Matrix invariants of binary forms

Daisuke TAMBARA

(Received September 5, 1994)

Abstract. Let S_n be the vector space of homogeneous polynomials of degree n in two variables. Let $A_d(n)$ be the noncommutative algebra consisting of SL_2 -equivariant polynomial maps from S_d to $EndS_n$. We show that generators for $A_d(n)$ are derived from generators for the algebra of covariants of the *d*-ic forms.

Key words: binary forms, covariants, transvectants, Clebsch-Gordan rule.

Introduction

Let k be a field of characteristic 0. Put $S = k[x_1, x_2]$, the polynomial ring, and let S_n be its homogenous part of degree n. The group SL_2 acts on S canonically. We are concerned about SL_2 -invariant polynomial maps from the space S_d to the matrix algebra $\operatorname{End} S_n$. Those maps form an algebra $A_d(n)$ by matrix multiplication. $A_d(0)$ is the algebra of invariants of the d-ic form, and was studied in classical invariant theory. We show that $A_d(n)$ is a deformation of a factor of the algebra of covariants of the d-ic form. In particular, the knowledge of the generators for the algebra of covariants gives that for the algebra $A_d(n)$.

More generally, let R be a commutative algebra with SL_2 -action. Then SL_2 acts on the algebra $R \otimes \operatorname{End} S_n$ and let $A(n) = (R \otimes \operatorname{End} S_n)^{SL_2}$ be the invariant algebra. On the other hand, we have the commutative algebra $C = (R \otimes S)^{SL_2}$ with grading given by $C_n = (R \otimes S_n)^{SL_2}$. For $\alpha \in R \otimes S_n$, $\beta \in R \otimes S_m$ and $p \ge 0$, we have the transvectant $(\alpha, \beta)_p \in R \otimes S_{n+m-2p}$, where α, β are regarded as forms with coefficients in R ([1]). Define the map $\phi : \bigoplus_{p=0}^n C_{2p} \to A(n)$ by

$$\phi(\alpha)(\gamma) = \frac{n!}{(n-p)!} (\alpha, \gamma)_p$$

for $\alpha \in C_{2p}$, $\gamma \in R \otimes S_n$. Then it is shown that ϕ is an isomorphism and

$$\phi(\alpha)\phi(\beta) - \phi(\alpha\beta) \in \phi(\bigoplus_{r < p+q} C_{2r})$$

¹⁹⁹¹ Mathematics Subject Classification: 16W20, 13A50.

for $\alpha \in C_{2p}$, $\beta \in C_{2q}$ with $p+q \leq n$. It follows that if the algebra $\bigoplus_{p=0}^{n} C_{2p}$ is generated by homogenous elements $\alpha_1, \alpha_2, \ldots$, then the algebra A(n) is generated by $\phi(\alpha_1), \phi(\alpha_2), \ldots$

When R is the coordinate ring of S_d , A(n) becomes $A_d(n)$ and C becomes the algebra of covariants. Using Cayley's determination of C for d = 3, 4, we give the generators for $A_3(n)$, $A_4(n)$.

1. SL_2 -invariant of matrix algebras

Our result is an immediate consequence of a property of transvectants, which might be a classical fact (Proposition below). Let us review some basic facts about binary forms. The Ω -process is the map

$$\Omega : S \otimes S \to S \otimes S$$
$$\alpha \otimes \beta \mapsto \frac{\partial \alpha}{\partial x_1} \otimes \frac{\partial \beta}{\partial x_2} - \frac{\partial \alpha}{\partial x_2} \otimes \frac{\partial \beta}{\partial x_1}.$$

This is SL_2 -linear and takes $S_n \otimes S_m$ into $S_{n-1} \otimes S_{m-1}$. Put $\Omega' = \frac{1}{nm}\Omega$: $S_n \otimes S_m \to S_{n-1} \otimes S_{m-1}$. For $0 \le p \le n, m$, let τ_p be the composite map

$$\tau_p: S_n \otimes S_m \xrightarrow{\Omega'^p} S_{n-p} \otimes S_{m-p} \xrightarrow{\text{mult}} S_{n+m-2p}$$

 $(\alpha, \beta)_p = \tau_p(\alpha \otimes \beta)$ is called the p^{th} transvectant of α and β ([1, §48]).

The Clebsch-Gordan rule is the decomposition

$$S_n \otimes S_m \cong \bigoplus_{p=0}^{\min(n,m)} S_{n+m-2p}$$
$$\alpha \otimes \beta \mapsto \left((\alpha,\beta)_p \right)_p.$$

Equivalently, we have

$$\operatorname{Hom}_{SL_2}(S_n \otimes S_m, S_l) = \begin{cases} k\tau_p & \text{if } 0 \leq \exists p \leq n, m \text{ such that } n+m-2p = l \\ 0 & \text{otherwise.} \end{cases}$$

Another equivalent form is the isomorphism

$$\bigoplus_{p=(m-n)_{+}}^{m} S_{n-m+2p} \cong \operatorname{Hom}(S_{m}, S_{n})$$
$$S_{n-m+2p} \ni \alpha \mapsto (\alpha,)_{p}.$$

Here $z_+ = \max(z, 0)$ for $z \in \mathbb{Z}$. Because

$$\operatorname{Hom}(S_m, S_n) \cong S_n \otimes S_m^*$$
$$\cong \bigoplus_{l \ge 0} \operatorname{Hom}_{SL_2}(S_l, S_n \otimes S_m^*) \otimes S_l$$
$$\cong \bigoplus_{l \ge 0} \operatorname{Hom}_{SL_2}(S_l \otimes S_m, S_n) \otimes S_l$$
$$\cong \bigoplus_{p=(m-n)_+}^m S_{n-m+2p}.$$

For each $m, n \ge 0$ let $\varphi : \bigoplus_{p=(m-n)_+}^m S_{n-m+2p} \to \operatorname{Hom}(S_m, S_n)$ be the isomorphism taking $\alpha \in S_{n-m+2p}$ to the map $\frac{n!}{(m-p)!}(\alpha, \)_p$.

Proposition Let $\alpha \in S_{n-m+2p}$, $\beta \in S_{m-l+2q}$ with $(m-n)_+ \leq p \leq m$, $(l-m)_+ \leq q \leq l$, $p+q \leq l$. Then

$$\varphi(\alpha)\varphi(\beta) - \varphi(\alpha\beta) \in \varphi(\bigoplus_{r < p+q} S_{n-l+2r}) \quad (\subset \operatorname{Hom}(S_l, S_n)).$$

Proof will be given later.

Let R be a commutative k-algebra with SL_2 -action. Put $C = (R \otimes S)^{SL_2}$ and $C_n = (R \otimes S_n)^{SL_2}$. For $m, n \ge 0$ put $A(m, n) = (R \otimes \operatorname{Hom}(S_m, S_n))^{SL_2}$. We have the composition maps $A(m, n) \times A(l, m) \to A(l, n)$. Tensoring Rwith the SL_2 -isomorphism φ and taking the SL_2 -invariant, we obtain

Theorem For each $m, n \ge 0$, we have the isomorphism

$$\phi: \bigoplus_{p=(m-n)_{+}}^{m} \quad C_{n-m+2p} \xrightarrow{\sim} A(m,n)$$
$$C_{n-m+2p} \ni \alpha \mapsto \frac{n!}{(m-p)!} (\alpha, \)_{p}$$

For $\alpha \in C_{n-m+2p}$, $\beta \in C_{m-l+2q}$ with $(m-n)_+ \leq p \leq m$, $(l-m)_+ \leq q \leq l$, $p+q \leq l$ we have

$$\phi(\alpha)\phi(\beta) - \phi(\alpha\beta) \in \phi(\bigoplus_{r < p+q} C_{n-l+2r}) \quad (\subset A(l,n)).$$

Corollary If the factor algebra $\bigoplus_{p=0}^{n} C_{2p}$ of $\bigoplus_{p\geq 0} C_{2p}$ is generated by homogenous elements $\alpha_1, \alpha_2, \ldots$, then the algebra A(n, n) is generated by

 $\phi(\alpha_1), \phi(\alpha_2), \ldots$

Remark. Let $B = R^{SL_2}$. Then C and A(m, n) are B-modules and the isomorphism ϕ is B-linear. If α_i generate $\bigoplus_p C_{2p}$ over B, then $\phi(\alpha_i)$ generate A(n, n) over B.

Proof of Proposition. By Clebsch-Gordan we have

$$S_{n_1} \otimes S_{n_2} \otimes S_{n_3} \cong \bigoplus_{t=0}^{\min(n_1,n_2)} S_{n_1+n_2-2t} \otimes S_{n_3}$$
$$\cong \bigoplus_{t=0}^{\min(n_1,n_2)\min(n_1+n_2-2t,n_3)} S_{n_1+n_2+n_3-2t-2s}.$$

Hence $\operatorname{Hom}_{SL_2}(S_{n_1} \otimes S_{n_2} \otimes S_{n_3}, S_n)$ has a k-basis consisting of the maps

$$\tau_s(\tau_t \otimes 1) : S_{n_1} \otimes S_{n_2} \otimes S_{n_3} \to S_{n_1+n_2-2t} \otimes S_{n_3} \to S_n$$

for s, t such that

$$0 \le t \le n_1, n_2, \quad 0 \le s \le n_1 + n_2 - 2t, n_3,$$

 $n_1 + n_2 + n_3 - 2(s+t) = n.$

Likewise, $\operatorname{Hom}_{SL_2}(S_{n_1} \otimes S_{n_2} \otimes S_{n_3}, S_n)$ has a k-basis consisting of the maps

$$\tau_p(1 \otimes \tau_q) : S_{n_1} \otimes S_{n_2} \otimes S_{n_3} \to S_{n_1} \otimes S_{n_2+n_3-2q} \to S_n$$

for p, q such that

$$egin{aligned} 0 &\leq q \leq n_2, n_3, \quad 0 \leq p \leq n_1, n_2 + n_3 - 2q, \ n_1 + n_2 + n_3 - 2(p+q) &= n. \end{aligned}$$

So there must be relations

$$\tau_p(1 \otimes \tau_q) = \sum_{s,t} C_{pq}^{st} \tau_s(\tau_t \otimes 1)$$

with some $C_{pq}^{st} \in k$. Namely,

$$(\alpha, (\beta, \gamma)_q)_p = \sum_{s,t} C_{pq}^{st} ((\alpha, \beta)_t, \gamma)_s \tag{*}$$

for all $\alpha \in S_{n_1}$, $\beta \in S_{n_2}$, $\gamma \in S_{n_3}$. Thus we have in Hom (S_{n_3}, S_n) that

$$(\alpha,)_p \circ (\beta,)_q = \sum_{s+t=p+q} C_{pq}^{st}((\alpha, \beta)_t,)_s$$

$$= C_{p,q}^{p+q,0}(\alpha\beta,)_{p+q}$$

+ (a linear combination of $(\delta,)_s$ with $s < p+q$).

So the proposition follows from

Lemma If $p + q \leq n_3$, then

$$C_{p,q}^{p+q,0} = \binom{n_3 - q}{p} \binom{n_2 + n_3 - 2q}{p}^{-1}.$$

Proof. Following [1], for linear forms $a = a_1x_1 + a_2x_2$ and $b = b_1x_1 + b_2x_2$ we write $(ab) = a_1b_2 - a_2b_1$. Then

$$\Omega'(a^n\otimes b^m)=(ab)a^{n-1}\otimes b^{m-1}.$$

We need the formula $[1, \S49(v)]$

$$(f,gh)_p = \sum_{s+t=p} \frac{\binom{m}{s}\binom{l}{t}}{\binom{m+l}{p}} \nabla \Omega_{12}^{\prime s} \Omega_{13}^{\prime t} (f \otimes g \otimes h)$$

for $f \in S_n$, $g \in S_m$, $h \in S_l$. Here $\nabla : S \otimes S \otimes S \to S$ is the multiplication map and $\Omega'_{ij} : S \otimes S \otimes S \to S \otimes S \otimes S$ is obtained by making Ω' act on the (ij)-factor of $S \otimes S \otimes S$.

Now put w = p + q. Evaluate the both sides of (*) for $\alpha = a^{n_1}, = a^{n_2}, \gamma = b^{n_3}$ with a, b linear forms. Since $(\alpha, \beta)_t = 0$ for t > 0, we have

RHS =
$$C_{pq}^{w0}(a^{n_1+n_2}, b^{n_3})_w = C_{pq}^{w0}(ab)^w a^{n_1+n_2-w} b^{n_3-w}$$
.

Using the above formula, we compute

LHS =
$$(a^{n_1}, (ab)^q a^{n_2 - q} b^{n_3 - q})_p$$

= $(ab)^q \sum_{s+t=p} \frac{\binom{n_2 - q}{s} \binom{n_3 - q}{t}}{\binom{n_2 + n_3 - 2q}{p}} \times \nabla \Omega_{12}^{\prime s} \Omega_{13}^{\prime t} (a^{n_1} \otimes a^{n_2 - q} \otimes b^{n_3 - q})$

$$= (ab)^{q} \frac{\binom{n_{3}-q}{p}}{\binom{n_{2}+n_{3}-2q}{p}} \nabla \Omega_{13}^{\prime p} (a^{n_{1}} \otimes a^{n_{2}-q} \otimes b^{n_{3}-q})$$
$$= \frac{\binom{n_{3}-q}{p}}{\binom{n_{2}+n_{3}-2q}{p}} (ab)^{w} a^{n_{1}+n_{2}-w} b^{n_{3}-w}.$$

Hence

$$C_{pq}^{w0} = \frac{\binom{n_3 - q}{p}}{\binom{n_2 + n_3 - 2q}{p}}.$$

Remark. The theorem of $[1, \S 50(ii)]$ is of a similar nature to our proposition. Explicit linear relations among $(\alpha, (\beta, \gamma)_q)_p$ and $((\alpha, \beta)_t, \gamma)_s$ are given by Gordan's series (see the next section).

2. Matrix invariants of the cubic and the quartic

Let

$$f = \sum_{i=0}^d \binom{d}{i} a_i x_1^{d-i} x_2^i$$

be the general *d*-ic form. This means that the coefficients a_i are taken as indeterminates. SL_2 acts on the polynomial algebra $R = k[a_0, \ldots, a_d]$ in such a way that f is invariant. As before, put $C = (R \otimes S)^{SL_2}$, $C_n = (R \otimes S_n)^{SL_2}$ and $B = R^{SL_2}$. The generators for C for $d \leq 6$ were given by Cayley and Gordan. So by Corollary we can know in principle the generators for the algebra $A(n,n) = (R \otimes \text{End}S_n)^{SL_2}$ for such d. Let us see the case d = 3, 4.

Case d = 3. Put $h = (f, f)_2 \in C_2$, $t = (f, h)_1 \in C_3$, $\Delta = (h, h)_2 \in C_0 = B$. It is known that C is generated by f, h, t, Δ with relation $2t^2 + h^3 + \Delta f^2 = 0$ and that $B = k[\Delta]$ ([1, §88]).

It follows that the subalgebra $\bigoplus_p C_{2p}$ of C is generated by h, f^2, ft

over B. Therefore the B-algebra $A(n,n) = (R \otimes \text{End}S_n)^{SL_2}$ is generated by $(h,)_1, (f^2,)_3, (ft,)_3$. But there is a relation

$$[(h,)_1, (f^2,)_3] = -\frac{6}{n}(ft,)_3,$$

where [x, y] = xy - yx. So, A(n, n) is generated by $(h,)_1, (f^2,)_3$ over B.

To derive the above commutation relation we need to find the constants C_{pq}^{st} in (*) for (p,q) = (1,3), (3,1). A quick way will be the use of Gordan's series [1, §54(IX)]. It is the identity

$$\sum_{i} (-1)^{i} \frac{\binom{n_{3}-s-k}{i} \binom{r}{i}}{\binom{n_{2}+n_{3}-2s-i+1}{i}} (\alpha, (\beta, \gamma)_{s+i})_{r+k-i}$$
$$= \sum_{i} (-1)^{i} \frac{\binom{n_{1}-r-k}{i} \binom{s}{i}}{\binom{n_{1}+n_{2}-2r-i+1}{i}} ((\alpha, \beta)_{r+i}, \gamma)_{s+k-i}$$

for $\alpha \in S_{n_1}$, $\beta \in S_{n_2}$, $\gamma \in S_{n_3}$ and nonnegataive integers r, s, k such that $r+k \leq n_1, s+k \leq n_3, r+s \leq n_2$ and either k=0 or $r+s=n_2$.

Now let $\alpha \in S_2$, $\beta \in S_6$, $\gamma \in S_n$ with $n \ge 4$. Then the identities for (r, s, k) = (1, 3, 0), (0, 4, 0) become

$$(\alpha, (\beta, \gamma)_3)_1 - \frac{n-3}{n} (\alpha, (\beta, \gamma)_4)_0 = ((\alpha, \beta)_1, \gamma)_3 - \frac{1}{2} ((\alpha, \beta)_2, \gamma)_2,$$
$$(\alpha, (\beta, \gamma)_4)_0 = ((\alpha, \beta)_0, \gamma)_4 - ((\alpha, \beta)_1, \gamma)_3 + \frac{2}{7} ((\alpha, \beta)_2, \gamma)_2.$$

Hence

$$(\alpha, (\beta, \gamma)_3)_1 = \frac{n-3}{n} ((\alpha, \beta)_0, \gamma)_4 + \frac{3}{n} ((\alpha, \beta)_1, \gamma)_3 - \frac{3n+12}{14n} ((\alpha, \beta)_2, \gamma)_2.$$

Similarly letting (r, s, k) = (1, 1, 2), (0, 2, 2), we have

$$(\beta, (\alpha, \gamma)_1)_3 = \frac{n-3}{n} ((\beta, \alpha)_0, \gamma)_4 + \frac{3}{n} ((\beta, \alpha)_1, \gamma)_3 - \frac{3n+12}{14n} ((\beta, \alpha)_2, \gamma)_2.$$

Since $(\beta, \alpha)_p = (-1)^p (\alpha, \beta)_p$, we obtain

$$[(\alpha,)_1, (\beta,)_3] = \frac{6}{n}((\alpha, \beta)_1,)_3$$

as an operator on S_n . This holds also for n < 4.

Since $(h, f^2)_1 = -ft$, we obtain the desired relation.

Case d = 4. Let $h = (f, f)_2 \in C_4$, $t = (f, h)_1 \in C_6$, $i = (f, f)_4 \in C_0$, $j = (f, h)_4 \in C_0$. Then B is the polynomial algebra k[i, j] and the B-algebra C is generated by f, h, t ([1, §89]). Also $\bigoplus_p C_{2p} = C$. Hence B-algebra A(n, n) is generated by $(f,)_2, (h,)_2, (t,)_3$. But we have

$$[(f,)_2, (h,)_2] = \frac{8(n-2)}{n(n-1)}(t,)_3.$$

If n = 2, $(t,)_3 = 0$. Consequently, A(n, n) is generated by $(f,)_2$ and $(h,)_2$ over B.

The commutation relation is proved in the same way. Using the Gordan series for $\alpha, \beta \in S_4$ and (r, s, k) = (2, 2, 0), (1, 3, 0), (0, 4, 0), we obtain the identity

$$n(n-1)(\alpha, \)_2 \circ (\beta, \)_2$$

= $(n-2)(n-3)((\alpha,\beta)_0, \)_4 + 4(n-2)((\alpha,\beta)_1, \)_3$
 $-\frac{2}{7}(n+5)(n-3)((\alpha,\beta)_2, \)_2 - \frac{2}{5}(n+3)((\alpha,\beta)_3, \)_1$
 $+\frac{1}{30}(n+3)(n+2)((\alpha,\beta)_4, \)_0$

as an operator on S_n , and hence

$$n(n-1)[(\alpha, \)_2, (\beta, \)_2] = 8(n-2)((\alpha, \beta)_1, \)_3$$
$$-\frac{4}{5}(n+3)((\alpha, \beta)_3, \)_1.$$

Since $(f, h)_1 = t$ and $(f, h)_3 = 0$, the relation follows.

References

[1] Grace J.H. and Young A., *The algebra of invariants*. Cambridge University Press, 1903.

.

· · ·

Department of Mathematics Hirosaki University Hirosaki 036, Japan E-mail: tambara@cc.hirosaki-u.ac.jp