Matrix invariants of binary forms

Daisuke Tambara

(Received September 5, 1994)

Abstract

Let S_{n} be the vector space of homogeneous polynomials of degree n in two variables. Let $A_{d}(n)$ be the noncommutative algebra consisting of $S L_{2}$-equivariant polynomial maps from S_{d} to $\operatorname{End} S_{n}$. We show that generators for $A_{d}(n)$ are derived from generators for the algebra of covariants of the d-ic forms.

Key words: binary forms, covariants, transvectants, Clebsch-Gordan rule.

Introduction

Let k be a field of characteristic 0 . Put $S=k\left[x_{1}, x_{2}\right]$, the polynomial ring, and let S_{n} be its homogenous part of degree n. The group $S L_{2}$ acts on S canonically. We are concerned about $S L_{2}$-invariant polynomial maps from the space S_{d} to the matrix algebra $\operatorname{End} S_{n}$. Those maps form an algebra $A_{d}(n)$ by matrix multiplication. $A_{d}(0)$ is the algebra of invariants of the d-ic form, and was studied in classical invariant theory. We show that $A_{d}(n)$ is a deformation of a factor of the algebra of covariants of the d-ic form. In particular, the knowledge of the generators for the algebra of covariants gives that for the algebra $A_{d}(n)$.

More generally, let R be a commutative algebra with $S L_{2}$-action. Then $S L_{2}$ acts on the algebra $R \otimes \operatorname{End} S_{n}$ and let $A(n)=\left(R \otimes \operatorname{End} S_{n}\right)^{S L_{2}}$ be the invariant algebra. On the other hand, we have the commutative algebra $C=(R \otimes S)^{S L_{2}}$ with grading given by $C_{n}=\left(R \otimes S_{n}\right)^{S L_{2}}$. For $\alpha \in R \otimes S_{n}$, $\beta \in R \otimes S_{m}$ and $p \geq 0$, we have the transvectant $(\alpha, \beta)_{p} \in R \otimes S_{n+m-2 p}$, where α, β are regarded as forms with coefficients in R ([1]). Define the $\operatorname{map} \phi: \bigoplus_{p=0}^{n} C_{2 p} \rightarrow A(n)$ by

$$
\phi(\alpha)(\gamma)=\frac{n!}{(n-p)!}(\alpha, \gamma)_{p}
$$

for $\alpha \in C_{2 p}, \gamma \in R \otimes S_{n}$. Then it is shown that ϕ is an isomorphism and

$$
\phi(\alpha) \phi(\beta)-\phi(\alpha \beta) \in \phi\left(\bigoplus_{r<p+q} C_{2 r}\right)
$$

[^0]for $\alpha \in C_{2 p}, \beta \in C_{2 q}$ with $p+q \leq n$. It follows that if the algebra $\oplus_{p=0}^{n} C_{2 p}$ is generated by homogenous elements $\alpha_{1}, \alpha_{2}, \ldots$, then the algebra $A(n)$ is generated by $\phi\left(\alpha_{1}\right), \phi\left(\alpha_{2}\right), \ldots$

When R is the coordinate ring of $S_{d}, A(n)$ becomes $A_{d}(n)$ and C becomes the algebra of covariants. Using Cayley's determination of C for $d=3,4$, we give the generators for $A_{3}(n), A_{4}(n)$.

1. $S L_{2}$-invariant of matrix algebras

Our result is an immediate consequence of a property of transvectants, which might be a classical fact (Proposition below). Let us review some basic facts about binary forms. The Ω-process is the map

$$
\begin{aligned}
& \Omega: S \otimes S \rightarrow S \otimes S \\
& \quad \alpha \otimes \beta \mapsto \frac{\partial \alpha}{\partial x_{1}} \otimes \frac{\partial \beta}{\partial x_{2}}-\frac{\partial \alpha}{\partial x_{2}} \otimes \frac{\partial \beta}{\partial x_{1}} .
\end{aligned}
$$

This is $S L_{2}$-linear and takes $S_{n} \otimes S_{m}$ into $S_{n-1} \otimes S_{m-1}$. Put $\Omega^{\prime}=\frac{1}{n m} \Omega$: $S_{n} \otimes S_{m} \rightarrow S_{n-1} \otimes S_{m-1}$. For $0 \leq p \leq n, m$, let τ_{p} be the composite map

$$
\tau_{p}: S_{n} \otimes S_{m} \xrightarrow{\Omega^{\prime p}} S_{n-p} \otimes S_{m-p} \xrightarrow{\text { mult }} S_{n+m-2 p} .
$$

$(\alpha, \beta)_{p}=\tau_{p}(\alpha \otimes \beta)$ is called the $p^{\text {th }}$ transvectant of α and $\beta([1, \S 48])$.
The Clebsch-Gordan rule is the decomposition

$$
\begin{aligned}
& S_{n} \otimes S_{m} \cong \bigoplus_{p=0}^{\min (n, m)} S_{n+m-2 p} \\
& \alpha \otimes \beta \mapsto\left((\alpha, \beta)_{p}\right)_{p} .
\end{aligned}
$$

Equivalently, we have

$$
\begin{aligned}
& \operatorname{Hom}_{S L_{2}}\left(S_{n} \otimes S_{m}, S_{l}\right) \\
& \quad= \begin{cases}k \tau_{p} & \text { if } 0 \leq \exists p \leq n, m \text { such that } n+m-2 p=l \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Another equivalent form is the isomorphism

$$
\begin{aligned}
\bigoplus_{p=(m-n)_{+}}^{m} & S_{n-m+2 p} \cong \operatorname{Hom}\left(S_{m}, S_{n}\right) \\
& S_{n-m+2 p} \ni \alpha \mapsto(\alpha,)_{p} .
\end{aligned}
$$

Here $z_{+}=\max (z, 0)$ for $z \in \mathbb{Z}$. Because

$$
\begin{aligned}
\operatorname{Hom}\left(S_{m}, S_{n}\right) & \cong S_{n} \otimes S_{m}^{*} \\
& \cong \bigoplus_{l \geq 0} \operatorname{Hom}_{S L_{2}}\left(S_{l}, S_{n} \otimes S_{m}^{*}\right) \otimes S_{l} \\
& \cong \bigoplus_{l \geq 0} \operatorname{Hom}_{S L_{2}}\left(S_{l} \otimes S_{m}, S_{n}\right) \otimes S_{l} \\
& \cong \bigoplus_{p=(m-n)_{+}}^{m} S_{n-m+2 p} .
\end{aligned}
$$

For each $m, n \geq 0$ let $\varphi: \bigoplus_{p=(m-n)+}^{m} S_{n-m+2 p} \rightarrow \operatorname{Hom}\left(S_{m}, S_{n}\right)$ be the isomorphism taking $\alpha \in S_{n-m+2 p}$ to the map $\frac{n!}{(m-p)!}(\alpha,)_{p}$.
Proposition Let $\alpha \in S_{n-m+2 p}, \beta \in S_{m-l+2 q}$ with $(m-n)_{+} \leq p \leq m$, $(l-m)_{+} \leq q \leq l, p+q \leq l$. Then

$$
\varphi(\alpha) \varphi(\beta)-\varphi(\alpha \beta) \in \varphi\left(\bigoplus_{r<p+q} S_{n-l+2 r}\right) \quad\left(\subset \operatorname{Hom}\left(S_{l}, S_{n}\right)\right)
$$

Proof will be given later.
Let R be a commutative k-algebra with $S L_{2}$-action. Put $C=(R \otimes S)^{S L_{2}}$ and $C_{n}=\left(R \otimes S_{n}\right)^{S L_{2}}$. For $m, n \geq 0$ put $A(m, n)=\left(R \otimes \operatorname{Hom}\left(S_{m}, S_{n}\right)\right)^{S L_{2}}$. We have the composition maps $A(m, n) \times A(l, m) \rightarrow A(l, n)$. Tensoring R with the $S L_{2}$-isomorphism φ and taking the $S L_{2}$-invariant, we obtain
Theorem For each $m, n \geq 0$, we have the isomorphism

$$
\begin{aligned}
\phi: & \bigoplus_{p=(m-n)_{+}}^{m} \\
& C_{n-m+2 p} \xrightarrow{\sim} A(m, n) \\
& C_{n-m+2 p} \ni \alpha \mapsto \frac{n!}{(m-p)!}(\alpha,)_{p} .
\end{aligned}
$$

For $\alpha \in C_{n-m+2 p}, \beta \in C_{m-l+2 q}$ with $(m-n)_{+} \leq p \leq m,(l-m)_{+} \leq q \leq l$, $p+q \leq l$ we have

$$
\phi(\alpha) \phi(\beta)-\phi(\alpha \beta) \in \phi\left(\bigoplus_{r<p+q} C_{n-l+2 r}\right) \quad(\subset A(l, n)) .
$$

Corollary If the factor algebra $\bigoplus_{p=0}^{n} C_{2 p}$ of $\bigoplus_{p \geq 0} C_{2 p}$ is generated by homogenous elements $\alpha_{1}, \alpha_{2}, \ldots$, then the algebra $A(n, n)$ is generated by
$\phi\left(\alpha_{1}\right), \phi\left(\alpha_{2}\right), \ldots$
Remark. Let $B=R^{S L_{2}}$. Then C and $A(m, n)$ are B-modules and the isomorphism ϕ is B-linear. If α_{i} generate $\bigoplus_{p} C_{2 p}$ over B, then $\phi\left(\alpha_{i}\right)$ generate $A(n, n)$ over B.

Proof of Proposition. By Clebsch-Gordan we have

$$
\begin{aligned}
S_{n_{1}} \otimes S_{n_{2}} \otimes S_{n_{3}} & \cong \bigoplus_{t=0}^{\min \left(n_{1}, n_{2}\right)} S_{n_{1}+n_{2}-2 t} \otimes S_{n_{3}} \\
& \cong \bigoplus_{t=0}^{\min \left(n_{1}, n_{2}\right) \min \left(n_{1}+n_{2}-2 t, n_{3}\right)} \bigoplus_{s=0} S_{n_{1}+n_{2}+n_{3}-2 t-2 s}
\end{aligned}
$$

Hence $\operatorname{Hom}_{S L_{2}}\left(S_{n_{1}} \otimes S_{n_{2}} \otimes S_{n_{3}}, S_{n}\right)$ has a k-basis consisting of the maps

$$
\tau_{s}\left(\tau_{t} \otimes 1\right): S_{n_{1}} \otimes S_{n_{2}} \otimes S_{n_{3}} \rightarrow S_{n_{1}+n_{2}-2 t} \otimes S_{n_{3}} \rightarrow S_{n}
$$

for s, t such that

$$
\begin{aligned}
& 0 \leq t \leq n_{1}, n_{2}, \quad 0 \leq s \leq n_{1}+n_{2}-2 t, n_{3} \\
& n_{1}+n_{2}+n_{3}-2(s+t)=n
\end{aligned}
$$

Likewise, $\operatorname{Hom}_{S L_{2}}\left(S_{n_{1}} \otimes S_{n_{2}} \otimes S_{n_{3}}, S_{n}\right)$ has a k-basis consisting of the maps

$$
\tau_{p}\left(1 \otimes \tau_{q}\right): S_{n_{1}} \otimes S_{n_{2}} \otimes S_{n_{3}} \rightarrow S_{n_{1}} \otimes S_{n_{2}+n_{3}-2 q} \rightarrow S_{n}
$$

for p, q such that

$$
\begin{aligned}
& 0 \leq q \leq n_{2}, n_{3}, \quad 0 \leq p \leq n_{1}, n_{2}+n_{3}-2 q \\
& n_{1}+n_{2}+n_{3}-2(p+q)=n
\end{aligned}
$$

So there must be relations

$$
\tau_{p}\left(1 \otimes \tau_{q}\right)=\sum_{s, t} C_{p q}^{s t} \tau_{s}\left(\tau_{t} \otimes 1\right)
$$

with some $C_{p q}^{s t} \in k$. Namely,

$$
\begin{equation*}
\left(\alpha,(\beta, \gamma)_{q}\right)_{p}=\sum_{s, t} C_{p q}^{s t}\left((\alpha, \beta)_{t}, \gamma\right)_{s} \tag{*}
\end{equation*}
$$

for all $\alpha \in S_{n_{1}}, \beta \in S_{n_{2}}, \gamma \in S_{n_{3}}$. Thus we have in $\operatorname{Hom}\left(S_{n_{3}}, S_{n}\right)$ that

$$
(\alpha,)_{p} \circ(\beta,)_{q}=\sum_{s+t=p+q} C_{p q}^{s t}\left((\alpha, \beta)_{t},\right)_{s}
$$

$$
\begin{aligned}
& =C_{p, q}^{p+q, 0}(\alpha \beta,)_{p+q} \\
& +\left(\text { a linear combination of }(\delta,)_{s} \text { with } s<p+q\right) .
\end{aligned}
$$

So the proposition follows from
Lemma If $p+q \leq n_{3}$, then

$$
C_{p, q}^{p+q, 0}=\binom{n_{3}-q}{p}\binom{n_{2}+n_{3}-2 q}{p}^{-1}
$$

Proof. Following [1], for linear forms $a=a_{1} x_{1}+a_{2} x_{2}$ and $b=b_{1} x_{1}+b_{2} x_{2}$ we write $(a b)=a_{1} b_{2}-a_{2} b_{1}$. Then

$$
\Omega^{\prime}\left(a^{n} \otimes b^{m}\right)=(a b) a^{n-1} \otimes b^{m-1} .
$$

We need the formula $[1, \S 49(\mathrm{v})]$

$$
(f, g h)_{p}=\sum_{s+t=p} \frac{\binom{m}{s}\binom{l}{t}}{\binom{m+l}{p}} \nabla \Omega_{12}^{\prime s} \Omega_{13}^{\prime t}(f \otimes g \otimes h)
$$

for $f \in S_{n}, g \in S_{m}, h \in S_{l}$. Here $\nabla: S \otimes S \otimes S \rightarrow S$ is the multiplication map and $\Omega_{i j}^{\prime}: S \otimes S \otimes S \rightarrow S \otimes S \otimes S$ is obtained by making Ω^{\prime} act on the (ij)-factor of $S \otimes S \otimes S$.

Now put $w=p+q$. Evaluate the both sides of $(*)$ for $\alpha=a^{n_{1}}, \equiv a^{n_{2}}$, $\gamma=b^{n_{3}}$ with a, b linear forms. Since $(\alpha, \beta)_{t}=0$ for $t>0$, we have

$$
\text { RHS }=C_{p q}^{w 0}\left(a^{n_{1}+n_{2}}, b^{n_{3}}\right)_{w}=C_{p q}^{w 0}(a b)^{w} a^{n_{1}+n_{2}-w} b^{n_{3}-w} .
$$

Using the above formula, we compute

$$
\begin{aligned}
\text { LHS }= & \left(a^{n_{1}},(a b)^{q} a^{n_{2}-q} b^{n_{3}-q}\right)_{p} \\
= & (a b)^{q} \sum_{s+t=p} \frac{\binom{n_{2}-q}{s}\binom{n_{3}-q}{t}}{\binom{n_{2}+n_{3}-2 q}{p}} \\
& \times \nabla \Omega_{12}^{s} \Omega_{13}^{\prime t}\left(a^{n_{1}} \otimes a^{n_{2}-q} \otimes b^{n_{3}-q}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(a b)^{q} \frac{\binom{n_{3}-q}{p}}{\binom{n_{2}+n_{3}-2 q}{p}} \nabla \Omega_{13}^{\prime p}\left(a^{n_{1}} \otimes a^{n_{2}-q} \otimes b^{n_{3}-q}\right) \\
& =\frac{\binom{n_{3}-q}{p}}{\binom{n_{2}+n_{3}-2 q}{p}}(a b)^{w} a^{n_{1}+n_{2}-w} b^{n_{3}-w}
\end{aligned}
$$

Hence

$$
C_{p q}^{w 0}=\frac{\binom{n_{3}-q}{p}}{\binom{n_{2}+n_{3}-2 q}{p}}
$$

Remark. The theorem of $[1, \S 50(\mathrm{ii})]$ is of a similar nature to our proposition. Explicit linear relations among $\left(\alpha,(\beta, \gamma)_{q}\right)_{p}$ and $\left((\alpha, \beta)_{t}, \gamma\right)_{s}$ are given by Gordan's series (see the next section).

2. Matrix invariants of the cubic and the quartic

Let

$$
f=\sum_{i=0}^{d}\binom{d}{i} a_{i} x_{1}^{d-i} x_{2}^{i}
$$

be the general d-ic form. This means that the coefficients a_{i} are taken as indeterminates. $S L_{2}$ acts on the polynomial algebra $R=k\left[a_{0}, \ldots, a_{d}\right]$ in such a way that f is invariant. As before, put $C=(R \otimes S)^{S L_{2}}, C_{n}=$ $\left(R \otimes S_{n}\right)^{S L_{2}}$ and $B=R^{S L_{2}}$. The generators for C for $d \leq 6$ were given by Cayley and Gordan. So by Corollary we can know in principle the generators for the algebra $A(n, n)=\left(R \otimes \operatorname{End} S_{n}\right)^{S L_{2}}$ for such d. Let us see the case $d=3,4$.

Case $d=3$. Put $h=(f, f)_{2} \in C_{2}, t=(f, h)_{1} \in C_{3}, \Delta=(h, h)_{2} \in$ $C_{0}=B$. It is known that C is generated by f, h, t, Δ with relation $2 t^{2}+$ $h^{3}+\Delta f^{2}=0$ and that $B=k[\Delta]([1, \S 88])$.

It follows that the subalgebra $\bigoplus_{p} C_{2 p}$ of C is generated by $h, f^{2}, f t$
over B. Therefore the B-algebra $A(n, n)=\left(R \otimes \operatorname{End} S_{n}\right)^{S L_{2}}$ is generated by $(h,)_{1},\left(f^{2},\right)_{3},(f t,)_{3}$. But there is a relation

$$
\left[(h,)_{1},\left(f^{2},\right)_{3}\right]=-\frac{6}{n}(f t,)_{3}
$$

where $[x, y]=x y-y x$. So, $A(n, n)$ is generated by $(h,)_{1},\left(f^{2},\right)_{3}$ over B.
To derive the above commutation relation we need to find the constants $C_{p q}^{s t}$ in $(*)$ for $(p, q)=(1,3),(3,1)$. A quick way will be the use of Gordan's series $[1, \S 54(\mathrm{IX})]$. It is the identity

$$
\begin{aligned}
& \sum_{i}(-1)^{i} \frac{\binom{n_{3}-s-k}{i}\binom{r}{i}}{\binom{n_{2}+n_{3}-2 s-i+1}{i}}\left(\alpha,(\beta, \gamma)_{s+i}\right)_{r+k-i} \\
= & \sum_{i}(-1)^{i} \frac{\binom{n_{1}-r-k}{i}\binom{s}{i}}{\binom{n_{1}+n_{2}-2 r-i+1}{i}}\left((\alpha, \beta)_{r+i}, \gamma\right)_{s+k-i}
\end{aligned}
$$

for $\alpha \in S_{n_{1}}, \beta \in S_{n_{2}}, \gamma \in S_{n_{3}}$ and nonnegataive integers r, s, k such that $r+k \leq n_{1}, s+k \leq n_{3}, r+s \leq n_{2}$ and either $k=0$ or $r+s=n_{2}$.

Now let $\alpha \in S_{2}, \beta \in S_{6}, \gamma \in S_{n}$ with $n \geq 4$. Then the identities for $(r, s, k)=(1,3,0),(0,4,0)$ become

$$
\begin{aligned}
& \left(\alpha,(\beta, \gamma)_{3}\right)_{1}-\frac{n-3}{n}\left(\alpha,(\beta, \gamma)_{4}\right)_{0}=\left((\alpha, \beta)_{1}, \gamma\right)_{3}-\frac{1}{2}\left((\alpha, \beta)_{2}, \gamma\right)_{2} \\
& \left(\alpha,(\beta, \gamma)_{4}\right)_{0}=\left((\alpha, \beta)_{0}, \gamma\right)_{4}-\left((\alpha, \beta)_{1}, \gamma\right)_{3}+\frac{2}{7}\left((\alpha, \beta)_{2}, \gamma\right)_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\alpha,(\beta, \gamma)_{3}\right)_{1}= & \frac{n-3}{n}\left((\alpha, \beta)_{0}, \gamma\right)_{4}+\frac{3}{n}\left((\alpha, \beta)_{1}, \gamma\right)_{3} \\
& -\frac{3 n+12}{14 n}\left((\alpha, \beta)_{2}, \gamma\right)_{2}
\end{aligned}
$$

Similarly letting $(r, s, k)=(1,1,2),(0,2,2)$, we have

$$
\begin{aligned}
\left(\beta,(\alpha, \gamma)_{1}\right)_{3}= & \frac{n-3}{n}\left((\beta, \alpha)_{0}, \gamma\right)_{4}+\frac{3}{n}\left((\beta, \alpha)_{1}, \gamma\right)_{3} \\
& -\frac{3 n+12}{14 n}\left((\beta, \alpha)_{2}, \gamma\right)_{2}
\end{aligned}
$$

Since $(\beta, \alpha)_{p}=(-1)^{p}(\alpha, \beta)_{p}$, we obtain

$$
\left[(\alpha,)_{1},(\beta,)_{3}\right]=\frac{6}{n}\left((\alpha, \beta)_{1},\right)_{3}
$$

as an operator on S_{n}. This holds also for $n<4$.
Since $\left(h, f^{2}\right)_{1}=-f t$, we obtain the desired relation.
Case $d=4$. Let $h=(f, f)_{2} \in C_{4}, t=(f, h)_{1} \in C_{6}, i=(f, f)_{4} \in C_{0}$, $j=(f, h)_{4} \in C_{0}$. Then B is the polynomial algebra $k[i, j]$ and the B-algebra C is generated by $f, h, t([1, \S 89])$. Also $\bigoplus_{p} C_{2 p}=C$. Hence B-algebra $A(n, n)$ is generated by $(f,)_{2},(h,)_{2},(t,)_{3}$. But we have

$$
\left[(f,)_{2},(h,)_{2}\right]=\frac{8(n-2)}{n(n-1)}(t,)_{3}
$$

If $n=2,(t,)_{3}=0$. Consequently, $A(n, n)$ is generated by $(f,)_{2}$ and $(h,)_{2}$ over B.

The commutation relation is proved in the same way. Using the Gordan series for $\alpha, \beta \in S_{4}$ and $(r, s, k)=(2,2,0),(1,3,0),(0,4,0)$, we obtain the identity

$$
\begin{aligned}
& n(n-1)(\alpha,)_{2} \circ(\beta,)_{2} \\
&=(n-2)(n-3)\left((\alpha, \beta)_{0},\right)_{4}+4(n-2)\left((\alpha, \beta)_{1},\right)_{3} \\
&-\frac{2}{7}(n+5)(n-3)\left((\alpha, \beta)_{2},\right)_{2}-\frac{2}{5}(n+3)\left((\alpha, \beta)_{3},\right)_{1} \\
&+\frac{1}{30}(n+3)(n+2)\left((\alpha, \beta)_{4},\right)_{0}
\end{aligned}
$$

as an operator on S_{n}, and hence

$$
\begin{aligned}
n(n-1)\left[(\alpha,)_{2},(\beta,)_{2}\right]= & 8(n-2)\left((\alpha, \beta)_{1},\right)_{3} \\
& -\frac{4}{5}(n+3)\left((\alpha, \beta)_{3},\right)_{1}
\end{aligned}
$$

Since $(f, h)_{1}=t$ and $(f, h)_{3}=0$, the relation follows.

References

[1] Grace J.H. and Young A., The algebra of invariants. Cambridge University Press, 1903.

Department of Mathematics Hirosaki University
Hirosaki 036, Japan
E-mail: tambara@cc.hirosaki-u.ac.jp

[^0]: 1991 Mathematics Subject Classification : 16W20, 13A50.

