisfying $Q=0$ is equivalent to a strongly pseudo-convex, integrable, pseudo hermitian structure in the sense of Webster [12].

Let (M, η, g) be a contact Riemannian manifold with a contact form η and a Riemannian metric g associated with η. The dimension of M is denoted by $m=2 n+1$. By P we denote the subbundle of the tangent bundle $T M$ of M defined by $\eta=0$. By P^{*} we denote the dual of $P . \quad P$ admits an almost complex structure J which is the restriction of the (1,1)-tensor field ϕ. By the relation $d \eta(X, Y)=2 g(X, \phi Y)$ for $X, Y \in T M$, a contact Riemannian structure $\{\eta, g\}$ is related to a pseudo-hermitian structure $\{\eta, J\} . \quad B \in \Gamma\left(P \otimes P^{* 3}\right)$ is called a pseudo-conformal invariant of type $(1,3)$, if B for (M, η, J) is identical with \widetilde{B} for $(M, \tilde{\eta}, J)$ for the change $\eta \rightarrow \tilde{\eta}=\sigma \eta$ by any positive smooth function σ. Pseudo-conformal invariants correspond to invariants by gauge transformations of contact Riemannian structure.

In this paper we obtain the following (cf. Theorem 3.1).
Theorem A. A contact Riemannian manifold (M, η, g) admits a pseudo-conformal invariant ${ }^{0} B={ }^{0} B\left(\eta, g,{ }^{0} \nabla\right)$ of type (1,3), which depends on the choice of a linear connetion ${ }^{0} \nabla$. Furthermore;
(i) If the CR structure associated with contact Riemannian structure is integrable, then ${ }^{0} B$ reduces to the Chern-Moser invariant.
(ii) If ${ }^{0} B$ vanishes, then the $C R$ structure associated with contact Riemannian structure is integrable.

If the invariant ${ }^{0} B$ vanishes, then the P-part ($R_{z x y}^{u}$) of the Riemannian curvature tensor of (M, η, g) is expressed explicitly, and the ϕ holomorphic sectional curvature is expressed by the Ricci curvature tensor, the generalized Tanaka-Webster scalar curvature ${ }^{*} S$, and the torsion tensor ${ }^{*} T$.

1. Preliminaries

Let (M, η) be a contact manifold with a fixed contact form η. Then we have a uniquely determined vector field ξ such that $\eta(\xi)=1$ and $L_{\varepsilon} \eta=$ 0 , where L_{ξ} denotes the Lie derivation by ξ. Furthermore we have a Riemannian metric g and a (1,1)-tensor field ϕ such that $g(\xi, X)=\eta(X)$ and

$$
\phi \phi X=-X+\eta(X) \xi, \quad d \eta(X, Y)=2 g(X, \phi Y)
$$

for $X, \mathrm{Y} \in T M . g$ is called a Riemannian metric associated with η. By ∇ we denote the Riemannian connection with respect to g. Then the next relations hold (cf. [8]) :

$$
\begin{aligned}
& \phi \xi=0, \quad \eta(\phi X)=0, \\
& g(X, Y)=g(\phi X, \phi Y)+\eta(X) \eta(Y), \\
& \nabla_{\xi} \eta=0, \quad \nabla_{\xi} \xi=0, \quad \nabla_{\xi} \phi=0, \\
& \left(\nabla_{\phi X} \eta\right)(\phi Y)=-\left(\nabla_{Y} \eta\right)(X),
\end{aligned}
$$

for $X, Y \in T M$. We define a (0,2) -tensor field p by $2 p=L_{\epsilon} g$. Then

$$
2\left(\nabla_{X} \eta\right)(Y)=d \eta(X, Y)+2 p(X, Y)
$$

holds for $X, Y \in T M$. Let P be the subbundle of $T M$ defined by $\eta=0$. By J we denote the restriction of ϕ to P, i.e., $J X=\phi X$ for $X \in P$. J satisfies $J^{2}=-i d$, where id denotes the identity. The Levi form L is given by $L(X, Y)=g(X, Y)=(-1 / 2) d \eta(X, J Y)$ for $X, Y \in P$. The pair $\{\eta, J\}$ is a strongly pseudo-convex pseudo-hermitian structure. Conversely, for a strongly pseudo-convex pseudo-hermitian structure $\{\eta, J\}$, we extend the Levi form L to a $(0,2)$-tensor field on M by putting $L(\xi, Y)=0$ for Y $\in T M$. Then $g=L+\eta \otimes \eta$ is a Riemannian metric associated with η. Therefore, through the relation $d \eta(X, Y)=2 g(X, \phi Y)$ for $X, Y \in T M$, the pair $\{\eta, J\}$ is equivalent to the pair $\{\eta, g\}$ and hence the set of all Riemannian metrics associated with η is equal to the set of all almost complex structures J for P such that $(-1 / 2) d \eta(X, J Y)$ defines a positive definite hermitian form.

If one changes η to $\tilde{\eta}=\sigma \eta$ by a positive smooth function σ, then the change $\{\eta, J\} \rightarrow\{\tilde{\eta}, J\}$ corresponds to a gauge transformation of contact

Riemannian structure $\{\eta, g\} \rightarrow\{\tilde{\eta}, \tilde{g}\}$ (cf. [8]) :

$$
\begin{aligned}
& \tilde{\eta}=\sigma \eta, \quad \tilde{\xi}=(1 / \sigma)(\xi+\zeta) \\
& \widetilde{\phi}=\phi+(\operatorname{grad} \alpha-\xi \alpha \cdot \xi) \otimes \eta \\
& \tilde{g}=\sigma(g-\eta \otimes \zeta-\zeta \otimes \eta)+\sigma\left(\sigma-1+\|\zeta\|^{2}\right) \eta \otimes \eta
\end{aligned}
$$

where we have put $\sigma=e^{2 \alpha}, \zeta=\phi \operatorname{grad} \alpha$, and the same letter ζ also denotes the dual of ζ with respect to $g ; \zeta(X)=g(\zeta, X)$ for $X \in T M$.

The integrability of the $C R$ structure associated with contact Riemannian structure is given by

$$
\begin{array}{ll}
{[J X, J Y]-[X, Y] \in \Gamma(P)} & X, Y \in \Gamma(P), \\
J([J X, J Y]-[X, Y])+[J X, Y]+[X, J Y]=0 & X, Y \in \Gamma(P) .
\end{array}
$$

The first one is satisfied by $d \eta(X, Y)=2 g(X, \phi Y)$ and the property of g and ϕ. The second one is equivalent to $Q=0$, where Q is a tensor field of type (1, 2) defined by (cf. [8])

$$
Q(X, Y)=\left(\nabla_{Y} \phi\right)(X)+\left(\nabla_{Y} \eta\right)(\phi X) \xi+\eta(X) \phi \nabla_{Y} \xi \quad X, Y \in T M
$$

It is easy to see that $Q(\xi, Y)=Q(X, \xi)=g(\xi, Q(X, Y))=0$ holds for X, $Y \in T M$. So we can consider Q as $Q \in \Gamma\left(P \otimes P^{* 2}\right)$. Under gauge transformations of contact Riemannian structure, $\widetilde{Q}(X, Y)=Q(X, Y)$ holds for $X, Y \in P$ ([9], Corollary 3.5).

Generalizing the canonical connection due to Tanaka [6] on a nondegenerate integrable $C R$ manifold, in [8] we defined ${ }^{*} \nabla$ on (M, η, g) by

$$
{ }^{*} \nabla_{X} Y=\nabla_{X} Y+\eta(X) \phi Y-\eta(Y) \nabla_{x} \xi+\left(\nabla_{X} \eta\right)(Y) \xi \quad X, Y \in T M .
$$

Then ${ }^{*} \nabla$ is a unique linear connection satisfying the following:

(i)	$* \nabla \eta=0, \quad * \nabla \xi=0$,	${ }^{*} \nabla g=0$,
(ii)	* $T(X, Y)=d \eta(X, Y) \xi$	$X, Y \in P$,
(iii)	${ }^{*} T(\xi, \phi Y)=-\phi^{*} T(\xi, Y)$	$Y \in P$,
(iv)	$\left.{ }^{*} \nabla_{X} \phi\right) Y=Q(Y, X)$	$X, Y \in T M$

where ${ }^{*} T$ denotes the torsion tensor of ${ }^{*} \nabla$.
By a P-related frame we mean a frame $\left\{e_{j}\right\}=\left\{e_{0}=\xi, e_{u} ; 1 \leqq u \leqq 2 \mathrm{n}\right\}$ such that $e_{u} \in P$. From now on we use the following range of indices:

$$
1 \leqq u, v, w, x, y, z, s, t \leqq 2 \mathrm{n}
$$

2. The Bochner type curvature tensor

We give a brief explanation of the Bochner type curvature tensor B defined in [9], and give a modified curvature tensor B^{\prime}. In this section,
tensors are expressed with respect to a P-related frame. ${ }^{*} R_{x y}$ and ${ }^{*} R_{z x y}^{u}$ denote the components of the Ricci curvature tensor and the curvature tensor of ${ }^{*} \nabla$, respectively. ${ }^{*} S$ denotes the generalized Tanaka-Webster scalar curvature. Q satisfies the following (cf. [9]) :

$$
\begin{array}{ll}
Q_{x v}^{x}=Q_{v x}^{x}=Q_{x y}^{z} g^{x y}=0, & Q_{u x}^{y} \phi_{y}^{x}=Q_{x v}^{y} \phi_{y}^{x}=Q_{x y}^{z} \phi^{x y}=0, \\
Q_{u v}^{z}=-g^{z x} g_{u y} Q_{x v}^{y}, & \phi_{x}^{x} Q_{u v}^{x}=-\phi_{u}^{x} Q_{x v}^{z}=-\phi_{v}^{x} Q_{u x}^{z} .
\end{array}
$$

In [9] we defined $* k, L, N \in \Gamma\left(P^{* 2}\right)$ by

$$
\begin{align*}
* k_{x y} & =* R_{x y}+(m-3) p_{x u} \phi_{y}^{u}-\phi_{v}^{u *} \nabla_{u} Q_{y x}^{v}+\phi_{v}^{u *} \nabla_{x} Q_{y u}^{v}, \tag{2.1}\\
L_{x y} & =-\{1 /(m+3)\}^{*} k_{x y}+\{1 / 2(m+1)(m+3)\}^{*} S g_{x y}+p_{x u} \phi_{y}^{u},
\end{align*}
$$

and $N_{x y}=L_{x u} \phi_{y}^{u}$. Using L and N, we defined $B \in \Gamma\left(P \otimes P^{* 3}\right)$ by

$$
\begin{aligned}
B_{z x y}^{u}= & * R_{z x y}^{u}+L_{y z} \delta_{x}^{u}-L_{x z} \delta_{y}^{u}-N_{y z} \phi_{x}^{u}+N_{x z} \phi_{y}^{u} \\
& +g_{y z} L_{x}^{u}-g_{x z} L_{y}^{u}+\phi_{y z} N_{x}^{u}-\phi_{x z} N_{y}^{u} \\
& +\left(N_{x y}-N_{y x}\right) \phi_{z}^{u}-\phi_{x y}\left(N_{z}^{u}-N_{z}^{u}\right),
\end{aligned}
$$

where $L_{x}{ }^{u}=L_{x w} g^{w u}$ and $N^{u}{ }_{z}=g^{u w} N_{w z}$. By a gauge transformation of contact Riemannian structure, B changes as follows (cf. [9], (5.9)) :

$$
\tilde{B}_{z x y}^{u}-B_{z x y}^{u}=\alpha_{v} U_{z x y}^{v u},
$$

where

$$
\begin{aligned}
U_{z x y}^{v u}= & -\phi_{y}^{w} Q_{z u}^{v} \delta_{x}^{u}+\phi_{x}^{w} Q_{z w}^{v} \delta_{y}^{u}-g_{y z} \phi_{x}^{w} Q_{t u}^{v}{ }^{t u}+g_{x z} \phi_{y}^{w} Q_{Q u}^{v} g^{t u} \\
& -\phi_{z}^{v} Q_{y x}^{u}+\phi_{z}^{v} Q_{x y}^{u}-\phi_{y}^{v} Q_{z x}^{u}+\phi_{x}^{v} Q_{z y}^{u}-\phi^{u v} Q_{y z}^{w} g_{x w} .
\end{aligned}
$$

Definition (2.1) of ${ }^{*} k_{x y}$ has an effect that the difference term $\alpha_{v} U_{z x y}^{\nu u}$ is rather simple. However, ${ }^{*} k_{x y}$ and hence $B_{z x y}^{u}$ contain terms consisting of covariant derivatives of Q (cf. Remark (ii) of $\S 4$). Although difference term becomes more complicated, here we give another definition of ${ }^{*} k_{x y}$ to eliminate the terms consisting of covariant derivatives of Q from $B_{z x y}^{u}$. Namely, we define ${ }^{*} k^{\prime}{ }_{x y}$ by

$$
\begin{equation*}
{ }^{*} k_{x y}^{\prime}={ }^{*} R_{x y}+(m-3) p_{x u} \phi_{y .}^{u} . \tag{2.3}
\end{equation*}
$$

Furthermore, we define $L^{\prime} x y$ and $N^{\prime}{ }_{x y}$ by replacing ${ }^{*} k_{x y}$ by ${ }^{*} k^{\prime}{ }_{x y}$, and $B^{\prime \prime}{ }_{x y}$ by replacing L, N by L^{\prime}, N^{\prime} :

$$
\begin{aligned}
B_{z x y}^{\prime} u_{x y}= & R_{z x y}^{u}+L^{\prime}{ }_{y z} \delta_{x}^{u}-L^{\prime}{ }_{x x} \delta_{y}^{u}-N^{\prime}{ }_{y z} \phi_{x}^{u}+N_{x z}^{\prime} \phi_{y}^{u} \\
& +g_{y y} L_{x}^{\prime}{ }^{u}-g_{x z} L_{y}^{\prime}{ }^{u}+\phi_{y z} N_{x}^{\prime}-\phi_{x x} N^{\prime}{ }_{y}^{u} \\
& +\left(N_{x y}^{\prime}-N_{y x}^{\prime}\right) \phi_{z}^{u}-\phi_{x y}\left(N_{z}^{\prime}{ }_{z}^{u}-N^{\prime \prime}{ }_{z z}\right)^{2} .
\end{aligned}
$$

Since the change of the Ricci curvature tensor ${ }^{*} R_{x y}$ by a gauge transformation of contact Riemannian structure is given by (cf. [9], (5.5)):

$$
\begin{aligned}
{ }^{*} \widetilde{R}_{x y}-{ }^{*} R_{x y}=- & (m+3) A_{x y}-\operatorname{Tr}(A) g_{x y}+6\left(\tilde{p}_{x v}-p_{x v}\right) \phi_{y}^{v} \\
& +2 \alpha_{v}\left(Q_{x w}^{v}+Q_{w x}^{v}\right) \phi_{y}^{w},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
* \tilde{k}_{x y}^{\prime}= & * k^{\prime}{ }_{x y}-(m+3) A_{x y}-\operatorname{Tr}(A) g_{x y}+(m+3)\left(\tilde{p}_{x w}-p_{x w}\right) \phi_{y}^{w} \\
& +2 \alpha_{v}\left(Q_{x x}^{v}+Q_{w x}^{v}\right) \phi_{y}^{w},
\end{aligned}
$$

where $A_{x y}$ is defined by

$$
\begin{equation*}
A_{x y}={ }^{*} \nabla_{x} \alpha_{y}-\alpha_{x} \alpha_{y}+\zeta_{x} \zeta_{y}+(1 / 2)\|\xi\|^{2} g_{x y}+\xi \alpha \cdot \phi_{x y} . \tag{2.4}
\end{equation*}
$$

Further, $G_{x y}$ is defined by $G_{x y}=A_{x v} \phi_{y}^{v}$. Since the change of the scalar curvature ${ }^{*} S$ is given by $\sigma^{*} \tilde{S}={ }^{*} S-2(m+1) \operatorname{Tr}(A)$ (cf. [9], (5.6)), we obtain

$$
\begin{align*}
& A_{x y}=\tilde{L}_{x y}^{\prime}-L_{x y}^{\prime}+\{2 /(m+3)\} \alpha_{v}\left(Q_{x w}^{v}+Q_{w x}^{v} \phi_{y,}^{w},\right. \tag{2.5}\\
& G_{x y}=\tilde{N}_{x y}^{\prime}-N_{x y}^{\prime}-\{2 /(m+3)\} \alpha_{v}\left(Q_{x y}^{v}+Q_{y x}^{v}\right) .
\end{align*}
$$

The change of the curvature tensor by a gauge transformation of contact Riemannian structure is given by (cf. [9], (5.3))

$$
\begin{align*}
& { }^{*} \widetilde{R}_{z x y}^{u}-{ }^{*} R_{z x y}^{u}=-A_{y z} \delta_{x}^{u}+A_{x z} \delta_{y}^{u}+G_{y z} \phi_{x}^{u}-G_{x z} \phi_{y}^{u}-g_{y z} A_{x}^{u}+g_{x z} A_{y}^{u} \tag{2.7}\\
& -\phi_{y z} G_{x}{ }^{u}+\phi_{x z} G_{y}{ }^{u}-\left(G_{x y}-G_{y x}\right) \phi_{z}^{u}+\phi_{x y}\left(G_{z}{ }^{u}-G^{u}{ }_{z}\right) \\
& +\alpha_{v}\left[Q_{z y}^{v} \phi_{x}^{u}-Q_{z x}^{v} \phi_{y}^{u}-\left(\phi_{y z} Q_{w x}^{v}-\phi_{x z} Q_{w y}^{v}\right) g^{u w}\right. \\
& \left.-\left(Q_{y x}^{v}-Q_{x y}^{v}\right) \phi_{z}^{u}+\left(Q_{w z}^{v}-Q_{z w}^{v}\right) g^{w u} \phi_{x y}\right] \\
& +\zeta_{z}\left(Q_{y x}^{u}-Q_{x y}^{u}\right)+\zeta_{y} Q_{z x}^{u}-\zeta_{x} Q_{z y}^{u}-{ }^{*} \nabla_{z} \phi_{x y} \zeta^{u} .
\end{align*}
$$

Replacing $\mathrm{A}_{x y}$ and $G_{x y}$ in (2.7) by (2.5) and (2.6), we obtain
(2.8) $\tilde{B}_{z x y}^{\prime \prime}-B_{z x y}^{\prime \prime}=\alpha_{v} U_{z x y}^{\prime v}$,
where

$$
\begin{align*}
& U^{\prime v} u \overline{v x}=\{2 /(m+3)\}\left[-\delta_{x}^{u}\left(Q_{y w}^{v}+Q_{w y}^{v}\right) \phi_{z}^{w}+\delta_{y}^{u}\left(Q_{x w}^{v}+Q_{w x}^{v}\right) \phi_{z}^{w}\right. \tag{2.9}\\
& +\phi_{y}^{u}\left(Q_{z x}^{v}+Q_{x z}^{v}\right)-\phi_{z}^{u}\left(Q_{z y}^{v}+Q_{y z}^{v}\right)-g_{y z}\left(Q_{x w}^{v}+Q_{w x}^{v}\right) \phi^{w u} \\
& +g_{x z}\left(Q_{y w}^{v}+Q_{w y}^{v}\right) \phi^{w u}+\phi_{y z}\left(Q_{x w}^{v}+Q_{w x}^{v}\right) g^{w u} \\
& \left.-\phi_{x z}\left(Q_{y w}^{v}+Q_{w y}^{v}\right) g^{w u}\right] \\
& +Q_{z y}^{v} \phi_{x}^{u}-Q_{z x}^{v} \phi_{y}^{u}-\left(\phi_{y z} Q_{w x}^{v}-\phi_{x z} Q_{w y}^{v}\right) g^{u w} \\
& -\left(Q_{y x}^{v}-Q_{x y}^{v}\right) \phi_{z}^{u}+\left(Q_{w z}^{v}-Q_{z w}^{v}\right) g^{w u} \phi_{x y} \\
& -\phi_{z}^{v}\left(Q_{y x}^{u}-Q_{x y}^{u}\right)-\phi_{y}^{v} Q_{z x}^{u}+\phi_{x}^{v} Q_{z y}^{u}-\phi^{u v} Q_{y z}^{u} g_{x w} .
\end{align*}
$$

3. Pseudo-conformal invariants of type (1,3)

Let $\left(\Gamma_{j k}^{j}\right)$ be the coefficients of the Riemannian connection ∇ with
respect to g in a local coordinate neighborhood (Ω, x^{i}). Now we choose and fix a linear connection ${ }^{0} \nabla$ with coefficients (${ }^{0} \Gamma_{j k}^{j}$). Then the difference $\left(\Gamma_{j k}^{i}-{ }^{0} \Gamma_{j k}^{i}\right)$ defines a tensor field of type (1,2) and $\theta=\left(\theta_{k}\right)=\left(\Gamma_{r k}^{r}{ }^{0} \Gamma_{r k}^{r}\right)$ defines a 1 -form on M. We need the following classical identity: $2 \Gamma_{r k}^{r}=$ $\partial \log (\operatorname{det} g) / \partial x^{k}$.

Now again in the following, tensors are expressed with respect to a P-related frame.

Theorem 3.1. Let (M, η, g) be a contact Riemannian manifold and let ${ }^{\circ} \nabla$ be a linear connection. Then ${ }^{0} B \in \Gamma\left(P \otimes P^{* 3}\right)$ defined by

$$
{ }^{0} B_{z x y}^{u}=B_{z x y}^{\prime} u-\{1 /(m+1)\} \theta_{v} U_{z x y}^{\prime v}
$$

is a pseudo-conformal invariant of type $(1,3)$.
Proof. First we see that

$$
\begin{equation*}
2\left(\tilde{\theta}_{v}-\theta_{v}\right)=\{d \log (\operatorname{det} \tilde{g})-d \log (\operatorname{det} g)\}\left(e_{v}\right) \tag{3.1}
\end{equation*}
$$

holds. Since the volume element $d M$ of (M, g) is equal to $(-1)^{n}\left(1 / 2^{n} n!\right)$ $\eta \wedge(d \eta)^{n}$, the volume element of (M, \tilde{g}) is equal to $\sigma^{n+1} d M$. Therefore, $\operatorname{det} \tilde{g}=e^{2(m+1) \alpha}$ det g, and hence, $\tilde{\theta}_{v}-\theta_{\nu}=(m+1) \alpha_{v}$ holds. Since $\tilde{U}_{z x y}^{\prime v}=$ $U_{z x y}^{\prime v u}$ holds, we obtain

$$
\{1 /(m+1)\}\left[\tilde{\theta}_{v} \tilde{U}_{z x y}^{\prime \prime u}-\theta_{v} U_{z x y}^{\prime v}\right]=\alpha_{v} U_{z x y}^{\prime v} .
$$

Hence, (2.8) implies that ${ }^{0} \widetilde{B}_{z x y}^{u}={ }^{0} B_{z x y}^{u}$ holds.
Q. E. D.

Next we show the following relation:

$$
\begin{equation*}
\phi_{u}^{z 0} B_{z x y}^{u} \phi^{x y}=2 Q_{u x}^{u} Q_{y u}^{v} g^{x y} . \tag{3.2}
\end{equation*}
$$

By (4.12) and (4.13) of [9] we obtain the following:

$$
\begin{aligned}
\phi_{u}^{z} * R_{z x y}^{u} \phi^{x y} & =-2 * k_{x y} g^{x y} \\
& =-2 * S-2 \phi_{v}^{u *} \nabla_{x} Q_{y y}^{v} g^{x y} \\
& =-2 * S+2 Q_{v x}^{u} Q_{y u}^{v} g^{x y} .
\end{aligned}
$$

Each of the following four terms;

$$
\begin{aligned}
& \phi_{u}^{z}\left(L^{\prime}{ }_{y z} \delta_{x}^{u}-L^{\prime}{ }_{x z} \delta_{y}^{u}\right) \phi^{x y}, \quad-\phi_{u}^{z}\left(N_{y z}^{\prime} \phi_{x}^{u}-N^{\prime}{ }_{x z} \phi_{y}^{u}\right) \phi^{x y}, \\
& \phi_{u}^{z}\left(g_{y u} L^{\prime} x^{u}-g_{x z} L^{\prime}{ }_{y}{ }^{u}\right) \phi^{x y}, \quad \phi_{u}^{z}\left(\phi_{y z} N_{x}^{\prime}{ }^{u}-\phi_{x z} N^{\prime}{ }_{y}{ }^{u}\right) \phi^{x y},
\end{aligned}
$$

is verified to be equal to ${ }^{*} S /(m+1)$, and each of the two terms;

$$
\phi_{u}^{z}\left(N_{x y}^{\prime}-N_{y x}^{\prime}\right) \phi_{z}^{u} \phi^{x y}, \quad-\phi_{u}^{z} \phi_{x y}\left(N_{z}^{\prime}-N^{\prime \prime} u_{z}\right) \phi^{x y}
$$

is verified to be equal to $2 n^{*} S /(m+1)$. Finally we can verify that $\phi_{u}^{z} \theta_{v}$
$U_{z x y}^{\prime v u} \phi^{x y}$ vanishes. This proves (3.2).
Therefore, if we assume ${ }^{0} B=0$, then $Q=0$ follows from Lemma 2.1 in [9] and (3.2). This proves (ii) of Theorem A.

Let (M, η, g) be a contact Riemannian manifold and let g_{0} be another Riemannian metric associated with η. Then $\operatorname{det} g=\operatorname{det} g_{0}$ holds. So, if we use this Riemannian connection ${ }^{0} \nabla$ to define ${ }^{0} B$ then $\theta_{v}=0$ holds and ${ }^{0} B=\left({ }^{0} B_{z x y}^{u}\right)$ is identical with $B^{\prime}=\left(B_{z x y}^{\prime}\right)$ itself for $\{\eta, g\}$. Of course, this is not the case if one changes η to $\sigma \eta$ for some σ if $U^{\prime} \neq 0$. We call B^{\prime} the canonical part of ${ }^{0} B$.

4. The expression of ${ }^{0} B$

In this section we give the expression of the canonical part B^{\prime} of our pseudo-conformal invariant ${ }^{0} B$ of type (1,3) in terms of curvature tensors and p of (M, η, g).

LEMMA 4.1. The relations between curvature tensors with respect to ${ }^{*} \nabla$ and ∇ are given by
(i) $\quad * R_{z x y}^{u}=R_{z x y}^{u}+\phi_{x z} \phi_{y}^{u}-\phi_{y z} \phi_{x}^{u}+2 \phi_{z}^{u} \phi_{x y}$

$$
-\phi_{x}^{u} p_{y z}+\phi_{y}^{u} p_{x z}+p_{x}^{u} \phi_{y z}-p_{y}^{u} \phi_{x z}+p_{x}^{u} p_{y z}-p_{y}^{u} p_{x z}
$$

(ii) $\quad{ }^{*} R_{x y}=R_{x y}+2 g_{x y}+\nabla_{\xi} p_{x y}$,
(iii) $\quad * S=S-R_{00}+4 n$.
Proof. The following is known (cf. [8], (8.1)) :

$$
* R_{z x y}^{u}=R_{z x y}^{u}+2 \phi_{z}^{u} \phi_{x y}+\nabla_{x} \xi^{u} \nabla_{y} \eta_{z}-\nabla_{y} \xi^{u} \nabla_{x} \eta_{z}
$$

Replacing $\nabla_{y} \eta_{z}$, etc. by $p_{y z}+\phi_{y z}$, etc. we obtain (i). Since $* R_{x 0 y}^{0}=0$ (cf. [9], (4.1)), we obtain

$$
\begin{aligned}
* R_{x y} & =* R_{x u y}^{u}=R_{x u y}^{u}+3 g_{x y}-p_{x}^{u} p_{y u} \\
& =R_{x y}-R_{x 0 y}^{0}+3 g_{x y}-p_{x}^{u} p_{y u}
\end{aligned}
$$

It is known that $R_{x 0 y}^{0}=-\nabla_{\xi} p_{x y}-\nabla_{x} \eta_{u} \nabla^{u} \eta_{y}$ holds ([8], (7.1)), and hence using $\phi_{x}^{u} p_{u y}=\phi_{y}^{u} p_{u x}$ we get (ii). (iii) is obtained by ${ }^{*} S={ }^{*} R_{x y} g^{x y}$ and (ii).
Q. E. D.

By definition of $L^{\prime} x y$ and Lemma 4.1 we obtain

$$
\begin{aligned}
L_{x y}^{\prime}=\{-1 /(m+3)\}\left[R_{x y}\right. & \left.+2 g_{x y}+\nabla_{\epsilon} p_{x y}\right]+\{6 /(m+3)\} p_{x u} \phi_{y}^{u} \\
& +\{1 / 2(m+1)(m+3)\}^{*} S g_{x y}
\end{aligned}
$$

and hence we get the following.
Proposition 4.2. The canonical part of the pseudo-conformal invariant ${ }^{0} B$ of type $(1,3)$ is given by

$$
\begin{aligned}
(m+3) B_{z x y}^{\prime u}= & (m+3) R_{z x y}^{u}+R_{x z} \delta_{y}^{u}-R_{y z} \delta_{x}^{u}+g_{x z} R_{y}^{u}-g_{y z} R_{x}^{u} \\
& -\phi_{z}^{w}\left(R_{x w} \phi_{y}^{u}-R_{y w} \phi_{x}^{u}\right)-\left(R_{x w} \phi_{y}^{w}-R_{y w} \phi_{x}^{w}\right) \phi_{z}^{u} \\
& -\phi_{x y}\left(R_{z}^{w} \phi_{w}^{u}+R_{w}^{u} \phi_{z}^{w}\right)-\left(\phi_{x z} R_{y}^{w}-\phi_{y z} R_{x}^{w}\right) \phi_{w}^{u} \\
& +\left\{^{*} S /(m+1)-4\right\}\left[\delta_{x}^{u} g_{y z}-\delta_{y}^{u} g_{x z}\right] \\
& +\left\{^{*} S /(m+1)+(m-1)\right\}\left[\phi_{x z} \phi_{y}^{u}-\phi_{y z} \phi_{x}^{u}+2 \phi_{x y} \phi_{z}^{u}\right] \\
& +(m-3)\left[p_{x}^{u} \phi_{y z}-\phi_{y}^{u} \phi_{x z}+\phi_{y}^{u} p_{x z}-\phi_{x}^{u} p_{y z}\right] \\
& +6\left[\phi_{z}^{w}\left(p_{y w}^{u} \delta_{x}^{u}-p_{x w} \delta_{y}^{u}\right)-\left(g_{y z} \phi_{x}^{w}-g_{x z} p_{y}^{w}\right) \phi_{w}^{u}\right] \\
& +(m+3)\left[\phi_{x}^{u} \phi_{y z}-p_{y}^{u} p_{x z}\right] \\
& +\delta_{y}^{u} \nabla_{\xi} p_{x z}-\delta_{x}^{u} \nabla_{\xi} \phi_{y z}+g_{x z} \nabla_{\xi} \phi_{y}^{u}-g_{y z} \nabla_{\xi} \phi_{x}^{u} \\
& +\phi_{w}^{u}\left(\phi_{y z} \nabla_{\xi} \phi_{x}^{w}-\phi_{x z} \nabla_{\xi} p_{y}^{w}\right)+\phi_{z}^{w}\left(\phi_{x}^{u} \nabla_{\xi} p_{y w}-\phi_{y}^{u} \nabla_{\xi} p_{x w}\right) .
\end{aligned}
$$

B^{\prime} by Proposition 4.2, U^{\prime} by (2.9) and θ give the complete expression of the invariant ${ }^{0} B$ in terms of contact Riemannian structure. Since ${ }^{0} B=0$ implies $B^{\prime}=0$ and $U^{\prime}=0$, if ${ }^{0} B=0$ holds, then the expression of ($R_{z x y}^{u}$) is obtained from Proposition 4.2.

Let $\left\{e_{j}\right\}$ be a P-related (local) frame field satisfying $e_{\bar{\alpha}}=\phi e_{\alpha} \quad(\bar{\alpha}=\alpha$ $+n ; 1 \leqq \alpha, \beta, \ldots \leqq n\}$ and $\left\{w^{j}\right\}$ be its dual. We define the complex coframe field associated with $\left\{w^{j}\right\}$ by

$$
\theta=-\eta, \quad \theta^{\alpha}=w^{\alpha}+i w^{\bar{\alpha}}, \quad \theta^{\bar{\alpha}}=\overline{\theta^{\alpha}}
$$

Then $\mathrm{d} \theta=-\Sigma i \theta^{\alpha} \wedge \theta^{\bar{\alpha}}$ holds. Assume that $Q=0$ holds and let $S_{\beta \rho \bar{\sigma}}^{\alpha}$ be the components of the Chern-Moser pseudo-conformal curvature tensor with respect to the above complex frame field (cf. [12], (3.8)). Then the relation between $S_{\beta \rho \bar{\sigma}}^{\alpha}$ and our real components $B_{z x y}^{\prime u}$ is given by

$$
S_{\beta \rho \bar{\sigma}}^{\alpha}=\frac{1}{2}\left(B_{\beta \rho \sigma}^{\prime \alpha}+B_{\beta \bar{\rho} \sigma}^{\prime \bar{\alpha}}\right)+\frac{i}{2}\left(B_{\beta \rho \sigma}^{\prime \bar{\alpha}}-B_{\beta \bar{\rho} \sigma}^{\prime \alpha}\right) .
$$

This proves (i) of Theorem A.
REMARK. (i) Operating ϕ_{z}^{y} to (4.15) of [9] and using (ii) of Lemma 4.1, we obtain

$$
R_{w z} \phi_{x}^{w}+R_{x w} \phi_{z}^{w}=2(m-3) p_{x z}-2 \nabla_{\xi} p_{x w} \phi_{z}^{w}-* \nabla_{u} Q_{v w}^{u}\left(\phi_{x}^{v} \phi_{z}^{w}+\phi_{z}^{v} \phi_{x}^{w}\right),
$$

where we have used $\phi_{v}^{u} * \nabla_{u} Q_{x w}^{v}={ }^{*} \nabla_{u}\left(\phi_{v}^{u} Q_{x w}^{u}\right)={ }^{*} \nabla_{u}\left(-Q_{v w}^{u} \phi_{x}^{v}\right)$. Operating $\phi_{s}^{x} \phi_{t}^{z}$ to the last equality, we obtain

$$
R_{x w} \phi_{y}^{w}+R_{w y} \phi_{x}^{w}=2(m-3) p_{x y}-2 \nabla_{\xi} p_{x w} \phi_{y}^{w}+{ }^{*} \nabla_{w} Q_{x y}^{w}+{ }^{*} \nabla_{w} Q_{y x}^{w}
$$

Using the last equality we get

$$
\mathfrak{S}(m+3) B_{z x y}^{\prime \prime}=-\subseteq \phi_{x y} g^{u v}\left(* \nabla_{w} Q_{v z}^{w}+* \nabla_{w} Q_{z v}^{w}\right)
$$

where \subseteq denotes the cyclic sum with respect tc (x, y, z). Furthermore,

$$
(m+3) B_{z u y}^{\prime \mu}=-3\left({ }^{*} \nabla_{w} Q_{v y}^{w}+{ }^{*} \nabla_{w} Q_{v v}^{w}\right) \phi_{z}^{v} .
$$

(ii) One can define pseudo-conformal invariants of type (1,3) by using ($B_{z x y}^{u}$) instead of ($B_{z x y}^{\prime \prime}$). The difference $-(m+3)\left(B_{z x y}^{u}-B_{z x y}^{\prime \prime}\right)$ is given by

$$
\begin{aligned}
& \left(\delta_{x}^{u *} \nabla_{w} Q_{v y}^{u}-\delta_{y}^{u *} \nabla_{w} Q_{v x}^{w}\right) \phi_{z}^{v}+\phi_{x}^{u *} \nabla_{w} Q_{z y}^{w}-\phi_{y}^{u *} \nabla_{w} Q_{z x}^{w} \\
& +\left(g_{y z}{ }^{*} \nabla_{w} Q_{v x}^{w}-g_{x z} * \nabla_{w} Q_{v y}^{w}\right) \phi^{v u}+\left(\phi_{x z}{ }^{*} \nabla_{w} Q_{v y}^{w}-\phi_{y z} * \nabla_{w} Q_{v x}^{w}\right) g^{v u} \\
& +\left({ }^{*} \nabla_{w} Q_{x y}^{w}-{ }^{*} \nabla_{w} Q_{y x}^{w}\right) \phi_{z}^{u}+\phi_{x y}\left({ }^{*} \nabla_{w} Q_{v z}^{w}-* \nabla_{w} Q_{z v}^{w}\right) g^{u v} \text {. }
\end{aligned}
$$

In this case we obtain

$$
\subseteq(m+3) B_{x x y}^{u}=-\subseteq\left(\delta_{x}^{u} * \nabla_{w} Q_{v y}^{w}-\delta_{y}^{u} * \nabla_{w} Q_{v x}^{w}\right) \phi_{z}^{u} .
$$

(iii) Assume that ${ }^{0} B=0$ holds and let X be a unit vector in P. Then the sectional curvature $K(X, \phi X)$ is given by

$$
\begin{aligned}
K(X, \phi X)= & \{4 /(m+3)\}[\operatorname{Ric}(X, Y)+\operatorname{Ric}(\phi X, \phi X)] \\
& -4^{*} S /(m+1)(m+3) \\
& -(3 m-7) /(m+3)+p(X, X)^{2}+p(X, \phi X)^{2} .
\end{aligned}
$$

Since the relation between p and the torsion tensor ${ }^{*} T$ of ${ }^{*} \nabla$ is given by $p(X, Y)=g(* T(\xi, X), Y)(c f .[8], \S 6), p(X, X)$ and $p(X, \phi X)$ may be replaced by the expression using the torsion tensor.
(iv) In [8] we defined a global real valued invariant of a compact contact Riemannian manifold. Burns and Epstein [2] defined a global real valued invariant of a compact strongly pseudo-convex 3 -dimensional $C R$ manifold whose holomorphic tangent bundle is trivial. It may be noted that each 3 -dimensional $C R$ structure is integrable. Cheng and Lee [3] extended the definition of the Burns-Epstein invariant to arbitrary oriented compact 3 -dimensional $C R$ manifolds. They reinterpreted it as an invariant of a pair of $C R$ structures.

References

[1] D. E. BLAIR, Contact manifolds in Riemannian geometry, Lect. Notes Math., Vol. 509, Berlin Heiderberg New York: Springer 1976.
[2] D. M. Burns, Jr. and C. L. EpSTEIN, A global invariant for three dimensional CR manifolds, Invent. Math., 92 (1988), 333-348.
[3] J-H. Cheng and J. M. Lee, The Burns-Epstein invariant and deformation of CR structures, (preprint).
[4] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math., 133 (1974), 219-271.
[5] K. Sakamono and Y. Takemura, Curvature invariants of CR-manifolds, Kodai Math. J., 4 (1981), 251-265.
[6] N. TANAKA, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japanese J. Math., 2 (1976), 131-190.
[7] N. TANAKA, A differential Geometric study on strongly pseudo convex manifolds, Lect. Math., Kyoto Univ. 1975.
[8] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314 (1989), 349-379.
[9] S. Tanno, The Bochner type curvature tensor of contact Riemannian structure, Hokkaido Math. J., 19 (1990), 55-66.
[10] S. M. WEBSTER, On the pseudo-conformal geometry of a Kaehler manifold, Math. Z., 157 (1977), 265-270.
[11] S. M. WEBSTER, Kaehler metrics associated to a real hypersurface, Comment. Math. Helvet., 52 (1977), 235-250.
[12] S. M. WEBSTER, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom., 13 (1978), 25-41.

Department of Mathematics
Tokyo Instutute of Technology
Oh-Okayama, Meguro-ku
Tokyo, 152 Japan

