A unit group in a character ring of an alternating group II

Kenichi YAMAUCHI (Received November 19, 1991)

1. Introduction

Throughout this paper, G denotes always a finite group, Z the ring of rational integers, Q the field of rational numbers, C the field of complex numbers. In addition, we fix the following notations.

R(G); a character ring of G

U(R(G)); a unit group of R(G)

 $U_f(R(G))$; the subgroup of U(R(G)) which consists of units of finite order in R(G)

 S_n , A_n ; a symmetric group and an alternating group on n symbols respectively for a natural number n.

In the paper of [6], we proved the following theorem.

THEOREM 1.1. rank $U(R(A_n))/\{\pm 1\} = c(n)$. (See Definition 2.3 concerning a number c(n))

In section 3, we will construct c(n) units $\psi_1, \ldots, \psi_{c(n)}$ in $R(A_n)$ and show that $U^2(R(A_n)) \subseteq \langle \psi_1, \ldots, \psi_{c(n)} \rangle$, where $U^2(R(A_n)) = \{ \psi^2 | \psi \in U(R(A_n)) \}$ and $\langle \psi_1, \ldots, \psi_{c(n)} \rangle$ is an abelian subgroup of $U(R(A_n))$ generated by $\psi_1, \ldots, \psi_{c(n)}$. (See Theorem 3. 4.). It is easily proved that rank $\langle \psi_1, \ldots, \psi_{c(n)} \rangle = c$ (n). (See the proof of Lemma 4.1 of [6]), and so Theorem 1.1 is a direct consequence of the above result.

For a given unit ψ in $R(A_n)$, we will give the necessary and sufficient condition on which ψ is the difference of two irreducible *C*-characters of A_n . (See Theorem 3.6.)

In section 4, as an application of the above results, we will state some examples such that the equation $\{\pm 1\} \times \langle \psi_1, ..., \psi_{c(n)} \rangle = U(R(A_n))$ holds, by the way of finding generators of $U(R(A_n))$ concretely, and we will also give the example such that a unit in $R(A_n)$ is the difference of two irreducible C-characters of A_n .

Now we pay attention to the fact that for n=3, 4, $U(R(A_n))=U_f(R(A_n))=\{\pm \chi_1, \pm \chi_2, \pm \chi_3\}$, where χ_1 , χ_2 , and χ_3 are the linear characters of

 A_n . (See Theorem 4.3 (ii) of [6]). Therefore, from now on, we may assume that $n \ge 5$.

2. Preliminaries

We first state Frobenius's theorem. (See p 222-223 of [1]). Let $[m_1, ..., m_r]$, $m_1 + \cdots + m_r = n$ be a self-associated frame. Then we assign to $[m_1, ..., m_r]$ a conjugacy class of S_n with cycles of odd lengths $q_1 > q_2 > \cdots > q_k$, $q_1 + q_2 + \cdots + q_k = n$ $(q_1 = 2m_1 - 1, q_2 = 2m_2 - 3, ...)$. We denote by $(q_1, q_2, ..., q_k)$ this conjugacy class and we set $p = q_1 q_2 \cdots q_k$.

Let χ be a self-associated character of S_n which corresponds to $[m_1, ..., m_r]$. Then we have

THEOREM 2.1. (Frobenius's theorem) In the above situation we have

- (i) If we consider χ as a character of A_n , then χ is the sum of two irreducible C-characters φ_1 , φ_2 of A_n ; $\chi = \varphi_1 + \varphi_2$
- (ii) A conjugacy class $(q_1, q_2, ..., q_k)$ splits into two conjugacy classes \mathbb{C}' , \mathbb{C}'' of A_n .

(iii)
$$\varphi_1(c') = \varphi_2(c'') = \frac{1}{2} (\theta + \sqrt{p\theta})$$
$$\varphi_1(c'') = \varphi_2(c') = \frac{1}{2} (\theta - \sqrt{p\theta})$$

where $\theta = (-1)^{\frac{1}{2}(p-1)} = (-1)^{\frac{1}{2}(n-k)}$ and c', c'' are the representatives of \mathfrak{C}' , \mathfrak{C}'' respectively. The values of φ_1 and φ_2 are equal in all other conjugacy classes of A_n ; $\varphi_1 = \varphi_2 = \frac{1}{2}\chi$.

DEFINITION 2.2. Let $\Gamma = [m_1, ..., m_r]$, $m_1 + \cdots + m_r = n$ be a self-associated frame. Then we assign to Γ a conjugacy class $\mathfrak{G} = (q_1, q_2, ..., q_k)$ of S_n with cycles of odd lengths $q_1 > q_2 > \cdots > q_k$, $q_1 + q_2 + \cdots + q_k = n$ ($q_1 = 2m_1 - 1$, $q_2 = 2m_2 - 3$,...) and we set $p = q_1q_2 \cdots q_k$. In addition, we assume that $p \equiv 1 \pmod{4}$ and p is not the square of a number (i. e. $\sqrt{p} \notin Q$). In this case we call Γ a self-associated frame of real type, and we also say that $(\Gamma, \mathfrak{G}, p)$ is a triple of a self-associated frame of real type Γ .

DEFINITION 2.3. For a natural number n, we define a nonnegative rational integer c(n) as follows

c(n) = the number of self-associated frames of real type

$$[m_1,\ldots,m_r], m_1+\cdots+m_r=n.$$

Let $\Gamma = [m_1, ..., m_r]$, $m_1 + \cdots + m_r = n$ be a self-associated frame of real type and let $(\Gamma, \mathfrak{C}, p)$ be a triple of Γ . Then $Q(\sqrt{p})$ is the real quadratic

field. Here we state two lemmata without proofs in the above situation. (See Lemma 3.1 and Lemma 3.2 of [6])

LEMMA 2.4. A conjugacy class @ of S_n consists of $|S_n|/p$ elements.

LEMMA 2.5. We set $p = f^2 p_0$ (p_0 : square-free). Then we have

- (i) $p_0 \equiv 1 \pmod{4}$
- (ii) If $\frac{1}{2}(t+u\sqrt{p})$, t, $u \in Z$ is an algebraic integer in $Q(\sqrt{p_0})$, then $t \equiv u \pmod{2}$.
- (iii) If ε is a fundamental unit in $Q(\sqrt{p_0})$, then the units in $Q(\sqrt{p_0})$ which take the form of $\frac{1}{2}(t+u\sqrt{p})$, t, $u \in Z$ are given by

$$\pm E^n$$
 $(n=0, \pm 1, \pm 2,...)$
where $E = \varepsilon^e$ for some natural number e.

DEFINITION 2.6. We call a unit E which appears in Lemma 2.5 (iii), a standard unit in $Q(\sqrt{p})$ (= $Q(\sqrt{p_0})$) for convenience.

LEMMA 2.7. $U_f(R(A_n)) = \{\pm \chi_1\} \ (n \ge 5)$ where χ_1 is a principal character of A_n .

PROOF. Any unit of finite order in R(G) has the form $\pm \chi$ for some linear character χ of a finite group G (See Corollary 2.2 of [5]), and A_n has only one linear character χ_1 , because A_n is a simple group and $A_n = D(A_n)$ (a commutator subgroup of A_n) holds. Therefore it follows that $U_f(R(A_n)) = \{\pm \chi_1\}$. Thus the result follows. Q. E. D.

3. Units in $R(A_n)$ $(n \ge 5)$

Let $\Gamma = [m_1, ..., m_r]$, $m_1 + \cdots + m_r = n$ be a self-associated frame of real type and let (Γ, \mathbb{C}, p) be a triple of Γ . Let \mathbb{C}' , \mathbb{C}'' be the two conjugacy classes of A_n into which \mathbb{C} splits. Let $E = \frac{1}{2}(t + u\sqrt{p})$, $(t, u \in \mathbb{Z}, tu \neq 0)$ be the standard unit in $Q(\sqrt{p})$. We denote by N(E) the norm of E over Q. Then we have the following theorem.

Theorem 3.1. In the above situation, we define a class function ϕ of A_n as follows

In case
$$N(E)=1$$

$$\psi(x)=1 \text{ for } x \in A_n, x \notin \mathfrak{C}', \mathfrak{C}''$$

$$\psi(c')=E^2, \ \psi(c'')=E^{-2}$$

In case
$$N(E) = -1$$

 $\psi(x) = -1$ for $x \in A_n$, $x \notin \mathfrak{C}'$, \mathfrak{C}''
 $\psi(c') = E^2$, $\psi(c'') = E^{-2}$

where c', c'' are the representatives of \mathfrak{C}' , \mathfrak{C}'' respectively. Then ψ is a unit in $R(A_n)$, which is not of finite order.

PROOF. In case N(E)=1, by both Lemma 3.3 and Theorem 3.4 of [6], we can see that ψ is a unit in $R(A_n)$, which is not of finite order, and so in case N(E)=-1, we prove that ψ is a unit in $R(A_n)$. Since $N(E)=\frac{1}{4}(t^2-pu^2)=-1$, we have $t^2=pu^2-4$. Hence we get the following equation

$$E^{2} = \frac{1}{4} (t^{2} + pu^{2} + 2tu\sqrt{p}) = \frac{1}{4} (2pu^{2} - 4 + 2tu\sqrt{p})$$
$$= \frac{1}{2} (a + b\sqrt{p}) - 1$$

where $a = pu^2$ and $b = tu \ (\neq 0)$.

Therefore we have

$$(\psi + \chi_1)(x) = 0 \text{ for } x \in A_n, x \notin \mathfrak{C}', \mathfrak{C}''$$

$$(\psi + \chi_1)(c') = \frac{1}{2}(a + b\sqrt{p})$$

$$(\psi + \chi_1)(c'') = \frac{1}{2}(a - b\sqrt{p}), p|a, b \neq 0$$

where χ_1 is a principal character of A_n .

By the same proof as that of Theorem 3.4 of [6], we can prove that ψ is actually written as a linear combination of irreducible C-characters of A_n with integral coefficients and that ψ is a unit in $R(A_n)$, and so we omit its proof. Thus the proof is complete. Q. E. D.

Let $(\Gamma_1, \mathfrak{C}_1, p_1), \ldots, (\Gamma_{c(n)}, \mathfrak{C}_{c(n)}, p_{c(n)})$ be the triples of self-associated frames of real type and let $\lambda_1, \ldots, \lambda_{c(n)}$ be the characters of self-associated representations of S_n , which correspond to $\Gamma_1, \ldots, \Gamma_{c(n)}$ respectively. If we consider λ_i as a character of A_n , then λ_i is the sum of two irreducible C-characters φ_i' , φ_i'' of A_n ; $\lambda_i = \varphi_i' + \varphi_i''$ $(i=1,\ldots,c(n))$. Let \mathfrak{C}_i' , \mathfrak{C}_i'' be the two conjugacy classes of A_n into which \mathfrak{C}_i splits, and let c_i' , c_i'' be the representatives of \mathfrak{C}_i' , \mathfrak{C}_i'' respectively $(i=1,\ldots,c(n))$. We denote by E_i the standard unit in $Q(\sqrt{p_i})$ $(i=1,\ldots,c(n))$, and we keep these notations throughout this section. Then we have the following theorem which plays a fundamental role.

THEOREM 3.2. In the above situation, let ψ be a unit in $R(A_n)$ which is not of finite order such that

$$\psi(c_i') = \pm E_i^{j_i}, \ \psi(c_i'') = \pm E_i'^{j_i}, \ j_i \in Z$$

(i=1,..., c(n)), where E'_i is the conjugate number of E_i over Q and the sign of $E_i^{j_i}$ is equal to that of $E_i^{j_i}$.

Then we have $N(E_i^{j_i})=1$ (i=1,..., c(n)), where $N(E_i^{j_i})$ denotes the norm of $E_i^{j_i}$ over Q.

PROOF. Let χ_1 (a principal character),..., χ_k be the irreducible C-characters of A_n such that $\{\chi_1,...,\chi_k\} \cup \{\varphi'_i,\varphi''_i|i=1,...,c(n)\}$ is a full set of irreducible C-characters of A_n . Now we assume that ψ is written as a linear combination of irreducible C-characters of A_n with integral coefficients as follows

$$\psi = \sum_{i=1}^{c(n)} a_i \ \varphi'_i + \sum_{i=1}^{c(n)} b_i \ \varphi''_i + \sum_{j=1}^{k} c_j \ \chi_j
a_i, b_i, c_j \in \mathbb{Z}.$$

If we set

$$\psi' = \sum_{i=1}^{c(n)} b_i \varphi_i' + \sum_{i=1}^{c(n)} a_i \varphi_i'' + \sum_{j=1}^{k} c_j \chi_j,$$

then by Theorem 2.1, we can see that

$$\psi'(x) = \psi(x) \text{ for } x \in A_n, \ x \notin \mathcal{C}'_i, \ \mathcal{C}''_i \ (i = 1, ..., \ c(n))$$

 $\psi'(c'_i) = \psi(c''_i) = \pm E'_i, \ \psi'(c''_i) = \psi(c'_i) = \pm E'_i$

where the sign of $E_i^{',i}$ is equal to that of E_i^{i} . Therefore it follows that $(\psi\psi')(x)=\pm 1$ or $(\psi\psi')(x)$ is a unit in an imaginary quadratic field for $x\in A_n$, $x\notin \mathfrak{G}_i'$, \mathfrak{G}_i'' (i=1,...,c(n)), and that

$$(\psi\psi')(c_i') = (\psi\psi')(c_i'') = N(E_i^{j_i}) = \pm 1 \text{ for } i = 1, \dots, c(n).$$

Thus we can conclude that $\psi\psi'$ is a unit in $R(A_n)$, which is of finite order. By Lemma 2.7, we have $\psi\psi'=\pm\chi_1$. Since $(\psi\psi')(1)=1$ for an identity element 1 of A_n , we have the equation $\psi\psi'=\chi_1$. This implies that $N(E_i^{ji})=1$ for $i=1,\ldots,\ c(n)$. Thus the proof is complete. Q. E. D.

We assume further that E_1, \ldots, E_r are the standard units such that $N(E_1) = \cdots = N(E_r) = 1$, and that $E_{r+1}, \ldots, E_{r+s} (= E_{c(n)})$ are the standard units such that $N(E_j) = -1$ $(j = r+1, \ldots, r+s = c(n))$. Then, for each $i \in \{1, \ldots, r\}$, we set

$$\psi_i(x) = 1$$
 for $x \in A_n$, $x \notin \mathfrak{C}'_i$, \mathfrak{C}''_i
 $\psi_i(c'_i) = E_i^2$, $\psi_i(c''_i) = E_i^{-2}$

and for each $j \in \{r+1, \dots, r+s=c(n)\}$, we set

$$\psi_j(x) = -1 \text{ for } x \in A_n, \ x \notin \mathbb{G}'_j, \ \mathbb{G}''_j$$

$$\psi_j(c'_j) = E_j^2, \ \psi_j(c''_j) = E_j^{-2}.$$

By Theorem 3.1, it follows that $\psi_1, \ldots, \psi_{r+s}(=\psi_{c(n)})$ are units in $R(A_n)$, which are not of finite order, and we fix these units throughout this section. Then we have

THEOREM 3. 3. For any unit ψ in $R(A_n)$, which is not of finite order, we can write

$$\psi^2 = \psi_1^{i_1} \dots \psi_r^{i_r} \cdot \psi_{r+1}^{2j_{r+1}} \dots \psi_{r+s}^{2j_{r+s}}$$

where $i_1, ..., i_r, j_{r+1}, ..., j_{r+s} \in \mathbb{Z}$.

PROOF. Since $N(E_k) = -1$ for $k \in \{r+1, ..., r+s=c(n)\}$, by Theorem 3.2, we have

$$\psi(c_k') = \pm E_k^{2j_k}, \ \psi(c_k'') = \pm E_k^{-2j_k} \text{ for some } j_k \in \mathbb{Z}$$

where the sign of $E_k^{2j_k}$ is equal to that of $E_k^{-2j_k}$. Hence we have

$$(\phi^2)(c_k') = E_k^{4j_k}, \ (\phi^2)(c_k'') = E_k^{-4j_k}.$$

On the other hand, for $h \in \{1, ..., r\}$ we have

$$\psi(c_h) = \pm E_h^{i_h}, \ \psi(c_h'') = \pm E_h^{-i_h} \text{ for some } i_h \in \mathbb{Z}$$

where the sign of E_h^{ih} is equal to that of E_h^{-ih} . Therfore, if we

set
$$\mu = \psi^2 \ \psi_1^{-i_1} \dots \psi_r^{-i_r} \psi_{r+1}^{-2j_{r+1}} \dots \psi_{r+s}^{-2j_{r+s}}$$
, then we

can see that $\mu(x)=1$ for $x \in \mathbb{G}'_i$ or $x \in \mathbb{G}''_i$ $(i=1,\ldots,r+s=c(n))$. Thus it follows that μ is a unit in $R(A_n)$ which is of finite order. By Lemma 2.7, we have $\mu=\pm\chi_1$. For an identity element 1 of A_n , $\mu(1)=1$ holds, and so we obtain $\mu=\chi_1$.

This implies that

$$\phi^2 = \phi_1^{i_1} \dots \phi_r^{i_r} \ \phi_{r+1}^{2j_{r+1}} \dots \phi_{r+s}^{2j_{r+s}}.$$

Thus the result follows.

Q. E. D.

We denote by $\langle \psi_1, \ldots, \psi_{c(n)} \rangle$ an abelian subgroup of $U(R(A_n))$ generated by $\psi_1, \ldots, \psi_{c(n)}$, and we denote by $U^2(R(A_n))$ the set $\{\psi^2 | \psi \text{ is a unit in } R(A_n)\}$. Then the following theorem is a direct consequence of Theorem 3.3.

THEOREM 3.4.
$$U^2(R(A_n)) \subseteq \langle \psi_1, \ldots, \psi_{c(n)} \rangle$$
.

COROLLARY 3.5. Let ψ be any unit in $R(A_n)$. Then $\psi(x)$ is a real number for all $x \in A_n$. In particular, $\psi(x) = \pm 1$ for $x \in A_n$, $x \notin \mathfrak{C}'_i$, \mathfrak{C}''_i (i = 1, ..., c(n)).

PROOF. It is clear that $\psi(x)$ is a real number for $x \in \mathfrak{C}'_i$ or $x \in \mathfrak{C}''_i$ ($i = 1, \ldots, c(n)$). By Theorem 3.3, we can see that $(\psi^2)(x) = 1$ for $x \in A_n$, $x \notin \mathfrak{C}'_i$, \mathfrak{C}''_i ($i = 1, \ldots, c(n)$). Thus the result follows. Q. E.D.

Let $\Gamma = [m_1, \dots, m_r]$, $m_1 + \dots + m_r = n$ be a self-associated frame of real type and let $(\Gamma, \mathfrak{C}, \mathfrak{p})$ be a triple of Γ . Let \mathfrak{C}' , \mathfrak{C}'' be the two conjugacy classes of A_n into which \mathfrak{C} splits.

Let $\frac{1}{2}(t+u\sqrt{p})$ $(tu\neq 0)$ be the unit in $Q(\sqrt{p})$. Then we have the following theorem.

THEOREM 3. 6. In the above situation, let ψ be the unit in $R(A_n)$ such that $\psi(x) = \pm 1$ for $x \in A_n$, $x \notin \mathfrak{C}'$, \mathfrak{C}''

$$\psi(c') = \frac{1}{2}(t + u\sqrt{p}), \ \psi(c'') = \frac{1}{2}(t - u\sqrt{p})$$

where c', c'' are the representatives of \mathfrak{C}' , \mathfrak{C}'' respectively.

Then the following conditions are equivalent.

- (i) ψ is the difference of two irreducible C-characters of A_n .
- (ii) $u = \pm 1$

PROOF. We denote by χ_1 a principal character of A_n , and we denote by (λ, μ) the inner product of two class functions λ , μ of A_n . That is,

$$(\lambda, \mu) = \frac{1}{|A_n|} \sum_{g \in A_n} \lambda(g) \overline{\mu(g)}$$

where $\overline{\mu(g)}$ is the conjugate complex number of $\mu(g)$.

(i) \Longrightarrow (ii) Since ψ is the difference of two irreducible C-characters of A_n and $\psi(x)$, $(x \in A_n)$, is a real number, we

have
$$(\phi^2, \chi_1) = (\phi \overline{\phi}, \chi_1) = (\phi, \phi) = 2$$
(1)

On the other hand, by Theorem 3.2 $N(\frac{1}{2}(t+u\sqrt{p}))=1$, and so we derive $t^2=pu^2+4$. From this formula, we get

$$\left(\frac{t \pm u\sqrt{p}}{2}\right)^2 = \frac{pu^2 \pm tu\sqrt{p}}{2} + 1.$$

Hence we have

$$(\psi^2 - \chi_1)(x) = 0$$
 for $x \in A_n$, $x \notin \mathfrak{C}'$, \mathfrak{C}''

$$(\phi^2 - \chi_1)(c') = \frac{pu^2 + tu\sqrt{p}}{2}, \ (\phi^2 - \chi_1)(c'') = \frac{pu^2 - tu\sqrt{p}}{2}$$

By Lemma 2.4 we have $|\mathfrak{C}'| = |\mathfrak{C}''| = \frac{1}{p} |A_n|$. Now we calculate an inner product $(\phi^2 - \chi_1, \chi_1)$.

$$(\psi^{2}-\chi_{1},\chi_{1})=\frac{1}{|A_{n}|}\left(\frac{|A_{n}|}{p}\left(\frac{pu^{2}+tu\sqrt{p}}{2}\right)+\frac{|A_{n}|}{p}\left(\frac{pu^{2}-tu\sqrt{p}}{2}\right)\right)=u^{2}\cdots(2)$$

Therefore it follows that $(\psi^2, \chi_1)=1+u^2$. Hence by the formula (1), we have $1+u^2=2$, and so we get $u=\pm 1$.

(ii) \Longrightarrow (i) We assume that $u=\pm 1$. Then by the formula (2), we get $(\psi^2-\chi_1,\chi_1)=1$ and so we have

$$(\phi^2, \chi_1) = (\phi, \overline{\phi}) = (\phi, \phi) = 2.$$

Because ψ is a unit in $R(A_n)$, it follows that $\psi(1) = \pm 1$ for an identity element 1 of A_n . Hence we can see that ψ is the difference of two irreducible C-characters of A_n . This completes the proof of Theorem 3.6. Q. E.D.

4. Some examples

EXAMPLE 1. $U(R(A_{10}))$. We will find the generators of $U(R(A_{10}))$. First we compute c(10). There are two self-associated frames; [4, 3, 2, 1], [5, 2, 1³]. We assign to [4, 3, 2, 1], [5, 2, 1³] conjugacy classes of S_{10} , (7, 3), (9, 1) respectively, and conjugacy classes (7, 3), (9, 1) determine odd numbers $7 \times 3 = 21 \equiv 1 \pmod{4}$, $9 \times 1 = 3^2$ respectively. Therefore we have c(10) = 1.

Now we set $\varepsilon = \frac{1}{2}(5 + \sqrt{21})$. Then ε is a fundamental unit in $Q(\sqrt{21})$. (At the same time ε is a standard unit in $Q(\sqrt{21})$, and $N(\varepsilon)$ (the norm of ε over Q) is equal to 1.)

Secondly we prove that there is no unit μ in $R(A_{10})$ such that

$$\mu(x) = \pm 1 \text{ for } x \in A_{10}, \ x \notin \mathcal{C}', \mathcal{C}''$$

$$\mu(c') = \pm \varepsilon, \ \mu(c'') = \pm \varepsilon^{-1}$$
 (3)

where \mathfrak{C}' , \mathfrak{C}'' are the cojugacy classes of A_{10} into which the conjugacy class (7,3) of S_{10} splits, and c', c'' are the representatives of \mathfrak{C}' , \mathfrak{C}'' respectively.

Assume by way of contradiction that there is a unit μ in $R(A_{10})$ which satisfies the equations of (3). Let λ be a self-associated character of S_{10}

which corresponds to the frame [4, 3, 2, 1], and let ψ_1 , ψ_2 be the two irreducible C-characters of A_{10} into which λ splits. By Theorem 3.6, we can see that μ is the difference of two irreducible C-characters of A_{10} , and so we may assume that $\mu = \pm (\psi_1 - \chi)$ for some irreducible C-character χ of A_{10} . Now we can easily compute $\deg \lambda = 768$. (See p.78 Theorem 3.9 of [3].) Hence we have $\deg \psi_1 = \deg \psi_2 = 384$. Since $\mu(1) = \pm (\psi_1(1) - \chi(1)) = \pm (384 - \chi(1)) = \pm 1$, it follows that $\chi(1) = 383$ or $\chi(1) = 385$. But there is no irreducible C-character χ of A_{10} such that $\chi(1) = 383$ or $\chi(1) = 385$, because

$$\frac{|A_{10}|}{\chi(1)} = \frac{10!}{2 \times 383} \notin Z$$
 and $\frac{|A_{10}|}{\chi(1)} = \frac{10!}{2 \times 385} = \frac{10!}{2 \times 5 \times 7 \times 11} \notin Z$.

This contradiction implies that there is no unit μ in $R(A_{10})$ which satisfies the equations of (3).

Let ψ be the class function of A_{10} such that

$$\psi(x) = 1 \text{ for } x \in A_{10}, \ x \notin \mathfrak{C}', \mathfrak{C}''$$

$$\psi(c') = \varepsilon^2 = \frac{23 + 5\sqrt{21}}{2}, \ \psi(c'') = \varepsilon^{-2} = \frac{23 - 5\sqrt{21}}{2}.$$

Then by Theorem 3.1, it follows that ψ is a unit in $R(A_{10})$. Therefore we have

 $U(R(A_{10}))=\{\pm \psi^i \mid i\in Z\}$. (See the proofs of Theorem 3.2 and Theorem 3.3.)

EXAMPLE 2. $U(R(A_p))$. Let p be a prime number such that $p\equiv 1\pmod 4$ and c(p)=1. For example, 5, 13 and 17 are the prime numbers which satisfy these conditions. Then we will find the generators of $U(R(A_p))$. Let ε be a fundamental unit of $Q(\sqrt{p})$, then $N(\varepsilon)=-1$. (See p316 Problem 5 of [4].)

There is a self-associated frame; $\left[\frac{p+1}{2}, 1^{\frac{p-1}{2}}\right]$. We assign to this frame a conjugacy class of S_p , (p). Then the conjugacy class (p) splits into two conjugacy classes \mathfrak{C}' , \mathfrak{C}'' of A_p . Let λ be a self-associated character of S_p which corresponds to $\left[\frac{p+1}{2}, 1^{\frac{p-1}{2}}\right]$. When we consider λ as a character of A_p , by Theorem 2.1 we can see that λ is the sum of two irreducible C-characters ψ_1 , ψ_2 of A_p such that $\psi_1(c') = \psi_2(c'') = \frac{1}{2}(1+\sqrt{p})$, $\psi_1(c'') = \psi_2(c') = \frac{1}{2}(1-\sqrt{p})$, where c', c'' are the representatives of \mathfrak{C}' , \mathfrak{C}'' respectively. Therefore it follows that ε is a standard unit in $Q(\sqrt{p})$.

K. Yamauchi

Since $N(\varepsilon) = -1$, by Theorem 3.2, there is no unit μ in $R(A_{P})$ such that $\mu(x) = \pm 1$ for $x \in A_{P}$, $x \notin \mathfrak{C}'$, \mathfrak{C}'' and $\mu(c') = \pm \varepsilon$, $\mu(c'') = \pm \varepsilon'$ where the sign of ε is equal to that of ε' . Let ψ be the class function of A_{P} such that $\psi(x) = -1$ for $x \in A_{P}$, $x \notin \mathfrak{C}'$, \mathfrak{C}'' and $\psi(c') = \varepsilon^{2}$, $\psi(c'') = \varepsilon^{-2}$. Then by Theorem 3.1, ψ is a unit in $R(A_{P})$ and so we have $U(R(A_{P})) = \{\pm \psi^{i} | i \in Z\}$.

EXAMPLE 3. We show that there is a unit in $R(A_5)$, which is the difference of two irreducible C-characters of A_5 . (See Theorem 3. 6.) A_5 has the following conjugacy classes

$$\mathfrak{C}_1 = \{1\}, \ \mathfrak{C}_2 = \{(12) \ (34), \cdots\}, \ \mathfrak{C}_3 = \{(123), \cdots\},$$

 $\mathfrak{C}_4 = \{(12345), \cdots\}, \ \mathfrak{C}_5 = \{(13524), \cdots\}.$

Hence A_5 has five irreducible C-characters χ_1, \dots, χ_5 . For the character table of A_5 , we obtain

	\mathfrak{C}_1	\mathfrak{C}_2	\mathbb{Q}^3	& 4	ℂ ₅
χ_1	1	1	1	1	1
χ_2	4	0	1	- 1	- 1
χ_3	5	1	- 1	0	0
χ_4	3	- 1	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
χ_5	3	- 1	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$

From this character table, we get the following table for $\chi_4 - \chi_2$ and $\chi_5 - \chi_2$.

Therefore $\chi_4-\chi_2$ and $\chi_5-\chi_2$ are units in $R(A_5)$ which are the differences of two irreducible C-characters of A_5 . Since c(5)=1, $\frac{3+\sqrt{5}}{2}=\left(\frac{1+\sqrt{5}}{2}\right)^2$, and $\frac{1+\sqrt{5}}{2}$ is a fundamental unit in $Q(\sqrt{5})$, of which the norm over Q is equal to -1, the units in $R(A_5)$ are given by

$$\pm (\chi_4 - \chi_2)^i$$
, $i = 0$, ± 1 , ± 2 ,

(See Example 2.)

Finally we note that as for $U(R(A_6))$ we also can prove the same statement.

References

- [1] BOERNER, H. "Representations of Groups with special consideration for the needs of modern physics" (Second revised edition) North-Holland, Amsterdam, 1970.
- [2] ISAACS, I. M. "Character Theory of Finite Groups" Academic Press, New York, 1976.
- [3] IWAHORI, N. "Representation thory of symmetric groups and general linear groups" (in Japanese) (Iwanamikōza kisosūgaku) Iwanami Shoten, Tokyo, 1978.
- [4] TAKAGI, T. "Elementary theory of numbers" (Second edition) (in Japanese) Kyōritsu Press, Tokyo, 1971.
- [5] YAMAUCHI, K. "On the units in a character ring" Hokkaido Math. J. vol. 20 (1991), 477-479.
- [6] YAMAUCHI, K. "A unit group in a character ring of an alternating group" Hokkaido Math. J. vol. 20 (1991), 549-558.

Department of Mathematics Faculty of Education Chiba University Chiba-city 263 Japan