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Matrix invariants of binary forms

Daisuke TAMBARA
(Received September 5, 1994)

Abstract. Let S_{n} be the vector space of homogeneous polynomials of degree n in
two variables. Let A_{d}(n) be the noncommutative algebra consisting of SL_{2} -equivariant
polynomial maps from S_{d} to EndSn. We show that generators for A_{d}(n) are derived from
generators for the algebra of covariants of the d-ic forms.
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Introduction

Let k be a field of characteristic 0. Put S=k[x_{1}, x_{2}] , the polynomial
ring, and let S_{n} be its homogenous part of degree n . The group SL_{2} acts
on S canonically. We are concerned about SL_{2}-invariant polynomial maps
from the space S_{d} to the matrix algebra EndS_{n} . Those maps form an
algebra A_{d}(n) by matrix multiplication. A_{d}(0) is the algebra of invariants
of the d-ic form, and was studied in classical invariant theory. We show
that A_{d}(n) is a deformation of a factor of the algebra of covariants of the
d-ic form. In particular, the knowledge of the generators for the algebra of
covariants gives that for the algebra A_{d}(n) .

More generally, let R be a commutative algebra with SL_{2}-action. Then
SL_{2} acts on the algebra R\otimes EndS_{n} and let A(n)=(R\otimes EndS_{n})^{SL_{2}} be the
invariant algebra. On the other hand, we have the commutative algebra
C=(R\otimes S)^{SL_{2}} with grading given by C_{n}=(R\otimes S_{n})^{SL_{2}} . For \alpha\in R\otimes S_{n} ,
\beta\in R\otimes S_{m} and p\geq 0 , we have the transvectant (\alpha, \beta)_{p}\in R\otimes S_{n+m-2p} ,
where \alpha , \beta are regarded as forms with coe fRcients in R([1]) . Define the
map \phi :\oplus_{p=0}^{n}C_{2p}arrow A(n) by

\phi(\alpha)(\gamma)=\frac{n!}{(n-p)!}(\alpha, \gamma)_{p}

for \alpha\in C_{2p} , \gamma\in R\otimes S_{n} . Then it is shown that \phi is an isomorphism and

\phi(\alpha)\phi(\beta)-\phi(\alpha\beta)\in\phi(\oplus C_{2r})r<p+q
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for \alpha\in C_{2p} , \beta\in C_{2q} with p+q\leq n . It follows that if the algebra \oplus_{p=0}^{n}C_{2p}

is generated by homogenous elements \alpha_{1} , \alpha_{2} , \ldots , then the algebra A(n) is
generated by \phi(\alpha_{1}) , \phi(\alpha_{2}) , \ldots .

When R is the coordinate ring of S_{d} , A(n) becomes A_{d}(n) and C be-
comes the algebra of covariants. Using Cayley’s determination of C for
d=3,4 , we give the generators for A_{3}(n) , A_{4}(n) .

1. SL_{2}-invariant of matrix algebras

Our result is an immediate consequence of a property of transvectants,
which might be a classical fact (Proposition below). Let us review some
basic facts about binary forms. The \Omega-process is the map

\Omega : S\otimes Sarrow S\otimes S

\alpha\otimes\beta\mapsto\frac{\partial\alpha}{\partial x_{1}}\otimes\frac{\partial\beta}{\partial x_{2}}-\frac{\partial\alpha}{\partial x_{2}}\otimes\frac{\partial\beta}{\partial x_{1}} .

This is SL_{2}-linear and takes S_{n}\otimes S_{m} into S_{n-1}\otimes S_{m-1} . Put \Omega’=\frac{1}{nm}\Omega :
S_{n}\otimes S_{m}arrow S_{n-1}\otimes S_{m-1} . For 0\leq p\leq n , m , let \tau_{p} be the composite map

\tau_{p} : S_{n}\otimes S_{m}arrow S_{n-p}\otimes S_{m-p}arrow S_{n+m-2p}\Omega^{\prime p}mult .

(\alpha, \beta)_{p}=\tau_{p}(\alpha\otimes\beta) is called the p^{th} transvectant of \alpha and \beta([1, \S 48] ) .
The Clebsch-Gordan rule is the decomposition

S_{n}\otimes S_{m}\cong\oplus S_{n+m-2p}min(n,m)p=0

\alpha\otimes\beta\mapsto((\alpha, \beta)_{p})_{p}

Equivalently, we have

Hom_{SL_{2}}(S_{n}\otimes S_{m}, S_{l})

=\{
k\tau_{p} if 0\leq\exists p\leq n , m such that n+m-2p=l
0 otherwise.

Another equivalent form is the isomorphism

p=(m-n)_{+}\oplus m S_{n-m+2p}\cong Hom(S_{m}, S_{n})

S_{n-m+2p}\ni\alpha\mapsto(\alpha, )_{p} .
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Here z_{+}= \max(z, 0) for z\in \mathbb{Z} . Because

Hom(S_{m}, S_{n})\cong S_{n}\otimes S_{m}^{*}

\cong\oplus Hom_{SL_{2}}(S_{l}, S_{n}\otimes S_{m}^{*})\otimes S_{l}l\geq 0

\cong\oplus Hom_{SL_{2}}(S_{l}\otimes S_{m}, S_{n})\otimes S_{l}l\geq 0

\cong
\oplus m S_{n-m+2p} .

p=(m-n)_{+}

For each m, n\geq 0 let \varphi : \oplus_{p=(m-n)_{+}}^{m}S_{n-m+2p} - Hom(S_{m}, S_{n}) be the

isomorphism taking \alpha\in S_{n-m+2p} to the map \frac{n!}{(m-p)!}(\alpha, )_{p} .

Proposition Let \alpha\in S_{n-m+2p} , \beta\in S_{m-l+2q} with (m-n)_{+}\leq p\leq m ,
(l-m)_{+}\leq q\leq l , p+q\leq l . Then

\varphi(\alpha)\varphi(\beta)-\varphi(\alpha\beta)\in\varphi(\oplus S_{n-l+2r})r<p+q
(\subset Hom(S_{l}, S_{n})) .

Proof will be given later.
Let R be a commutative k algebra with SL_{2}-action. Put C=(R\otimes S)^{SL_{2}}

and C_{n}=(R\otimes S_{n})^{SL_{2}} . For m, n\geq 0 put A(m, n)=(R\otimes Hom(S_{m}, S_{n}))^{SL_{2}} .

We have the composition maps A(m, n)\cross A(l, m)arrow A(l, n) . Tensoring R

with the SL_{2} isomorphism \varphi and taking the SL_{2}-invariant, we obtain

Theorem For each m , n\geq 0 , we have the isomorphism

\phi : \oplus m C_{n-m+2p}arrow A(\sim m, n)

p=(m-n)_{+}

C_{n-m+2p} \ni\alpha\mapsto\frac{n!}{(m-p)!}(\alpha, )_{p} .

For \alpha\in C_{n-m+2p} , \beta\in C_{m-l+2q} with (m-n)_{+}\leq p\leq m , (l-m)_{+}\leq q\leq l ,
p+q\leq l we have

\phi(\alpha)\phi(\beta)-\phi(\alpha\beta)\in\phi(\oplus C_{n-l+2r})r<p+q
(\subset A(l, n)) .

Corollary If the factor algebra \oplus_{p=0}^{n}C_{2p} of\oplus_{p\geq 0}C_{2p} is generated by
homogenous elements \alpha_{1} , \alpha_{2} , ., then the algebra A(n, n) is generated by
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\phi(\alpha_{1}) , \phi(\alpha_{2}) , .

Remark. Let B=R^{SL_{2}} . Then C and A(m, n) are B-modules and the is0-
morphism \phi is B-linear. If \alpha_{i} generate \oplus_{p}C_{2p} over B , then \phi(\alpha_{i}) generate
A(n, n) over B .

Proof of Proposition. By Clebsch-Gordan we have
\min(n_{1},n_{2})

S_{n_{1}}\otimes S_{n_{2}}\otimes S_{n_{3}}\cong
\oplus t=0

S_{n_{1}+n_{2}-2t}\otimes S_{n_{3}}

\cong\min(n_{1}n_{2})\min(n_{1}+n_{2}-2t,n_{3})\oplus’\oplus S_{n_{1}+n_{2}+n_{3}-2t-2s}t=0s=0^{\cdot}

Hence Hom_{SL_{2}}(S_{n_{1}}\otimes S_{n_{2}}\otimes S_{n_{3}}, S_{n}) has a k-basis consisting of the maps

\tau_{s}(\tau_{t}\otimes 1) : S_{n_{1}}\otimes S_{n_{2}}\otimes S_{n_{3}}arrow S_{n_{1}+n_{2}-2t}\otimes S_{n_{3}}arrow S_{n}

for s , t such that

0\leq t\leq n_{1} , n_{2} , 0\leq s\leq n_{1}+n_{2}-2t , n_{3} ,
n_{1}+n_{2}+n_{3}-2(s+t)=n .

Likewise, HomsL_{2}(S_{n_{1}}\otimes S_{n_{2}}\otimes S_{n_{3}}, S_{n}) has a k-basis consisting of the maps

\tau_{p}(1\otimes\tau_{q}) : S_{n_{1}}\otimes S_{n_{2}}\otimes S_{n_{3}}arrow S_{n_{1}}\otimes S_{n_{2}+n_{3}-2q}arrow S_{n}

for p , q such that

0\leq q\leq n_{2} , n_{3} , 0\leq p\leq n_{1} , n_{2}+n_{3}-2q ,
n_{1}+n_{2}+n_{3}-2(p+q)=n .

So there must be relations

\tau_{p}(1\otimes\tau_{q})=\sum_{s,t}C_{pq}^{st}\tau_{s}(\tau_{t}\otimes 1)

with some C_{pq}^{st}\in k . Namely,

( \alpha, (\beta, \gamma)_{q})_{p}=\sum_{s,t}C_{pq}^{st}((\alpha, \beta)_{t}
, \gamma)_{s} (*)

for all \alpha\in S_{n_{1}} , \beta\in S_{n_{2}} , \gamma\in S_{n_{3}} . Thus we have in Hom(S_{n_{3}}, S_{n}) that

( \alpha, )_{p}\circ(\beta, )_{q}=\sum_{s+t=p+q}C_{pq}^{st}((\alpha, \beta)_{t}
, )_{s}
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=C_{p,q}^{p+q,0}(\alpha\beta, )_{p+q}

+ (a linear combination of ( \delta , ) with s<p+q ).

So the proposition follows from \square

Lemma If p+q\leq n_{3} , then

C_{p,q}^{p+q,0}=(\begin{array}{l}n_{3}-qp\end{array})(\begin{array}{l}n_{2}+n_{3}-2qp\end{array})

Proof. Following [1], for linear forms a=a_{1}x_{1}+a_{2}x_{2} and b=b_{1}x_{1}+b_{2}x_{2}

we write (ab)=a_{1}b_{2}-a_{2}b_{1} . Then

\Omega’(a^{n}\otimes b^{m})=(ab)a^{n-1}\otimes b^{m-1}

We need the formula [1, \S 49(v)]

(f, gh)_{p}= \sum_{s+t=p}\frac
\nabla\Omega_{12}^{\prime s}\Omega_{13}^{\prime t}(f\otimes g\otimes h)

for f\in S_{n} , g\in S_{m} , h\in S_{l} . Here \nabla : S\otimes S\otimes S – S is the multiplication
map and \Omega_{ij}’ : S\otimes S\otimes S – S\otimes S\otimes S is obtained by making \Omega’ act on the
(ij)-factor of S\otimes S\otimes S .

Now put w=p+q. Evaluate the both sides of (*) for \alpha=a^{n_{1}}, =-a^{n_{2}} ,
\gamma=b^{n_{3}} with a , b linear forms. Since (\alpha, \beta)_{t}=0 for t>0 . we have

RHS= C_{pq}^{w0}(a^{n_{1}+n_{2}}, b^{n_{3}})_{w}=C_{pq}^{w0}(ab)^{w}a^{n_{1}+n_{2}-w}b^{n_{3}-w}

Using the above formula, we compute

LHS= (a^{n_{1}}, (ab)^{q}a^{n_{2}-q}b^{n_{3}-q})_{p}

=(ab)^{q} \sum_{s+t=p}\frac

\cross\nabla\Omega_{12}^{\prime s}\Omega_{13}^{\prime t}(a^{n_{1}}\otimes a^{n_{2}-q}\otimes b^{n_{3}-q})
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=(ab)^{q} \frac{(\begin{array}{l}n_{3}-qp\end{array})}{(\begin{array}{l}n_{2}+n_{3}-2qp\end{array})} \nabla\Omega_{13}^{\prime p}(a^{n_{1}}\otimes a^{n_{2}-q}\otimes b^{n_{3}-q})

= \frac{(\begin{array}{l}n_{3}-qp\end{array})}{(\begin{array}{l}n_{2}+n_{3}-2qp\end{array})} (ab)^{w}a^{n_{1}+n_{2}-w}b^{n_{3}-w} .

Hence

C_{pq}^{w0}= \frac{(\begin{array}{l}n_{3}-qp\end{array})}{(\begin{array}{l}n_{2}+n_{3}-2qp\end{array})} .

\square

Remark. The theorem of [1, \S 50(ii)] is of a similar nature to our proposi-
tion. Explicit linear relations among (\alpha, (\beta, \gamma)_{q})_{p} and ((\alpha, \beta)_{t}, \gamma)_{s} are given
by Gordan’s series (see the next section).

2. Matrix invariants of the cubic and the quartic

Let

f= \sum_{i=0}^{d} (\begin{array}{l}di\end{array}) a_{i}x_{1}^{d-i}x_{2}^{i}

be the general d-ic form. This means that the coefficients a_{i} are taken as
indeterminates. SL_{2} acts on the polynomial algebra R=k[a_{0}, , a_{d}] in
such a way that f is invariant. As before, put C=(R\otimes S)^{SL_{2}} , C_{n}=
(R\otimes S_{n})^{SL_{2}} and B=R^{SL_{2}} . The generators for C for d\leq 6 were given by
Cayley and Gordan. So by Corollary we can know in principle the generators
for the algebra A(n, n)=(R\otimes EndS_{n})^{SL_{2}} for such d. Let us see the case
d=3,4 .

Case d=3 . Put h=(f, f)_{2}\in C_{2} , t=(f, h)_{1}\in C_{3} , \triangle=(h, h)_{2}\in

C_{0}=B . It is known that C is generated by f, h , t , \triangle with relation 2t^{2}+

h^{3}+\triangle f^{2}=0 and that B=k[\triangle] ([1, \S 88]).
It follows that the subalgebra \oplus_{p}C_{2p} of C is generated by h , f^{2} , ft
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over B . Therefore the B-algebra A(n, n)=(R\otimes EndS_{n})^{SL_{2}} is generated by
(h, )_{1} , (f^{2}, )_{3} , (ft, )_{3} . But there is a relation

[(h, )_{1}, (f^{2}, )_{3}]=- \frac{6}{n}(ft, )_{3} ,

where [x, y]=xy-yx . So, A(n, n) is generated by (h, )_{1} , (f^{2}, )_{3} over B .
To derive the above commutation relation we need to find the constants

C_{pq}^{st} in (*) for (p, q)=(1,3) , (3, 1) . A quick way will be the use of Gordan’s
series [1, \S 54(IX)]. It is the identity

\sum_{i}(-1)^{i}\frac{(\begin{array}{l}n_{3}-s-ki\end{array})(\begin{array}{l}ri\end{array})}{(\begin{array}{lll}n_{2}+n_{3}-2s -i+ 1i \end{array})} (\alpha, (\beta, \gamma)_{s+i})_{r+k-i}

= \sum_{i}(-1)^{i}\frac{(\begin{array}{l}n_{1}-r-ki\end{array})(\begin{array}{l}si\end{array})}{(\begin{array}{ll}n_{1}+n_{2}-2r -i+1i \end{array})} ((\alpha, \beta)_{r+i}, \gamma)_{s+k-i}

for \alpha\in S_{n_{1}} , \beta\in S_{n_{2}} , \gamma\in S_{n_{3}} and nonnegataive integers r, s , k such that
r+k\leq n_{1} , s+k\leq n_{3} , r+s\leq n_{2} and either k=0 or r+s=n_{2} .

Now let \alpha\in S_{2} , \beta\in S_{6} , \gamma\in S_{n} with n\geq 4 . Then the identities for
(r, s, k)=(1,3,0) , (0, 4, 0) become

( \alpha, (\beta, \gamma)_{3})_{1}-\frac{n-3}{n}(\alpha, (\beta, \gamma)_{4})_{0}=((\alpha, \beta)_{1} , \gamma)_{3}-\frac{1}{2}((\alpha, \beta)_{2} , \gamma)_{2} ,

(\alpha, (\beta, \gamma)_{4})_{0}=((\alpha, \beta)_{0} , \gamma)_{4}-((\alpha, \beta)_{1} , \gamma)_{3}+\frac{2}{7}((\alpha, \beta)_{2} , \gamma)_{2} .

Hence

( \alpha, (\beta, \gamma)_{3})_{1}=\frac{n-3}{n}((\alpha, \beta)_{0} , \gamma)_{4}+\frac{3}{n}((\alpha, \beta)_{1} , \gamma)_{3}

- \frac{3n+12}{14n} ((\alpha, \beta)_{2} , \gamma)_{2} .

Similarly letting (r, s, k)=(1,1,2) , (0, 2, 2), we have

( \beta, (\alpha, \gamma)_{1})_{3}=\frac{n-3}{n}((\beta, \alpha)_{0} , \gamma)_{4}+\frac{3}{n}((\beta, \alpha)_{1} , \gamma)_{3}

- \frac{3n+12}{14n} ((\beta, \alpha)_{2} , \gamma)_{2} .
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Since (\beta, \alpha)_{p}=(-1)^{p}(\alpha, \beta)_{p} , we obtain

[( \alpha, )_{1}, (\beta, )_{3}]=\frac{6}{n}((\alpha, \beta)_{1} , )_{3}

as an operator on S_{n} . This holds also for n<4 .
Since (h, f^{2})_{1}=-ft , we obtain the desired relation.

Case d=4 . Let h=(f, f)_{2}\in C_{4} , t=(f, h)_{1}\in C_{6} , i=(f, f)_{4}\in C_{0} ,
j=(f, h)_{4}\in C_{0} . Then B is the polynomial algebra k[i, j] and the S-algebra
C is generated by f, h , t ([1, \S 89]). Also \oplus_{p}C_{2p}=C . Hence S-algebra
A(n, n) is generated by (f, )_{2} , (h, )_{2} , (t, )_{3} . But we have

[(f, )_{2}, (h, )_{2}]= \frac{8(n-2)}{n(n-1)}(t, )_{3} .

If n=2 , (t, )_{3}=0 . Consequently, A(n, n) is generated by (f, )_{2} and (h, )_{2}

over B .
The commutation relation is proved in the same way. Using the Gordan

series for \alpha , \beta\in S_{4} and (r, s, k)=(2,2,0) , (1, 3, 0), (0, 4, 0), we obtain the
identity

n(n-1)(\alpha, )_{2}\circ(\beta, )_{2}

=(n-2)(n-3)((\alpha, \beta)_{0}, )_{4}+4(n-2)((\alpha, \beta)_{1} , )_{3}

- \frac{2}{7}(n+5)(n-3)((\alpha, \beta)_{2}, )_{2}- \frac{2}{5}(n+3)((\alpha, \beta)_{3} , )_{1}

+ \frac{1}{30}(n+3)(n+2)((\alpha, \beta)_{4}, )_{0}

as an operator on S_{n} , and hence

n(n-1)[(\alpha, )_{2}, (\beta, )_{2}]=8(n-2)((\alpha, \beta)_{1}, )_{3}

- \frac{4}{5}(n+3)((\alpha, \beta)_{3}, )_{1} .

Since (f, h)_{1}=t and (f, h)_{3}=0 , the relation follows.
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