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1. Introduction

Throughout this paper, G denotes always a finite group, Z the ring of
rational integers, Q the field of rational numbers, C the field of complex
numbers. In addition, we fix the following notations.

R(G) : a character ring of G
U(R(G)) ; a unit group of R(G)
U_{f}(R(G)) ; the subgroup of U(R(G)) which consists of units of finite

order in R(G)
S_{n}, A_{n} ; a symmetric group and an alternating group on n symbols

respectively for a natural number n.
In the paper of [6], we proved the following theorem.
THEOREM 1. 1. rank U(R(A_{n}))/\{\pm 1\}=c(n) .
(See Definition 2. 3 concerning a number c(n) )

In section 3, we will construct c(n) units \phi_{1} , \ldots , \phi_{c(n)} in R(A_{n}) and
show that U^{2}(R(A_{n}))\subseteqq\langle\phi_{1},\ldots, \phi_{c(n)}\rangle , where U^{2}(R(A_{n}))=\{\phi^{2}|\phi\in U(R(A_{n}))\}

and \langle\phi_{1},\ldots, \phi_{c(n)}\rangle is an abelian subgroup of U(R(A_{n})) generated by \psi_{1},\ldots ,
\phi_{ctn)} . (See Theorem 3. 4.). It is easily proved that rank \langle\phi_{1},\ldots, \phi_{ctn)}\rangle=c

(n) . (See the proof of Lemma 4. 1 of [6]), and so Theorem 1. 1 is a direct
consequence of the above result.

For a given unit \emptyset in R(A_{n}) , we will give the necessary and sufficient
condition on which \emptyset is the difference of two irreducible C-characters of
A_{n} . (See Theorem 3. 6.)

In section 4, as an application of the above results, we will state some
examples such that the equation \{\pm 1\}\cross\langle\phi_{1},\ldots, \phi_{c(n)}\rangle=U(R(A_{n})) holds, by
the way of finding generators of U(R(A_{n})) concretely, and we will also
give the example such that a unit in R(A_{n}) is the difference of two ir-
reducible C-characters of A_{n} .

Now we pay attention to the fact that for n=3,4 , U(R(A_{n}))=U_{f}(R
(A_{n}))=\{\pm\chi_{1},\pm\chi_{2},\pm\chi_{3}\} , where \chi_{1} , \chi_{2} , and \chi_{3} are the linear characters of
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A_{n} . (See Theorem 4. 3 ( ii ) of [6]). Therefore, from now on, we may
assume that n\geqq 5 .

2. Preliminaries

We first state Frobenius’s theorem. (See p 222-223 of [1]). Let [m_{1} ,

..., m_{r} ], m_{1}+\cdots+m_{r}=n be a self-associated frame. Then we assign to
[m_{1}, \ldots, m_{r}] a conjugacy class of S_{n} with cycles of odd lengths q_{1}>q_{2}>\cdots

>q_{k} , q_{1}+q_{2}+\cdots+q_{k}=n (q_{1}=2m_{1}-1, q_{2}=2m_{2}-3, \ldots) . We denote by (q_{1} ,

q_{2} , \ldots , q_{k} ) this conjugacy class and we set p=q_{1}q_{2}\cdots q_{k} .
Let \chi be a self-associated character of S_{n} which corresponds to [m_{1} ,

..., m_{r} ]. Then we have

THEOREM 2. 1. (Frobenius’s theorem) In the above situation we have

(i) If we consider \chi as a character of A_{n}, then \chi is the sum of two
irreducible C-characters \varphi_{1} , \varphi_{2} of A_{n} ; \chi=\varphi_{1}+\varphi_{2}

(ii) A conjugacy class (q_{1}, q_{2}, \ldots q_{k}) splits into two conjugacy classes
\mathfrak{C}’ , \mathfrak{C}’ of A_{n} .

(iii) \varphi_{1}(c’)=\varphi_{2}(c’)=\frac{1}{2}(\theta+\sqrt{p\theta})

\varphi_{1}(c’)=\varphi_{2}(c’)=\frac{1}{2}(\theta-\sqrt{p\theta})

where \theta=(-1)^{\frac{1}{2}(p-1)}=(-1)^{\frac{1}{2}(n-k)} and c’ . c^{rr} are the representatives
of \mathfrak{C}’\mathfrak{C}’ respectively. The values of \varphi_{1} and \varphi_{2} are equal in all

other conjugacy classes of A_{n} ; \varphi_{1}=\varphi_{2}=\frac{1}{2}\chi .

DEFINITION 2. 2. Let \Gamma=[m_{1}, \ldots, m_{r}] , m_{1}+\cdots+m_{r}=n be a self-
associated frame. Then we assign to \Gamma a conjugacy class \mathfrak{C}=(q_{1}, q_{2} , \ldots ,

q_{k}) of S_{n} with cycles of odd lengths q_{1}>q_{2}>\cdots>q_{k}, q_{1}+q_{2}+\cdots+q_{k}=n(q_{1}=

2m_{1}-1 , q_{2}=2m_{2}-3,\cdots) and we set p=q_{1}q_{2}\cdots q_{k} . In addition, we assume
that p\equiv 1 {mod. 4) and p is not the square of a number (i. e. \sqrt{p}\not\in Q) . In
this case we call \Gamma a self-associated frame of real type, and we also say
that (\Gamma, \mathfrak{C}, p) is a triple of a self-associated frame of real type \Gamma .

DEFINITION 2. 3. For a natural number n , we define a nonnegative
rational integer c(n) as follows

c(n)=the number of self-associated frames of real type

[m_{1}, \ldots, m_{r}] , m_{1}+\cdots+m_{r}=n .

Let \Gamma=[m_{1}, \ldots, m_{r}] , m_{1}+\cdots+m_{r}=n be a self-associated frame of real
type and let (\Gamma, \mathfrak{C}, p) be a triple of \Gamma . Then Q(\sqrt{p}) is the real quadratic
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field. Here we state two lemmata without proofs in the above situation.
(See Lemma 3. 1 and Lemma 3. 2 of [6])

LEMMA 2. 4. A conjugacy class \mathfrak{C} of S_{n} consists of |S_{n}|/p elements.
LEMMA 2. 5. We set p=f^{2}p} (p_{1} : square-free). Then we have

(i) p_{)}\equiv 1 (mod. 4)

(ii) If \frac{1}{2}(t+u\sqrt{p}) , t, u\in Z is an algebraic integer in Q(\sqrt{p_{0}}) , then
t\equiv u (mod. 2).

(iii) If \epsilon is a fundamental unit in Q(\sqrt{p)}) , then the units in Q(\sqrt{p)})

which take the form of \frac{1}{2}(t+u\sqrt{p}) , t, u\in Z are given by

\pm E^{n}(n=0, \pm 1, \pm 2,\ldots)

where E=\epsilon e for some natural number e.

DEFINITION 2. 6. We call a unit E which appears in Lemma 2. 5
(iii), a standard unit in Q(\sqrt{p})(=Q(\sqrt{p)})) for convenience.

LEMMA 2. 7. U_{f}(R(A_{n}))=\{\pm\chi_{1}\}(n\geqq 5)

where \chi_{1} is a principal character of A_{n} .

PROOF. Any unit of finite order in R(G) has the form \pm\chi for some
linear character \chi of a finite group (_{J}^{\neg} (See Corollary 2. 2 of [5]), and A_{n}

has only one linear character \chi_{1} , because A_{n} is a simple group and A_{n}=

D(A_{n}) (a commutator subgroup of A_{n} ) holds. Therefore it follows that
U_{f}(R(A_{n}))=\{\pm\chi_{1}\} . Thus the result follows. Q. E. D.
3. Units in R(A_{n}) ( n\geqq 5)

Let \Gamma=[m_{1}, \ldots, m_{r}] , m_{1}+\cdots+m_{r}=n be a self-associated frame of real
type and let (\Gamma, \mathfrak{C}, p) be a triple of \Gamma . Let \mathfrak{C}’ , \mathfrak{C}’ be the two conjugacy

classes of A_{n} into which \mathfrak{C} splits. Let E= \frac{1}{2}(t+u\sqrt{p}) , (t, u\in Z, tu\neq 0) be
the standard unit in Q(\sqrt{p}) . We denote by N(E) the norm of E over Q.
Then we have the following theorem.

THEOREM 3. 1. In the above situation, we define a class function \emptyset

of A_{n} as follows
In case N(E)=1

\phi(x)=1 for x\in A_{n}, x\not\in \mathfrak{C}’ , \mathfrak{C}’

\phi(c’)=E^{2}-\phi(c’)=E^{-2}
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In case N(E)=-1
\psi(x)=-1 for x\in A_{n}, x\not\in \mathfrak{C}’ . \mathfrak{C}’

\phi(c’)=E^{2} , \phi(c’)=E^{-2}

where c’ . c’ are the representatives of \mathfrak{C}’ , \mathfrak{C}’ respectively.
Then \emptyset is a unit in R(A_{n}) , which is not of finite order.

PROOF. In case N(E)=1 , by both Lemma 3. 3 and Theorem 3. 4 of
[6], we can see that \emptyset is a unit in R(A_{n}) , which is not of finite order, and
so in case N(E)=-1 , we prove that \emptyset is a unit in R(A_{n}) . Since N(E)=

\frac{1}{4}(t^{2}-pu^{2})=-1 , we have t^{2}=pu^{2}-4 . Hence we get the following equa-

tion

E^{2}= \frac{1}{4}(t^{2}+pu^{2}+2tu\sqrt{p})=\frac{1}{4}(2pu^{2}-4+2tu\sqrt{p})

= \frac{1}{2}(a+b\sqrt{p})-1

where a=pu^{2} and b=tu(\neq 0) .
Therefore we have

(\phi+\chi_{1})(x)=0 for x\in A_{n}, x\not\in \mathfrak{C}’\mathfrak{C}^{rr}

( \phi+\chi_{1})(c’)=\frac{1}{2}(a+b\sqrt{p})

( \phi+\chi_{1})(c’)=\frac{1}{2}(a-b\sqrt{p}) , p|a, b\neq 0

where \chi_{1} is a principal character of A_{n} .
By the same proof as that of Theorem 3. 4 of [6], we can prove that \emptyset

is actually written as a linear combination of irreducible C characters of
A_{n} with integral coefficients and that \emptyset is a unit in R(A_{n}) , and so we omit
its proof. Thus the proof is complete. Q. E. D.

Let (\Gamma_{1}, \mathfrak{C}_{1}, p_{1}) , \ldots , (\Gamma_{c(n)}, \mathfrak{C}_{c(n)}, p_{c(n)}) be the triples of self-associated
frames of real type and let \lambda_{1} , \ldots , \lambda_{c(n)} be the characters of self-associated
representations of S_{n} , which correspond to \Gamma_{1} , \ldots , \Gamma_{c(n)} respectively. If we
consider \lambda_{i} as a character of A_{n} , then \lambda_{i} is the sum of two irreducible
C characters \varphi_{i}’ , \varphi_{i}’ of A_{n} ; \lambda_{i}=\varphi_{i}’+\varphi_{i}’(i=1,\ldots, c(n)) . Let \mathfrak{C}_{\acute{i}} , \mathfrak{C}_{i}^{rr} be the

two conjugacy classes of A_{n} into which \mathfrak{C}_{i} splits, and let c_{\acute{i}} , c_{i}’ be the rep-

resentatives of \mathfrak{C}_{\acute{i}}, \mathfrak{C}_{i}’ respectively (i=1, \ldots, c(n)) . We denote by E_{i} the

standard unit in Q(\sqrt{p_{i}})(i=1, \ldots, c(n)) , and we keep these notations
throughout this section. Then we have the following theorem which plays

a fundamental role.
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THEOREM 3. 2. In the above situation, let \emptyset be a unit in R(A_{n})

which is not of finite order such that
\phi(c_{i}’)=\pm E_{i}^{j_{i}} , \psi(c_{i}’)=\pm E_{i}^{\prime j_{i}} . j_{i}\in Z

(i=1,\ldots, c(n)) , where E_{i}’ is the conjugate number of E_{i} over Q and the
sign of E_{i}^{j_{i}} is equal to that of E_{i}^{rj_{i}} .

Then we have N(E_{i}^{j_{i}})=1(i=1, \ldots, c(n)) , where N(E_{i}^{j_{i}}) denotes the
norm of E_{i}^{j_{i}} over Q.

PROOF. Let \chi_{1} (a principal character),..., \chi_{k} be the irreducible C-
character of A_{n} such that \{\chi_{1},\ldots, \chi_{k}\}\cup\{\varphi_{i}’, \varphi_{i}’|i=1,\ldots, c(n)\} is a full set of
irreducible C-characters of A_{n} . Now we assume that \emptyset is written as a
linear combination of irreducible C-characters of A_{n} with integral
coefficients as follows

\phi=\sum_{i=1}^{c(n)}a_{i}\varphi_{i}’+\sum_{i=1}^{c(n)}b_{i}\varphi_{i}’+\sum_{j=1}^{k}c_{j}\chi_{j}

a_{i}, b_{i}, c_{j}\in Z.

If we set

\phi’=\Sigma_{i=1}^{c(n)}b_{i}\varphi_{i}+’\Sigma_{i=1}^{c(n)}a_{i}\varphi_{i}’+\Sigma_{j=1}^{k}c_{j}\chi_{j} ,

then by Theorem 2. 1, we can see that

\phi’(x)=\phi(x) for x\in A_{n} , x\not\in \mathfrak{C}_{i}’, \mathfrak{C}_{i}’(i=1, \ldots c(n))

\phi’(c_{\acute{i}})=\phi(c_{i}’)=\pm E_{i}^{\prime j_{i}} , \phi’(c_{i}’)=\phi(c_{i}’)=\pm E_{i}^{j_{i}}

where the sign of E_{i}^{\prime j_{i}} is equal to that of E_{i}^{j_{i}} . Therefore it follows that
(\phi\phi’)(x)=\pm 1 or (\psi\phi’)(x) is a unit in an imaginary quadratic field for
x\in A_{n} , x\not\in \mathfrak{C}_{i}’, \mathfrak{C}_{i}’ (i=1,\ldots, c(n)) , and that

(\phi\phi’)(c_{i}’)=(\phi\phi’)(c_{i}’)=N(E_{i}^{j_{i}})=\pm 1 for i=1 , \ldots , c(n) .

Thus we can conclude that \phi\phi’ is a unit in R(A_{n}) , which is of finite
order. By Lemma 2. 7, we have \phi\phi’=\pm\chi_{1} . Since (\phi\psi’)(1)=1 for an iden-
tity element 1 of A_{n} , we have the equation \phi\phi’=\chi_{1} . This implies that
N(E_{i}^{j_{i}})=1 for i=1,\ldots , c(n) . Thus the proof is complete. Q. E. D.

We assume further that E_{1} ,... E_{r} are the standard units such that
N(E_{1})=\ldots=N(E_{r})=1 , and that E_{r+1-}\ldots E_{r+s}(=E_{c(n)}) are the standard
units such that N(E_{j})=-1(j=r+1, \ldots.r+s=c(n)) . Then, for each i\in

\{1, \ldots r\} , we set

\phi_{i}(x)=1 for x\in A_{n} , x\not\in \mathfrak{C}_{i}’ , \mathfrak{C}_{i}’

\phi_{i}(c_{i}’)=E_{i}^{2}, \phi_{i}(c_{i}’)=E_{i}^{-2}
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and for each j\in\{r+1, \ldots , r+s=c(n)\} , we set

\phi_{j}(x)=-1 for x\in A_{n} , x\not\in \mathfrak{C}_{j}’, \mathfrak{C}_{j}^{r}

\phi_{j}(c_{j}^{r})=E_{j}^{2} , \phi_{j}(c_{j}^{r})=E_{j}^{-2} .

By Theorem 3. 1, it follows that \psi_{1} , \ldots . \phi_{r+s}(=\phi_{c(n)}) are units in
R(A_{n}) , which are not of finite order, and we fix these units throughout
this section. Then we have

THEOREM 3. 3. For any unit \emptyset in R(A_{n}) , which is not of finite
order, we can write

\phi^{2}=\phi_{1^{1}}^{i}\ldots\psi_{r^{r}}^{i}\cdot\phi_{r+1}^{2j\gamma+1}\ldots\phi_{r+s}^{2jr+S}

where i_{1} , ... . i_{r}, j_{r+1} , ... . j_{r+s}\in Z.

PROOF. Since N(E_{k})=-1 for k\in\{r+1, \ldots.r+s=c(n)\} , by Theorem
3. 2, we have

\phi(c_{k}^{r})=\pm E_{k}^{2j_{k}} . \phi(c_{k}^{rr})=\pm E_{k}^{-2j_{k}} for some j_{k}\in Z

where the sign of E_{k}^{2j_{k}} is equal to that of E_{k}^{-2j_{k}} . Hence we have

(\phi^{2})(c_{k}^{r})=E_{k}^{4j_{k}} , (\phi^{2})(c_{k}^{r})=E_{k}^{-4j_{k}} .

On the other hand, for h\in\{1, \ldots r\} we have

\phi(c_{h}^{r})=\pm E_{h}^{i_{h}} , \phi(c_{h}^{rr})=\pm E_{h}^{-i_{h}} for some i_{h}\in Z

where the sign of E_{h}^{i_{h}} is equal to that of E_{h}^{-i_{h}} . Therfore, if we

set \mu=\phi^{2}\phi_{1}^{-\iota 1}\ldots \phi_{\overline{r}}^{ir}\phi_{\overline{r}+1}^{2j\gamma+1}\ldots \phi_{\overline{r}+s}^{2j\gamma+s} , then we

can see that \mu(x)=1 for x\in \mathfrak{C}_{i}’ or x\in \mathfrak{C}_{i}^{rr}(i=1, \ldots.r+s=c(n)) . Thus it
follows that \mu is a unit in R(A_{n}) which is of finite order. By Lemma 2. 7,
we have \mu=\pm\chi_{1} . For an identity element 1 of A_{n} , \mu(1)=1 holds, and so
we obtain \mu=\chi_{1} .

This implies that
\phi^{2}=\phi_{1}^{i_{1}}\ldots\phi_{r^{r}}^{i}\phi_{r+1}^{2jr+1}\ldots\phi_{r+s}^{2jr+s} .

Thus the result follows. Q. E. D.

We denote by \langle\phi_{1}, \ldots.\phi_{c(n)}\rangle an abelian subgroup of U(R(A_{n})) gener-
ated by \phi_{1} , \ldots

\phi_{c(n)} , and we denote by U^{2}(R(A_{n})) the set { \psi^{2}|\phi is a unit in
R(A_{n})\} . Then the following theorem is a direct consequence of Theorem
3. 3.

THEOREM 3. 4. U^{2}(R(A_{n}))\subseteqq\langle\phi_{1}, \ldots , \phi_{c(n)}\rangle .
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COROLLARY 3. 5. Let \emptyset be any unit in R(A_{n}) . Then \phi(x) is a real
number for all x\in A_{n} . In particular, \phi(x)=\pm 1 for x\in A_{n}, x\not\in \mathfrak{C}_{i}’, \mathfrak{C}_{i}’(i=

1 , \ldots . c(n)) .

PROOF. It is clear that \phi(x) is a real number for x\in \mathfrak{C}_{i}’ or x\in \mathfrak{C}_{i}’ (i=
1 , \ldots . c(n)) . By Theorem 3. 3, we can see that (\phi^{2})(x)=1 for x\in A_{n} , x\not\in

\mathfrak{C}_{i}’, \mathfrak{C}_{i}’

’

(i=1, \ldots c(n)) . Thus the result follows. Q. E.D.
Let \Gamma=[m_{1_{ }}, \ldots . m_{r}] , m_{1}+\cdots+m_{r}=n be a self-associated frame of

real type and let (\Gamma. \mathfrak{C}, p) be a triple of \Gamma . Let \mathfrak{C}’ , \mathfrak{C}’ be the two con-
jugacy classes of A_{n} into which \mathfrak{C} splits.

Let \frac{1}{2}(t+u\sqrt{p}) (tu\neq 0) be the unit in Q(\sqrt{p}) . Then we have the
following theorem.

THEOREM 3. 6. In the above situation, let \emptyset be the unit in R(A_{n})

such that \phi(x)=\pm 1 for x\in A_{n}, x\not\in \mathfrak{C}’, \mathfrak{C}’

\phi(c’)=\frac{1}{2}(t+u\sqrt{p}) , \phi(c’)=\frac{1}{2}(t-u\sqrt{p})

where c’ . c^{rr} are the reprensentatives of \mathfrak{C}_{J}’\mathfrak{C}^{\gamma\gamma} respectively.
Then the following conditions are equivalent.

(i) \emptyset is the difference of two irreducible C- characters of A_{n} .
(ii) u=\pm 1

PROOF. We denote by \chi_{1} a principal character of A_{n} , and we denote
by (\lambda, \mu) the inner product of two class functions \lambda , \mu of A_{n} . That is,

( \lambda, \mu)=\frac{1}{|A_{n}|}\sum_{g\in An}\lambda(g)\overline{\mu(g)}

where \overline{\mu(g)} is the conjugate complex number of \mu(g) .
(i)\supset(ii) Since \emptyset is the difference of two irreducible C-charac-

ters of A_{n} and \phi(x) , (x\in A_{n}) , is a real number, we
have (\phi^{2}, \chi_{1})=(\phi\overline{\phi}, \chi_{1})=(\phi, \phi)=2

\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots(1)

On the other hand, by Theorem 3. 2 N( \frac{1}{2}(t+u\sqrt{p}))=1 , and so we
derive t^{2}=pu^{2}+4 . From this formula, we get

( \frac{t\pm u\sqrt{p}}{2})^{2}=\frac{pu^{2}\pm tu\sqrt{p}}{2}+1 .

Hence we have
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(\phi^{2}-\chi_{1})(x)=0 for x\in A_{n} , x\not\in \mathfrak{C}’ , \mathfrak{C}’

( \phi^{2}-\chi_{1})(c’)=\frac{pu^{2}+tu\sqrt{p}}{2} , ( \phi^{2}-\chi_{1})(c’)=\frac{pu^{2}-tu\sqrt{p}}{2}

By Lemma 2. 4 we have | \mathfrak{C}’|=|\mathfrak{C}’|=\frac{1}{p}|A_{n}| . Now we calculate an inner

product (\phi^{2}-\chi_{1}, \chi_{1}) .

( \phi^{2}-\chi_{1}, \chi_{1})=\frac{1}{|A_{n}|}(\frac{|A_{n}|}{p}(\frac{pu^{2}+tu\sqrt{p}}{2})+\frac{|A_{n}|}{p}(\frac{pu^{2}-tu\sqrt{p}}{2}))=u^{2}\ldots(2)

Therefore it follows that (\phi^{2}. \chi_{1})=1+u^{2} . Hence by the formula (1),

we have 1 +u^{2}=2 , and so we get u=\pm 1 .

(ii)\supset(i) We assume that u=\pm 1 . Then by the formula (2), we
get (\psi^{2}-\chi_{1}, \chi_{1})=1 and so we have

(\phi^{2}. \chi_{1})=(\phi,\overline{\phi})=(\phi, \psi)=2 .

Because \emptyset is a unit in R(A_{n}) , it follows that \phi(1)=\pm 1 for an identity
element 1 of A_{n} . Hence we can see that \emptyset is the difference of two irreduc-
ible C-characters of A_{n} . This completes the proof of Theorem 3.6. Q. E.D.

4. Some examples

EXAMPLE 1. U(R(A_{10})) . We will find the generators of U(R(A_{10})) .
First we compute c(10) . There are two self-associated frames; [4, 3, 2, 1],
[5, 2, 1^{3}] . We assign to [4, 3, 2, 1], [5, 2, 1^{3}] conjugacy classes of S_{10} , (7, 3) ,
(9, 1) respectively, and conjugacy classes (7, 3) , (9, 1) determine odd num-
bers 7\cross 3=21\equiv 1 (mod. 4), 9\cross 1=3^{2} respectively. Therefore we have
c(10)=1 .

Now we set \epsilon=\frac{1}{2}(5+\sqrt{21}) . Then \epsilon is a fundamental unit in Q(\sqrt{21}) .

(At the same time \epsilon is a standard unit in Q(\sqrt{21}) , and N(\epsilon) (the norm of \epsilon

over Q) is equal to 1.)
Secondly we prove that there is no unit \mu in R(A_{10}) such that

\mu(x)=\pm 1 for x\in A_{10} , x\not\in \mathfrak{C}’ , \mathfrak{C}’ .. \ldots . (3)
\mu(c’)=\pm\epsilon , \mu(c’)=\pm\epsilon^{-1}

where \mathfrak{C}’ , \mathfrak{C}’ are the cojugacy classes of A_{10} into which the conjugacy class
(7, 3) of S_{10} splits, and c’ , c’ are the representatives of \mathfrak{C}’ , \mathfrak{C}’ respectively.

Assume by way of contradiction that there is a unit \mu in R(A_{10}) which
satisfies the equations of (3). Let \lambda be a self-associated character of S_{10}
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which corresponds to the frame \lfloor 4,3,2,1\rfloor , and let \phi_{1} , \psi_{2} be the two ir-
reducible C-character of A_{10} into which \lambda splits. By Theorem 3. 6, w^{\vee}e

can see that \mu is the difference of two irreducible C-characters of A_{10} , and
so we may assume that \mu=\pm(\phi_{1}-\chi) for some irreducible C-character \chi

of A_{10} . Now we can easily compute deg\lambda=768 . (See p78 Theorem 3. 9 of
[3].) Hence we have deg\phi_{1}=deg\phi_{2}=384 . Since \mu(1)=\pm(\phi_{1}(1)-\chi(1))=

\pm(384-\chi(1))=\pm 1 , it follows that \chi(1)=383 or \chi(1)=385 . But there is no
irreducible C character \chi of A_{10} such that \chi(1)=383 or \chi(1)=385 , because

\frac{|A_{10}|}{\chi(1)}=\frac{10!}{2\cross 383}\not\in Z and \frac{|A_{10}|}{\chi(1)}=\frac{10!}{2\cross 385}=\frac{10!}{2\cross 5\cross 7\cross 11}\not\in Z .

This contradiction implies that there is no unit \mu in R(A_{10}) which
satisfies the equations of (3).

Let \emptyset be the class function of A_{10} such that
\phi(x)=1 for x\in A_{10} , x\not\in \mathfrak{C}’ , \mathfrak{C}’

\phi(c’)=\epsilon^{2}=\frac{23+5\sqrt{21}}{2} , \phi(c’)=\epsilon^{-2}=\frac{23-5\sqrt{21}}{2} .

Then by Theorem 3. 1, it follows that \emptyset is a unit in R(A_{10}) . There
fore we have

U(R(A_{10}))=\{\pm\phi^{i}|i\in Z\} . (See the proofs of Theorem 3. 2 and
Theorem 3. 3.)

EXAMPLE 2. U(R(A_{p})) . Let p be a prime number such that p\equiv 1

(mod. 4) and c(p)=1 . For example, 5, 13 and 17 are the prime numbers
which satisfy these conditions. Then we will find the generators of
U(R(A_{p})) . Let \epsilon be a fundamental unit of Q(\sqrt{p}) , then N(\epsilon)=-1 . (See
p316 Problem 5 of [4].)

There is a self-associated frame; [ \frac{p+1}{2} , 1^{\frac{p-1}{2}}] . We assign to this
frame a conjugacy class of S_{p} , (p). Then the conjugacy class (p) splits
into two conjugacy classes \mathfrak{C}’ , \mathfrak{C}’ of A_{p} . Let \lambda be a self-associated char-
acter of S_{p} which corresponds to [ \frac{p+1}{2},1^{\frac{p-1}{2}}] . When we consider \lambda as
a character of A_{p} , by Theorem 2. 1 we can see that \lambda is the sum of two
irreducible C-characters \psi_{1} , \phi_{2} of A_{p} such that \phi_{1}(c’)=\phi_{2}(c’)=\frac{1}{2}(1+\sqrt{p}) ,

\phi_{1}(c^{rr})=\phi_{2}(c’)=\frac{1}{2}(1-\sqrt{p}) , where c’, c’ are the representatives of \mathfrak{C}’\mathfrak{C}’

respectively. Therefore it follows that \epsilon is a standard unit in Q(\sqrt{p}) .
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Since N(\epsilon)=-1 , by Theorem 3. 2, there is no unit \mu in R(A_{p}) such that
\mu(x)=\pm 1 for x\in A_{p} , x\not\in \mathfrak{C}’ , \mathfrak{C}’ and \mu(c’)=\pm\epsilon , \mu(c’)=\pm\epsilon’ where the sign

of \epsilon is equal to that of \epsilon’ . Let \emptyset be the class function of A_{p} such that
\phi(x)=-1 for x\in A_{p} , x\not\in \mathfrak{C}’ , \mathfrak{C}’ and \psi(c’)=\epsilon^{2} . \psi(c’)=\epsilon^{-2} Then by TheO-
rem 3. 1, \emptyset is a unit in R(A_{p}) and so we have U(R(A_{p}))=\{\pm\phi^{i}|i\in Z\} .

EXAMPLE 3. We show that there is a unit in R(A_{5}) , which is the
difference of two irreducible C-character of A_{5} . (See Theorem 3. 6.) A_{5}

has the following conjugacy classes

\mathfrak{C}_{1}=\{1\} , \mathfrak{C}_{2}=\{(12)(34),\cdots\} , \mathfrak{C}_{3}=\{(123),\cdots\} ,
\mathfrak{C}_{4}=\{(12345),\cdots\} , \mathfrak{C}_{5}=\{(13524),\cdots\} .

Hence A_{5} has five irreducible C-character \chi_{1},
\cdots

\chi_{5} . For the charac-
ter table of A_{5} , we obtain

\chi_{1}

\chi_{2}

\chi_{3}

\chi_{4}

\chi_{5}

From this character table, we get the following table for \chi_{4}-\chi_{2} and \chi_{5}-\chi_{2} .

\chi_{4}-\chi_{2}

\chi_{5}-\chi_{2}

Therefore \chi_{4}-\chi_{2} and \chi_{5}-\chi_{2} are units in R(A_{5}) which are the
differences of two irreducible C-character of A_{5} . Since c(5)=1 ,

\frac{3+\sqrt{5}}{2}=(\frac{1+\sqrt{5}}{2})^{2} . and \frac{1+\sqrt{5}}{2} is a fundamental unit in Q(\sqrt{5}) , of

wh_{\dot{1}}ch the norm over Q is equal to -1, the units in R(A_{5}) are given by

\pm(\chi_{4}-\chi_{2})^{i} . i=0 , \pm 1 , \pm 2 , \cdots .
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(See Example 2.)
Finally we note that as for U(R(A_{6})) we also can prove the same

statement.
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