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A unit group in a character ring of an
alternating group II

Kenichi YAMAUCHI
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1. Introduction

Throughout this paper, G denotes always a finite group, Z the ring of
rational integers, @ the field of rational numbers, C the field of complex
numbers. In addition, we fix the following notations.

R(G); a character ring of G
U(R(G)); a unit group of R(G)
Ur(R(G)) ; the subgroup of U(R(G)) which consists of units of finite
order in R(G)
Sr, An; a symmetric group and an alternating group on # symbols
respectively for a natural number #.

In the paper of [6], we proved the following theorem.

THEOREM 1.1.  rank U(R(A.)/{+1}=c(n).
(See Definition 2.3 concerning a number c(n))

In section 3, we will construct c(x) units ¢i,..., ¢eny in R(A,) and
show that U*(R(Ax))S<¢n,..., demy, where UAR(An)={¢?¢< U(R(A,))}
and <¢i,..., ¢en? is an abelian subgroup of U(R(A,)) generated by ¢,...,
¢om. (See Theorem 3.4.). It is easily proved that rank {hyeery YeP=c
(n). (See the proof of Lemma 4.1 of [6]), and so [Theorem 1.1 is a direct
consequence of the above result.

For a given unit ¢ in R(A4.), we will give the necessary and sufficient
condition on which ¢ is the difference of two irreducible C-characters of
An. (See [Theorem 3.6)

In section 4, as an application of the above results, we will state some
examples such that the equation {£1}Xx<{¢i,..., dew>=U(R(A.)) holds, by
the way of finding generators of U(R(A.)) concretely, and we will also
give the example such that a unit in R(A,) is the difference of two ir-
reducible C-characters of A..

Now we pay attention to the fact that for n=3, 4, U(R(A,))= Us(R
(An))={£x,% 2, x5}, where x, x2, and x; are the linear characters of
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A.. (See Theorem 4.3 (ii) of [6]). Therefore, from now on, we may
assume that »=5.

2. Preliminaries

We first state Frobenius’s theorem. (See p222-223 of [1]). Let [,
.., mr), mut--+m-=n be a self-associated frame. Then we assign to
[mu,..., mr] a conjugacy class of S, with cycles of odd lengths ¢1>¢g.> -
>qr, T @t tqg=n (Q1:27’}’Ll—1, C]2:2le‘3,...). We denote by (Ql,
G,..., qr) this conjugacy class and we set p=qi¢2""gx.

Let ¥ be a self-associated character of S, which corresponds to (701,
..., mr]. Then we have

THEOREM 2.1. (Frobenius’s theorem) In the above situation we have

(i) If we consider x as a charvacter of An, then x is the sum of two
irveducible C-characters ¢\, @2 of An; Xx=¢11 @2

A conjugacy class (qi, @,... qr) splits into two comjugacy classes
¢, € of An

Qi) pule)=pulc)={6+p0)

p:(c")=pic) =0~ pD)

where 0 :(_1)%@—1):(_1)%(”—%) and ¢', ¢’ ave the representatives
of &, Q" respectively. The values of ¢1 and @2 ave equal in all

other comjugacy classes of An; (01:(02—_——%‘7(.

DEFINITION 2.2. Let T=[my,..., m:), mu+-+m=n be a self-
associated frame. Then we assign to I' a conjugacy class €=(q1, g2, ...,
gr) of S, with cycles of odd lengths ¢i>@>>qr, it @+ +q=n (=
2m—1, ¢=2mp—3,+-) and we set p=q g qe.. In addition, we assume
that p=1 (mod. 4) and p is not the square of a number (i.e. Vp Q). In
this case we call T' a self-associated frame of real type, and we also say
that (T, €, p) is a triple of a self-associated frame of real type T'.

DEFINITION 2.3. For a natural number 7, we define a nonnegative
rational integer c(%) as follows
c(n)=the number of self-associated frames of real type

[m,..., m:], mut-+m-=n.

Let T=[mu,..., m,], mu+--+m-=n be a self-associated frame of real
type and let (T, G, p) be a triple of I'. Then Q(/p) is the real quadratic
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field. Here we state two lemmata without proofs in the above situation.
(See Lemma 3.1 and Lemma 3.2 of [6])

LEMMA 2.4. A conjugacy class € of Sp consists of |Sil/p elements.
LEMMA 2. 5. We set p=f*po (po: square-free). Then we have

(i) =1 (mod. 4)

(ii) If —%—(tJru\/jT), L, uSZ s an algebraic integer in Q(Vpo), then

t=u (mod. 2).
(iii) If e is a fundamental unit in Q(Vp), then the units in Q(Vpo)

which take the form of %(t-l—u\/f ), t, uEZ are given by

+E" (n=0, £1, £2,...)
where E=¢€° for some natural number e.

DEFINITION 2.6. We call a unit £ which appears in Lemma 2.5
(iii), a standard unit in Q(vV») (=Q(V$)) for convenience.

LEMMA 2.7. UAR(A.)={xx} (n=5)
where x1 is a principal character of An.

PROOF.  Any unit of finite order in R(G) has the form +x for some
linear character y of a finite group G (See Corollary 2.2 of [5]), and A.

has only one linear character x:, because A, is a simple group and A,=
D(A») (a commutator subgroup of A,) holds. Therefore it follows that
Ur(R(An))={x}. Thus the result follows. Q.E.D.

3. Units in R(A,) (n=5)

Let T'=[mn,..., m:], mu+-+m,=n be a self-associated frame of real
type and let (T, €, p) be a triple of I. Let &, € be the two conjugacy

classes of A, into which € splits. Let EZ%(H- u'p), (t, uE2Z, tu#0) be

the standard unit in Q(Vp). We denote by N(E) the norm of E over Q.
Then we have the following theorem.

THEOREM 3.1.  In the above situation, we define a class function ¢
of An as follows

In case N(E)=1
P(x)=1 for xEA, x&C, ¢
=B, §(c")=E
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In case N(E)=-1
d(x)=—1 for xE A, xEC, &
¢(c)=E? ¢(c")=E~*
where ¢, ¢’ are the representatives of €', € respectively.
Then ¢ is a unit in R(Ay), which is not of finite ovder.

PrROOF. In case N(E)=1, by both Lemma 3.3 and Theorem 3.4 of
[6], we can see that ¢ is a unit in R(A,), which is not of finite order, and
so in case N(E)=—1, we prove that ¢ is a unit in R(A»). Since N(E)=

%(tz— pu?)=—1, we have t*=pu’—4. Hence we get the following equa-

tion
EZ:—LII—(tz%—puzﬁ-ZtME):%(ZPu2—4+2t”‘/E)
:—;—(a+ bVp)—1

where a=pu® and b=tu (F0).
Therefore we have

(¢4 1) (x)=0 for xEA,, x&C, €
(¢4 1)(c) =5 {a+byP)

(¢+x1)(c")=%(a—b@), pla, b+0

where 7y is a principal character of Aa.

By the same proof as that of Theorem 3. 4 of [6], we can prove that ¢
is actually written as a linear combination of irreducible C-characters of
A, with integral coefficients and that ¢ is a unit in R(A,), and so we omit
its proof. Thus the proof is complete. Q.E.D.

Let (T'y, 61, p1),.er, (Teimy, Cemy, Pemy) be  the triples of self-associated
frames of real type and let Ai,..., Ac«m be the characters of self-associated
representations of S,, which correspond to T'i,..., Iewm respectively. If we
consider A; as a character of A., then A; is the sum of two irreducible
C-characters ¢}, ¢! of An; ki=¢i+¢? (i=1,..., c(n)). Let &, €& be the
two conjugacy classes of A, into which €; splits, and let ci, ¢’ be the rep-
resentatives of 6} G/ respectively (i=1,..., c(n)). We denote by E: the
standard unit in Q(V/p:) (i=1,..., ¢(n)), and we keep these notations
throughout this section. Then we have the following theorem which plays
a fundamental role.
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THEOREM 3.2.  In the above situation, let ¢ be a unit in R(A,)
which is not of finite order such that

(c)=xEF, §(c!)=xE* j€Z
(i=1,..., c(n)), where E! is the conjugate number of E: over Q and the
sign of E is equal to that of E!*.

Then we have N(E¥)=1 (i=1,..., ¢(n)), where N(E¥) denotes the
norm of E7 over Q.

PROOF.  Let y: (a principal character),..., x» be the irreducible C-
characters of A, such that {xi,..., x:}U{¢} 07li=1,..., ¢(n)} is a full set of
irreducible C-characters of A.. Now we assume that ¢ is written as a
linear combination of irreducible C-characters of A, with integral
coefficients as follows

¢=2%" a: @i+ 28 b o7 +2500 ¢y
ai, bi, CjEZ.
If we set
¢ =220 b; i+ 20 a: 97+ 25 ¢y,
then by Theorem 2.1, we can see that

¢’ (x)=¢(x) for xEA,, x&C, 6/ (i=1,..., c(n))
¢ (c)=¢(c!)=+EP, ¢ (c!)=¢(c/)=+E

where the sign of E/* is equal to that of E/. Therefore it follows that
(¢¢")(x)==%1 or (¢¢')(x) is a unit in an imaginary quadratic field for
xEAn, x£C€, € (i=1,..., c(n)), and that

(") ch)=(¢¢')c!)=N(E#)==*1 for i=1,..., c(n).

Thus we can conclude that ¢¢” is a unit in R(A4,), which is of finite
order. By [Lemma 2.7, we have ¢¢'==+y,. Since (¢¢')(1)=1 for an iden-
tity element 1 of A, we have the equation ¢¢'=y. This implies that

N(E#)=1 for i=1,..., c¢(n). Thus the proof is complete. Q.E.D.
We assume further that Ei,..., E; are the standard units such that
N(E))= - =N(E,)=1, and that E,s1, ..., Er+s(=Ecm) are the standard

units such that N(E;)=—1 (j=7+1,...,7+s=c(xn)). Then, for each ic
{1, ..., 7}, we set

¢:(x)=1 for xEA,, x&£GC, G
d(ch)=E%, ¢(c!)=E*
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and for each j€{r+1, ..., r+s=c(n)}, we set
¢i(x)=—1 for xE An, x£GE;, €
di(c)=E3, ¢i(c)=E;*

By [Theorem 3.1, it follows that ¢,..., ¢r+s(=¢cm) are units in
R(A,), which are not of finite order, and we fix these units throughout
this section. Then we have

THEOREM 3.3.  For any unit ¢ in R(A.), which is not of finite
order, we can write
PE=it L TP L PR

where 11, ..., ir, Jr+l, o, Jr+sEZ.

PrROOF. Since N(E.)=—1 for kE{r+1, ..., r+s=c(n)}, by Theorem
3.2, we have

$(c)=+E¥*, ¢(ck)==+ Ez** for some j,EZ
where the sign of E¥* is equal to that of Ex**. Hence we have
(¢ )= Ew*, (¢*)(cr)=Ex*".
On the other hand, for #€{1, ..., »} we have
d(c)=xEp, (cn)==xEr™ for some i,EZ
where the sign of Ej* is equal to that of Ex* Therfore, if we
set p=¢* Pr L PrTdIHE L rEE, then we

can see that u(x)=1 for x€C; or x€6; (i=1,...,r+s=c(n)). Thus it
follows that g is a unit in R(A.) which is of finite order. By Lemma 2.7,
we have p#==+7. For an identity element 1 of A., #(1)=1 holds, and so
we obtain g#= .

This implies that

PP=gf LG PEI L PEIS
Thus the result follows. Q. E.D.

We denote by <¢, ..., den> an abelian subgroup of U(R(A.)) gener-
ated by ¢, ..., ey, and we denote by U*(R(Ax)) the set {¢*¢ is a unit in

R(A,)}. Then the following theorem is a direct consequence of Theorem
3.3.

THEOREM 3.4. UXR(A.))SL¢, ..., Pemny.



A unit group in a character ving of an alternating group 11 19

COROLLARY 3.5. Let ¢ be any unit in R(A,). Then ¢(x) is a real
number for all x€ A, In particular, §(x)==x1 for xE A, x&GC;, 6 (j=
1, ..., c(n)).

PROOF. It is clear that ¢(x) is a real number for xE6; or x=€; (;=
1,...,c(n)). By Theorem 3.3, we can see that (¢2) (x)=1 for XEA, x&
€, €; (1=1,..., c(n)). Thus the result follows. Q.ED.

Let T'=[my, ..., m:], mu+ - +m,=n be a self-associated frame of
real type and let (T, €, p) be a triple of . Let €, 6" be the two con-
jugacy classes of A, into which € splits.

Let %(H—u«/?) (tu=+0) be the unit in Q(V 5 ). Then we have the
following theorem.
THEOREM 3.6.  In the above situation, let ¢ be the unit in R(A,)
such that ¢(x)==+1 for xEA,, x&6, §”
W= (t+ud D), )=t~ uiF)
where ', ¢” are the reprensentatives of €, §” respectively.
Then the following conditions are equivalent.

(1) ¢ is the difference of two irreducible C-characters of An.
(ii) u==1

PROOF.  We denote by x a principal character of A., and we denote
by (4, 1) the inner product of two class functions A, z of A,. That is,

(/1, /1) :I—Iig 2lgean A(Q)Tg)

where u(g) is the conjugate complex number of u(g).
(1)==(ii) Since ¢ is the difference of two irreducible C-charac-
ters of A» and ¢(x), (x€A,), is a real number, we

have (¢2, xn)=(¢¢, 20)=(¢, P)=2 e (1)

On the other hand, by Theorem 3.2 N(—l—(t+u~/7)):1, and so we
2

derive #*=pu’+4. From this formula, we get

2
( tiuzfp_ )2: pu iztuﬁ ey

Hence we have
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(¢*—x)(x)=0 for xEA,, x&C, ¢

(5= ) = RE LD (g (o= D=l D

By Lemma 2.4 we have IG/,|:|@”|:'%|A71|. Now we calculate an inner
product (¢*—x, x1).

(Fo= . 21)= lénl <|/;n| (pu2+2tu@>+ Izjjn‘ (puz—ztu@ >> =2 (2)

Therefore it follows that (¢? x)=1+u«% Hence by the formula (1),
we have 1 +#*=2, and so we get u==*1.

(ii)== (i) We assume that #==x1. Then by the formula (2), we
get (¢*—x, x1)=1 and so we have

(9% 0)=(¢, §)=(¢, )=2.

Because ¢ is a unit in R(A,), it follows that ¢(1)==+1 for an identity
element 1 of A.. Hence we can see that ¢ is the difference of two irreduc-
ible C-characters of A.. This completes the proof of Theorem 3.6. Q. E.D.

4. Some examples

EXAMPLE 1. U(R(Aw)). We will find the generators of U(R(Au)).
First we compute ¢(10). There are two self-associated frames; [4, 3,2, 1],
[5,2,13]. We assign to [4,3,2,1], [5,2,1°] conjugacy classes of S, (7, 3),
(9, 1) respectively, and conjugacy classes (7,3), (9, 1) determine odd num-
bers 7X3=21=1 (mod. 4), 9X1=23% respectively. Therefore we have
c(10)=1.

Now we set s:%(S—F J/21). Then ¢ is a fundamental unit in Q(v21).

(At the same time ¢ is a standard unit in @(v21), and N(e) (the norm of €
over @) is equal to 1.)
Secondly we prove that there is no unit ¢ in R(Ai) such that

w(x)=+1 for x€ Ap, x¢&€,¢€7 (3)
wc)=+e, plc)==xet

where ¢, €” are the cojugacy classes of Aio into which the conjugacy class
(7,3) of Si splits, and ¢/, ¢” are the representatives of €', €” respectively.

Assume by way of contradiction that there is a unit # in R(A) which
satisfies the equations of (3). Let A be a self-associated character of Sio
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which corresponds to the frame |4, 3, 2,1], and let ¢1, ¢» be the two ir-
reducible C-characters of Ai into which A splits. By Theorem 3.6, we
can see that y is the difference of two irreducible C-characters of Ao, and
so we may assume that pg==+(¢ —x) for some irreducible C-character X
of Ai. Now we can easily compute deg A=768. (See p78 Theorem 3.9 of
[3]) Hence we have deg ¢1=deg ¢»=384. Since 1(1)==£((1)—x(1))=
+(384—x(1))= =1, it follows that x(1)=383 or x(1)=385. But there is no
irreducible C-character y of Ai such that x(1)=383 or x(1)=385, because

[Awl _ 10! [Awl _ 100 _ 10!
x(1)  2x383 x(1)  2X385  2X5X7x11

&7 and

EZ.

This contradiction implies that there is no unit x in R(A) which
satisfies the equations of (3).
Let ¢ be the class function of A such that

¢(x)=1 for xE Ay, x&C,E”
W)= = BB o)z e BBV

2

Then by Theorem 3.1, it follows that ¢ is a unit in R(Aw). There-
fore we have
U(R(Aw)={*+¢*| i€Z}. (See the proofs of Theorem 3.2 and
Theorem 3. 3.)

EXAMPLE 2.  U(R(Ap)). Let p be a prime number such that p=1
(mod. 4) and c(p)=1. For example, 5,13 and 17 are the prime numbers
which satisfy these conditions. Then we will find the generators of
U(R(Ap)). Let € be a fundamental unit of Q(v 5 ), then N(e)=—1. (See
p316 Problem 5 of [4].)

=1
There is a self-associated frame; [pTH, 172 ] We assign to this

frame a conjugacy class of Sp, (p). Then the conjugacy class (p) splits

into two conjugacy classes €, € of A,. Let A be a self-associated char-
p-1

acter of S, which corresponds to [‘bTH, 2 :’ When we consider A as

a character of Ap, by Theorem 2.1 we can see that A is the sum of two

irreducible C-characters ¢, ¢. of A, such that ¢1(C’):¢Z(C”):%(l+\/7 ),

¢1(C”>:¢’z(6’):%(1_\/7 ), where ¢’, ¢” are the representatives of §’, §”

respectively. Therefore it follows that e is a standard unit in Q(V/ ).
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Since N(e)=—1, by Theorem 3.2, there is no unit # in R(A») such that
u(x)==+1 for xEAp, x&C,€” and u(c)==xe, u(c”)==x¢" where the sign
of ¢ is equal to that of €. Let ¢ be the class function of A, such that
d(x)=—1 for xEAp, x&C, € and ¢(c)=¢€* ¢(c”")=e% Then by Theo-
rem 3.1, ¢ is a unit in R(A,) and so we have U(R(A,)={x¢'|iEZ}.

EXAMPLE 3. We show that there is a unit in R(As), which is the
difference of two irreducible C-characters of As. (See Theorem 3.6.) As
has the following conjugacy classes

@1:{1}, @:2:{(12) (34),”'}, @3:{(123),“'},
C,={(12345),"--}, €s={(13524),--}.

Hence As has five irreducible C-characters xi, -+, xs. For the charac-
ter table of As, we obtain

@1 @2 (‘513 @4 (‘Ss
X 1 1 1 1 1
X2 4 0 1 -1 -1
X3 5 1 -1 0 0
. s 0 1445  1=4/5
2 2
“ 5 1 0 1—25 1+2J§

From this character table, we get the following table for xs—x: and xs— X

S, S, S, c, G,

1 1 -1 -1 3+J/5  3—-V5
2 2

o 1 -1 -1 3~2J€ 3+2J§

Therefore xs—x. and xs—yx: are units in R(As) which are the
differences of two irreducible C-characters of As. Since c(5)=1,

2
3+f:<1+2‘/_5_>, and L%‘/_S—‘ is a fundamental unit in Q(5), of

which the norm over Q is equal to —1, the units in R(As) are given by

+(u— ), i=0, £1, £2,--
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(See Example 2.)

Finally we note that as for U(R(As)) we also can prove the same

statement.

(1]
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